T ESTING FOR A U NIT R OOT IN A R ANDOM C OEFFICIENT PANEL D ATA M ODEL : S UPPLEMENT Joakim Westerlund∗

Rolf Larsson

University of Gothenburg

Uppsala University

Sweden

Sweden

September 27, 2010

Abstract In this supplement, we provide the proofs of Lemmas A.2 and A.5 in Westerlund and Larsson (2010).

1 Results The autoregressive parameter ρi is modeled as ρi = 1 +

ci , Nη Tδ

where ci ∼ iid(µc , σc2 ) with µmc = E(cim ) < ∞ for all m ≥ 1. We further assume that ci is independent of the increment of the standard Brownian motion W (r ). Define W1 (r ) = W (r ) + ci τ

Z r 0

W (s)ds,

U (r ) = W (r ) − rW (1), Z (r ) = W1 (r ) − where τ =

T 1− δ Nη .

Z 1 0

W1 (s)ds,

This is the same notation used in the main paper with the dependence

upon i in W (r ), W1 (r ), U (r ) and Z (r ) suppressed. Lemmas A.2 and A.5 can be stated in the following way. Lemma A.2. Under the above conditions, ∗ Corresponding

author: Department of Economics, University of Gothenburg, P. O. Box 640, SE405 30 Gothenburg, Sweden. Telephone: +46 31 786 5251, Fax: +46 31 786 1043, E-mail address: [email protected].

1

( a)

Z 1 0

E(W1 (r )2 )dr =

1 1 1 + µ1c τ + µ2c τ 2 , 2 3 12

Z 1

2 1 1 E(W1 (r )4 )dr = 1 + µ1c τ + µ2c τ 2 + µ3c τ 3 + µ4c τ 4 , 3 3 21 0 "µZ ¶2 # 1 7 13 97 101 101 (c) E W1 (r )2 dr + µ1c τ + µ2c τ 2 + µ3c τ 3 + µ4c τ 4 . = 12 15 180 630 5040 0

(b)

Lemma A.5. Under the above conditions, " ¶2 # µZ r Z 1 dr = E c2i U (r )2 Z (s) ds ( a) 0

(b)

(c) (d)

Z 1 0

Z 1 0

Z 1 0

1 1 827 µ2c + µ3c τ + µ4c τ 2 , 420 560 907200

0

"

µZ c4i

E

¶4 #

r 0

"

Z (s) ds

dr =

µZ

¶3 #

c3i U (r )

E

r 0

·

µZ

E ci U (r )

r

3 0

1 1 µ4c + µ5c τ + O(µ6c τ 2 ), 1890 1260

dr =

Z (s) ds

97 7 µ4c τ − µ5c τ 2 + O(µ6c τ 3 ), 4320 103950

¶¸ Z (s) ds

dr = −

1 µ2c τ. 140

2 Proofs Proof of Lemma A.2. Consider (a). Note that Z 1

1 E(W (r )2 )dr = , 2 0 µ ¶ Z 1 Z r Z 1Z r Z 1Z r 1 E W (r ) W (s)ds dr = E(W (r )W (s))dsdr = sdsdr = 6 0 0 0 0 0 0 "µZ ¶ # Z Z Z Z 1

0

E

r

0

2

W (s)ds

dr =

=

1

r

r

r =0

s =0

t =0

E(W (s)W (t))dsdtdr

Z 1 Z r µZ t r =0

t =0

s =0

s+

Z r s=t

¶ t dsdtdr =

1 , 12

giving Z 1 0

E(W1 (r )2 )dr =

=

Z 1 0

" E W (r )2 + 2ci τW (r )

1 1 1 + µ1c τ + µ2c τ 2 . 2 3 12

This completes the proof of (a). 2

Z r 0

µZ W (s)ds + c2i τ 2

r 0

¶2 # W (s)ds

dr

Consider (b). Clearly, Z 1 0

Z 1µ

4

W1 (r ) dr =

0

Z 1

=

0

W (r ) + ci τ

Z r 0

W (r )4 dr + 4ci τ

+ 6( ci τ ) + ( ci τ )

4

Z 1

2

0

W (r )

Z 1 µZ r 0

0

2

¶4 W (s) ds Z 1

µZ

W (r )3

0 r 0

dr µZ r 0

¶ W (s) ds dr

¶2 W (s) ds

dr + 4(ci τ )

3

Z 1

¶4

W (s) ds

0

µZ W (r )

¶3

r

W (s) ds

0

dr

dr.

Suppose that r ≥ s ≥ v ≥ w. Then, h i E [W (r ) W (s) W (v) W (w)] = E W (s)2 W (v) W (w) h h i i = E (W (s) − W (v))2 W (v) W (w) + E W (v)3 W (w) h i h i = E (W (s) − W (v))2 E W (w)2 h i h i h i + 3E (W (v) − W (w))2 E W (w)2 + E W (w)4

= (s − v) w + 3 (v − w) w + 3w2 = w (s + 2v) . It follows that µZ 1 ¶ Z 1 ³ Z 1 ´ E W (r )4 dr = E W (r )4 dr = 3r2 dr = 1, 0 0 0 ·Z 1 µZ r ¶ ¸ Z 1 Z r Z ³ ´ E W (r )3 W (s) ds dr = E W (r )3 W (s) dsdr = 0

r =0

0

3 , 8

= "Z E

1 0

W (r )2

µZ

r 0

#

¶2 W (s) ds

= 2

dr

s =0

= 2

Z 1 Z r Z s r =0

s =0

t =0

Z 1 Z r Z s r =0

s =0

t =0

1 r =0

E

= 6 = 6

1 0

µZ W (r )

r

t (r + 2s) dtdsdr =

1 6

0

#

¶3 W (s) ds

Z 1 Z r Z s Z t r =0 Z 1

s =0 Z r

t =0 Z s

u =0 Z t

r =0

s =0

t =0

u =0

dr

E (W (r ) W (s) W (t) W (u)) dudtdsdr u (s + 2t) dudtdsdr =

3

s =0

3srdsdr

³ ´ E W (r )2 W (s) W (t) dtdsdr

and "Z

Z r

1 . 12

By the same argument, "Z µZ 1

E

0

= 24 = 24

#

¶4

r

W (s) ds

0

dr

Z 1 Z r Z s Z t

Z u

r =0 Z 1

s =0 Z r

t =0 Z s

u =0 Z t

v =0 Z u

r =0

s =0

t =0

u =0

v =0

E (W (s) W (t) W (u) W (v)) dvdudtdsdr v (t + 2u) dvdudtdsdr =

1 , 21

suggesting µZ E

1 0



1 1 1 3 = 1 + 4µ1c τ + 6µ2c τ 2 + 4µ3c τ 3 + µ4c τ 4 8 6 12 21 3 1 1 = 1 + µ1c τ + µ2c τ 2 + µ3c τ 3 + µ4c τ 4 , 2 3 21

W1 (r )4 dr

which completes the proof of (b). Finally, consider (c). Note that Z 1 0

2

W1 (r ) dr =

=

Z 1µ 0

Z 1 0

W (r ) + ci τ

¶2

Z r

W (s) ds

0

2

W (r ) dr + 2ci τ

Z 1

dr

W (r )

0

Z r 0

W (s) dsdr + (ci τ )

2

Z 1 µZ r 0

0

¶2 W (s) ds

giving µZ

1 0

2

¶2

µZ

=

W1 (r ) dr

1

+ 2( ci τ )

2

+ 4( ci τ )

2

Z 1 0

2

W (r ) dr

µZ Z 1 0

"Z

"µZ E

1 0

2

1

4

W (r ) dr

1 0

+ 4( c i τ )3

Here is

+ 4ci τ

W (r ) dr

0

+ ( ci τ )

¶2

2

W (r )

W (r ) µZ

0

r 0

¶2 #

=

0

W (r )2 dr

0

Z 1 µZ r 0

Z r

Z r

Z 1

0

0

W (s) ds

Z 1 Z 1

= 2

4

0

W (s) dsdr

dr

s =0

Z 1 µZ r 0

0

¶2 W (s) ds

.

