F F

This booklet contains 40 printed pages. ß‚ ¬ÈÁSÃ∑§Ê ◊¥ ◊ÈÁŒ˝Ã ¬Îc∆ 40 „Ò¥–

PAPER - 1

¬˝‡Ÿ¬ÈÁSÃ∑§Ê -

SSO

: CHEMISTRY, MATHEMATICS & PHYSICS 1 : ⁄U‚ÊÿŸ ÁflôÊÊŸ, ªÁáÊà ÃÕÊ ÷ÊÒÁÃ∑§ ÁflôÊÊŸ

No. : Test Booklet Code

¬⁄ˡÊÊ ¬ÈÁSÃ∑§Ê ‚¥∑§Ã

Do not open this Test Booklet until you are asked to do so.

ß‚ ¬⁄ˡÊÊ ¬ÈÁSÃ∑§Ê ∑§Ê Ã’ Ã∑§ Ÿ πÊ‹¥ ¡’ Ã∑§ ∑§„Ê Ÿ ¡Ê∞– Read carefully the Instructions on the Back Cover of this Test Booklet.

ß‚ ¬⁄ˡÊÊ ¬ÈÁSÃ∑§Ê ∑§ Á¬¿‹ •Êfl⁄áÊ ¬⁄ ÁŒ∞ ª∞ ÁŸŒ¸‡ÊÊ¥ ∑§Ê äÿÊŸ ‚ ¬…∏¥– Important Instructions : 1. Immediately fill in the particulars on this page of the Test Booklet with only Blue / Black Ball Point Pen provided by the Board. 2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully. 3. The test is of 3 hours duration. 4. The Test Booklet consists of 90 questions. The maximum marks are 360. 5. There are three parts in the question paper A, B, C consisting of Chemistry, Mathematics and Physics having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response. 6. Candidates will be awarded marks as stated above in instruction No. 5 for correct response of each question. ¼ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet. 7. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above. 8. For writing particulars/marking responses on Side-1 and Side–2 of the Answer Sheet use only Blue/Black Ball Point Pen provided by the Board. 9. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination room/hall. 10. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in one page (i.e. Page 39) at the end of the booklet. 11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them. 12. The CODE for this Booklet is F. Make sure that the CODE printed on Side–2 of the Answer Sheet and also tally the serial number of the Test Booklet and Answer Sheet are the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet. 13. Do not fold or make any stray mark on the Answer Sheet.

Name of the Candidate (in Capital letters ) :

¬⁄ˡÊÊÕ˸ ∑§Ê ŸÊ◊ (’«∏ •ˇÊ⁄Ê¥ ◊¥) — Roll Number

•ŸÈ∑§˝ ◊Ê¥∑§

: in figures

— •¥∑§Ê¥ ◊¥

: in words

— ‡ÊéŒÊ¥ ◊¥

Examination Centre Number :

¬⁄ˡÊÊ ∑§ãŒ˝ Ÿê’⁄U —

Name of Examination Centre (in Capital letters) :

¬⁄UˡÊÊ ∑§ãŒ˝ ∑§Ê ŸÊ◊ (’«∏ •ˇÊ⁄UÊ¥ ◊¥ ) — Candidate’s Signature :

¬⁄ˡÊÊÕ˸ ∑§ „SÃÊˇÊ⁄ —

F

◊„ûfl¬Íáʸ ÁŸŒ¸‡Ê — 1. ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ∑§ ß‚ ¬Îc∆U ¬⁄U •Êfl‡ÿ∑§ Áflfl⁄UáÊ ∑§fl‹ ’Ê«¸U mÊ⁄UÊ ©¬‹éœ ∑§⁄UÊÿ ªÿ ŸË‹ / ∑§Ê‹ ’ÊÚ‹ åflÊߥ≈U ¬Ÿ ‚ Ãà∑§Ê‹ ÷⁄¥– 2. ©ûÊ⁄U ¬òÊ ß‚ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ∑§ •ãŒ⁄U ⁄UπÊ „Ò– ¡’ •Ê¬∑§Ê ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê πÊ‹Ÿ ∑§Ê ∑§„Ê ¡Ê∞, ÃÊ ©ûÊ⁄U ¬òÊ ÁŸ∑§Ê‹ ∑§⁄U ‚ÊflœÊŸË¬Ífl∑¸ § Áflfl⁄UáÊ ÷⁄U¥– 3. ¬⁄UˡÊÊ ∑§Ë •flÁœ 3 ÉÊ¥≈U „Ò– 4. ß‚ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ◊¥ 90 ¬˝‡Ÿ „Ò¥– •Áœ∑§Ã◊ •¥∑§ 360 „Ò¥– 5. ß‚ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ◊¥ ÃËŸ ÷ʪ A, B, C „Ò¥, Á¡‚∑§ ¬˝àÿ∑§ ÷ʪ ◊¥ ⁄U‚ÊÿŸ ÁflôÊÊŸ, ªÁáÊà ∞fl¥ ÷ÊÒÁÃ∑§ ÁflôÊÊŸ ∑§ 30 ¬˝‡Ÿ „Ò¥ •ÊÒ⁄U ‚÷Ë ¬˝‡ŸÊ¥ ∑§ •¥∑§ ‚◊ÊŸ „Ò¥– ¬˝àÿ∑§ ¬˝‡Ÿ ∑§ ‚„Ë ©ûÊ⁄U ∑§ Á‹∞ 4 (øÊ⁄U) •¥∑§ ÁŸœÊ¸Á⁄Uà Á∑§ÿ ªÿ „Ò¥– 6. •èÿÁÕ¸ÿÊ¥ ∑§Ê ¬˝àÿ∑§ ‚„Ë ©ûÊ⁄U ∑§ Á‹∞ ©¬⁄UÊÄà ÁŸŒ¸‡ÊŸ ‚¥ÅÿÊ 5 ∑§ ÁŸŒ¸‡ÊÊŸÈ‚Ê⁄U •¥∑§ ÁŒÿ ¡Êÿ¥ª– ¬˝àÿ∑§ ¬˝‡Ÿ ∑§ ª‹Ã ©ûÊ⁄U ∑§ Á‹ÿ ¼ flÊ¥ ÷ʪ ∑§Ê≈U Á‹ÿÊ ¡ÊÿªÊ– ÿÁŒ ©ûÊ⁄U ¬òÊ ◊¥ Á∑§‚Ë ¬˝‡Ÿ ∑§Ê ©ûÊ⁄U Ÿ„Ë¥ ÁŒÿÊ ªÿÊ „Ê ÃÊ ∑ȧ‹ ¬˝Ê#Ê¥∑§ ‚ ∑§Ê߸ ∑§≈UÊÒÃË Ÿ„Ë¥ ∑§Ë ¡ÊÿªË– 7. ¬˝àÿ∑§ ¬˝‡Ÿ ∑§Ê ∑§fl‹ ∞∑§ „Ë ‚„Ë ©ûÊ⁄U „Ò– ∞∑§ ‚ •Áœ∑§ ©ûÊ⁄U ŒŸ ¬⁄U ©‚ ª‹Ã ©ûÊ⁄U ◊ÊŸÊ ¡ÊÿªÊ •ÊÒ⁄U ©¬⁄UÊÄà ÁŸŒ¸‡Ê 6 ∑§ •ŸÈ‚Ê⁄U •¥∑§ ∑§Ê≈U Á‹ÿ ¡Êÿ¥ª– 8. ©ûÊ⁄U ¬òÊ ∑§ ¬Îc∆U-1 ∞fl¥ ¬Îc∆U-2 ¬⁄U flÊ¥Á¿Uà Áflfl⁄UáÊ ∞fl¥ ©ûÊ⁄U •¥Á∑§Ã ∑§⁄UŸ „ÃÈ ’Ê«¸U mÊ⁄UÊ ©¬‹éœ ∑§⁄UÊÿ ªÿ ∑§fl‹ ŸË‹/∑§Ê‹ ’ÊÚ‹ åflÊߥ≈U ¬Ÿ ∑§Ê „Ë ¬˝ÿÊª ∑§⁄¥U– 9. ¬⁄UˡÊÊÕ˸ mÊ⁄UÊ ¬⁄UˡÊÊ ∑§ˇÊ/„ÊÚ‹ ◊¥ ¬˝fl‡ Ê ∑§Ê«¸U ∑§ •‹ÊflÊ Á∑§‚Ë ÷Ë ¬˝∑§Ê⁄U ∑§Ë ¬Ê∆˜Uÿ ‚Ê◊ª˝Ë, ◊ÈÁŒ˝Ã ÿÊ „SÃÁ‹ÁπÃ, ∑§Êª¡ ∑§Ë ¬Áø¸ÿÊ°, ¬¡⁄U, ◊Ê’Êß‹ »§ÊŸ ÿÊ Á∑§‚Ë ÷Ë ¬˝∑§Ê⁄U ∑§ ß‹Ä≈˛UÊÚÁŸ∑§ ©¬∑§⁄UáÊÊ¥ ÿÊ Á∑§‚Ë •ãÿ ¬˝∑§Ê⁄U ∑§Ë ‚Ê◊ª˝Ë ∑§Ê ‹ ¡ÊŸ ÿÊ ©¬ÿÊª ∑§⁄UŸ ∑§Ë •ŸÈ◊Áà Ÿ„Ë¥ „Ò– 10. ⁄U»§ ∑§Êÿ¸ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ◊¥ ∑§fl‹ ÁŸœÊ¸Á⁄Uà ¡ª„ ¬⁄U „Ë ∑§ËÁ¡∞– ÿ„ ¡ª„ ¬˝àÿ∑§ ¬Îc∆U ¬⁄U ŸËø ∑§Ë •Ê⁄U •ÊÒ⁄U ¬ÈÁSÃ∑§Ê ∑§ •¥Ã ◊¥ ∞∑§ ¬Îc∆U ¬⁄U (¬Îc∆U 39) ŒË ªß¸ „Ò– 11. ¬⁄UˡÊÊ ‚◊Êåà „ÊŸ ¬⁄U, ¬⁄UˡÊÊÕ˸ ∑§ˇÊ/„ÊÚ‹ ¿UÊ«∏Ÿ ‚ ¬Ífl¸ ©ûÊ⁄U ¬òÊ ∑§ˇÊ ÁŸ⁄UˡÊ∑§ ∑§Ê •fl‡ÿ ‚ÊÒ¥¬ Œ¥– ¬⁄UˡÊÊÕ˸ •¬Ÿ ‚ÊÕ ß‚ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ∑§Ê ‹ ¡Ê ‚∑§Ã „Ò¥– 12. ß‚ ¬ÈÁSÃ∑§Ê ∑§Ê ‚¥∑§Ã F „Ò– ÿ„ ‚ÈÁŸÁ‡øà ∑§⁄U ‹¥ Á∑§ ß‚ ¬ÈÁSÃ∑§Ê ∑§Ê ‚¥∑§Ã, ©ûÊ⁄U ¬òÊ ∑§ ¬Îc∆U-2 ¬⁄U ¿U¬ ‚¥∑§Ã ‚ Á◊‹ÃÊ „Ò •ÊÒ⁄U ÿ„ ÷Ë ‚ÈÁŸÁ‡øà ∑§⁄U ‹¥ Á∑§ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê •ÊÒ⁄U ©ûÊ⁄U ¬òÊ ∑§Ë ∑˝§◊ ‚¥ÅÿÊ Á◊‹ÃË „Ò– •ª⁄U ÿ„ Á÷ÛÊ „Ê ÃÊ ¬⁄UˡÊÊÕ˸ ŒÍ‚⁄UË ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê •ÊÒ⁄U ©ûÊ⁄U ¬òÊ ‹Ÿ ∑§ Á‹∞ ÁŸ⁄UˡÊ∑§ ∑§Ê ÃÈ⁄Uãà •flªÃ ∑§⁄UÊ∞°– 13. ©ûÊ⁄U ¬òÊ ∑§Ê Ÿ ◊Ê«∏¥ ∞fl¥ Ÿ „Ë ©‚ ¬⁄U •ãÿ ÁŸ‡ÊÊŸ ‹ªÊ∞°–

1. Invigilator’s Signature :

ÁŸ⁄ˡÊ∑§ ∑§ „SÃÊˇÊ⁄ —

2. Invigilator’s Signature :

ÁŸ⁄ˡÊ∑§ ∑§ „SÃÊˇÊ⁄ —

F F

F F

÷ʪ A — ⁄U‚ÊÿŸ ÁflôÊÊŸ

PART A — CHEMISTRY

1.

A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference V esu. If e and m are charge and mass of an electron, respectively, then the value of h/λ (where λ is wavelength associated with electron wave) is given by :

∞∑§ ª◊¸ Á»§‹Ê◊¥≈U ‚ ÁŸ∑§‹Ë ß‹Ä≈˛UÊÚŸ œÊ⁄UÊ ∑§Ê V esu ∑§ Áfl÷flÊãÃ⁄U ¬⁄ ⁄Uπ ŒÊ •ÊflÁ‡Êà åÀÊ≈UÊ¥ ∑§ ’Ëø ‚ ÷¡Ê ¡ÊÃÊ „Ò– ÿÁŒ ß‹Ä≈˛UÊÚŸ ∑§ •Êfl‡Ê ÃÕÊ ‚¥„Áà ∑˝§◊‡Ê— e ÃÕÊ m „Ê¥ ÃÊ h/λ ∑§Ê ◊ÊŸ ÁŸêŸ ◊¥ ‚ Á∑§‚∑§ mÊ⁄UÊ ÁŒÿÊ ¡ÊÿªÊ? (¡’ ß‹Ä≈˛UÊÚŸ Ã⁄¥Uª ‚ ‚ê’ÁãœÃ Ã⁄¥UªŒÒäÿ¸ λ „Ò)

(1)

2meV

(1)

2meV

(2)

meV

(2)

meV

(3)

2 meV

(3)

2 meV

(4)

2.

1.

meV

(4)

2-chloro-2-methylpentane on reaction with sodium methoxide in methanol yields :

2.

meV

◊ Õ  Ÿ ÊÚ ‹ ◊ ¥ 2- Ä‹Ê ⁄ U Ê  -2-◊ Á Õ‹¬ ã ≈ U Ÿ , ‚Ê Á «U ÿ ◊ ◊ÕÊÄ‚Êß«U ∑§ ‚ÊÕ •Á÷Á∑˝§ÿÊ ∑§⁄U∑§ ŒÃË „Ò —

(a)

(a)

(b)

(b)

(c)

(c)

ÃÕÊ (c)

(1)

(a) and (c)

(1)

(a)

(2)

(c) only

(2)

◊ÊòÊ (c)

(3)

(a) and (b)

(3)

(a) ÃÕÊ (b)

(4)

All of these

(4)

ߟ◊¥ ‚ ‚÷Ë

F/Page 2

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

3.

4.

5.

Which of the following compounds is metallic and ferromagnetic ?

3.

ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ ‚Ê ÿÊÒÁª∑§ œÊÁàfl∑§ ÃÕÊ »§⁄UÊ◊ÒªŸÁ≈U∑§ (‹ÊÒ„ øÈê’∑§Ëÿ) „Ò?

(1)

CrO 2

(1)

CrO 2

(2)

VO 2

(2)

VO 2

(3)

MnO2

(3)

MnO2

(4)

TiO2

(4)

TiO2

Which of the following statements about low density polythene is FALSE ?

4.

ÁŸêŸ ÉÊãÊàfl ∑§ ¬Ê‹ËÕËŸ ∑§ ‚ê’㜠◊¥ ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ ‚Ê ∑§ÕŸ ª‹Ã „Ò?

(1)

It is a poor conductor of electricity.

(1)

ÿ„ ÁfllÈà ∑§Ê „ËŸ øÊ‹∑§ „Ò–

(2)

Its synthesis requires dioxygen or a peroxide initiator as a catalyst.