³ ´ E W (r )2 W (s)2 dsdr

s =0

Z 1 Z r r =0

Z r

¶2

#2 dr

Z 1 Z r r =0

W (r )

W (s) dsdr

¶2

= 2

0 ¶2

W (s) ds

W (s) dsdr

r =0

Z 1

s =0

³ ´ E W (r )2 W (s)2 dsdr s (r + 2s) dsdr =

7 , 12

dr

dr,

µZ E

W (r ) dr

r =0

s =0

t =0

r =0

s =0

t =0

r =0

s =r

t =0

r =0

s =r

t =r

+ +

r =0 Z 1

s =0 t =0 Z 1 Z r

r =0 Z 1

s =r Z 1

t =0 Z s

r =0

s =r

t =r

"Z

1 0

2

W (r ) dr

= 2 + 2 = 2 + 2 + 2 + 2 = 2

3trdtdsdr r (t + 2r ) dtdsdr =

Z 1 µZ r 0

+ 2 + 2 + 2

r =0 s =0 t =0 u =0 Z 1 Z 1 Z s Z t

0

13 , 60 #

¶2 W (s) ds

dr

³ ´ E W (r )2 W (t) W (u) dudtdsdr

r =0

s =0

t =0

u =0

r =0

s =0

t =0

u =0

r =0

s =r

t =0

u =0

r =0

s =0

t =0

u =0

r =0

s =r

t =0

u =0

r =0

s =r

t =r

u =0

r =0

s =r

t =r

u =r

Z 1 Z r Z s Z t Z 1 Z 1 Z s Z t

Z 1 Z r Z s Z t Z 1 Z 1 Z r Z t Z 1 Z 1 Z s Z r Z 1 Z 1 Z s Z t

Z 1 Z r Z s Z t r =0 Z 1

W (s) dsdr

t (r + 2s) dtdsdr

Z 1 Z 1 Z s Z s

= 2

0

³ ´ E W (r )2 W (s) W (t) dtdsdr

Z 1 Z r Z s

=

W (r )



³ ´ E W (r )2 W (s) W (t) dtdsdr

Z 1 Z 1 Z s

+

0

Z r

³ ´ E W (r )2 W (s) W (t) dtdsdr

Z 1 Z 1 Z r

+

Z 1

³ ´ E W (r )2 W (s) W (t) dtdsdr

Z 1 Z r Z s

=

=

0

2

Z 1 Z 1 Z s

=

E

1

s =0 t =0 u =0 Z 1 Z r Z t

r =0

s =r

t =0

u =0

r =0 Z 1

s =r Z 1

t =r Z s

u =0 Z t

r =0

s =r

t =r

u =r

Z 1 Z 1 Z s Z r

³ ´ E W (r )2 W (t) W (u) dudtdsdr ³ ´ E W (r )2 W (t) W (u) dudtdsdr ³ ´ E W (r )2 W (t) W (u) dudtdsdr ³ ´ E W (r )2 W (t) W (u) dudtdsdr ³ ´ E W (r )2 W (t) W (u) dudtdsdr ³ ´ E W (r )2 W (t) W (u) dudtdsdr ³ ´ E W (r )2 W (t) W (u) dudtdsdr u (r + 2t) dudtdsdr u (r + 2t) dudtdsdr 3urdudtdsdr r (u + 2r ) dudtdsdr =

5

37 , 360

"µZ E

=

1

W (r )

0

¶2 #

Z r

W (s) dsdr

0

Z 1 Z r Z 1 Z t

= 2

r =0 s =0 t =0 u =0 Z 1 Z r Z r Z t

= 2 + 2 + 2 = 2 + 2 + 2

E (W (r ) W (s) W (t) W (u)) dudtdsdr

r =0 Z 1

s =0 Z r

t =0 Z s

u =0 Z t

r =0 Z 1

s =0 Z r

t =0 u =0 Z r Z s

r =0

s =0

t=s

u =0

r =0 Z 1

s =0 Z r

t=s Z s

u=s Z t

r =0 Z 1

s =0 Z r

t =0 u =0 Z r Z s

r =0 Z 1

s =0 Z r

t=s Z r

u =0 Z t

r =0

s =0

t=s

u=s

Z 1 Z r Z r Z t

E (W (r ) W (s) W (t) W (u)) dudtdsdr E (W (r ) W (s) W (t) W (u)) dudtdsdr E (W (r ) W (s) W (t) W (u)) dudtdsdr E (W (r ) W (s) W (t) W (u)) dudtdsdr u (s + 2t) dudtdsdr u (t + 2s) dudtdsdr s (t + 2u) dudtdsdr =

1 12

and "Z E

=

1 0

W (r )

Z r 0

W (s) dsdr

Z 1 Z r Z 1 Z t

= 2 = 2 + 2

Z t

0

0

#

¶2 W (s) ds

dr

E (W (r ) W (s) W (u) W (v)) dvdudtdsdr

r =0 s =0 t =0 u =0 Z 1 Z r Z 1 Z t

v =0 Z u

r =0 Z 1

s =0 Z r

t =0 Z r

u =0 Z t

v =0 Z u

r =0

s =0

t =0

u =0

r =0

s =0

t =r

u =0

Z 1 Z r Z 1 Z t

Z 1 µZ r

v =0

Z u

v =0

E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr,

6

where

= + = + + + = + + +

Z 1 Z r Z r Z t

Z u

r =0 Z 1

s =0 Z r

t =0 Z s

v =0 Z u

r =0 Z 1

s =0 Z r

t =0 u =0 v =0 Z r Z t Z u

r =0

s =0

r =0 Z 1

s =0 Z r

t =0 u =0 v =0 Z r Z s Z u

r =0 Z 1

s =0 Z r

t=s Z r

u =0 v =0 Z t Z s

r =0 Z 1

s =0 Z r

t=s Z r

u=s Z t

v =0 Z u

r =0 Z 1

s =0 Z r

t=s Z s

u=s Z t

v=s Z u

r =0

s =0

t =0

u =0

r =0 Z 1

s =0 Z r

t=s Z r

u =0 v =0 Z t Z s

r =0 Z 1

s =0 Z r

t=s Z r

u=s Z t

v =0 Z u

r =0

s =0

t=s

u=s

v=s

t=s

u =0 Z t

u =0

Z 1 Z r Z s Z t

Z 1 Z r Z r Z s

v =0

Z u

v =0

Z u

E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr v (s + 2u) dvdudtdsdr v (s + 2u) dvdudtdsdr v (u + 2s) dvdudtdsdr s (u + 2v) dvdudtdsdr =

7

41 5040

and

= +

Z 1 Z r Z 1 Z t

Z u

r =0 Z 1

s =0 Z r

t =r Z 1

u =0 Z s

v =0 Z u

r =0 Z 1

s =0 Z r

t =r Z 1

u =0 v =0 Z r Z s

r =0

s =0

t =r

u=s

v =0

r =0 Z 1

s =0 Z r

t =r Z 1

u=s Z t

v=s Z s

r =0 Z 1

s =0 Z r

t =r Z 1

u =r Z t

v =0 Z r

r =0 Z 1

s =0 Z r

t =r Z 1

u =r Z t

v=s Z u

r =0 Z 1

s =0 Z r

t =r Z 1

u =r Z s

v =r Z u

r =0

s =0

t =r

u =0

v =0

r =0 Z 1

s =0 Z r

t =r Z 1

u=s Z r

v =0 Z u

r =0 Z 1

s =0 Z r

t =r Z 1

u=s Z t

v=s Z s

r =0 Z 1

s =0 Z r

t =r Z 1

u =r Z t

v =0 Z r

r =0 Z 1

s =0 Z r

t =r Z 1

u =r Z t

v=s Z u

r =0

s =0

t =r

u =r

v =r

Z 1 Z r Z 1 Z r Z u

+ + + + =

E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr E (W (r ) W (s) W (u) W (v)) dvdudtdsdr v (s + 2u) dvdudtdsdr

Z 1 Z r Z 1 Z r Z s

+ + + + +

v (u + 2s) dvdudtdsdr s (u + 2v) dvdudtdsdr v (r + 2s) dvdudtdsdr s (r + 2v) dvdudtdsdr s (v + 2r ) dvdudtdsdr =

1 , 84

giving "Z E

1 0

W (r )

Z r 0

W (s) dsdr

Z 1 µZ r 0

0

¶2 W (s) ds

# dr =

101 . 2520

Also, " E

=

Z 1 µZ r 0

0

¶2 W (s) ds

#2  dr 

Z 1 Z r Z r Z 1 Z u Z u

= 2 = 8

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr

r =0 s =0 t =0 u =0 Z 1 Z r Z r Z r

v =0 x =0 Z u Z u

r =0 Z 1

s =0 Z r

t =0 Z s

u =0 Z r

v =0 Z u

x =0 Z v

r =0

s =0

t =0

u =0

v =0

x =0

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr,

8

where

= + + + + +

Z 1 Z r Z s Z r

Z u Z v

r =0 Z 1

s =0 Z r

t =0 Z s

u =0 Z t

v =0 Z u

r =0 Z 1

s =0 Z r

t =0 Z s

u =0 v =0 x =0 Z s Z t Z v

r =0

s =0

t =0

u=t

v =0

x =0

r =0 Z 1

s =0 Z r

t =0 Z s

u=t Z r

v=t Z t

x =0 Z v

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v =0 x =0 Z s Z v

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=t Z u

x =0 Z v

r =0

s =0

t =0

u=s

v=s

x =0

x =0 Z v

Z 1 Z r Z s Z s Z u Z v

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr

with

=

=

Z 1 Z r Z s Z t

Z u Z v

r =0 Z 1

s =0 Z r

t =0 Z s

u =0 Z t

v =0 Z u

x =0 Z v

r =0

s =0

t =0

u =0

v =0

x =0

Z 1 Z r Z s Z s Z t

Z v

r =0 Z 1

s =0 Z r

t =0 Z s

u=t Z s

v =0 Z t

x =0 Z v

r =0

s =0

t =0

u=t

v =0

x =0

Z 1 Z r Z s Z s Z u Z v

= + = +

=

r =0 Z 1

s =0 Z r

t =0 Z s

u=t Z s

v=t Z u

x =0 Z t

r =0 Z 1

s =0 Z r

t =0 Z s

u=t Z s

v=t Z u

x =0 Z v

r =0

s =0

t =0

u=t

v=t

x =t

r =0 Z 1

s =0 Z r

t =0 Z s

u=t Z s

v=t Z u

x =0 Z v

r =0

s =0

t =0

u=t

v=t

x =t

Z 1 Z r Z s Z s Z u Z t

Z 1 Z r Z s Z r Z t

Z v

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v =0 Z t

x =0 Z v

r =0

s =0

t =0

u=s

v =0

x =0

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr x (t + 2v) dxdvdudtdsdr =

11 , 40 320

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr x (t + 2v) dxdvdudtdsdr =

1 , 4032

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr x (v + 2t) dxdvdudtdsdr t (v + 2x ) dxdvdudtdsdr =

1 , 2016

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr x (t + 2v) dxdvdudtdsdr =

9

1 , 4032

Z 1 Z r Z s Z r Z s Z v

= + = +

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=t Z s

x =0 Z t

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=t Z s

x =0 Z v

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=t Z s

x =t Z t

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=t Z s

x =0 Z v

r =0

s =0

t =0

u=s

v=t

x =t

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr x (v + 2t) dxdvdudtdsdr t (v + 2x ) dxdvdudtdsdr =

1 2016

and Z 1 Z r Z s Z r Z u Z v

= + + = + +

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=s Z u

x =0 Z t

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=s Z u

x =0 Z s

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=s Z u

x =t Z v

r =0

s =0

t =0

u=s

v=s

x =s

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=s Z u

x =0 Z s

r =0 Z 1

s =0 Z r

t =0 Z s

u=s Z r

v=s Z u

x =t Z v

r =0

s =0

t =0

u=s

v=s

x =s

Z 1 Z r Z s Z r Z u Z t

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr x (s + 2t) dxdvdudtdsdr t (s + 2x ) dxdvdudtdsdr t ( x + 2s) dxdvdudtdsdr =

1 , 1344

which can be used to obtain Z 1 Z r Z s Z r r =0

s =0

t =0

giving

Z u Z v

u =0

v =0

" E

x =0

E (W (s) W (t) W (v) W ( x )) dxdvdudtdsdr =

Z 1 µZ r 0

0

¶2 W (s) ds

101 , 40 320

#2  101 dr  = . 5040

Thus, by combining these results, "µZ ¶2 # 1 7 13 97 41 101 2 = + µ1c τ + µ2c τ 2 + µ3c τ 3 + µ4c τ 4 , E W1 (r ) dr 12 15 180 1260 5040 0 which establishes (c), and hence proof of the lemma is complete.

Proof of Lemma A.5. 10

¥

Consider (a). From

Z r 0

we obtain " E U (r )2

µZ

r 0

"

Z (s) ds =

= E W (r )

2

µZ

+ r E W (r )

2

µZ

1

+ r E W (1)

µZ

r 0

"

+ r 4 E W (1)2

0

W1 (s) ds − r

µZ

1 0

0

0

− 2rE W (r )

0

W1 (s) ds,

2

¶2 # W1 (s) ds Z r 0

"

W1 (s) ds µZ

− 2rE W (r ) W (1)

W1 (s) ds Z r

Z 1

·

¶2 #

+ 4r2 E W (r ) W (1) 2

r

W1 (s) ds

·

2

µZ

¶2 #

r

0

"

Z 1

Z (s) ds

0

" 2

0

W1 (s) ds − r

¶2 #

= E (W (r ) − rW (1))2 "

Z r

W1 (s) ds

· 3

− 2r E W (1)

W1 (s) ds

W1 (s) ds ¶2 #

W1 (s) ds µZ

W1 (s) ds − 2r3 E W (r ) W (1)

0

¶2 #

0

0

¸

"

¸

Z 1

r

Z 1

2

Z r

¶2 #

0

W1 (s) ds

Z 1 0

1 0

¶2 # W1 (s) ds ¸

W1 (s) ds

W1 (s) ds

= Arrrr − 2rArr1r + r2 Arr11 − 2rA1rrr + 4r2 A1r1r − 2r3 A1r11 + r2 A11rr − 2r3 A111r + r4 A1111 , where

· Arstu = E W (r ) W (s)

Z t 0

W1 (v) dv

Z u 0

¸ W1 (w) dw .

Assume that r ≥ s and t ≥ u. Then, · ¶ Z tµ Z v Arstu = E W (r ) W (s) W ( v ) + ci τ W ( x ) dx dv 0 0 ¶ ¸ Z t Z u Z uµ Z w × W ( w ) + ci τ W (y) dy dw = f rsvw dvdw, 0

where

v =0

0

· µ Z f rsvw = E W (r ) W (s) W (v) + ci τ

w =0

¶µ ¶¸ Z w W ( x ) dx W ( w ) + ci τ W (y) dy 0 0 · ¸ Z w = E [W (r ) W (s) W (v) W (w)] + ci τE W (r ) W (s) W (v) W (y) dy 0 · ¸ Z v + ci τE W (r ) W (s) W (w) W ( x ) dx 0 · ¸ Z v Z w 2 + ( ci τ ) E W (r ) W ( s ) W ( x ) dx W (y) dy . v

0

0

11

From the proof of Lemma A.2 we know that if r ≥ s ≥ v ≥ w, E [W (r ) W (s) W (v) W (w)] = w (s + 2v). By using this result, · Z E W (r ) W ( s ) W ( v )

=

Z w 0

=

Z v 0

Z v 0

0

w 0

+

y (s + 2v) dy +

=

Z v Z0 w s

Z v 0

W (y) dy Z w

Z w

0

w 0

Z w v

¸ W (y) dy

E [W (r ) W (s) W (v) W (y)] dy +

Z s v

+ =

Z0 r s

Z v 0

E [W (r ) W (s) W (y) W (v)] dy

E [W (r ) W (y) W (s) W (v)] dy y (s + 2v) dy +

Z s v

and if w ≥ r ≥ s ≥ v, · Z E W (r ) W ( s ) W ( v )

=

E [W (r ) W (s) W (y) W (v)] dy

¢ 1 ¡ 2 v 2w + 2sw − sv , 2

v (s + 2y) dy +

Z w s

¢ 1 ¡ = − v s2 − 4sw + vs − w2 , 2

Z v

1 2 w (s + 2v) . 2

W (y) dy

v (s + 2y) dy =

v

y (s + 2v) dy =

¸

E [W (r ) W (s) W (v) W (y)] dy +

if r ≥ w ≥ s ≥ v, · Z E W (r ) W ( s ) W ( v )

=

¸

E [W (r ) W (s) W (v) W (y)] dy =

Similarly, if r ≥ s ≥ w ≥ v, · Z E W (r ) W ( s ) W ( v )

=

w

w 0

¸ W (y) dy

E [W (r ) W (s) W (v) W (y)] dy + E [W (r ) W (y) W (s) W (v)] dy + y (s + 2v) dy +