(2)

ß‚◊¥ «UÊ߸•ÊÄ‚Ë¡Ÿ •ÕflÊ ¬⁄U•ÊÄ‚Êß«U ߟËÁ‚ÿ≈U⁄ (¬˝Ê⁄Uê÷∑§) ©à¬˝⁄U∑§ ∑§ M§¬ ◊¥ øÊÁ„∞–

(3)

It is used in the manufacture of buckets, dust-bins etc.

(3)

ÿ„ ’∑§≈U (’ÊÀ≈UË), «US≈U-Á’Ÿ, •ÊÁŒ ∑§ ©à¬ÊŒŸ ◊¥ ¬˝ÿÈÄà „ÊÃË „Ò–

(4)

Its synthesis requires high pressure.

(4)

ß‚∑§ ‚¥‡‹·áÊ ◊¥ ©ìÊ ŒÊ’ ∑§Ë •Êfl‡ÿ∑§ÃÊ „ÊÃË „Ò–

For a linear plot of log (x/m) versus log p in a Freundlich adsorption isotherm, which of the following statements is correct ? (k and n are constants)

5.

»˝ § ÊÚ ÿ ã«UÁ‹∑§ •Áœ‡ÊÊ · áÊ ‚◊ÃÊ¬Ë fl∑˝ § ◊ ¥ log (x/m) ÃÕÊ log p ∑§ ’Ëø πË¥ø ªÿ ⁄UπËÿ å‹Ê≈U ∑§ Á‹∞ ÁãÊêŸ ◊¥ ‚ ∑§ÊÒŸ ‚Ê ∑§ÕŸ ‚„Ë „Ò? (k ÃÕÊ n ÁSÕ⁄UÊ¥∑§ „Ò¥)

(1)

1/n appears as the intercept.

(1)

1/n ßã≈U⁄U‚å≈U

(2)

Only 1/n appears as the slope.

(2)

◊ÊòÊ 1/n S‹Ê¬ ∑§ M§¬ ◊¥ •ÊÃÊ „Ò–

(3)

log (1/n) appears as the intercept.

(3)

log (1/n) ßã≈U⁄U‚å≈U

(4)

Both k and 1/n appear in the slope term.

(4)

k ÃÕÊ 1/n ŒÊŸÊ¥

F/Page 3

SPACE FOR ROUGH WORK /

F F

∑§ M§¬ •ÊÃÊ „Ò–

∑§ M§¬ ◊¥ •ÊÃÊ „Ò–

„Ë S‹Ê¬ ¬Œ ◊¥ •ÊÃ „Ò¥–

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

6.

7.

8.

The heats of combustion of carbon and carbon monoxide are −393.5 and −283.5 kJ mol−1, respectively. The heat of formation (in kJ) of carbon monoxide per mole is :

6.

∑§Ê’¸Ÿ ÃÕÊ ∑§Ê’¸Ÿ ◊ÊŸÊÄ‚ÊÚß«U ∑§Ë Œ„Ÿ ™§c◊Êÿ¥ ∑˝§◊‡Ê— −393.5 ÃÕÊ −283.5 kJ mol−1 „Ò¥– ∑§Ê’¸Ÿ ◊ÊŸÊÄ‚Êß«U ∑§Ë ‚¥÷flŸ ™§c◊Ê (kJ ◊)¥ ¬˝Áà ◊Ê‹ „ÊªË —

(1)

676.5

(1)

676.5

(2)

−676.5

(2)

−676.5

(3)

−110.5

(3)

−110.5

(4)

110.5

(4)

110.5

The hottest region of Bunsen flame shown in the figure below is :

7.

ŸËø ŒË ªß¸ Á»§ª⁄U ◊¥ ’Èã‚Ÿ ç‹◊ ∑§Ê ‚flʸÁœ∑§ ª◊¸ ÷ʪ „Ò —

(1)

region 2

(1)

⁄UË¡Ÿ 2

(2)

region 3

(2)

⁄UË¡Ÿ 3

(3)

region 4

(3)

⁄UË¡Ÿ 4

(4)

region 1

(4)

⁄UË¡Ÿ

Which of the following is an anionic detergent ?

8.

1

ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ ‚Ê ∞ŸÊßÁŸ∑§ Á«U≈U⁄U¡¥≈U „Ò?

(1)

Sodium lauryl sulphate

(1)

‚ÊÁ«Uÿ◊ ‹ÊÁ⁄U‹ ‚À»§≈U

(2)

Cetyltrimethyl ammonium bromide

(2)

‚Á≈U‹≈˛UÊß◊ÁÕ‹ •◊ÊÁŸÿ◊ ’˝Ê◊Êß«U

(3)

Glyceryl oleate

(3)

ÁÇ‹‚Á⁄U‹ •ÊÁ‹∞≈U

(4)

Sodium stearate

(4)

‚ÊÁ«Uÿ◊ S≈UË•⁄U≈U

F/Page 4

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

9.

10.

11.

18 g glucose (C 6 H 12 O 6 ) is added to 178.2 g water. The vapor pressure of water (in torr) for this aqueous solution is :

9.

Ç‹È∑§Ê‚ (C6H12O6) ∑§Ê 178.2 g ¬ÊŸË ◊¥ Á◊‹ÊÿÊ ¡ÊÃÊ „Ò– ß‚ ¡‹Ëÿ Áfl‹ÿŸ ∑§ Á‹∞ ¡‹ ∑§Ê flÊc¬ ŒÊ’ (torr ◊¥) „ÊªÊ — 18 g

(1)

76.0

(1)

76.0

(2)

752.4

(2)

752.4

(3)

759.0

(3)

759.0

(4)

7.6

(4)

7.6

The distillation technique most suited for separating glycerol from spent-lye in the soap industry is :

10.

‚Ê’ÈŸ ©lÊª ◊¥ ÷ÈÄÇÊ· ‹Êß (S¬ã≈U ‹Ê߸) ‚ ÁÇ‹‚⁄UÊ‹ Ú ¬ÎÕ∑§ ∑§⁄UŸ ∑§ Á‹∞ ‚’‚ ©¬ÿÈÄà •Ê‚flŸ ÁflÁœ „Ò —

(1)

Fractional distillation

(1)

¬˝÷Ê¡Ë •Ê‚flŸ

(2)

Steam distillation

(2)

’Êc¬ •Ê‚flŸ

(3)

Distillation under reduced pressure

(3)

‚◊ÊŸËà ŒÊ’ ¬⁄U •Ê‚flŸ

(4)

Simple distillation

(4)

‚Ê◊Êãÿ •Ê‚flŸ

The species in which the N atom is in a state of sp hybridization is :

11.

fl„ S¬Ë‡ÊË$¡, Á¡‚◊¥ N ¬⁄U◊ÊáÊÈ sp ‚¥∑§⁄UáÊ ∑§Ë •flSÕÊ ◊¥ „Ò, „ÊªË —



(1)

NO 2

NO 3



(2)

NO 3

(3)

NO2

(3)

NO2

(4)

NO 2

(4)

NO 2

(1)

NO 2

(2)

F/Page 5

+

SPACE FOR ROUGH WORK /

F F





+

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

12.

13.

Decomposition of H 2O 2 follows a first order reaction. In fifty minutes the concentration of H 2 O 2 decreases from 0.5 to 0.125 M in one such decomposition. When the concentration of H2O2 reaches 0.05 M, the rate of formation of O2 will be :

12.

∑§Ê ÁflÉÊ≈UŸ ∞∑§ ¬˝Õ◊ ∑§ÊÁ≈U ∑§Ë •Á÷Á∑˝§ÿÊ „Ò– ¬øÊ‚ Á◊Ÿ≈U ◊¥ ß‚ ¬˝∑§Ê⁄U ∑§ ÁflÉÊ≈UŸ ◊¥ H2O2 ∑§Ë ‚ÊãŒ˝ÃÊ ÉÊ≈U∑§⁄U 0.5 ‚ 0.125 M „Ê ¡ÊÃË „Ò– ¡’ H2O2 ∑§Ë ‚ÊãŒ˝ÃÊ 0.05 M ¬„È°øÃË „Ò, ÃÊ O2 ∑§ ’ŸŸ ∑§Ë Œ⁄U „ÊªË — H2O2

(1)

6.93×10−4 mol min−1

(1)

6.93×10−4 mol min−1

(2)

2.66 L min−1 at STP

(2)

2.66 L min−1 (STP

(3)

1.34×10−2 mol min−1

(3)

1.34×10−2 mol min−1

(4)

6.93×10−2 mol min−1

(4)

6.93×10−2 mol min−1

The pair having the same magnetic

13.

¬⁄U)

∞∑§„Ë øÈê’∑§Ëÿ •ÊÉÊÍáʸ ∑§Ê ÿÈÇ◊ „Ò —

moment is : [At. No. : Cr=24, Mn=25, Fe=26, Co=27]

[At. No. : Cr=24, Mn=25, Fe=26, Co=27]

14.

(1)

[Cr(H2O)6]2+ and [Fe(H2O)6]2+

(1)

[Cr(H2O)6]2+

(2)

[Mn(H2O)6]2+ and [Cr(H2O)6]2+

(2)

[Mn(H2O)6]2+

(3)

[CoCl4]2− and [Fe(H2O)6]2+

(3)

[CoCl4]2−

(4)

[Cr(H2O)6]2+ and [CoCl4]2−

(4)

[Cr(H2O)6]2+

The absolute configuration of

14.

ÃÕÊ

CO2 H

H

OH

H

OH

H

Cl

H

Cl

CH3

CH3

is : (1)

(2S, 3R)

(1)

(2S, 3R)

(2)

(2S, 3S)

(2)

(2S, 3S)

(3)

(2R, 3R)

(3)

(2R, 3R)

(4)

(2R, 3S)

(4)

(2R, 3S)

SPACE FOR ROUGH WORK /

F F

ÃÕÊ

[Fe(H2O)6]2+ [Cr(H2O)6]2+

[Fe(H2O)6]2+

ÃÕÊ

[CoCl4]2−

ÁŒ∞ ªÿ ÿÊÒÁª∑§ ∑§Ê ÁŸ⁄U¬ˇÊ ÁflãÿÊ‚ „Ò —

CO2 H

F/Page 6

ÃÕÊ

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

15.

16.

17.

The equilibrium constant at 298 K for a reaction A+B ⇌ C+D is 100. If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in mol L−1) will be :

15.

Ãʬ◊ÊŸ 298 K ¬⁄U, ∞∑§ •Á÷Á∑˝§ÿÊ A+B ⇌ C+D ∑§ Á‹∞ ‚Êêÿ ÁSÕ⁄UÊ¥∑§ 100 „Ò– ÿÁŒ ¬˝Ê⁄UÁê÷∑§ ‚ÊãŒ˝ÃÊ ‚÷Ë øÊ⁄UÊ¥ S¬Ë‡ÊË¡ ◊¥ ‚ ¬˝àÿ∑§ ∑§Ë 1 M „ÊÃË, ÃÊ D ∑§Ë ‚Êêÿ ‚ÊãŒ˝ÃÊ (mol L−1 ◊¥) „ÊªË —

(1)

0.818

(1)

0.818

(2)

1.818

(2)

1.818

(3)

1.182

(3)

1.182

(4)

0.182

(4)

0.182

Which one of the following ores is best concentrated by froth floatation method ?

16.

»˝§ÊÚÕ ç‹Ê≈U‡ÊŸ ÁflÁœ mÊ⁄UÊ ÁŸêŸ ◊¥ ‚ fl„ ∑§ÊÒŸ ‚Ê •ÿS∑§ ‚flʸÁœ∑§ M§¬ ‚ ‚ÊÁãŒ˝Ã Á∑§ÿÊ ¡Ê ‚∑§ÃÊ „Ò?

(1)

Siderite

(1)

Á‚«U⁄UÊß≈U

(2)

Galena

(2)

ªÒ‹ŸÊ

(3)

Malachite

(3)

◊Ò‹Ê∑§Êß≈U

(4)

Magnetite

(4)

◊ÒÇŸ≈UÊß≈U

At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O2 by volume for complete combustion. After combustion the gases occupy 330 mL. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is :

17.

ÃÕÊ 1 atm ŒÊ’ ¬⁄U, 15 mL ªÒ ‚ Ëÿ „Êß«˛UÊ∑§Ê’¸Ÿ ∑§ ¬Íáʸ Œ„Ÿ ∑§ Á‹ÿ 375 mL flÊÿÈ Á¡‚◊¥ •Êÿß ∑§ •ÊœÊ⁄U ¬⁄U 20% •ÊÚÄ‚Ë¡Ÿ „Ò, ∑§Ë •Êfl‡ÿ∑§ÃÊ „ÊÃË „Ò– Œ„Ÿ ∑§ ’ÊŒ ªÒ‚¥ 330 mL ÉÊ⁄UÃË „Ò– ÿ„ ◊ÊŸÃ „È∞ Á∑§ ’ŸÊ „È•Ê ¡‹ Œ˝fl M§¬ ◊¥ „Ò ÃÕÊ ©‚Ë Ãʬ◊ÊŸ ∞fl¥ ŒÊ’ ¬⁄U •ÊÿßÊ¥ ∑§Ë ◊ʬ ∑§Ë ªß¸ „Ò ÃÊ „Êß«˛UÊ∑§Ê’¸Ÿ ∑§Ê »§Ê◊¸Í‹Ê „Ò —

300 K

(1)

C3H8

(1)

C 3H 8

(2)

C4H8

(2)

C 4H 8

(3)

C4H10

(3)

C4H10

(4)

C3H6

(4)

C 3H 6

F/Page 7

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

18.

19.

The pair in which phosphorous atoms have a formal oxidation state of +3 is :

18.

(1)

Pyrophosphorous and hypophosphoric acids

(1)

¬Êÿ⁄UÊ»§ÊS»§Ê⁄U‚ ÃÕÊ „Ê߬Ê»§ÊS»§ÊÁ⁄U∑§ ∞Á‚«U

(2)

Orthophosphorous and hypophosphoric acids

(2)

•ÊÕÊ¸»§ÊS»§Ê⁄U‚ ÃÕÊ „Ê߬Ê»§ÊS»§ÊÁ⁄U∑§ ∞Á‚«U

(3)

Pyrophosphorous and pyrophosphoric acids

(3)

¬Êÿ⁄UÊ»§ÊS»§Ê⁄U‚ ÃÕÊ ¬Êÿ⁄UÊ»§ÊS»§ÊÁ⁄U∑§ ∞Á‚«U

(4)

Orthophosphorous and pyrophosphorous acids

(4)

•ÊÕÊ¸»§ÊS»§Ê⁄U‚ ÃÕÊ ¬Êÿ⁄UÊ»§ÊS»§Ê⁄U‚ ∞Á‚«U

Which one of the following complexes shows optical isomerism ?

19.

ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ ‚Ê ∑§ÊÚêå‹Ä‚ ¬˝∑§ÊÁ‡Ê∑§ ‚◊ÊflÿflÃÊ ¬˝ŒÁ‡Ê¸Ã ∑§⁄UªÊ?

(1)

cis[Co(en)2Cl2]Cl

(1)

cis[Co(en)2Cl2]Cl

(2)

trans[Co(en)2Cl2]Cl

(2)

trans[Co(en)2Cl2]Cl

(3)

[Co(NH3)4Cl2]Cl

(3)

[Co(NH3)4Cl2]Cl

(4)

[Co(NH3)3Cl3]

(4)

[Co(NH3)3Cl3]

(en=ethylenediamine)

20.

fl„ ÿÈÇ◊ Á¡Ÿ◊¥ »§ÊS»§Ê⁄U‚ ¬⁄U◊ÊáÊÈ•Ê¥ ∑§Ë »§Ê◊¸‹ •ÊÚÄ‚Ë∑§⁄UáÊ •flSÕÊ +3 „Ò, „Ò —

(en=ethylenediamine)

The reaction of zinc with dilute and concentrated nitric acid, respectively, produces :

20.