Z s v

v (y + 2s) dy

Z s Z vw

v (s + 2y) dy +

¢ 1 ¡ = − v sv − 2rw − 4sw + r2 + s2 . 2

12

r

E [W (r ) W (s) W (y) W (v)] dy

Z r s

E [W (y) W (r ) W (s) W (v)] dy v (y + 2s) dy +

Z w r

v (r + 2s) dy

We also need, for r ≥ s ≥ v ≥ w, · Z v Z E W (r ) W ( s ) W ( x ) dx

= + + = =

Z w Z x x =0 Z w

y =0 Z w

x =0 Z v

y= x Z w

x = w y =0 Z w Z x x =0

y =0

0

w 0

¸ W (y) dy

E [W (r ) W (s) W ( x ) W (y)] dydx E [W (r ) W (s) W (y) W ( x )] dydx E [W (r ) W (s) W ( x ) W (y)] dydx y (s + 2x ) dydx +

Z w Z w x =0

y= x

x (s + 2y) dydx +

Z v x =w

Z w y =0

y (s + 2x ) dydx

¢ 1 2¡ w 3sv − sw + 3v2 , 6

for r ≥ v ≥ s ≥ w, · E W (r ) W ( s )

= + + + = +

Z w Z x x =0 Z w x =0

Z s

0

W ( x ) dx

Z w 0

¸ W (y) dy

E [W (r ) W (s) W ( x ) W (y)] dydx

y =0 Z w

E [W (r ) W (s) W (y) W ( x )] dydx

y= x

Z w

x = w y =0 Z v Z w

E [W (r ) W (s) W ( x ) W (y)] dydx

E [W (r ) W ( x ) W (s) W (y)] dydx

x =s Z w

y =0 Z x

x =0 Z s

y =0 Z w

x =w

y =0

= −

Z v

y (s + 2x ) dydx + y (s + 2x ) dydx +

Z w Z w x =0 Z v

y= x Z w

x =s

y =0

¢ 1 2¡ w −12sv + 2sw + 3s2 − 3v2 , 12

13

x (s + 2y) dydx y ( x + 2s) dydx

for v ≥ r ≥ s ≥ w, · Z E W (r ) W ( s )

= + + + + = + +

Z w Z x x =0 Z w

y =0 Z w

x =0 Z s

y= x Z w

y =0 Z w

x =r

y =0

x =0 Z s

y =0 Z w

0

W (y) dy

E [W (r ) W (s) W ( x ) W (y)] dydx

E [W (r ) W ( x ) W (s) W (y)] dydx E [W ( x ) W (r ) W (s) W (y)] dydx Z w Z w

y (s + 2x ) dydx +

x = w y =0 Z v Z w y =0

W ( x ) dx

¸

E [W (r ) W (s) W (y) W ( x )] dydx

Z w Z x

x =r

0

Z w

E [W (r ) W (s) W ( x ) W (y)] dydx

x = w y =0 Z r Z w x =s Z v

v

y (s + 2x ) dydx +

x (s + 2y) dydx

x =0 Z r

y= x Z w

x =s

y =0

y (r + 2s) dydx = −

y ( x + 2s) dydx

¢ 1 2¡ w −6rv − 12sv + 2sw + 3r2 + 3s2 , 12

for r ≥ v ≥ w ≥ s, · E W (r ) W ( s )

= + + + + + = + +

Z s

Z x

x =0 Z s

y =0 Z s

x =0 Z s

y= x Z w

x =0 y = s Z v Z s x =s Z v

y =0 Z x

x =s Z v

y=s Z w

x =s Z s

y= x Z x

x =0 Z s

y =0 Z w

x =0 y = s Z v Z x x =s

= −

y=s

Z v 0

W ( x ) dx

Z w 0

¸ W (y) dy

E [W (r ) W (s) W ( x ) W (y)] dydx E [W (r ) W (s) W (y) W ( x )] dydx E [W (r ) W (y) W (s) W ( x )] dydx E [W (r ) W ( x ) W (s) W (y)] dydx E [W (r ) W ( x ) W (y) W (s)] dydx E [W (r ) W (y) W ( x ) W (s)] dydx y (s + 2x ) dydx + x (y + 2s) dydx + s ( x + 2y) dydx +

Z s

Z s

x =0 y = x Z v Z s x = s y =0 Z v Z w x =s

y= x

x (s + 2y) dydx y ( x + 2s) dydx s (y + 2x ) dydx

¢ 1 ¡ 3 s 2v − 12v2 w + 3sv2 − 6vw2 + 3sw2 , 12 14

for v ≥ r ≥ w ≥ s, · E W (r ) W ( s )

= + + + + + + + = + + + =

Z s

Z x

x =0 Z s

y =0 Z s

x =0 Z s

y= x Z w

x =0 y = s Z r Z s x =s Z r

y =0 Z x

x =s

y=s

x =s Z v

y= x Z s

x =r Z v

y =0 Z x

x =r Z s

y=s Z x

x =0 Z s

y =0 Z w

Z r Z w

x =0 y = s Z r Z x x =s Z v

y=s Z s

x =r

y =0

Z v 0

W ( x ) dx

Z w 0

¸ W (y) dy

E [W (r ) W (s) W ( x ) W (y)] dydx E [W (r ) W (s) W (y) W ( x )] dydx E [W (r ) W (y) W (s) W ( x )] dydx E [W (r ) W ( x ) W (s) W (y)] dydx E [W (r ) W ( x ) W (y) W (s)] dydx E [W (r ) W (y) W ( x ) W (s)] dydx E [W ( x ) W (r ) W (s) W (y)] dydx E [W ( x ) W (r ) W (y) W (s)] dydx y (s + 2x ) dydx + x (y + 2s) dydx + s ( x + 2y) dydx + y (r + 2s) dydx +

Z s

Z s

x =0 y = x Z r Z s x = s y =0 Z r Z w x =s y= x Z v Z x x =r

y=s

x (s + 2y) dydx y ( x + 2s) dydx s (y + 2x ) dydx

s (r + 2y) dydx

¢ 1 ¡ s −12r3 + 12r2 w + 3sr2 + 6rv2 − 6srv + 6rw2 + 4v3 − 3sw2 , 12

15

and for v ≥ w ≥ r ≥ s, · Z E W (r ) W ( s )

= + + + + + + + + + + + = + + + + +

Z s

Z x

x =0 Z s

y =0 Z s

x =0 Z s

y= x Z r

x =0 Z s

y=s Z w

x =0 y =r Z r Z s x =s

y =0

x =s Z r

y=s Z r

x =s Z r

y= x Z w

x =s Z v

y =r Z s

x =r Z v

y =0 Z r

x =r Z v

y=s Z x

x =r Z v

y =r Z w

x =r Z s

y= x Z x

x =0 Z s

y =0 Z r

Z r Z x

x =0 y = s Z r Z s x =s

y =0

x =s Z v

y= x Z s

x =r Z v

y =0 Z x

x =r

y =r

Z r Z r

v 0

W ( x ) dx

Z w 0

¸ W (y) dy

E [W (r ) W (s) W ( x ) W (y)] dydx E [W (r ) W (s) W (y) W ( x )] dydx E [W (r ) W (y) W (s) W ( x )] dydx E [W (y) W (r ) W (s) W ( x )] dydx E [W (r ) W ( x ) W (s) W (y)] dydx E [W (r ) W ( x ) W (y) W (s)] dydx E [W (r ) W (y) W ( x ) W (s)] dydx E [W (y) W (r ) W ( x ) W (s)] dydx E [W ( x ) W (r ) W (s) W (y)] dydx E [W ( x ) W (r ) W (y) W (s)] dydx E [W ( x ) W (y) W (r ) W (s)] dydx E [W (y) W ( x ) W (r ) W (s)] dydx y (s + 2x ) dydx + x (y + 2s) dydx +

x =0 y = x Z s Z w

x =s

s (y + 2x ) dydx +

s (y + 2r ) dydx +

Z s

x =0 y =r Z r Z x

y ( x + 2s) dydx +

y (r + 2s) dydx +

Z s

y=s

Z r Z w

x = s y =r Z v Z r

x =r y = s Z v Z w x =r

y= x

x (s + 2y) dydx x (r + 2s) dydx s ( x + 2y) dydx s (r + 2x ) dydx

s (r + 2y) dydx s ( x + 2r ) dydx

¢ 1 ¡ = − s 3r2 v − 3r2 s + 3r2 w − 3v2 w + v3 + 3rsv + 3rsw − 12rvw . 6

16

This yields, for r ≥ s ≥ v ≥ w, ¡ ¢ 1 1 f rsvw = w (s + 2v) + µ1c τw2 (s + 2v) + µ1c τw 2v2 + 2sv − sw 2 2 ¡ ¢ 1 2 2 2 µ2c τ w 3sv − sw + 3v , + 6 which implies Arrrr =

Z r Z r

Z r Z v

f rrvw dwdv = 2 f rrvw dwdv v =0 w =0 v =0 w =0 µ Z r Z v ¡ ¢ 1 1 = 2 w (r + 2v) + µ1c τw2 (r + 2v) + µ1c τw 2v2 + 2rv − rw 2 2 v =0 w =0 ¶ ¡ ¢ 1 + µ2c τ 2 w2 3rv − rw + 3v2 dwdv 6 ¢ 1 4¡ = r 19µ2c τ 2 r2 + 105µ1c τr + 150 . 180

Hence, A1111 =

¢ 1 ¡ 19µ2c τ 2 + 105µ1c τ + 150 . 180

But we also have, for v ≥ r ≥ s ≥ w, ¡ ¢ 1 f rsvw = w (r + 2s) − µ1c τw sw − 2rv − 4sv + r2 + s2 2 ¡ ¢ 1 1 2 + µ1c τw (r + 2s) − µ2c τ 2 w2 −6rv − 12sv + 2sw + 3r2 + 3s2 , 2 12 or, with s = r, ¡ ¢ 3 1 1 f rrvw = 3wr − µ1c τw rw − 6rv + 2r2 + µ1c τw2 r − µ2c τ 2 w2 r (−9v + w + 3r ) 2 2 6 1 = 3wr + µ1c τrw (3v − r + w) − µ2c τ 2 w2 r (−9v + w + 3r ) , 6 suggesting Arr1r =

Z 1 Z r v =0

w =0

= Arrrr +

f rrvw dwdv = 2

Z 1 Z r v =r

w =0

Z r Z v v =0

w =0

f rrvw dwdv +

Z 1 Z r v =r

w =0

f rrvw dwdv

f rrvw dwdv,

where Z 1 Z r

f rrvw dwdv µ ¶ 1 = 3wr + µ1c τrw (3v − r + w) − µ2c τ 2 w2 r (−9v + w + 3r ) dwdv 6 v =r w =0 ¡ ¢ 1 = − r3 (r − 1) 6µ2c τ 2 r + µ2c τ 2 r2 + 14µ1c τr + 36 + 18µ1c τ 24 v =r Z 1

w =0 Z r

17

such that ¢ 1 4¡ r 19µ2c τ 2 r2 + 105µ1c τr + 150 180 ¡ ¢ 1 3 r (r − 1) 6µ2c τ 2 r + µ2c τ 2 r2 + 14µ1c τr + 36 + 18µ1c τ . 24

Arr1r =



Moreover, by using the same steps as for Arrrr , Arr11 =

Z 1 Z 1

= 2 + 2

v =0 Z r

w =0 Z v

f rrvw dwdv

v =0 w =0 Z 1 Z v v =r

= Arr1r +

w =r Z r

f rrvw dwdv +

Z r Z 1 v =0

w =r

f rrvw dwdv +

Z 1 Z r v =r

w =0

f rrvw dwdv

f rrvw dwdv Z 1

v =0

w =r

f rrvw dwdv + 2

Z 1 Z v v =r

w =r

f rrvw dwdv,

where, because of symmetry, Z r Z 1 v =0

w =r

f rrvw dwdv =

Z 1 Z r v =r

= −

w =0

f rrvw dwdv

¡ ¢ 1 3 r (r − 1) 6µ2c τ 2 r + µ2c τ 2 r2 + 14µ1c τr + 36 + 18µ1c τ . 24

Moreover, since for v ≥ w ≥ r ≥ s, ¡ ¢ 1 f rsvw = s (w + 2r ) − µ1c τs r2 − 4rw + sr − w2 2 ¡ ¢ 1 µ1c τs rs − 2wv − 4rv + w2 + r2 − 2 ¡ ¢ 1 − µ2c τ 2 s 3r2 v − 3r2 s + 3r2 w − 3v2 w + v3 + 3rsv + 3rsw − 12rvw 6 ¡ ¢ = s (w + 2r ) − µ1c τs rs − 2rv − 2rw − vw + r2 ¡ ¢ 1 µ2c τ 2 s 3r2 v − 3r2 s + 3r2 w − 3v2 w + v3 + 3rsv + 3rsw − 12rvw − 6 so that ¡ ¢ f rrvw = r (w + 2r ) − µ1c τr 2r2 − 2rv − 2rw − vw ¡ ¢ 1 − µ2c τ 2 r 6r2 v − 3r3 + 6r2 w − 3v2 w + v3 − 12rvw , 6 giving Z 1 Z v v =r

w =r

1 r (r − 1)2 (2µ2c τ 2 + 39µ2c τ 2 r + 6µ2c τ 2 r2 120 + 3µ2c τ 2 r3 + 15µ1c τ + 150µ1c τr + 15µ1c τr2 + 20 + 160r ).

f rrvw dwdv =

18

It follows that ¢ 1 4¡ r 19µ2c τ 2 r2 + 105µ1c τr + 150 180 1 − r (r − 1) (2µ2c τ 2 + 37µ2c τ 2 r − 33µ2c τ 2 r2 + 27µ2c τ 2 r3 + 2µ2c τ 2 r4 60 + 15µ1c τ + 135µ1c τr − 45µ1c τr2 + 55µ1c τr3 + 20 + 140r + 20r2 ),

Arr11 =

and since for 1 ≥ r ≥ v ≥ w, ¡ ¢ 1 1 f 1rvw = w (r + 2v) + µ1c τw2 (r + 2v) + µ1c τw 2v2 + 2rv − rw 2 2 ¡ 2 ¢ 1 2 2 + µ2c τ w 3v + 3rv − rw , 6 we get A1rrr =

Z r Z r

Z r Z v

f 1rvw dwdv = 2 f 1rvw dwdv v =0 w =0 v =0 w =0 µ Z r Z v ¡ ¢ 1 1 = 2 w (r + 2v) + µ1c τw2 (r + 2v) + µ1c τw 2v2 + 2rv − rw 2 2 v =0 w =0 ¶ ¡ ¢ 1 µ2c τ 2 w2 3v2 + 3rv − rw dwdv + 6 ¢ 1 4¡ = r 19µ2c τ 2 r2 + 105µ1c τr + 150 . 180

Moreover, A1r1r =

Z 1 Z r v =0

w =0

f 1rvw dwdv = A1rrr +

Z 1 Z r v =r

w =0

f 1rvw dwdv,

where, since for r ≥ v ≥ s ≥ w, ¡ ¢ 1 1 f rsvw = w (v + 2s) + µ1c τw2 (v + 2s) − µ1c τw s2 − 4sv + sw − v2 2 2 ¡ ¢ 1 2 2 2 − µ2c τ w −12sv + 2sw + 3s − 3v2 12 ¡ ¢ 1 = w (v + 2s) + µ1c τw vw + sw − s2 + 4sv + v2 2 ¡ ¢ 1 − µ2c τ 2 w2 −12sv + 2sw + 3s2 − 3v2 12 suggesting that if 1 ≥ v ≥ r ≥ w, ¡ ¢ 1 f 1rvw = w (v + 2r ) + µ1c τw vw + rw − r2 + 4rv + v2 2 ¡ ¢ 1 − µ2c τ 2 w2 −12rv + 2rw + 3r2 − 3v2 12 19

such that Z 1 Z r v =r

w =0

µ

Z 1 Z r

¡ ¢ 1 w (v + 2r ) + µ1c τw vw + rw − r2 + 4rv + v2 2 v = r w =0 ¶ ¡ ¢ 1 2 2 2 2 dwdv − µ2c τ w −12rv + 2rw + 3r − 3v 12 1 = − r2 (r − 1) (2µ2c τ 2 r + 14µ2c τ 2 r2 + 5µ2c τ 2 r3 72 + 6µ1c τ + 48µ1c τr + 42µ1c τr2 + 18 + 90r ),

f 1rvw dwdv =

which in turn implies ¢ 1 4¡ r 19µ2c τ 2 r2 + 105µ1c τr + 150 180 1 2 − r (r − 1) (2µ2c τ 2 r + 14µ2c τ 2 r2 + 5µ2c τ 2 r3 + 6µ1c τ 72 + 48µ1c τr + 42µ1c τr2 + 18 + 90r ).