ÃŸÈ ÃÕÊ ‚ÊãŒ˝ ŸÊßÁ≈˛U∑§ ∞Á‚«U ∑§ ‚ÊÕ Á¡¥∑§ ∑§Ë •Á÷Á∑˝§ÿÊ mÊ⁄UÊ ∑˝§◊‡Ê— ©à¬ãŸ „ÊÃ „Ò¥ — ÃÕÊ NO

(1)

NO2 and NO

(1)

NO2

(2)

NO and N2O

(2)

NO

(3)

NO2 and N2O

(3)

NO2

ÃÕÊ N2O

(4)

N2O and NO2

(4)

N2O

ÃÕÊ NO2

F/Page 8

SPACE FOR ROUGH WORK /

F F

ÃÕÊ N2O

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

21.

22.

23.

Which one of the following statements about water is FALSE ?

21.

¡‹ ∑§ ‚ê’㜠◊¥ ÁŸêŸ ∑§ÕŸÊ¥ ◊¥ ‚ ∑§ÊÒŸ ‚Ê ∞∑§ ª‹Ã „Ò?

(1)

Water can act both as an acid and as a base.

(1)

¡‹, •ê‹ ÃÕÊ ˇÊÊ⁄U∑§ ŒÊŸÊ¥ „Ë M§¬ ◊¥ ∑§Êÿ¸ ∑§⁄U ‚∑§ÃÊ „Ò–

(2)

There is extensive intramolecular hydrogen bonding in the condensed phase.

(2)

ß‚∑§ ‚¥ÉÊÁŸÃ ¬˝ÊflSÕÊ ◊¥ ÁflSÃËáʸ •¥Ã—•áÊÈ∑§ „Êß«˛UÊ¡Ÿ •Ê’㜠„ÊÃ „Ò¥–

(3)

Ice formed by heavy water sinks in normal water.

(3)

÷Ê⁄UË ¡‹ mÊ⁄UÊ ’ŸÊ ’»¸§ ‚Ê◊Êãÿ ¡‹ ◊¥ «ÍU’ÃÊ „Ò–

(4)

Water is oxidized to oxygen during photosynthesis.

(4)

¬˝∑§Ê‡Ê‚¥‡‹·áÊ ◊¥ ¡‹ •ÊÄ‚Ë∑Χà „Ê∑§⁄U •ÊÄ‚Ë$¡Ÿ ŒÃÊ „Ò–

The concentration of fluoride, lead, nitrate and iron in a water sample from an underground lake was found to be 1000 ppb, 40 ppb, 100 ppm and 0.2 ppm, respectively. This water is unsuitable for drinking due to high concentration of :

22.

÷ÍÁ◊ªÃ ¤ÊË‹ ‚ ¬˝Êåà ¡‹ ¬˝ÁÃŒ‡Ê¸ ◊¥ ç‹Ê⁄UÊß«U, ‹«U, ŸÊß≈˛U≈U ÃÕÊ •Êÿ⁄UŸ ∑§Ë ‚ÊãŒ˝ÃÊ ∑˝§◊‡Ê— 1000 ppb, 40 ppb, 100 ppm ÃÕÊ 0.2 ppm ¬Ê߸ ªß¸– ÿ„ ¡‹ ÁŸêŸ ◊¥ ‚ Á∑§‚∑§Ë ©ìÊ ‚ÊãŒ˝ÃÊ ‚ ¬ËŸ ÿÊÇÿ Ÿ„Ë¥ „Ò?

(1)

Lead

(1)

‹«U

(2)

Nitrate

(2)

ŸÊß≈˛U≈U

(3)

Iron

(3)

•Êÿ⁄UŸ

(4)

Fluoride

(4)

ç‹Ê⁄UÊß«U

The main oxides formed on combustion of Li, Na and K in excess of air are, respectively :

23.

„flÊ ∑§ •ÊÁœÄÿ ◊¥ Li, Na •ÊÒ⁄U K ∑§ Œ„Ÿ ¬⁄U ’ŸŸflÊ‹Ë ◊ÈÅÿ •ÊÄ‚Êß«¥U ∑˝§◊‡Ê— „Ò¥ — ÃÕÊ

(1)

LiO2, Na2O2 and K2O

(1)

LiO2, Na2O2

(2)

Li2O2, Na2O2 and KO2

(2)

Li2O2, Na2O2

(3)

Li2O, Na2O2 and KO2

(3)

Li2O, Na2O2

(4)

Li2O, Na2O and KO2

(4)

Li2O, Na2O

F/Page 9

SPACE FOR ROUGH WORK /

F F

K2O

ÃÕÊ

KO2

ÃÕÊ KO2

ÃÕÊ

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

KO2

F F

24.

25.

26.

Thiol group is present in :

24.

ÕÊÿÊ‹ ª˝È¬ Á¡‚◊¥ ©¬ÁSÕà „Ò, fl„ „Ò —

(1)

Cystine

(1)

Á‚ÁS≈UŸ

(Cystine)

(2)

Cysteine

(2)

Á‚S≈UËŸ

(Cysteine)

(3)

Methionine

(3)

◊ÕÊß•ÊŸËŸ

(4)

Cytosine

(4)

‚Êß≈UÊ‚ËŸ

Galvanization is applying a coating of :

25.

ªÒÀflŸÊß¡‡ÊŸ ÁŸêŸ ◊¥ ‚ Á∑§‚∑§ ∑§Ê≈U ‚ „ÊÃÊ „Ò?

(1)

Cr

(1)

Cr

(2)

Cu

(2)

Cu

(3)

Zn

(3)

Zn

(4)

Pb

(4)

Pb

Which of the following atoms has the highest first ionization energy ?

26.

ÁŸêŸ ¬⁄U◊ÊáÊÈ•Ê¥ ◊¥ Á∑§‚∑§Ë ¬˝Õ◊ •ÊÿŸŸ ™§¡Ê¸ ©ëøÃ◊ „Ò?

(1)

Na

(1)

Na

(2)

K

(2)

K

(3)

Sc

(3)

Sc

(4)

Rb

(4)

Rb

F/Page 10

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

27.

In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br2 used per mole of amine produced are :

27.

„Ê»§◊ÊŸ ’˝Ê◊Ê◊Êß«U ÁŸêŸË∑§⁄UáÊ •Á÷Á∑˝§ÿÊ ◊¥, NaOH ÃÕÊ Br2 ∑§ ¬˝ÿÈÄà ◊Ê‹Ê¥ ∑§Ë ‚¥ÅÿÊ ¬˝ÁÃ◊Ê‹ •◊ËŸ ∑§ ’ŸŸ ◊¥ „ÊªË —

(1)

Four moles of NaOH and two moles of Br2 .

(1)

øÊ⁄U ◊Ê‹ NaOH ÃÕÊ ŒÊ ◊Ê‹ Br2–

(2)

Two moles of NaOH and two moles

(2)

ŒÊ ◊Ê‹ NaOH ÃÕÊ ŒÊ ◊Ê‹ Br2–

of Br2 .

28.

(3)

Four moles of NaOH and one mole of Br2 .

(3)

øÊ⁄U ◊Ê‹ NaOH ÃÕÊ ∞∑§ ◊Ê‹ Br2–

(4)

One mole of NaOH and one mole of Br2 .

(4)

∞∑§ ◊Ê‹ NaOH ÃÕÊ ∞∑§ ◊Ê‹ Br2–

Two closed bulbs of equal volume (V) containing an ideal gas initially at pressure p i and temperature T 1 are connected through a narrow tube of negligible volume as shown in the figure below. The temperature of one of the bulbs is then raised to T2. The final pressure pf is :

28.

‚◊ÊŸ •Êÿß (V) ∑§ ŒÊ ’¥Œ ’À’, Á¡Ÿ◊¥ ∞∑§ •ÊŒ‡Ê¸ ªÒ‚ ¬˝Ê⁄UÁê÷∑§ ŒÊ’ pi ÃÕÊ Ãʬ T1 ¬⁄U ÷⁄UË ªß¸ „Ò, ∞∑§ Ÿªáÿ •Êÿß ∑§Ë ¬Ã‹Ë ≈˜UÿÍ’ ‚ ¡È«∏ „Ò¥ ¡Ò‚Ê Á∑§ ŸËø ∑§ ÁøòÊ ◊¥ ÁŒπÊÿÊ ªÿÊ „Ò– Á»§⁄U ߟ◊¥ ‚ ∞∑§ ’À’ ∑§Ê Ãʬ ’…∏Ê∑§⁄U T2 ∑§⁄U ÁŒÿÊ ¡ÊÃÊ „Ò– •¥ÁÃ◊ ŒÊ’ pf „Ò —

(1)

 T1  2 pi    T1 + T2 

(1)

 T1  2 pi    T1 + T2 

(2)

 T2  2 pi    T1 + T2 

(2)

 T2  2 pi    T1 + T2 

(3)

 T1T2  2 pi    T1 + T2 

(3)

 T1T2  2 pi    T1 + T2 

(4)

 T1T2  pi    T1 + T2 

(4)

 T1T2  pi    T1 + T2 

F/Page 11

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

29.

30.

The reaction of propene with HOCl (Cl 2 +H 2 O) proceeds through the intermediate :

29.

¬˝Ê¬ËŸ ∑§Ë HOCl (Cl2+H2O) ∑§ ‚ÊÕ •Á÷Á∑˝§ÿÊ Á¡‚ ◊äÿflÃ˸ ‚ „Ê∑§⁄U ‚ê¬ãŸ „ÊÃË „Ò, fl„ „Ò —

(1)

CH3−CH+−CH2−Cl

(1)

CH3−CH+−CH2−Cl

(2)

CH 3−CH(OH)−CH+ 2

(2)

CH 3−CH(OH)−CH+ 2

(3)

CH3−CHCl−CH+ 2

(3)

CH3−CHCl−CH+ 2

(4)

CH3−CH+−CH2−OH

(4)

CH3−CH+−CH2−OH

The product of the reaction given below is :

30.

ŸËø ŒË ªß¸ •Á÷Á∑˝§ÿÊ ∑§ Á‹∞ ©à¬ÊŒ „ÊªÊ —

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

F/Page 12

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

÷ʪ B — ªÁáÊÃ

PART B — MATHEMATICS

31.

32.

33.

Two sides of a rhombus are along the lines, x−y+1=0 and 7x−y−5=0. If its diagonals intersect at (−1, −2), then which one of the following is a vertex of this rhombus ?

31.

ÿÁŒ ∞∑§ ‚◊øÃÈ÷¸È¡ ∑§Ë ŒÊ ÷È¡Ê∞°, ⁄UπÊ•Ê¥ x−y+1=0 ÃÕÊ 7x−y−5=0 ∑§Ë ÁŒ‡ÊÊ ◊¥ „Ò¥ ÃÕÊ ß‚∑§ Áfl∑§áʸ Á’¥ŒÈ (−1, −2) ¬⁄U ¬˝ÁÃë¿UŒ ∑§⁄UÃ „Ò¥, ÃÊ ß‚ ‚◊øÃÈ÷¸È¡ ∑§Ê ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ-‚Ê ‡ÊË·¸ „Ò?

(1)

(−3, −8)

(1)

(−3, −8)

(2)

8 1  ,−  3 3

(2)

8 1  ,−  3 3

(3)

7  10 − , −  3  3

(3)

7  10 − , −  3  3

(4)

(−3, −9)

(4)

(−3, −9)

If the 2 nd , 5 th and 9 th terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is :

32.

ÿÁŒ ∞∑§ •ø⁄UÃ⁄U ‚◊Ê¥Ã⁄U üÊ…∏Ë ∑§Ê ŒÍ‚⁄UÊ, 5 flÊ¥ ÃÕÊ 9 flÊ¥ ¬Œ ∞∑§ ªÈáÊÊûÊ⁄U üÊ…∏Ë ◊¥ „Ò¥, ÃÊ ©‚ ªÈáÊÊûÊ⁄U üÊ…∏Ë ∑§Ê ‚Êfl¸ •ŸÈ¬Êà „Ò —

(1)

4 3

(1)

4 3

(2)

1

(2)

1

(3)

7 4

(3)

7 4

(4)

8 5

(4)

8 5

Let P be the point on the parabola, y2=8x which is at a minimum distance from the centre C of the circle, x 2 +(y+6) 2 =1. Then the equation of the circle, passing through C and having its centre at P is : (1)

x 2+y 2−x+4y−12=0

(2)

x2+y2−

33.

◊ÊŸÊ ¬⁄Ufl‹ÿ y2=8x ∑§Ê P ∞∑§ ∞‚Ê Á’¥ŒÈ „Ò ¡Ê flÎûÊ x2+(y+6)2=1, ∑§ ∑§ãŒ˝ C ‚ ãÿÍŸÃ◊ ŒÍ⁄UË ¬⁄U „Ò, ÃÊ ©‚ flÎûÊ ∑§Ê ‚◊Ë∑§⁄UáÊ ¡Ê C ‚ „Ê∑§⁄U ¡ÊÃÊ „Ò ÃÕÊ Á¡‚∑§Ê ∑§ãŒ˝ P ¬⁄U „Ò, „Ò — (1)

x 2+y 2−x+4y−12=0

x +2y−24=0 4

(2)

x 2+y 2−

(3)

x 2+y 2−4x+9y+18=0

(3)

x 2+y 2−4x+9y+18=0

(4)

x 2+y 2−4x+8y+12=0

(4)

x 2+y 2−4x+8y+12=0

F/Page 13

SPACE FOR ROUGH WORK /

F F

x +2y−24=0 4

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

34.

35.

36.

The system of linear equations

34.

⁄ÒUÁπ∑§ ‚◊Ë∑§⁄UáÊ ÁŸ∑§Êÿ

x+λy−z=0

x+λy−z=0

λx−y−z=0

λx−y−z=0

x+y−λz=0

x+y−λz=0

has a non-trivial solution for :

∑§Ê ∞∑§ •ÃÈë¿U „‹ „ÊŸ ∑§ Á‹∞ —

(1)

exactly one value of λ.

(1)

λ

∑§Ê Ãâÿ× ∞∑§ ◊ÊŸ „Ò–

(2)

exactly two values of λ.

(2)

λ

∑§ Ãâÿ× ŒÊ ◊ÊŸ „Ò¥–

(3)

exactly three values of λ.

(3)

λ

∑§ Ãâÿ× ÃËŸ ◊ÊŸ „Ò¥–

(4)

infinitely many values of λ.

(4)

λ

∑§ •Ÿ¥Ã ◊ÊŸ „Ò¥–

1 If f (x)+2f   =3x, x ≠ 0 , and x

S = {x  R : f ( x ) =f (−x )} ; then S :

1 f (x)+2f   =3x, x ≠ 0 „Ò, ÃÕÊ x S = {x  R : f ( x ) =f (−x )} „Ò ; ÃÊ S :

(1)

contains exactly one element.

(1)

◊¥ ∑§fl‹ ∞∑§ •flÿfl „Ò–

(2)

contains exactly two elements.

(2)

◊¥ Ãâÿ× ŒÊ •flÿfl „Ò¥–

(3)

contains more than two elements.

(3)

◊¥ ŒÊ ‚ •Áœ∑§ •flÿfl „Ò¥–

(4)

is an empty set.

(4)

∞∑§ Á⁄UÄà ‚◊ÈìÊÿ „Ò–

Let p = lim

x→0+

( 1 + tan 2

35.

1

x ) 2 x then log p

36.

ÿÁŒ

◊ÊŸÊ

p = lim

x→0+

is equal to :

’⁄UÊ’⁄U „Ò —

(1)

1

(1)

1

(2)

1 2

(2)

1 2

(3)

1 4

(3)

1 4

(4)

2

(4)

2

F/Page 14

SPACE FOR ROUGH WORK /

F F

( 1 + tan 2

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

1

x )2x

„Ò, ÃÊ

log p

F F

37.

A value of θ for which

2 + 3 i sinθ is 1 − 2 i sinθ

37.

∑§ÊÀ¬ÁŸ∑§ „Ò, „Ò —

purely imaginary, is :

38.

(1)

π 6

(1)

π 6

(2)

 3 sin−1    4 

(2)

 3 sin−1    4 

(3)

 1  sin−1    3

(3)

 1  sin−1    3

(4)

π 3

(4)

π 3

The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is :

38.