A1r1r =

We also have A1r11 =

=

Z 1 Z 1 v =0 Z r

w =0 Z r

v =0

w =0

= A1rrr + 2

f 1rvw dwdv f 1rvw dwdv + 2

Z 1 Z r v =r

w =0

Z 1 Z r v =r

w =0

f 1rvw dwdv + 2

f 1rvw dwdv +

Z 1 Z v v =r

w =r

Z 1 Z 1 v =r

w =r

f 1rvw dwdv

f 1rvw dwdv,

where, for r ≥ v ≥ w ≥ s, ¡ ¢ 1 ¡ ¢ 1 f rsvw = s (v + 2w) + µ1c τs 2w2 + 2vw − sv − µ1c τs w2 − 4wv + sw − v2 2 2 ¡ ¢ 1 − µ2c τ 2 s 2v3 − 12v2 w + 3sv2 − 6vw2 + 3sw2 12 ¡ ¢ 1 = s (v + 2w) + µ1c τs v2 + 6vw − sv + w2 − sw 2 ¡ ¢ 1 − µ2c τ 2 s 2v3 − 12v2 w + 3sv2 − 6vw2 + 3sw2 12 and therefore, with 1 ≥ v ≥ w ≥ r, ¡ ¢ 1 f 1rvw = r (v + 2w) + µ1c τr v2 + 6vw − rv + w2 − rw 2 ¡ ¢ 1 − µ2c τ 2 r 2v3 − 12v2 w + 3rv2 − 6vw2 + 3rw2 , 12 giving Z 1 Z v v =r

w =r

1 r (r − 1)2 (12µ2c τ 2 + 19µ2c τ 2 r + 16µ2c τ 2 r2 + 3µ2c τ 2 r3 120 + 65µ1c τ + 80µ1c τr + 35µ1c τr2 + 80 + 100r ).

f 1rvw dwdv =

20

It follows that A1r11 =

+ + + = − +

¢ 1 4¡ 1 r 19µ2c τ 2 r2 + 105µ1c τr + 150 − r2 (r − 1) (2µ2c τ 2 r + 14µ2c τ 2 r2 180 36 2 3 2 5µ2c τ r + 6µ1c τ + 48µ1c τr + 42µ1c τr + 18 + 90r ) 1 r (r − 1)2 (12µ2c τ 2 + 19µ2c τ 2 r + 16µ2c τ 2 r2 + 3µ2c τ 2 r3 60 65µ1c τ + 80µ1c τr + 35µ1c τr2 + 80 + 100r ) ¢ 1 4¡ r 19µ2c τ 2 r2 + 105µ1c τr + 150 180 1 r (r − 1) (36µ2c τ 2 + 21µ2c τ 2 r + µ2c τ 2 r2 + 31µ2c τ 2 r3 + 16µ2c τ 2 r4 180 195µ1c τ + 75µ1c τr + 105µ1c τr2 + 105µ1c τr3 + 240 + 150r + 150r2 ).

Similarly, A11rr =

Z r Z r v =0

w =0

f 11vw dwdv = 2

Z r Z v v =0

w =0

f 11vw dwdv,

where, for 1 ≥ v ≥ w, ¡ ¢ 1 1 f 11vw = w (1 + 2v) + µ1c τw2 (1 + 2v) + µ1c τw 2v2 + 2v − w 2 2 ¡ ¢ 1 µ2c τ 2 w2 3v2 + 3v − w , + 6 such that

=

µ

¡ ¢ 1 1 w (1 + 2v) + µ1c τw2 (1 + 2v) + µ1c τw 2v2 + 2v − w 2 2 v =0 w =0 ¶ ¡ ¢ 1 µ2c τ 2 w2 3v2 + 3v − w dwdv 6 ¢ 1 3¡ r 9µ2c τ 2 r2 + 10µ2c τ 2 r3 + 45µ1c τr + 60µ1c τr2 + 60 + 90r 180

A11rr = 2

+

Z r Z v

Finally, A111r =

Z 1 Z r v =0

w =0

f 11vw dwdv = A11rr +

Z 1 Z r v =r

w =0

f 11vw dwdv

where Z 1 Z r v =r

w =0

Z 1 Z r

µ

1 w (1 + 2v) + µ1c τw2 (1 + 2v) 2 v =r w =0 ¶ ¡ 2 ¢ 1 ¡ 2 ¢ 1 2 2 + µ1c τw 2v + 2v − w + µ2c τ w 3v + 3v − wv dwdv 2 6 1 2 r (r − 1) (20µ2c τ 2 r + 17µ2c τ 2 r2 + 5µ2c τ 2 r3 + 60µ1c τ = − 144 + 84µ1c τr + 48µ1c τr2 + 144 + 72r ),

f 11vw dwdv =

21

giving ¢ 1 3¡ r 9µ2c τ 2 r2 + 10µ2c τ 2 r3 + 45µ1c τr + 60µ1c τr2 + 60 + 90r 180 1 2 − r (r − 1) (20µ2c τ 2 r + 17µ2c τ 2 r2 + 5µ2c τ 2 r3 + 60µ1c τ + 84µ1c τr 144 + 48µ1c τr2 + 144 + 72r ).

A111r =

By putting everything together, Z 1 0

−2

Z 1 0 1

Z

4

−2

Z 1 0

Z 1

r3 A1r11 dr =

0

r2 A11rr dr =

0 Z 1

r3 A111r dr =

0

Z 1 0

rA1rrr dr =

r2 A1r1r dr =

0 Z 1

Z 1

−2

rArr1r dr =

r2 Arr11 dr =

0

−2

7 1 19 µ2c τ 2 + µ1c τ + , 1260 72 6 401 11 17 − µ2c τ 2 − µ1c τ − , 10 080 45 45 2663 89 31 µ2c τ 2 + µ1c τ + , 90 720 560 140 19 1 5 − µ2c τ 2 − µ1c τ − , 720 6 18 3053 257 22 µ2c τ 2 + µ1c τ + , 45 360 630 35 71 163 11 − µ2c τ 2 − µ1c τ − , 1512 630 30 13 8 161 µ2c τ 2 + µ1c τ + , 12 960 168 63 1889 47 2 − µ2c τ 2 − µ1c τ − , 60 480 252 7 19 7 1 µ2c τ 2 + µ1c τ + , 900 60 6

Arrrr dr =

r4 A1111 dr =

which in turn can be used to obtain " µZ ¶ # Z E U (r )2

r

0

2

=

Z (s) ds

1

0

( Arrrr − 2rArr1r + r2 Arr11 − 2rA1rrr + 4r2 A1r1r − 2r3 A1r11

+ r2 A11rr − 2r3 A111r + r4 A1111 )dr 827 1 1 = µ2c τ 2 + µ1c τ + , 907 200 560 420 or " E c2i U (r )2

µZ

r 0

¶2 # Z (s) ds

=

827 1 1 µ4c τ 2 + µ3c τ + µ2c . 907 200 560 420

This completes the proof of (a).

22

Consider (b). We have µZ r ¶4 µZ r ¶4 µZ r ¶3 Z 1 Z (s) ds = W1 (s) ds − 4r W1 (s) ds W1 (s) ds 0

0

µZ

+ 6r2 − 4r

3

r 0

Z r 0

0

¶2 µ Z W1 (s) ds

0

µZ

W1 (s) ds

1

1 0

0

¶2

W1 (s) ds ¶3

µZ

+r

W1 (s) ds

1

4 0

¶4 W1 (s) ds

,

and therefore, "µZ E

r 0

¶4 # Z (s) ds

with

µZ Brstu = E

r 0

= Brrrr − 4rB1rrr + 6r2 B11rr − 4r3 B111r + r4 B1111 ,

W1 (v) dv

Z s 0

W1 (w) dw

Z t 0

W1 ( x ) dx

Z u 0

¶ W1 (y) dy .

Here is µZ Brstu = E

+ + + + +

r

Z t



Z u

W (w) dw W ( x ) dx W (y) dy 0 0 ¶Z s ¸ Z t Z u µ1c τE W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 ·Z r µZ s Z w ¶Z t ¸ Z u µ1c τE W (v) dv W (z) dzdw W ( x ) dx W (y) dy 0 0 0 0 0 ·Z r µZ t Z x ¶Z u ¸ Z s µ1c τE W (v) dv W (w) dw W (z) dzdx W (y) dy 0 0 0 0 0 ·Z r µ ¶¸ Z s Z t Z uZ y µ1c τE W (v) dv W (w) dw W ( x ) dx W (z) dzdy 0 0 0 0 0 ¡ ¢ O µ2c τ 2 . 0

W (v) dv ·µZ r Z v

Z s 0

Consider the first term in the right-hand side, which we can write as Irstu =

Z r Z s v =0

Z t

w =0

Z u

x =0

y =0

E (W (v) W (w) W ( x ) W (y)) dydxdwdv.

By using the same arguments as before, Irrrr = 4!