4 3

(1)

4 3

(2)

2 3

(2)

2 3

(3)

3

(3)

3

4 3

(4)

If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true ?

39.

ÿÁŒ ‚¥ÅÿÊ•Ê¥ 2, 3, a ÃÕÊ 11 ∑§Ê ◊ÊŸ∑§ Áflø‹Ÿ 3.5 „Ò, ÃÊ ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ-‚Ê ‚àÿ „Ò?

3a 2−32a+84=0

(1)

3a 2−32a+84=0

(2)

3a 2−34a+91=0

(2)

3a 2−34a+91=0

(3)

3a 2−23a+44=0

(3)

3a 2−23a+44=0

(4)

3a 2−26a+55=0

(4)

3a 2−26a+55=0

SPACE FOR ROUGH WORK /

F F

¬Íáʸ×

4 3

(1)

F/Page 15

2 + 3 i sinθ 1 − 2 i sinθ

©‚ •Áì⁄Ufl‹ÿ, Á¡‚∑§ ŸÊÁ÷‹¥’ ∑§Ë ‹¥’Ê߸ 8 „Ò ÃÕÊ Á¡‚∑§ ‚¥ÿÈÇ◊Ë •ˇÊ ∑§Ë ‹¥’Ê߸ ©‚∑§Ë ŸÊÁ÷ÿÊ¥ ∑§ ’Ëø ∑§Ë ŒÍ⁄UË ∑§Ë •ÊœË „Ò, ∑§Ë ©à∑§ãŒ˝ÃÊ „Ò —

(1)

(4)

39.

θ ∑§Ê fl„ ∞∑§ ◊ÊŸ Á¡‚∑§ Á‹∞

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

40.

2 x12 + 5 x 9

The integral

(x

5

3

+ x +1

)

dx is equal 3

40.

2 x 12 + 5 x 9

‚◊Ê∑§‹

(x

5

3

+ x +1

)

3

dx

’⁄UÊ’⁄U „Ò —

to :

x10

(1)

(

5

3

2 x +x +1

(2)

(3)

(4)

)

x5

(

2 x 5+x 3+1

)

− x10

(

2 x 5+x 3+1

− x5

( x +x +1) 5

3

)

+C 2

(2)

+C 2

(3)

(4)

+C 2

)

2

+C

)

2

+C

)

2

+C

x5

(

2 x 5+x 3+1

− x10

(

2 x 5+x 3+1

− x5

( x +x +1) 5

41.

3

2

+C

y +2 x −3 z + 4 , ‚◊Ë = = 2 −1 3 2 lx+my−z=9 ◊¥ ÁSÕà „Ò, ÃÊ l +m2 ’⁄UÊ’⁄U „Ò —

ÿÁŒ ⁄UπÊ

(1)

18

(1)

18

(2)

5

(2)

5

(3)

2

(3)

2

(4)

26

(4)

26

F/Page 16

3

¡„Ê° C ∞∑§ Sflë¿U •ø⁄U „Ò–

y +2 x −3 z + 4 lies in = = 2 −1 3 the plane, lx+my−z=9, then l2+m2 is equal to : If the line,

(

5

2 x +x +1

where C is an arbitrary constant.

41.

x 10

(1)

+C 2

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

42.

If 0≤x<2π, then the number of real values of x, which satisfy the equation cosx+cos2x+cos3x+cos4x=0, is :

42.

ÿÁŒ 0≤x<2π „Ò, ÃÊ ‚¥ÅÿÊ ¡Ê ‚◊Ë∑§⁄UáÊ

x

∑§ ©Ÿ flÊSÃÁfl∑§ ◊ÊŸÊ¥ ∑§Ë

cosx+cos2x+cos3x+cos4x=0

∑§Ê ‚¥ÃÈc≈U

∑§⁄UÃ „Ò¥, „Ò —

43.

(1)

5

(1)

5

(2)

7

(2)

7

(3)

9

(3)

9

(4)

3

(4)

3

The area (in sq. units) of the region

ˇÊòÊ

{( x , y ): y 22 x and x2+ y 2≤ 4 x, x0, y0}

{( x , y ): y 22 x ÃÕÊ x2+ y 2≤ 4 x, x0, y0}

is :

∑§Ê ˇÊòÊ»§‹ (flª¸ ß∑§ÊßÿÊ¥ ◊¥) „Ò —

(1)

π−

8 3

(1)

π−

8 3

(2)

π−

4 2 3

(2)

π−

4 2 3

(3)

π 2 2 − 2 3

(3)

π 2 2 − 2 3

(4)

π−

(4)

π−

→ →

44.

43.

4 3 →

Let a , b and c be three unit vectors such →  → → 3  → → that a ×  b × c  =  b + c . 2     →

44.

If



b is not parallel to c , then the angle →



between a and b is :

◊ÊŸÊ

→ →

a, b

c

ÃËŸ ∞‚ ◊ÊòÊ∑§ ‚ÁŒ‡Ê „Ò¥ Á∑§ „Ò – ÿÁŒ







, c ∑§ ‚◊Ê¥Ã⁄U Ÿ„Ë¥ „Ò, ÃÊ ∑§Ê ∑§ÊáÊ „Ò — b

(1)

π 2

(2)

2π 3

(2)

2π 3

(3)

5π 6

(3)

5π 6

(4)

3π 4

(4)

3π 4

F F



 → → 3  → → a × b × c =  b + c . 2    

π 2

SPACE FOR ROUGH WORK /

ÃÕÊ



(1)

F/Page 17

4 3

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„



a

ÃÕÊ

b

∑§ ’Ëø

F F

45.

46.

47.

A wire of length 2 units is cut into two parts which are bent respectively to form a square of side=x units and a circle of radius=r units. If the sum of the areas of the square and the circle so formed is minimum, then :

45.

ß∑§Ê߸ ‹¥’Ë ∞∑§ ÃÊ⁄U ∑§Ê ŒÊ ÷ʪÊ¥ ◊¥ ∑§Ê≈U ∑§⁄U ©ã„¥ ∑˝§◊‡Ê— x ß∑§Ê߸ ÷È¡Ê flÊ‹ flª¸ ÃÕÊ r ß∑§Ê߸ ÁòÊíÿÊ flÊ‹ flÎûÊ ∑§ M§¬ ◊¥ ◊Ê«∏Ê ¡ÊÃÊ „Ò– ÿÁŒ ’ŸÊÿ ªÿ flª¸ ÃÕÊ flÎûÊ ∑§ ˇÊòÊ»§‹Ê¥ ∑§Ê ÿÊª ãÿÍŸÃ◊ „Ò, ÃÊ — 2

(1)

(4−π)x=πr

(1)

(4−π)x=πr

(2)

x=2r

(2)

x=2r

(3)

2x=r

(3)

2x=r

(4)

2x=(π+4)r

(4)

2x=(π+4)r

The distance of the point (1, −5, 9) from the plane x−y+z=5 measured along the line x=y=z is :

46.

Á’¥ŒÈ (1, −5, 9) ∑§Ë ‚◊Ë x−y+z=5 ‚ fl„ ŒÍ⁄UË ¡Ê ⁄UπÊ x=y=z ∑§Ë ÁŒ‡ÊÊ ◊¥ ◊Ê¬Ë ªß¸ „Ò, „Ò —

(1)

10 3

(1)

10 3

(2)

10 3

(2)

10 3

(3)

20 3

(3)

20 3

(4)

3 10

(4)

3 10

If a curve y=f (x) passes through the point (1, −1) and satisfies the differential

47.

1 equation, y(1+xy) dx=x dy, then f −   2 is equal to :

(1)



(2)

4 5

ÿÁŒ ∞∑§ fl∑˝§ y=f (x) Á’¥ŒÈ (1, −1) ‚ „Ê∑§⁄U ¡ÊÃÊ „Ò ÃÕÊ •fl∑§‹ ‚◊Ë∑§⁄UáÊ y(1+xy) dx=x dy ∑§Ê ‚¥ÃÈc≈U ∑§⁄UÃÊ „Ò, ÃÊ

(1)



2 5

(2)

2 5

(3)

4 5

(3)

4 5

(4)



(4)



F/Page 18

2 5

SPACE FOR ROUGH WORK /

F F

 1 f −   2

4 5

2 5

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

’⁄UÊ’⁄U „Ò —

F F

n

48.

If the number of terms in the expansion of

48.

ÿÁŒ

n

2 4    1 − x + 2  , x ≠ 0, is 28, then the sum x   of the coefficients of all the terms in this

2 4   1− x + 2  , x ≠ 0 x  

∑§ ¬˝‚Ê⁄U ◊¥ ¬ŒÊ¥

∑§Ë ‚¥ÅÿÊ 28 „Ò, ÃÊ ß‚ ¬˝‚Ê⁄U ◊¥ •ÊŸ flÊ‹ ‚÷Ë ¬ŒÊ¥ ∑§ ªÈáÊÊ¥∑§Ê¥ ∑§Ê ÿÊª „Ò —

expansion, is :

49.

(1)

2187

(1)

2187

(2)

243

(2)

243

(3)

729

(3)

729

(4)

64

(4)

64

Consider

49.

 1 + sin x   π f ( x ) = tan−1   , x   0,  . 1 sin x −  2   π A normal to y=f (x) at x = also passes 6 through the point :

50.

 1 + sin x   π f ( x ) = tan−1   , x   0,   2  1 − sin x  π ¬⁄U ÁfløÊ⁄U ∑§ËÁ¡∞– y=f (x) ∑§ Á’¥ŒÈ x = 6

πË¥øÊ ªÿÊ •Á÷‹¥’ ÁŸêŸ Á’¥ŒÈ ‚ ÷Ë „Ê∑§⁄U ¡ÊÃÊ „Ò —

(1)

 2π   0,  3  

(1)

 2π   0,  3  

(2)

π   , 0 6 

(2)

π   , 0 6 

(3)

π   , 0 4 

(3)

π   , 0 4 

(4)

(0, 0)

(4)

(0, 0)

For x e R, f (x)=?log2−sinx? and g(x)=f (f (x)), then :

50.

x e R ∑ § Á‹∞ f (x)=?log2−sinx? g(x)=f (f (x)) „Ò¥, ÃÊ —

g9(0)=cos(log2)

(1)

g9(0)=cos(log2)

(2)

g9(0)=−cos(log2)

(2)

g9(0)=−cos(log2)

(3)

g is differentiable at x=0 and g9(0)=−sin(log2)

(3)

x=0 ¬⁄U g •fl∑§‹ŸËÿ g9(0)=−sin(log2) „Ò–

(4)

g is not differentiable at x=0

(4)

x=0

SPACE FOR ROUGH WORK /

F F

¬⁄U

g

„Ò–

•fl∑§‹ŸËÿ Ÿ„Ë¥ „Ò–

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

ÃÕÊ

„Ò–

(1)

F/Page 19

¬⁄U

„Ò ÃÕÊ

F F

51.

52.

53.

Let two fair six-faced dice A and B be thrown simultaneously. If E1 is the event that die A shows up four, E2 is the event that die B shows up two and E3 is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true ?

51.

◊ÊŸÊ ŒÊ •ŸÁ÷ŸÃ ¿U— »§‹∑§Ëÿ ¬Ê‚ A ÃÕÊ B ∞∑§ ‚ÊÕ ©¿UÊ‹ ªÿ– ◊ÊŸÊ ÉÊ≈UŸÊ E1 ¬Ê‚ A ¬⁄U øÊ⁄U •ÊŸÊ Œ‡ÊʸÃË „Ò, ÉÊ≈UŸÊ E2 ¬Ê‚ B ¬⁄U 2 •ÊŸÊ Œ‡ÊʸÃË „Ò ÃÕÊ ÉÊ≈UŸÊ E3 ŒÊŸÊ¥ ¬Ê‚Ê¥ ¬⁄U •ÊŸ flÊ‹Ë ‚¥ÅÿÊ•Ê¥ ∑§Ê ÿÊª Áfl·◊ Œ‡ÊʸÃË „Ò, ÃÊ ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ-‚Ê ∑§ÕŸ ‚àÿ Ÿ„Ë¥ „Ò?

(1)

E2 and E3 are independent.

(1)

E2 ÃÕÊ E3 SflÃ¥òÊ

„Ò¥–

(2)

E1 and E3 are independent.

(2)

E1 ÃÕÊ E3 SflÃ¥òÊ

„Ò¥–

(3)

E1, E2 and E3 are independent.

(3)

E1, E2 ÃÕÊ E3 SflÃ¥òÊ

(4)

E1 and E2 are independent.

(4)

E1 ÃÕÊ E2 SflÃ¥òÊ

 5 a −b  T If A =   and A adj A=A A , then 3 2   5a+b is equal to :

52.

ÿÁŒ ÃÊ

 5 a −b  A=  2  3 5a+b ’⁄UÊ’⁄U „Ò —

(1)

5

(1)

5

(2)

4

(2)

4

(3)

13

(3)

13

(4)

−1

(4)

−1

The Boolean Expression (p∧~q)∨q∨(~p∧q) is equivalent to :

53.

’Í‹ ∑§ √ÿ¥¡∑§ (p∧~q)∨q∨(~p∧q)

(1)

p∧q

(1)

p∧q

(2)

p∨q

(2)

p∨q

(3)

p∨~q

(3)

p∨~q

(4)

~p∧q

(4)

~p∧q

F/Page 20

SPACE FOR ROUGH WORK /

F F

„Ò¥–

„Ò¥–

ÃÕÊ

A adj A=A AT „Ò¥,

(Boolean Expression)

∑§Ê ‚◊ÃÈÀÿ „Ò —

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

54.

The sum of all real values of x satisfying the equation

( x2− 5 x + 5)

55.

56.

x 2 + 4 x − 60

54.

= 1 is :

x

∑§ ©Ÿ ‚÷Ë flÊSÃÁfl∑§ ◊ÊŸÊ¥ ∑§Ê ÿÊª ¡Ê ‚◊Ë∑§⁄UáÊ

(

x2− 5 x + 5

)

x 2 + 4 x − 60

=1

∑§Ê ‚¥ÃÈc≈U ∑§⁄UÃ

„Ò¥, „Ò —

(1)

−4

(1)

−4

(2)

6

(2)

6

(3)

5

(3)

5

(4)

3

(4)

3

The centres of those circles which touch the circle, x 2 +y 2 −8x−8y−4=0, externally and also touch the x-axis, lie on :

55.

©Ÿ flÎûÊÊ¥ ∑§ ∑§ãŒ˝, ¡Ê flÎûÊ x2+y2−8x−8y−4=0 ∑§Ê ’Ês M§¬ ‚ S¬‡Ê¸ ∑§⁄UÃ „Ò¥ ÃÕÊ x-•ˇÊ ∑§Ê ÷Ë S¬‡Ê¸ ∑§⁄UÃ „Ò¥, ÁSÕà „Ò¥ —

(1)

an ellipse which is not a circle.

(1)

∞∑§ ŒËÉʸflÎûÊ ¬⁄U ¡Ê flÎûÊ Ÿ„Ë¥ „Ò–

(2)

a hyperbola.

(2)

∞∑§ •Áì⁄Ufl‹ÿ ¬⁄U–

(3)

a parabola.

(3)

∞∑§ ¬⁄Ufl‹ÿ ¬⁄U–

(4)

a circle.

(4)

∞∑§ flÎûÊ ¬⁄U–

If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is :

56.

‡ÊéŒ SMALL ∑§ •ˇÊ⁄UÊ¥ ∑§Ê ¬˝ÿÊª ∑§⁄U∑§, ¬Ê°ø •ˇÊ⁄UÊ¥ flÊ‹ ‚÷Ë ‡ÊéŒÊ¥ (•Õ¸¬Íáʸ •ÕflÊ •Õ¸„ËŸ) ∑§Ê ‡ÊéŒ∑§Ê‡Ê ∑§ ∑˝§◊ÊŸÈ‚Ê⁄U ⁄UπŸ ¬⁄U, ‡ÊéŒ SMALL ∑§Ê SÕÊŸ „Ò —

(1)

59 th

(1)

59

flʥ

(2)

52 nd

(2)

52

flʥ

(3)

58 th

(3)

58

flʥ

(4)

46 th

(4)

46

flʥ

F/Page 21

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

1

57.

 ( n + 1 ) ( n + 2 ) . . . 3n  n is equal lim   n→∞ n2n  to :

1

57.

 ( n + 1 ) ( n + 2 ) . . . 3n  n lim   n→∞ n2n 

27

(1)

e

27

(1)

2

9

(2)

(3)

58.

e2

9

e2

(2)

e2

3 log3−2

(3)

3 log3−2

18

(4)

e

18

(4)

4

If the sum of the first ten terms of the series

58.

2 2 2 2  3  2  1 2  4  1  + 2  + 3  + 4 + 4  +...... ,  5  5  5  5 16 m , then m is equal to : is 5

e4

ÿÁŒ üÊáÊË 2 2 2 2  3  2  1 2  4  1  + 2  + 3  + 4 + 4  +...... ,  5  5  5  5 16 m „Ò, ÃÊ m ’⁄UÊ’⁄U ∑§ ¬˝Õ◊ Œ‚ ¬ŒÊ¥ ∑§Ê ÿÊª 5

„Ò — (1)

101

(1)

101

(2)

100

(2)

100

(3)

99

(3)

99

(4)

102

(4)

102

F/Page 22

’⁄UÊ’⁄U „Ò —

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

59.

60.

If one of the diameters of the circle, given by the equation, x2+y2−4x+6y−12=0, is a chord of a circle S, whose centre is at (−3, 2), then the radius of S is :

59.

ÿÁŒ ‚◊Ë∑§⁄UáÊ x2+y2−4x+6y−12=0 mÊ⁄UÊ ¬˝ŒûÊ ∞∑§ flÎûÊ ∑§Ê ∞∑§ √ÿÊ‚ ∞∑§ •ãÿ flÎûÊ S, Á¡‚∑§Ê ∑§ãŒ˝ (−3, 2) „Ò, ∑§Ë ¡ËflÊ „Ò, ÃÊ flÎûÊ S ∑§Ë ÁòÊíÿÊ „Ò —

(1)

5 3

(1)

5 3

(2)

5

(2)

5

(3)

10

(3)

10

(4)

5 2

(4)

5 2

A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is 308. After walking for 10 minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 608. Then the time taken (in minutes) by him, from B to reach the pillar, is :

60.

∞∑§ √ÿÁÄà ∞∑§ ™§äflʸœ⁄U π¥÷ ∑§Ë •Ê⁄U ∞∑§ ‚Ëœ ¬Õ ¬⁄U ∞∑§ ‚◊ÊŸ øÊ‹ ‚ ¡Ê ⁄U„Ê „Ò– ⁄UÊSÃ ¬⁄U ∞∑§ Á’¥ŒÈ A ‚ fl„ π¥÷ ∑§ Á‡Êπ⁄U ∑§Ê ©ÛÊÿŸ ∑§ÊáÊ 308 ◊ʬÃÊ „Ò– A ‚ ©‚Ë ÁŒ‡ÊÊ ◊¥ 10 Á◊Ÿ≈U •ÊÒ⁄U ø‹Ÿ ∑§ ’ÊŒ Á’¥ŒÈ B ‚ fl„ π¥÷ ∑§ Á‡Êπ⁄U ∑§Ê ©ÛÊÿŸ ∑§ÊáÊ 608 ¬ÊÃÊ „Ò, ÃÊ B ‚ π¥÷ Ã∑§ ¬„È°øŸ ◊¥ ©‚ ‹ªŸ flÊ‹Ê ‚◊ÿ (Á◊Ÿ≈UÊ¥ ◊¥) „Ò —

(1)

10

(1)

10

(2)

20

(2)

20

(3)

5

(3)

5

(4)

6

(4)

6

F/Page 23

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

PART C — PHYSICS

÷ʪ C — ÷ÊÒÁÃ∑§ ÁflôÊÊŸ

ALL THE GRAPHS GIVEN ARE SCHEMATIC AND NOT DRAWN TO SCALE.

ÁŒ∞ ªÿ ‚÷Ë ª˝Ê»§ •Ê⁄UπËÿ „Ò¥ •ÊÒ⁄U S∑§‹ ∑§ •ŸÈ‚Ê⁄U ⁄UπÊ¥Á∑§Ã Ÿ„Ë¥ „Ò–

61.

62.

A uniform string of length 20 m is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the support is : (take g = 10 ms−2)

61.

20 m ‹ê’Ê߸

∑§Ë ∞∑§‚◊ÊŸ «UÊ⁄UË ∑§Ê ∞∑§ ŒÎ…∏ •ÊœÊ⁄U ‚ ‹≈U∑§ÊÿÊ ªÿÊ „Ò– ß‚∑§ ÁŸø‹ Á‚⁄U ‚ ∞∑§ ‚͡◊ Ã⁄¥Uª-S¬¥Œ øÊÁ‹Ã „ÊÃÊ „Ò– ™§¬⁄U •ÊœÊ⁄U Ã∑§ ¬„È°øŸ ◊¥ ‹ªŸ flÊ‹Ê ‚◊ÿ „Ò — (g = 10 ms−2 ‹¥)

(1)

2s

(1)

2s

(2)

2 2 s

(2)

2 2 s

(3)

2 s

(3)

2 s

(4)

2π 2 s

(4)

2π 2 s

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times. Assume that the potential energy lost each time he lowers the mass is dissipated. How much fat will he use up considering the work done only when the weight is lifted up ? Fat supplies 3.8×10 7 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate. Take g=9.8 ms−2 :

62.

∞∑§ ÷Ê⁄UÊûÊÊ‹∑§ ÷Ê⁄U ∑§Ê ¬„‹ ™§¬⁄U •ÊÒ⁄U Á»§⁄U ŸËø Ã∑§ ‹ÊÃÊ „Ò– ÿ„ ◊ÊŸÊ ¡ÊÃÊ „Ò Á∑§ Á‚»¸§ ÷Ê⁄U ∑§Ê ™§¬⁄U ‹ ¡ÊŸ ◊¥ ∑§Êÿ¸ „ÊÃÊ „Ò •ÊÒ⁄U ŸËø ‹ÊŸ ◊¥ ÁSÕÁá ™§¡Ê¸ ∑§Ê OÊ‚ „ÊÃÊ „Ò– ‡Ê⁄UË⁄U ∑§Ë fl‚Ê ™§¡Ê¸ ŒÃË „Ò ¡Ê ÿÊ¥ÁòÊ∑§Ëÿ ™§¡Ê¸ ◊¥ ’Œ‹ÃË „Ò– ◊ÊŸ ‹¥ Á∑§ fl‚Ê mÊ⁄UÊ ŒË ªß¸ ™§¡Ê¸ 3.8×107 J ¬˝Áà kg ÷Ê⁄U „Ò, ÃÕÊ ß‚∑§Ê ◊ÊòÊ 20% ÿÊ¥ÁòÊ∑§Ëÿ ™§¡Ê¸ ◊¥ ’Œ‹ÃÊ „Ò– •’ ÿÁŒ ∞∑§ ÷Ê⁄UÊûÊÊ‹∑§ 10 kg ∑§ ÷Ê⁄U ∑§Ê 1000 ’Ê⁄U 1 m ∑§Ë ™°§øÊ߸ Ã∑§ ™§¬⁄U •ÊÒ⁄U ŸËø ∑§⁄UÃÊ „Ò Ã’ ©‚∑§ ‡Ê⁄UË⁄U ‚ fl‚Ê ∑§Ê ˇÊÿ „Ò — (g=9.8 ms−2 ‹¥)

(1)

6.45×10−3 kg

(1)

6.45×10−3 kg

(2)

9.89×10−3 kg

(2)

9.89×10−3 kg

(3)

12.89×10−3 kg

(3)

12.89×10−3 kg

(4)

2.45×10−3 kg

(4)

2.45×10−3 kg

F/Page 24

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

63.

A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals µ. The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, PQ and QR, of the track, are equal to each other, and no energy is lost when particle changes direction from PQ to QR.

63.

‘m’ Œ˝√ÿ◊ÊŸ

∑§Ê ∞∑§ Á’¥ŒÈ ∑§áÊ ∞∑§ πÈ⁄UŒ⁄U ¬Õ PQR (ÁøòÊ ŒÁπÿ) ¬⁄U ø‹ ⁄U„Ê „Ò– ∑§áÊ •ÊÒ⁄U ¬Õ ∑§ ’Ëø ÉÊ·¸áÊ ªÈáÊÊ¥∑§ µ „Ò– ∑§áÊ P ‚ ¿UÊ«∏ ¡ÊŸ ∑§ ’ÊŒ R ¬⁄U ¬„È°ø ∑§⁄U L§∑§ ¡ÊÃÊ „Ò– ¬Õ ∑§ ÷ʪ PQ •ÊÒ⁄U QR ¬⁄U ø‹Ÿ ◊¥ ∑§áÊ mÊ⁄UÊ πø¸ ∑§Ë ªß¸ ™§¡Ê¸∞° ’⁄UÊ’⁄U „Ò¥– PQ ‚ QR ¬⁄U „ÊŸ flÊ‹ ÁŒ‡ÊÊ ’Œ‹Êfl ◊¥ ∑§Ê߸ ™§¡Ê¸ πø¸ Ÿ„Ë¥ „ÊÃË– Ã’ µ •ÊÒ⁄U ŒÍ⁄UË x(=QR) ∑§ ◊ÊŸ ‹ª÷ª „Ò¥ ∑˝§◊‡Ê— —

The values of the coefficient of friction µ and the distance x(=QR), are, respectively close to :

•ÊÒ⁄U

(1)

0.2 and 3.5 m

(1)

0.2

(2)

0.29 and 3.5 m

(2)

0.29

•ÊÒ⁄U

3.5 m

(3)

0.29 and 6.5 m

(3)

0.29

•ÊÒ⁄U

6.5 m

(4)

0.2 and 6.5 m

(4)

0.2

F/Page 25

SPACE FOR ROUGH WORK /

F F

•ÊÒ⁄U

3.5 m

6.5 m

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

64.

65.

66.

Two identical wires A and B, each of length ‘l’, carry the same current I. Wire A is bent into a circle of radius R and wire B is bent to form a square of side ‘a’. If BA and BB are the values of magnetic field at the centres of the circle and square respectively, then the ratio BA is : BB 2 π (1) 16 2

64.

ŒÊ ∞∑§‚◊ÊŸ ÃÊ⁄U A fl B ¬˝àÿ∑§ ∑§Ë ‹ê’Ê߸ ‘l’, ◊¥ ‚◊ÊŸ œÊ⁄UÊ I ¬˝flÊÁ„à „Ò– A ∑§Ê ◊Ê«∏∑§⁄U R ÁòÊíÿÊ ∑§Ê ∞∑§ flÎûÊ •ÊÒ⁄U B ∑§Ê ◊Ê«∏∑§⁄U ÷È¡Ê ‘a’ ∑§Ê ∞∑§ flª¸ ’ŸÊÿÊ ¡ÊÃÊ „Ò– ÿÁŒ BA ÃÕÊ BB ∑˝§◊‡Ê— flÎûÊ ∑§ ∑§ãŒ˝ ÃÕÊ flª¸ ∑§ ∑§ãŒ˝ ¬⁄U øÈê’∑§Ëÿ ˇÊòÊ „Ò¥, Ã’ •ŸÈ¬Êà BA „ÊªÊ — BB

(1)

π2 16 2

(2)

π2 16

(2)

π2 16

(3)

π2 8 2

(3)

π2 8 2

(4)

π2 8

(4)

π2 8

A galvanometer having a coil resistance of 100 Ω gives a full scale deflection, when a current of 1 mA is passed through it. The value of the resistance, which can convert this galvanometer into ammeter giving a full scale deflection for a current of 10 A, is :

65.

∞∑§ ªÒÀflŸÊ◊Ë≈U⁄U ∑§ ∑§Êß‹ ∑§Ê ¬˝ÁÃ⁄UÊœ 100 Ω „Ò– 1 mA œÊ⁄UÊ ¬˝flÊÁ„à ∑§⁄UŸ ¬⁄U ß‚◊¥ »È§‹-S∑§‹ ÁflˇÊ¬ Á◊‹ÃÊ „Ò– ß‚ ªÒÀflŸÊ◊Ë≈U⁄U ∑§Ê 10 A ∑§ ∞◊Ë≈U⁄U ◊¥ ’Œ‹Ÿ ∑§ Á‹ÿ ¡Ê ¬˝ÁÃ⁄UÊœ ‹ªÊŸÊ „ÊªÊ fl„ „Ò —

(1)

2Ω

(1)

2Ω

(2)

0.1 Ω

(2)

0.1 Ω

(3)

3Ω

(3)

3Ω

(4)

0.01 Ω

(4)

0.01 Ω

An observer looks at a distant tree of height 10 m with a telescope of magnifying power of 20. To the observer the tree appears :

66.

ŒÍ⁄U ÁSÕà 10 m ™°§ø ¬«∏ ∑§Ê ∞∑§ 20 •Êflœ¸Ÿ ˇÊ◊ÃÊ flÊ‹ ≈UÁ‹S∑§Ê¬ ‚ ŒπŸ ¬⁄U ÄÿÊ ◊„‚Í‚ „ÊªÊ?

(1)

10 times nearer.

(1)

(2)

20 times taller.

(2)

(3)

20 times nearer.

(3)

(4)

10 times taller.

(4)

F/Page 26

SPACE FOR ROUGH WORK /

F F

¬«∏ 10 ªÈŸÊ ¬Ê‚ „Ò– ¬«∏ 20 ªÈŸÊ ™°§øÊ „Ò– ¬«∏ 20 ªÈŸÊ ¬Ê‚ „Ò– ¬«∏ 10 ªÈŸÊ ™°§øÊ „Ò–

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

67.

68.

The temperature dependence of resistances of Cu and undoped Si in the temperature range 300-400 K, is best described by :

67.

ÃÊ°’Ê ÃÕÊ •◊ÊÁŒÃ (undoped) Á‚Á‹∑§ÊŸ ∑§ ¬˝ÁÃ⁄UÊœÊ¥ ∑§Ë ©Ÿ∑§ Ãʬ◊ÊŸ ¬⁄U ÁŸ÷¸⁄UÃÊ, 300-400 K Ãʬ◊ÊŸ •¥Ã⁄UÊ‹ ◊¥, ∑§ Á‹ÿ ‚„Ë ∑§ÕŸ „Ò —

(1)

Linear increase for Cu, exponential increase for Si.

(1)

ÃÊ°’Ê ∑§ Á‹ÿ ⁄UπËÿ ’…∏Êfl ÃÕÊ Á‚Á‹∑§ÊŸ ∑§ Á‹ÿ ø⁄UUÉÊÊÃÊ¥∑§Ë ’…∏Êfl–

(2)

Linear increase for Cu, exponential decrease for Si.

(2)

ÃÊ°’Ê ∑§ Á‹ÿ ⁄UπËÿ ’…∏Êfl ÃÕÊ Á‚Á‹∑§ÊŸ ∑§ Á‹ÿ ø⁄UUÉÊÊÃÊ¥∑§Ë ÉÊ≈UÊfl–

(3)

Linear decrease for Cu, linear decrease for Si.

(3)

ÃÊ°’Ê ∑§ Á‹ÿ ⁄UπËÿ ÉÊ≈UÊfl ÃÕÊ Á‚Á‹∑§ÊŸ ∑§ Á‹ÿ ⁄UπËÿ ÉÊ≈UÊfl–

(4)

Linear increase for Cu, linear increase for Si.

(4)

ÃÊ°’Ê ∑§ Á‹ÿ ⁄UπËÿ ’…∏Êfl ÃÕÊ Á‚Á‹∑§ÊŸ ∑§ Á‹ÿ ⁄UπËÿ ’…∏Êfl–

68.