Z r Z v

Z w Z x

v =0 Z r

w =0 Z v

x =0 Z w

y =0 Z x

v =0

w =0

x =0

y =0

= 24

E (W (v) W (w) W ( x ) W (y)) dydxdwdv y (w + 2x ) dydxdwdv =

1 6 r , 3

suggesting µZ I1111 = E

1 0

W (v) dv

Z 1 0

W (w) dw 23

Z 1 0

W ( x ) dx

Z 1 0

¶ W (y) dy

1 = . 3

But we also have Z

I1rrr =

= = =

I11rr =

+ = = =

1 6 r +2 3

Z 1 Z v =r

Z

Z

Z

1 r r r 1 6 r + E (W (v) W (w) W ( x ) W (y)) dydxdwdv 3 v = r w =0 x =0 y =0 Z 1 Z r Z w Z x 1 6 r + 3! E (W (v) W (w) W ( x ) W (y)) dydxdwdv 3 v =r w =0 x =0 y =0 Z 1 Z r Z w Z x 1 6 r +6 y (w + 2x ) dydxdwdv 3 v =r w =0 x =0 y =0 1 1 6 1 5 r + r (1 − r ) = r 5 (3 − r ) , 3 2 6

Z 1 Z r

Z r

Z r

v =r w =0 x =0 1 Z r Z r

w =r

x =0

y =0

y =0

E (W (v) W (w) W ( x ) W (y)) dydxdwdv

E (W (v) W (w) W ( x ) W (y)) dydxdwdv Z

Z

Z

Z r

Z r

Z

v r x 1 1 6 E (W (v) W (w) W ( x ) W (y)) dydxdwdv r + r 5 (1 − r ) + 4 3 v =r w =r x =0 y =0 Z 1 Z v Z r Z x 1 6 r + r 5 (1 − r ) + 4 y (w + 2x ) dydxdwdv 3 v =r w =r x =0 y =0 ¢ 1 6 1 1 3¡ r + r5 (1 − r ) + r3 (13r + 2) (1 − r )2 = r 2 + 9r − 6r2 + r3 , 3 18 18

and I111r = Irrrr + 3

+ 3

Z 1 Z 1

=

v =r

=

w =r

x =r

y =0

y =0

E (W (v) W (w) W ( x ) W (y)) dydxdwdv

E (W (v) W (w) W ( x ) W (y)) dydxdwdv

E (W (v) W (w) W ( x ) W (y)) dydxdwdv

Z 1 Z v v =r

Z w Z r

w =r

x =r

y =0

E (W (v) W (w) W ( x ) W (y)) dydxdwdv

1 1 6 3 5 r + r (1 − r ) + r3 (13r + 2) (1 − r )2 3 2 6

+ 6 =

Z

w =0 x =0 r Z r

1 6 3 5 1 r + r (1 − r ) + r3 (13r + 2) (1 − r )2 3 2 6

+ 3! =

v =r

v =r w =r x =0 y =0 1 Z 1 Z 1 Z r

Z

+

Z 1 Z r

Z 1 Z v v =r

w =r

Z w Z r x =r

y =0

y (w + 2x ) dydxdwdv

1 6 3 5 1 1 r + r (1 − r ) + r3 (13r + 2) (1 − r )2 + r2 (2r + 1) (1 − r )3 3 2 6 2 1 2 r (3 − r ) . 6

24

By putting these results together, "µZ ¶4 # r ¢ 1 6 1 1 ¡ E Z (s) ds = r − 4r r5 (3 − r ) + 6r2 r3 2 + 9r − 6r2 + r3 3 6 18 0 1 1 − 4r3 r2 (3 − r ) + r4 + O (µ1c τ ) 6 3 1 4 4 r (1 − r ) + O (µ1c τ ) , = 3 and therefore "µZ ¶4 # Z 1 Z r E Z (s) ds dr = 0

0

1 0

1 4 1 r (1 − r )4 dr + O (µ1c τ ) = + O (µ1c τ ) . 3 1890

We are now going to compute the O (µ1c τ ) term. We begin by considering Brrrr . By using the same technique as in the proof of (a), ·µZ r Z v ¶Z r ¸ Z r Z r E W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 · ¸ Z r Z r Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z r Z w Z x Z r Z v = 3! E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 µZ r Z w Z x Z y 1 2 = 6 v ( x + 2y) dvdydxdw w =0 x =0 y =0 v =0 2 Z r Z w Z x Z x ¢ 1 ¡ 2 + y 2v + 2xv − xy dvdydxdw w =0 x =0 y =0 v = y 2 Z r Z w Z x Z w ¢ 1 ¡ + − y x2 − 4xv + yx − v2 dvdydxdw 2 w =0 x =0 y =0 v = x ¶ Z r Z w Z x Z r ¢ 1 ¡ 1 2 2 + − y xy − 2wv − 4xv + w + x dvdydxdw = r7 . 2 8 w =0 x =0 y =0 v = w Hence, because of symmetry, Brrrr =

¡ ¢ 1 6 1 r + µ1c τr7 + O µ2c τ 2 . 3 2

In B1rrr there are two types of terms. The first is ·µZ 1 Z v ¶Z r ¸ Z r Z r E W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 · ¸ Z r Z r Z r Z 1 Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z 1 Z v + E W (w) W ( x ) W (y) W (z) dz, dvdydxdw w =0

x =0

y =0

v =r

z =0

25

where the first integral is known, while the second is given by · ¸ Z r Z r Z r Z 1 Z v E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =r z =0 · ¸ Z r Z w Z x Z 1 Z v = 6 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0

= 6

Z r

w =0

x =0

y =0

v =r

y =0

¢ 1 ¡ − y xy − 2wv − 4xv + w2 + x2 dvdydxdw 2 v =r

z =0

Z w Z x Z 1 x =0

1 5 r (r + 3) (1 − r ) . 12

= It follows that

·µZ E

1 0

Z v 0

¶Z W (z) dzdv

r 0

W (w) dw

Z r 0

W ( x ) dx

Z r 0

¸ W (y) dy

¢ 1 1 5¡ 1 7 r + r 5 (r + 3) (1 − r ) = r 6 − 4r + r2 . 8 12 24

=

The second type of term in B1rrr is ·µZ r Z v ¶Z 1 ¸ Z r Z r E W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 · ¸ Z 1 Z r Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z 1 Z r Z r Z r Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw, w =r

x =0

y =0

v =0

Z r Z r

·

z =0

where Z 1

Z r

Z v

¸

E W (w) W ( x ) W (y) W (z) dz dvdydxdw z =0 · ¸ Z v = 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r x =0 y =0 v =0 z =0 · ¸ Z 1 Z r Z x Z v Z v + 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r x =0 v =0 y =0 z =0 · ¸ Z 1 Z r Z v Z x Z v + 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r Z 1

w =r

Z 1

x =0 Z r

v =0

Z r

y =0 v =0 Z x Z y

x =0

y =0

z =0

Z x Z y

1 2 v ( x + 2y) dvdydxdw 2 w =r x =0 y =0 v =0 Z 1 Z r Z x Z v ¢ 1 ¡ 2 + 2 y 2v + 2xv − xy dydvdxdw w =r x =0 v =0 y =0 2 Z 1 Z r Z v Z x ¢ 1 ¡ 13 + 2 − y x2 − 4xv + yx − v2 dydxdvdw = r6 (1 − r ) , 2 72 w =r v =0 x =0 y =0

= 2

26

suggesting E

=

·µZ r Z 0

v 0

¶Z W (z) dzdv

1 0

W (w) dw

Z r 0

W ( x ) dx

Z r 0

¸ W (y) dy

1 7 13 6 1 6 r + r (1 − r ) = r (13 − 4r ) , 8 72 72

which can be used to obtain B1rrr =

=

µ ¶ ¢ ¡ ¢ 1 5 1 5¡ 1 6 2 r (3 − r ) + µ1c τ r 6 − 4r + r + r (13 − 4r ) + O µ2c τ 2 6 24 24 ¡ ¢ ¡ ¢ 1 5 1 r (3 − r ) + µ1c τr5 2 + 3r − r2 + O µ2c τ 2 . 6 8

In B11rr there are also two types of terms, among which the first is given by ·µZ 1 Z v ¶Z 1 ¸ Z r Z r E W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 · ¸ Z 1 Z r Z r Z 1 Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z 1 Z r Z r Z r Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw w = r x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z 1 Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v = r z =0 · ¸ Z 1 Z r Z r Z 1 Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r

x =0

y =0

v =r

z =0

where all integrals are known, except the last one, which is given by · ¸ Z 1 Z r Z r Z 1 Z v E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r x =0 y =0 v = r z =0 · ¸ Z 1 Z r Z x Z w Z v = 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r x =0 y =0 v = r z =0 · ¸ Z 1 Z r Z x Z 1 Z v + 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r