Choose the correct statement :

‚„Ë ∑§ÕŸ øÈÁŸÿ —

(1)

In amplitude modulation the frequency of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.

(1)

•ÊÿÊ◊ ◊Ê«ÈU‹Ÿ ◊¥ ©ìÊ •ÊflÎÁûÊ ∑§Ë flÊ„∑§ Ã⁄¥Uª ∑§Ë •ÊflÎÁûÊ ◊¥ ’Œ‹Êfl äflÁŸ Á‚ÇãÊ‹ ∑§ •ÊÿÊ◊ ∑§ •ŸÈ¬ÊÃË „Ò–

(2)

In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.

(2)

•ÊflÎÁûÊ ◊Ê«ÈU‹Ÿ ◊¥ ©ìÊ •ÊflÎÁûÊ ∑§Ë flÊ„∑§ Ã⁄¥Uª ∑§ •ÊÿÊ◊ ◊¥ ’Œ‹Êfl äflÁŸ Á‚ÇãÊ‹ ∑§ •ÊÿÊ◊ ∑§ •ŸÈ¬ÊÃË „Ò–

(3)

In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the frequency of the audio signal.

(3)

•ÊflÎÁûÊ ◊Ê«ÈU‹Ÿ ◊¥ ©ìÊ-•ÊflÎÁûÊ ∑§Ë flÊ„∑§ Ã⁄¥Uª ∑§Ë •ÊÿÊ◊ ◊¥ ’Œ‹Êfl äflÁŸ Á‚ÇŸ‹ ∑§Ë •ÊflÎÁûÊ ∑§ •ŸÈ¬ÊÃË „Ò–

(4)

In amplitude modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.

(4)

•ÊÿÊ◊ ◊Ê«È‹Ÿ ◊¥ ©ìÊ •ÊflÎÁûÊ ∑§Ë flÊ„∑§U Ã⁄¥Uª ∑§ •ÊÿÊ◊ ◊¥ ’Œ‹Êfl äflÁŸ Á‚ÇŸ‹ ∑§ •ÊÿÊ◊ ∑§ •ŸÈ¬ÊÃË „Ò–

F/Page 27

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

69.

70.

Half-lives of two radioactive elements A and B are 20 minutes and 40 minutes, respectively. Initially, the samples have equal number of nuclei. After 80 minutes, the ratio of decayed numbers of A and B nuclei will be :

69.

ŒÊ ⁄UÁ«UÿÊœ◊˸ Ãàfl A ÃÕÊ B ∑§Ë •h¸•ÊÿÈ ∑˝§◊‡Ê— 20 min ÃÕÊ 40 min „Ò¥– ¬˝Ê⁄¥U÷ ◊¥ ŒÊŸÊ¥ ∑§ Ÿ◊ÍŸÊ¥ ◊¥ ŸÊÁ÷∑§Ê¥ ∑§Ë ‚¥ÅÿÊ ’⁄UÊ’⁄U „Ò– 80 min ∑§ ©¬⁄Uʥà A ÃÕÊ B ∑§ ˇÊÿ „È∞ ŸÊÁ÷∑§Ê¥ ∑§Ë ‚¥ÅÿÊ ∑§Ê •ŸÈ¬Êà „ÊªÊ —

(1)

4:1

(1)

4:1

(2)

1:4

(2)

1:4

(3)

5:4

(3)

5:4

(4)

1 : 16

(4)

1 : 16

‘n’ moles of an ideal gas undergoes a process A→B as shown in the figure. The maximum temperature of the gas during the process will be :

70.

‘n’ ◊Ê‹

•ÊŒ‡Ê¸ ªÒ‚ ∞∑§ ¬˝∑˝§◊ A→B ‚ ªÈ$¡⁄UÃË „Ò (ÁøòÊ ŒÁπÿ)– ß‚ ¬˝∑˝§◊ ∑§ ŒÊÒ⁄UÊŸ ©‚∑§Ê •Áœ∑§Ã◊ Ãʬ◊ÊŸ „ÊªÊ —

(1)

3 P0 V0 2 nR

(1)

3 P0 V0 2 nR

(2)

9 P0 V0 2 nR

(2)

9 P0 V0 2 nR

(3)

9 P0 V0 nR

(3)

9 P0 V0 nR

(4)

9 P0 V0 4 nR

(4)

9 P0 V0 4 nR

F/Page 28

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

71.

72.

An arc lamp requires a direct current of 10 A at 80 V to function. If it is connected to a 220 V (rms), 50 Hz AC supply, the series inductor needed for it to work is close to : (1) 0.08 H (2) 0.044 H (3) 0.065 H (4) 80 H

71.

A pipe open at both ends has a fundamental frequency f in air. The pipe is dipped vertically in water so that half of it is in water. The fundamental frequency of the air column is now :

72.

(1) (2) (3) (4) 73.

(2) (3) (4) F/Page 29

(1) (2) (3) (4)

3f 4 2f f

(2) (3)

f 2

(4)

 2λ 2 a = λ L and bmin=  L 

73.

  

a = λ L and bmin= 4λ L λ2 a= and bmin= 4λ L L

λ2 a= L

 2λ 2 and bmin=  L 

0.08 H 0.044 H 0.065 H 80 H

ŒÊŸÊ¥ Á‚⁄UÊ¥ ¬⁄U πÈ‹ ∞∑§ ¬Ê߬ ∑§Ë flÊÿÈ ◊¥ ◊Í‹-•ÊflÎÁûÊ ‘f ’ „Ò– ¬Ê߬ ∑§Ê ™§äflʸœ⁄U ©‚∑§Ë •ÊœË-‹ê’Ê߸ Ã∑§ ¬ÊŸË ◊¥ «ÈU’ÊÿÊ ¡ÊÃÊ „Ò– Ã’ ß‚◊¥ ’ø flÊÿÈ-∑§Ê‹◊ ∑§Ë ◊Í‹ •ÊflÎÁûÊ „ÊªË — (1)

The box of a pin hole camera, of length L, has a hole of radius a. It is assumed that when the hole is illuminated by a parallel beam of light of wavelength λ the spread of the spot (obtained on the opposite wall of the camera) is the sum of its geometrical spread and the spread due to diffraction. The spot would then have its minimum size (say bmin) when : (1)

∞∑§ •Ê∑¸§ ‹Òê¬ ∑§Ê ¬˝∑§ÊÁ‡Êà ∑§⁄UŸ ∑§ Á‹ÿ 80 V ¬⁄U 10 A ∑§Ë ÁŒc≈U œÊ⁄UÊ (DC) ∑§Ë •Êfl‡ÿ∑§ÃÊ „ÊÃË „Ò– ©‚Ë •Ê∑¸§ ∑§Ê 220 V (rms) 50 Hz ¬˝àÿÊflÃ˸ œÊ⁄UÊ (AC) ‚ ø‹ÊŸ ∑§ Á‹ÿ üÊáÊË ◊¥ ‹ªŸ flÊ‹ ¬˝⁄U∑§àfl ∑§Ê ◊ÊŸ „Ò —

3f 4 2f f f 2

∞∑§ Á¬Ÿ-„Ê‹ ∑Ò§◊⁄UÊ ∑§Ë ÀÊê’Ê߸ ‘L’ „Ò ÃÕÊ Á¿UŒ˝ ∑§Ë ÁòÊíÿÊ a „Ò– ©‚ ¬⁄U λ Ã⁄¥UªŒÒÉÿ¸ ∑§Ê ‚◊Ê¥Ã⁄U ¬˝∑§Ê‡Ê •Ê¬ÁÃà „Ò– Á¿UŒ˝ ∑§ ‚Ê◊Ÿ flÊ‹Ë ‚Ä ¬⁄U ’Ÿ S¬ÊÚ≈U ∑§Ê ÁflSÃÊ⁄U Á¿UŒ˝ ∑§ íÿÊÁ◊ÃËÿ •Ê∑§Ê⁄U ÃÕÊ ÁflfløŸ ∑§ ∑§Ê⁄UáÊ „È∞ ÁflSÃÊ⁄U ∑§Ê ∑ȧ‹ ÿÊª „Ò– ß‚ S¬ÊÚ≈U ∑§Ê ãÿÍŸÃ◊ •Ê∑§Ê⁄U bmin Ã’ „ÊªÊ ¡’ —

(1)

a = λL

ÃÕÊ

 2λ 2 bmin=  L 

(2)

a = λL

ÃÕÊ

bmin= 4λ L

ÃÕÊ

bmin= 4λ L

ÃÕÊ

 2λ 2 bmin=  L 

  

2

  

SPACE FOR ROUGH WORK /

F F

λ L

(3)

a=

(4)

λ2 a= L

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

  

F F

74.

75.

A combination of capacitors is set up as shown in the figure. The magnitude of the electric field, due to a point charge Q (having a charge equal to the sum of the charges on the 4 µF and 9 µF capacitors), at a point distant 30 m from it, would equal :

74.

‚¥œÊÁ⁄UòÊÊ¥ ‚ ’Ÿ ∞∑§ ¬Á⁄U¬Õ ∑§Ê ÁøòÊ ◊¥ ÁŒπÊÿÊ ªÿÊ „Ò– ∞∑§ Á’ãŒÈ-•Êfl‡Ê Q (Á¡‚∑§Ê ◊ÊŸ 4 µF ÃÕÊ 9 µF flÊ‹ ‚¥œÊÁ⁄UòÊÊ¥ ∑§ ∑ȧ‹ •Êfl‡ÊÊ¥ ∑§ ’⁄UÊ’⁄U „Ò) ∑§ mÊ⁄UÊ 30 m ŒÍ⁄UË ¬⁄U flÒlÈÃ-ˇÊòÊ ∑§Ê ¬Á⁄U◊ÊáÊ „ÊªÊ —

(1)

360 N/C

(1)

360 N/C

(2)

420 N/C

(2)

420 N/C

(3)

480 N/C

(3)

480 N/C

(4)

240 N/C

(4)

240 N/C

Arrange the following electromagnetic radiations per quantum in the order of increasing energy :

75.

ÁŸêŸ ¬˝Áà ÄflÊ¥≈U◊ flÒlÈÃ-øÈê’∑§Ëÿ ÁflÁ∑§⁄UáÊÊ¥ ∑§Ê ©Ÿ∑§Ë ™§¡Ê¸ ∑§ ’…∏Ã „È∞ ∑˝§◊ ◊¥ ‹ªÊÿ¥ —

A : Blue light

B : Yellow light

A : ŸË‹Ê

C : X-ray

D : Radiowave.

C:X-

¬˝∑§Ê‡Ê

Á∑§⁄UáÊ¥

(1)

A, B, D, C

(1)

A, B, D, C

(2)

C, A, B, D

(2)

C, A, B, D

(3)

B, A, D, C

(3)

B, A, D, C

(4)

D, B, A, C

(4)

D, B, A, C

F/Page 30

SPACE FOR ROUGH WORK /

F F

B : ¬Ë‹Ê

¬˝∑§Ê‡Ê

D : ⁄UÁ«UÿÊ

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

Ã⁄¥Uª

F F

76.

Hysteresis loops for two magnetic materials A and B are given below :

ŒÊ øÈê’∑§Ëÿ ¬ŒÊÕ¸ A ÃÕÊ ‹Í¬ ŸËø ÁŒπÊÿ ªÿ „Ò¥ —

B

∑§ Á‹ÿ Á„S≈⁄UÁ‚‚-

These materials are used to make magnets for electric generators, transformer core and electromagnet core. Then it is proper to use :

ߟ ¬ŒÊÕÊZ ∑§Ê øÈê’∑§Ëÿ ©¬ÿÊª ÁfllÈÃ-¡Ÿ⁄U≈U⁄U ∑§ øÈê’∑§, ≈˛UÊã‚»§ÊÚ◊¸⁄U ∑§Ë ∑˝§Ê«U ∞fl¥ ÁfllÈÃ-øÈê’∑§ ∑§Ë ∑˝§Ê«U •ÊÁŒ ∑§ ’ŸÊŸ ◊¥ Á∑§ÿÊ ¡ÊÃÊ „Ò– Ã’ ÿ„ ©Áøà „Ò Á∑§ —

(1)

A for electromagnets and B for electric generators.

(1)

(2)

A for transformers and B for electric generators.

(2)

A

(3)

B for electromagnets transformers.

(3)

B ∑§Ê ßSÃ◊Ê‹ ÁfllÈÃ-øÈê’∑§ ÃÕÊ ≈˛UÊã‚»§ÊÚ◊¸⁄U

(4)

77.

76.

and

A ∑§Ê

ßSÃ◊Ê‹ ÁfllÈÃ-øÈê’∑§ ◊¥ ÃÕÊ ÁfllÈÃ-¡Ÿ⁄U≈U⁄U ◊¥ Á∑§ÿÊ ¡Ê∞–

B ∑§Ê

∑§Ê ßSÃ◊Ê‹ ≈˛UÊã‚»§ÊÚ◊¸⁄U ◊¥ ÃÕÊ ÁfllÈÃ-¡Ÿ⁄U≈U⁄U ◊¥ Á∑§ÿÊ ¡Ê∞–

B

ŒÊŸÊ¥ ◊¥ Á∑§ÿÊ ¡Ê∞–

A for electric generators and transformers.

A pendulum clock loses 12 s a day if the temperature is 408C and gains 4 s a day if the temperature is 208C. The temperature at which the clock will show correct time, and the co-efficient of linear expansion (α) of the metal of the pendulum shaft are respectively :

(4)

A ∑§Ê ßSÃ◊Ê‹ ÁfllÈÃ-¡Ÿ⁄U≈U⁄U ÃÕÊ ≈˛UÊã‚»§ÊÚ◊¸⁄U

ŒÊŸÊ¥ ◊¥ Á∑§ÿÊ ¡Ê∞–

77.

∞∑§ ¬ãU«ÈU‹◊ ÉÊ«∏Ë 408C Ãʬ◊ÊŸ ¬⁄U 12 s ¬˝ÁÃÁŒŸ œË◊Ë „Ê ¡ÊÃË „Ò ÃÕÊ 208C Ãʬ◊ÊŸ ¬⁄U 4 s ¬˝ÁÃÁŒŸ Ã$¡ „Ê ¡ÊÃË „Ò– Ãʬ◊ÊŸ Á¡‚ ¬⁄U ÿ„ ‚„Ë ‚◊ÿ Œ‡ÊʸÿªË ÃÕÊ ¬ãU«ÈU‹◊ ∑§Ë œÊÃÈ ∑§Ê ⁄UπËÿ-¬˝‚Ê⁄U ªÈáÊÊ¥∑§ (α) ∑˝§◊‡Ê— „Ò¥ —

(1)

608C; α=1.85×10 −4/8C

(1)

608C; α=1.85×10 −4/8C

(2)

308C; α=1.85×10 −3/8C

(2)

308C; α=1.85×10 −3/8C

(3)

558C; α=1.85×10 −2/8C

(3)

558C; α=1.85×10 −2/8C

(4)

258C; α=1.85×10 −5/8C

(4)

258C; α=1.85×10 −5/8C

F/Page 31

∑§Ê

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

78.

The region between two concentric spheres of radii ‘a’ and ‘b’, respectively (see figure), A has volume charge density ρ = , where r A is a constant and r is the distance from the centre. At the centre of the spheres is a point charge Q. The value of A such that the electric field in the region between the spheres will be constant, is :

(1)

(2) (3) (4)

79.

78.

(

(1)

)

2Q

(

2

π a −b

2

(2)

)

2Q πa

(3)

2

Q 2π a

(4)

2

In an experiment for determination of refractive index of glass of a prism by i− δ, plot, it was found that a ray incident at angle 358, suffers a deviation of 408 and that it emerges at angle 798⋅ Ιn that case which of the following is closest to the maximum possible value of the refractive index ?

A r

„Ò, ¡„Ê° A ÁSÕ⁄UÊ¥∑§ „Ò ÃÕÊ r ∑§ãŒ˝ ‚ ŒÍ⁄UË „Ò– ªÊ‹Ê¥ ∑§ ∑§ãŒ˝ ¬⁄U ∞∑§ Á’ãŒÈ-•Êfl‡Ê Q „Ò– ‘A’ ∑§Ê fl„ ◊ÊŸ ’ÃÊÿ¥ Á¡‚‚ ªÊ‹Ê¥ ∑§ ’Ëø ∑§ SÕÊŸ ◊¥ ∞∑§‚◊ÊŸ flÒlÈÃ-ˇÊòÊ „Ê — ρ=

Q 2π b 2 − a 2

ÁòÊíÿÊ ‘a’ ÃÕÊ ‘b’ ∑§ ŒÊ ∞∑§-∑§ãŒ˝Ë ªÊ‹Ê¥ ∑§ (ÁøòÊ ŒÁπÿ) ’Ëø ∑§ SÕÊŸ ◊¥ •Êÿß •Êfl‡Ê-ÉÊŸàfl

79.

Q

(

2π b 2 − a 2

2Q

(

π a − b2

Q 2π a2

∞∑§ ¬˝ÿÊª ∑§⁄U∑§ ÃÕÊ i− δ ª˝Ê»§ ’ŸÊ∑§⁄U ∞∑§ ∑§Ê°ø ‚ ’Ÿ Á¬˝ï◊ ∑§Ê •¬fløŸÊ¥∑§ ÁŸ∑§Ê‹Ê ¡ÊÃÊ „Ò– ¡’ ∞∑§ Á∑§⁄UáÊ ∑§Ê 358 ¬⁄U •Ê¬ÁÃà ∑§⁄UŸ ¬⁄U fl„ 408 ‚ ÁfløÁ‹Ã „ÊÃË „Ò ÃÕÊ ÿ„ 798 ¬⁄U ÁŸª¸◊ „ÊÃË „Ò– ß‚ ÁSÕÁà ◊¥ ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ‚Ê ◊ÊŸ •¬fløŸÊ¥∑§ ∑§ •Áœ∑§Ã◊ ◊ÊŸ ∑§ ‚’‚ ¬Ê‚ „Ò?

(1)

1.6

(2)

1.7

(2)

1.7

(3)

1.8

(3)

1.8

(4)

1.5

(4)

1.5

F F

)

π a2

1.6

SPACE FOR ROUGH WORK /

2

2Q

(1)

F/Page 32

)

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

80.

81.

A student measures the time period of 100 oscillations of a simple pendulum four times. The data set is 90 s, 91 s, 95 s and 92 s. If the minimum division in the measuring clock is 1 s, then the reported mean time should be :

80.

∞∑§ ¿UÊòÊ ∞∑§ ‚⁄U‹-•Êflø-ŒÊ‹∑§ ∑§ 100 •ÊflÎÁûÊÿÊ¥ ∑§Ê ‚◊ÿ 4 ’Ê⁄U ◊ʬÃÊ „Ò •ÊÒ⁄U ©Ÿ∑§Ê 90 s, 91 s, 95 s •ÊÒ⁄U 92 s ¬ÊÃÊ „Ò– ßSÃ◊Ê‹ ∑§Ë ªß¸ ÉÊ«∏Ë ∑§Ê ãÿÍŸÃ◊ •À¬Ê¥‡Ê 1 s „Ò– Ã’ ◊ʬ ªÿ ◊Êäÿ ‚◊ÿ ∑§Ê ©‚ Á‹πŸÊ øÊÁ„ÿ —

(1)

92±5.0 s

(1)

92±5.0 s

(2)

92±1.8 s

(2)

92±1.8 s

(3)

92±3 s

(3)

92±3 s

(4)

92±2 s

(4)

92±2 s

Identify the semiconductor devices whose characteristics are given below, in the order (a), (b), (c), (d) :

81.

ÁøòÊ (a), (b), (c), (d) Œπ∑§⁄U ÁŸœÊ¸Á⁄Uà ∑§⁄¥U Á∑§ ÿ ÁøòÊ ∑˝ § ◊‡Ê— Á∑§Ÿ ‚ ◊ Ë∑§ã«U Ä ≈U ⁄ U Á«U fl Ê߸ ‚ ∑ § •Á÷‹ˇÊÁáÊ∑§ ª˝Ê»§ „Ò¥?

(1)

Zener diode, Simple diode, Light dependent resistance, Solar cell

(1)

(2)

Solar cell, Light dependent resistance, Zener diode, Simple diode

(2)

(3)

Zener diode, Solar cell, Simple diode, Light dependent resistance

(3)

(4)

Simple diode, Zener diode, Solar cell, Light dependent resistance

(4)

F/Page 33

SPACE FOR ROUGH WORK /

F F

¡ËŸ⁄U «UÊÿÊ«U, ‚ÊœÊ⁄UáÊ «UÊÿÊ«U, LDR (‹Ê߸≈U Á«U¬ã«Uã≈U ⁄UÁ¡S≈Uã‚), ‚Ê‹⁄U ‚‹ ‚Ê‹⁄U ‚‹, LDR (‹Ê߸≈U Á«U¬ã «Uã≈U ⁄UÁ¡S≈Uã‚), ¡ËŸ⁄U «UÊÿÊ«U, ‚ÊœÊ⁄UáÊ «UÊÿÊ«U ¡ËŸ⁄U «UÊÿÊ«U, ‚Ê‹⁄U ‚‹, ‚ÊœÊ⁄UáÊ «UÊÿÊ«U, LDR (‹Ê߸≈U Á«U¬ã«Uã≈U ⁄UÁ¡S≈Uã‚) ‚ÊœÊ⁄UáÊ «UÊÿÊ«U, ¡ËŸ⁄U «UÊÿÊ«, ‚Ê‹⁄U ‚‹, LDR (‹Ê߸≈U Á«U¬ã«Uã≈U ⁄UÁ¡S≈Uã‚)

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

82.

Radiation of wavelength λ, is incident on a photocell. The fastest emitted electron has speed v. If the wavelength is changed

82.



ÿÁŒ Ã⁄¥UªŒÒÉÿ¸ 4 „Ê Ã’ ©à‚Á¡¸Ã ß‹Ä≈˛UÊÚŸ ∑§Ë •Áœ∑§Ã◊ ªÁà „ÊªË —

3λ , the speed of the fastest emitted 4 electron will be :

to

83.

∞∑§ »§Ê≈UÊ-‚‹ ¬⁄U λ Ã⁄¥UªŒÒÉÿ¸ ∑§Ê ¬˝∑§Ê‡Ê •Ê¬ÁÃà „Ò– ©à‚Á¡¸Ã ß‹Ä≈˛UÊÚŸ ∑§Ë •Áœ∑§Ã◊ ªÁà ‘v’ „Ò–

1

1

(1)

4 < v 2 3

(1)

4 < v 2 3

1

1

(2)

4 = v 2 3

(2)

4 = v 2 3

1

1

(3)

3 = v 2 4

(3)

3 = v 2 4

1

1

(4)

4 > v 2 3

(4)

4 > v 2 3

A particle performs simple harmonic

83.

motion with amplitude A. Its speed is

∞∑§ ∑§áÊ ‘A’ •ÊÿÊ◊ ‚ ‚⁄U‹-•Êflø ŒÊ‹Ÿ ∑§⁄U ⁄U„Ê „Ò– ¡’ ÿ„ •¬Ÿ ◊Í‹-SÕÊŸ ‚

2A 3

¬⁄U ¬„È°øÃÊ „Ò

trebled at the instant that it is at a distance 2A from equilibrium position. The new 3 amplitude of the motion is :

Ã’ •øÊŸ∑§ ß‚∑§Ë ªÁà ÁÃªÈŸË ∑§⁄U ŒË ¡ÊÃË „Ò– Ã’

(1)

3A

(1)

3A

(2)

A 3

(2)

A 3

(3)

7A 3

(3)

7A 3

(4)

A 41 3

(4)

A 41 3

F/Page 34

SPACE FOR ROUGH WORK /

F F

ß‚∑§Ê ŸÿÊ •ÊÿÊ◊ „Ò —

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

84.

A particle of mass m is moving along the side of a square of side ‘a’, with a uniform speed v in the x-y plane as shown in the figure :

84.

Which of the following statements is false →

for the angular momentum L about the

ÁøòÊ ◊¥ ÷È¡Ê ‘a’ ∑§Ê flª¸ x-y Ë ◊¥ „Ò– m Œ˝√ÿ◊ÊŸ ∑§Ê ∞∑§ ∑§áÊ ∞∑§‚◊ÊŸ ªÁÃ, v ‚ ß‚ flª¸ ∑§Ë ÷È¡Ê ¬⁄U ø‹ ⁄U„Ê „Ò ¡Ò‚Ê Á∑§ ÁøòÊ ◊¥ Œ‡ÊʸÿÊ ªÿÊ „Ò–

Ã’ ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ‚Ê ∑§ÕŸ, ß‚ ∑§áÊ ∑§ ◊Í‹Á’¥ŒÈ → ∑§ ÁªŒ¸ ∑§ÊáÊËÿ •ÊÉÊÍáʸ L ∑§ Á‹ÿ, ª‹Ã „Ò?

origin ?

 R  ∧ L = mv  − a  k when the  2  particle is moving from C to D. →

(1)

 R  ∧ L = mv  + a  k when the  2  particle is moving from B to C. →

(2)

∧ mv R k when the particle is 2 moving from D to A.

L =

F/Page 35

∧ mv R k when the particle is 2 moving from A to B.

L =−

SPACE FOR ROUGH WORK /

F F

C

‚

 R  ∧ L = mv  + a k ,  2  C ∑§Ë •Ê⁄U ø‹ ⁄U„Ê „Ò–

¡’ ∑§áÊ

B

‚



(3)

L =

∧ mv R k , ¡’ ∑§áÊ D ‚ A 2

∑§Ë •Ê⁄U

ø‹ ⁄U„Ê „Ò–



(4)

¡’ ∑§áÊ



(2)



(3)

 R  ∧ L = mv  − a k ,  2  D ∑§Ë •Ê⁄U ø‹ ⁄U„Ê „Ò– →

(1)



(4)

L =−

∧ mv R k, 2

•Ê⁄U ø‹ ⁄U„Ê „Ò– ⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

¡’ ∑§áÊ

A

‚

B

∑§Ë

F F

85.

86.

An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure P and volume V is given by PVn=constant, then n is given by (Here CP and CV are molar specific heat at constant pressure and constant volume, respectively) :

85.

∞∑§ •ÊŒ‡Ê¸ ªÒ‚ ©à∑˝§◊áÊËÿ SÕÒÁÃ∑§-∑§À¬ ¬˝∑˝§◊ ‚ ªÈ$¡⁄UÃË „Ò ÃÕÊ ©‚∑§Ë ◊Ê‹⁄U-™§c◊Ê-œÊÁ⁄UÃÊ C ÁSÕ⁄U ⁄U„ÃË „Ò– ÿÁŒ ß‚ ¬˝∑˝§◊ ◊¥ ©‚∑§ ŒÊ’ P fl •Êÿß V ∑§ ’Ëø ‚¥’¥œ PVn=constant „Ò– (CP ÃÕÊ CV ∑˝§◊‡Ê— ÁSÕ⁄U ŒÊ’ fl ÁSÕ⁄U •Êÿß ¬⁄U ™§c◊ÊœÊÁ⁄UÃÊ „Ò) Ã’ ‘n’ ∑§ Á‹ÿ ‚◊Ë∑§⁄UáÊ „Ò —

(1)

n=

C − CP C − CV

(1)

n=

C − CP C − CV

(2)

n=

CP − C C − CV

(2)

n=

CP − C C − CV

(3)

n=

C − CV C − CP

(3)

n=

C − CV C − CP

(4)

n=

CP CV

(4)

n=

CP CV

A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thickness of a thin sheet of Aluminium. Before starting the measurement, it is found that when the two jaws of the screw gauge are brought in contact, the 45th division coincides with the main scale line and that the zero of the main scale is barely visible. What is the thickness of the sheet if the main scale reading is 0.5 mm and the 25th division coincides with the main scale line ?

86.

∞∑§ S∑˝Í§-ª¡ ∑§Ê Á¬ø 0.5 mm „Ò •ÊÒ⁄U ©‚∑§ flÎûÊËÿS∑§‹ ¬⁄U 50 ÷ʪ „Ò¥– ß‚∑§ mÊ⁄UÊ ∞∑§ ¬Ã‹Ë •ÀÿÈ◊ËÁŸÿ◊ ‡ÊË≈U ∑§Ë ◊Ê≈UÊ߸ ◊Ê¬Ë ªß¸– ◊ʬ ‹Ÿ ∑§ ¬Ífl¸ ÿ„ ¬ÊÿÊ ªÿÊ Á∑§ ¡’ S∑˝Í§-ª¡ ∑§ ŒÊ ¡ÊÚflÊ¥ ∑§Ê SÊê¬∑¸§U ◊¥ ‹ÊÿÊ ¡ÊÃÊ „Ò Ã’ 45 flÊ¥ ÷ʪ ◊ÈÅÿ S∑§‹ ‹Ê߸Ÿ ∑§ ‚¥¬ÊÃË „ÊÃÊ „Ò •ÊÒ⁄U ◊ÈÅÿ S∑§‹ ∑§Ê ‡ÊÍãÿ (0) ◊ÈÁ‡∑§‹ ‚ ÁŒπÃÊ „Ò– ◊ÈÅÿ S∑§‹ ∑§Ê ¬Ê∆KÊ¥∑§ ÿÁŒ 0.5 mm ÃÕÊ 25 flÊ¥ ÷ʪ ◊ÈÅÿ S∑§‹ ‹Ê߸Ÿ ∑§ ‚¥¬ÊÃË „Ê, ÃÊ ‡ÊË≈U ∑§Ë ◊Ê≈UÊ߸ ÄÿÊ „ÊªË?

(1)

0.80 mm

(1)

0.80 mm

(2)

0.70 mm

(2)

0.70 mm

(3)

0.50 mm

(3)

0.50 mm

(4)

0.75 mm

(4)

0.75 mm

F/Page 36

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

87.

88.

A roller is made by joining together two cones at their vertices O. It is kept on two rails AB and CD which are placed asymmetrically (see figure), with its axis perpendicular to CD and its centre O at the centre of line joining AB and CD (see figure). It is given a light push so that it starts rolling with its centre O moving parallel to CD in the direction shown. As it moves, the roller will tend to :

87.

ŒÊ ‡Ê¥∑ȧ ∑§Ê ©Ÿ∑§ ‡ÊË·¸ O ¬⁄U ¡Ê«∏∑§⁄U ∞∑§ ⁄UÊ‹⁄U ’ŸÊÿÊ ªÿÊ „Ò •ÊÒ⁄U ©‚ AB fl CD ⁄U‹ ¬⁄U •‚◊Á◊à ⁄UπÊ ªÿÊ „Ò (ÁøòÊ ŒÁπÿ)– ⁄UÊ‹⁄U ∑§Ê •ˇÊ CD ‚ ‹ê’flà „Ò •ÊÒ⁄U O ŒÊŸÊ¥ ⁄U‹ ∑§ ’ËøÊ’Ëø „Ò– „À∑§ ‚ œ∑§‹Ÿ ¬⁄U ⁄UÊ‹⁄U ⁄U‹ ¬⁄U ß‚ ¬˝∑§Ê⁄U ‹È…∏∑§ŸÊ •Ê⁄Uê÷ ∑§⁄UÃÊ „Ò Á∑§ O ∑§Ê øÊ‹Ÿ CD ∑§ ‚◊Ê¥Ã⁄U „Ò (ÁøòÊ ŒÁπÿ)– øÊÁ‹Ã „Ê ¡ÊŸ ∑§ ’ÊŒ ÿ„ ⁄UÊ‹⁄U —

(1)

turn right.

(1)

(2)

go straight.

(2)

(3)

turn left and right alternately.

(3)

(4)

turn left.

(4)

If a, b, c, d are inputs to a gate and x is its output, then, as per the following time graph, the gate is :

88.

ŒÊÿË¥ •Ê⁄U ◊È«∏ªÊ– ‚ËœÊ ø‹ÃÊ ⁄U„ªÊ– ’Êÿ¥ ÃÕÊ ŒÊÿ¥ ∑˝§◊‡Ê— ◊È«∏ÃÊ ⁄U„ªÊ– ’Ê°ÿË¥ •Ê⁄U ◊È«∏ªÊ–

∞∑§ ª≈U ◊¥ a, b, c, d ߟ¬È≈U „Ò¥ •ÊÒ⁄U x •Ê™§≈U¬È≈U „Ò– Ã’ ÁŒÿ ªÿ ≈UÊß◊-ª˝Ê»§ ∑§ •ŸÈ‚Ê⁄U ª≈U „Ò —

(1)

AND

(1)

AND

(2)

OR

(2)

OR

(3)

NAND

(3)

NAND

(4)

NOT

(4)

NOT

F/Page 37

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

89.

For a common emitter configuration, if α and β have their usual meanings, the incorrect relationship between α and β is : β (1) α = 1− β β (2) α = 1+ β (3) (4)

90.

89.

(1) (2)

β2

α=

©÷ÿÁŸc∆U-©à‚¡¸∑§ ÁflãÿÊ‚ ∑§ Á‹ÿ α ÃÕÊ β ∑§ ’Ëø ÁŸêŸ ◊¥ ‚ ∑§ÊÒŸ‚Ê ‚¥’¥œ ª‹Ã „Ò? α ÃÕÊ β Áøq ‚Ê◊Êãÿ ◊Ë’ flÊ‹ „Ò¥ —

(3)

1+ β2 1 1 = +1 α β

(4)

A satellite is revolving in a circular orbit at a height ‘h’ from the earth’s surface (radius of earth R ; h<
90.

β 1− β β α= 1+ β α=

β2

α=

1+ β2 1 1 = +1 α β

¬ÎâflË ∑§Ë ‚Ä ‚ ‘h’ ™°§øÊ߸ ¬⁄U ∞∑§ ©¬ª˝„ flÎûÊÊ∑§Ê⁄U ¬Õ ¬⁄U øÄ∑§⁄U ∑§Ê≈U ⁄U„Ê „Ò (¬ÎâflË ∑§Ë ÁòÊíÿÊ R ÃÕÊ h<
(1)

gR

(1)

gR

(2)

gR / 2

(2)

gR / 2

(3)

gR

(3)

gR

(4)

2 gR

(4)

2 gR

(

2 −1

)

-oOo-

F/Page 38

(

2 −1

)

-oOo-

SPACE FOR ROUGH WORK /

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

SPACE FOR ROUGH WORK /

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

F F

SPACE FOR ROUGH WORK / ⁄»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F/Page 39

SPACE FOR ROUGH WORK /

F F

⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„

F F

ÁŸêŸÁ‹Áπà ÁŸŒ¸‡Ê äÿÊŸ ‚ ¬…∏¥ —

Read the following instructions carefully :

¬⁄UˡÊÊÁÕ¸ÿÊ¥ ∑§Ê ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê •ÊÒ⁄U ©ûÊ⁄U ¬òÊ (¬ÎD -1) ¬⁄U flÊ¥Á¿Uà Áflfl⁄UáÊ ŸË‹/∑§Ê‹ ’ÊÚ‹ åflÊߥ≈U ¬Ÿ ‚ „Ë ÷⁄UŸÊ „Ò– ©ûÊ⁄U ¬òÊ ∑§ ¬ÎD-2 ¬⁄U Áflfl⁄UáÊ Á‹πŸ/•¥Á∑§Ã ∑§⁄UŸ ∑§ Á‹∞ ∑§fl‹ ŸË‹/∑§Ê‹ ’ÊÚ‹ åflÊߥ≈U ¬Ÿ ∑§Ê ¬˝ÿÊª ∑§⁄¥U– ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê/©ûÊ⁄U ¬òÊ ¬⁄U ÁŸœÊ¸Á⁄Uà SÕÊŸ ∑§ •‹ÊflÊ ¬⁄UˡÊÊÕ˸ •¬ŸÊ •ŸÈ∑˝§◊Ê¥∑§ •ãÿ ∑§„Ë¥ Ÿ„Ë¥ Á‹π¥– ¬˝àÿ∑§ ¬˝‡Ÿ ∑§ Á‹ÿ ÁŒÿ ªÿ øÊ⁄U Áfl∑§À¬Ê¥ ◊¥ ‚ ∑§fl‹ ∞∑§ Áfl∑§À¬ ‚„Ë „Ò– ¬˝àÿ∑§ ª‹Ã ©ûÊ⁄U ∑§ Á‹∞ ©‚ ¬˝‡Ÿ ∑§ Á‹∞ ÁŸœÊ¸Á⁄Uà ∑ȧ‹ •¥∑§Ê¥ ◊¥ ‚ ∞∑§-øÊÒÕÊ߸ (¼) •¥∑§ ∑ȧ‹ ÿÊª ◊¥ ‚ ∑§Ê≈U Á‹∞ ¡Ê∞°ª– ÿÁŒ ©ûÊ⁄U ¬òÊ ◊¥ Á∑§‚Ë ¬˝‡Ÿ ∑§Ê ∑§Ê߸ ©ûÊ⁄U Ÿ„Ë¥ ÁŒÿÊ ªÿÊ „Ò, ÃÊ ∑ȧ‹ ÿÊª ◊¥ ‚ ∑§Ê߸ •¥∑§ Ÿ„Ë¥ ∑§Ê≈U ¡Ê∞°ª– ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ∞fl¥ ©ûÊ⁄U ¬òÊ ∑§Ê äÿÊŸ¬Ífl¸∑§ ¬˝ÿÊª ∑§⁄¥U ÄÿÊ¥Á∑§ Á∑§‚Ë ÷Ë ¬Á⁄UÁSÕÁà ◊¥ (∑§fl‹ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ∞fl¥ ©ûÊ⁄U ¬òÊ ∑§ ‚¥∑§Ã ◊¥ Á÷ÛÊÃÊ ∑§Ë ÁSÕÁà ∑§Ê ¿UÊ«∏∑§⁄U), ŒÍ‚⁄UË ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ©¬‹éœ Ÿ„Ë¥ ∑§⁄UÊÿË ¡Ê∞ªË– 7. ©ûÊ⁄U ¬òÊ ¬⁄U ∑§Ê߸ ÷Ë ⁄U»§ ∑§Êÿ¸ ÿÊ Á‹πÊ߸ ∑§Ê ∑§Ê◊ ∑§⁄UŸ ∑§Ë •ŸÈ◊Áà Ÿ„Ë¥ „Ò– ‚÷Ë ªáÊŸÊ ∞fl¥ Á‹πÊ߸ ∑§Ê ∑§Ê◊, ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ◊¥ ÁŸœÊ¸Á⁄Uà ¡ª„ ¡Ê Á∑§ “⁄U»§ ∑§Êÿ¸ ∑§ Á‹∞ ¡ª„” mÊ⁄UÊ ŸÊ◊Ê¥Á∑§Ã „Ò, ¬⁄U „Ë Á∑§ÿÊ ¡Ê∞ªÊ– ÿ„ ¡ª„ ¬˝àÿ∑§ ¬ÎD ¬⁄U ŸËø ∑§Ë •Ê⁄U •ÊÒ⁄U ¬ÈÁSÃ∑§Ê ∑§ •¥Ã ◊¥ ∞∑§ ¬ÎD ¬⁄U (¬ÎD 39) ŒË ªß¸ „Ò– 8. ¬⁄ˡÊÊ ‚ê¬ÛÊ „ÊŸ ¬⁄U, ¬⁄UˡÊÊÕ˸ ∑§ˇÊ/„ÊÚ‹ ¿UÊ«∏Ÿ ‚ ¬Ífl¸ ©ûÊ⁄U ¬òÊ ∑§ˇÊ ÁŸ⁄UˡÊ∑§ ∑§Ê •fl‡ÿ ‚ÊÒ¥¬ Œ¥– ¬⁄UˡÊÊÕ˸ •¬Ÿ ‚ÊÕ ß‚ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ∑§Ê ‹ ¡Ê ‚∑§Ã „Ò¥– 9. ◊Ê¥ª ¡ÊŸ ¬⁄U ¬˝àÿ∑§ ¬⁄UˡÊÊÕ˸ ÁŸ⁄UˡÊ∑§ ∑§Ê •¬ŸÊ ¬˝fl‡Ê ∑§Ê«¸ •fl‡ÿ ÁŒπÊ∞°– 10. •œËˇÊ∑§ ÿÊ ÁŸ⁄UˡÊ∑§ ∑§Ë Áfl‡Ê· •ŸÈ◊Áà ∑§ Á’ŸÊ ∑§Ê߸ ¬⁄UˡÊÊÕ˸ •¬ŸÊ SÕÊŸ Ÿ ¿UÊ«∏¥– 11. ∑§Êÿ¸⁄Uà ÁŸ⁄UˡÊ∑§ ∑§Ê •¬ŸÊ ©ûÊ⁄U ¬òÊ ÁŒ∞ Á’ŸÊ ∞fl¥ ©¬ÁSÕÁà ¬òÊ ¬⁄U ŒÈ’Ê⁄UÊ „SÃÊˇÊ⁄U Á∑§∞ Á’ŸÊ ∑§Ê߸ ¬⁄UˡÊÊÕ˸ ¬⁄UˡÊÊ „ÊÚ‹ Ÿ„Ë¥ ¿UÊ«∏¥ª– ÿÁŒ Á∑§‚Ë ¬⁄UˡÊÊÕ˸ Ÿ ŒÍ‚⁄UË ’Ê⁄U ©¬ÁSÕÁà ¬òÊ ¬⁄U „SÃÊˇÊ⁄U Ÿ„Ë¥ Á∑§∞ ÃÊ ÿ„ ◊ÊŸÊ ¡Ê∞ªÊ Á∑§ ©‚Ÿ ©ûÊ⁄U ¬òÊ Ÿ„Ë¥ ‹ÊÒ≈UÊÿÊ „Ò Á¡‚ •ŸÈÁøà ‚ÊœŸ ¬˝ÿÊª üÊáÊË ◊¥ ◊ÊŸÊ ¡Ê∞ªÊ– ¬⁄UˡÊÊÕ˸ •¬Ÿ ’Êÿ¥ „ÊÕ ∑§ •¥ªÍ∆U ∑§Ê ÁŸ‡ÊÊŸ ©¬ÁSÕÁà ¬òÊ ◊¥ ÁŒ∞ ª∞ SÕÊŸ ¬⁄U •fl‡ÿ ‹ªÊ∞°– 12. ß‹Ä≈˛UÊÚÁŸ∑§/„SÃøÊÁ‹Ã ¬Á⁄U∑§‹∑§ ∞fl¥ ◊Ê’Êß‹ »§ÊŸ, ¬¡⁄U ßàÿÊÁŒ ¡Ò‚ Á∑§‚Ë ß‹Ä≈˛UÊÚÁŸ∑§ ©¬∑§⁄UáÊ ∑§Ê ¬˝ÿÊª flÁ¡¸Ã „Ò– 13. ¬⁄UˡÊÊ „ÊÚ‹ ◊¥ •Êø⁄UáÊ ∑§ Á‹∞ ¬⁄UˡÊÊÕ˸ ¡.∞.’./’Ê«¸U ∑§ ‚÷Ë ÁŸÿ◊Ê¥ ∞fl¥U ÁflÁŸÿ◊Ê¥ mÊ⁄UÊ ÁŸÿÁ◊à „Ê¥ª– •ŸÈÁøà ‚ÊœŸ ¬˝ÿÊª ∑§ ‚÷Ë ◊Ê◊‹Ê¥ ∑§Ê »Ò§‚‹Ê ¡.∞.’./’Ê«¸U ∑§ ÁŸÿ◊Ê¥ ∞fl¥ ÁflÁŸÿ◊Ê¥ ∑§ •ŸÈ‚Ê⁄U „ÊªÊ– 14. Á∑§‚Ë ÷Ë ÁSÕÁà ◊¥ ¬⁄UˡÊÊ ¬ÈÁSÃ∑§Ê ÃÕÊ ©ûÊ⁄U ¬òÊ ∑§Ê ∑§Ê߸ ÷Ë ÷ʪ •‹ª Ÿ„Ë¥ Á∑§ÿÊ ¡Ê∞ªÊ– 15. ¬⁄UˡÊÊÕ˸ mÊ⁄UÊ ¬⁄UˡÊÊ ∑§ˇÊ/„ÊÚ‹ ◊¥ ¬˝fl‡Ê ∑§Ê«¸U ∑§ •‹ÊflÊ Á∑§‚Ë ÷Ë ¬˝∑§Ê⁄U ∑§Ë ¬Ê∆˜Uÿ ‚Ê◊ª˝Ë, ◊ÈÁŒ˝Ã ÿÊ „SÃÁ‹ÁπÃ, ∑§Êª¡ ∑§Ë ¬Áø¸ÿÊ°, ¬¡⁄U, ◊Ê’Êß‹ »§ÊŸ ÿÊ Á∑§‚Ë ÷Ë ¬˝∑§Ê⁄U ∑§ ß‹Ä≈˛UÊÚÁŸ∑§ ©¬∑§⁄UáÊÊ¥ ÿÊ Á∑§‚Ë •ãÿ ¬˝∑§Ê⁄U ∑§Ë ‚Ê◊ª˝Ë ∑§Ê ‹ ¡ÊŸ ÿÊ ©¬ÿÊª ∑§⁄UŸ ∑§Ë •ŸÈ◊Áà Ÿ„Ë¥ „Ò–

1. The candidates should fill in the required particulars 1. on the Test Booklet and Answer Sheet (Side–1) with Blue/Black Ball Point Pen. 2. 2. For writing/marking particulars on Side–2 of the Answer Sheet, use Blue/Black Ball Point Pen only. 3. The candidates should not write their Roll Numbers 3. anywhere else (except in the specified space) on the Test Booklet/Answer Sheet. 4. 4. Out of the four options given for each question, only one option is the correct answer. 5. For each incorrect response, one–fourth (¼) of the total 5. marks allotted to the question would be deducted from the total score. No deduction from the total score, however, will be made if no response is indicated for an item in the Answer Sheet. 6. Handle the Test Booklet and Answer Sheet with care, 6.

as under no circumstances (except for discrepancy in Test Booklet Code and Answer Sheet Code), another set will be provided. 7. The candidates are not allowed to do any rough work or writing work on the Answer Sheet. All calculations/ writing work are to be done in the space provided for this purpose in the Test Booklet itself, marked ‘Space for Rough Work’. This space is given at the bottom of each page and in one page (i.e. Page 39) at the end of the booklet. 8. On completion of the test, the candidates must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them. 9. Each candidate must show on demand his/her Admit Card to the Invigilator. 10. No candidate, without special permission of the Superintendent or Invigilator, should leave his/her seat. 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet again. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case. The candidates are also required to put their left hand THUMB impression in the space provided in the Attendance Sheet. 12. Use of Electronic/Manual Calculator and any Electronic device like mobile phone, pager etc. is prohibited. 13. The candidates are governed by all Rules and Regulations of the JAB/Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the JAB/Board. 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances. 15. Candidates are not allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, electronic device or any other material except the Admit Card inside the examination room/hall.

F/Page 40

F F

03-04-2016-SetF.pdf

Booklet with only Blue / Black Ball Point Pen provided by. the Board. 2. .... (4) TiO2. 4. ÁŸêŸ ÉÊãÊàfl ∑ § ¬Ê‹ËÕËŸ ∑ § ‚ê'㜠◊ Â¥ ÁŸêŸ ◊ Â¥ ‚ . ∑§ÊÒŸ ‚Ê ...

1MB Sizes 1 Downloads 192 Views

Recommend Documents

No documents