Z 1

x =0

Z r

y =0

v=w

z =0

Z x Z w

¢ 1 ¡ = 2 − y x2 − 4xv + yx − v2 dvdydxdw 2 w =r x =0 y =0 v = r Z 1 Z r Z x Z 1 ¢ 1 ¡ + 2 − y xy − 2wv − 4xv + w2 + x2 dvdydxdw 2 w =r x =0 y =0 v = w ¢ 1 3¡ = r 1 + 8r + 3r2 (1 − r )2 , 24

27

such that ·µZ E

= =

1 0

Z v 0

¶Z W (z) dzdv

1 0

W (w) dw

Z r 0

W ( x ) dx

Z r 0

¸ W (y) dy

¢ 1 7 13 6 1 1 ¡ r + r (1 − r ) + r5 (r + 3) (1 − r ) + r3 1 + 8r + 3r2 (1 − r )2 8 72 12 24 ´ 1 3³ r 3 + 18r − 18r2 + 7r3 − r4 . 72

The second type of term is given by ·µZ r Z v ¶Z 1 ¸ Z 1 Z r E W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 · ¸ Z 1 Z 1 Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z 1 Z r Z r Z r Z v + 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w = r x =0 y =0 v =0 z =0 · ¸ Z 1 Z 1 Z r Z r Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r

x =r

y =0

v =0

z =0

where Z 1

·

Z 1 Z r Z r

¸

Z v

E W (w) W ( x ) W (y) W (z) dz dvdydxdw z =0 · ¸ Z v = 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r x =r y =0 v =0 z =0 · ¸ Z v Z 1 Z w Z r Z r E W (w) W ( x ) W (y) W (z) dz dvdydxdw + 2 w =r Z 1

w =r

= 2 + 2

Z 1

w =r

Z 1

w =r

x =r y =0 Z w Z r

x =r

y =0

v =0 Z y

v=y

Z w Z r Z y x =r

y =0

v =0

x =r

y =0

v=y

Z w Z r Z r

z =0

1 2 v ( x + 2y) dvdydxdw 2 ¢ 1 ¡ 2 y 2v + 2xv − xy dvdydxdw 2

1 4 r (6r + 1) (1 − r )2 24

= which yields

E

= =

·µZ r Z 0

v 0

¶Z W (z) dzdv

1 0

W (w) dw

Z 1 0

W ( x ) dx

1 7 13 6 1 r + r (1 − r ) + r4 (6r + 1) (1 − r )2 8 36 24 ¢ 1 4¡ 2 r 3 + 12r − 7r + r3 , 72

28

Z r 0

¸ W (y) dy

and therefore ¢ 1 3¡ r 2 + 9r − 6r2 + r3 18 µ ¶ ´ ¢ ¡ ¢ 1 3³ 1 4¡ 2 3 4 2 3 + O µ2c τ 2 + 2µ1c τ r 3 + 18r − 18r + 7r − r + r 3 + 12r − 7r + r 72 72 ¡ ¢ ¡ ¢ ¡ ¢ 1 3 1 = r 2 + 9r − 6r2 + r3 + µ1c τr3 1 + 7r − 2r2 + O µ2c τ 2 . 18 12

B11rr =

The first type of term in B111r is ·µZ 1 Z v ¶Z 1 ¸ Z 1 Z r E W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 · ¸ Z 1 Z 1 Z r Z 1 Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z v Z r Z r Z r Z r = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z 1 Z r Z r Z r Z v + 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w = r x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z 1 Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =r z =0 · ¸ Z 1 Z 1 Z r Z r Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r x = r y =0 v =0 z =0 · ¸ Z 1 Z r Z r Z 1 Z v + 2 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =r x =0 y =0 v =r z =0 · ¸ Z 1 Z 1 Z r Z 1 Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw, w =r

x =r

y =0

v =r

where Z 1

Z 1 Z r Z 1

z =0

·

Z v

¸

E W (w) W ( x ) W (y) W (z) dz dvdydxdw z =0 · ¸ Z v = 2 E W (w) W ( x ) W (y) W (z) dz dydvdxdw w =r x =r v = r y =0 z =0 · ¸ Z 1 Z w Z v Z r Z v + 2 E W (w) W ( x ) W (y) W (z) dz dydxdvdw w =r v = x x = r y =0 z =0 · ¸ Z 1 Z v Z w Z r Z v + 2 E W (w) W ( x ) W (y) W (z) dz dydxdwdv w =r Z 1

v =r

Z 1

x =r y =0 v =r Z w Z x Z r

w =r

x =r

y =0

z =0

Z w Z x Z r

¢ 1 ¡ 2 y 2v + 2xv − xy dydvdxdw w =r x =r v = r y =0 2 Z 1 Z w Z v Z r ¢ 1 ¡ + 2 − y x2 − 4xv + yx − v2 dydxdvdw 2 w =r v = r x = r y =0 Z 1 Z v Z w Z r ¢ 1 ¡ + 2 − y xy − 2wv − 4xv + w2 + x2 dydxdwdv 2 v =r w = r x = r y =0 ¢ 1 2¡ = r 15 + 32r + 13r2 (1 − r )3 , 72

= 2

29

which yields ·µZ E

1

Z v

0

0

¶Z W (z) dzdv

1 0

W (w) dw

Z 1 0

W ( x ) dx

Z r 0

¸ W (y) dy

1 7 13 6 1 1 r + r (1 − r ) + r5 (r + 3) (1 − r ) + r4 (6r + 1) (1 − r )2 8 36 12 24 ¢ ¢ 1 3¡ 1 ¡ r 1 + 8r + 3r2 (1 − r )2 + r2 15 + 32r + 13r2 (1 − r )3 12 72 ¢ 1 2¡ r 15 − 7r + r2 . 72

= + =

The second type of term is ·µZ r Z v ¶Z 1 ¸ Z 1 Z 1 E W (z) dzdv W (w) dw W ( x ) dx W (y) dy 0 0 0 0 0 · ¸ Z 1 Z 1 Z 1 Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z r Z r Z r Z r Z v = E W (w) W ( x ) W (y) W (z) dz dvdydxdw w =0 x =0 y =0 v =0 z =0 · ¸ Z 1 Z r Z r Z r Z v + 3 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w = r x =0 y =0 v =0 z =0 · ¸ Z 1 Z 1 Z r Z r Z v + 3 E W (w) W ( x ) W (y) W (z) dz dvdydxdw w = r x = r y =0 v =0 z =0 · ¸ Z 1 Z 1 Z 1 Z r Z v + E W (w) W ( x ) W (y) W (z) dz dvdydxdw, w =r

x =r

y =r

v =0

z =0

where Z 1

= 6 = 6 =

Z 1 Z 1 Z r

w =r Z 1 w =r

Z 1

w =r

x =r y = r v =0 Z w Z x Z r x =r

y =r

·

E W (w) W ( x ) W (y) W (z) dz dvdydxdw z =0 · ¸ Z v E W (w) W ( x ) W (y) W (z) dz dvdydxdw

v =0

Z w Z x Z r x =r

y =r

¸

Z v

v =0

z =0

1 2 v ( x + 2y) dvdydxdw 2

1 3 r (2r + 1) (1 − r )3 6

implying E

= =

·µZ r Z 0

v 0

¶Z W (z) dzdv

1 0

W (w) dw

Z 1 0

W ( x ) dx

Z 1 0

¸ W (y) dy

1 1 1 7 13 6 r + r (1 − r ) + r4 (6r + 1) (1 − r )2 + r3 (2r + 1) (1 − r )3 8 24 8 6 1 3 r (4 − r ) , 24

30

which can be added to the first type of term, giving µ ¶ ¢ ¡ ¢ 1 2 1 2¡ 1 3 2 B111r = r (3 − r ) + µ1c τ r 15 − 7r + r + r (4 − r ) + O µ2c τ 2 6 24 24 ¡ ¢ 1 2 1 = r (3 − r ) + µ1c τr2 (5 − r ) + O µ2c τ 2 . 6 8 Thus, since B1111 = we obtain "µZ E

r

0

¶4 #

¡ ¢ 1 1 + µ1c τ + O µ2c τ 2 , 3 2

µ ¶ ¡ ¢ 1 6 1 1 5 1 r + µ1c τr7 − 4r r (3 − r ) + µ1c τr5 2 + 3r − r2 3 2 6 8 µ ¶ ¢ ¡ ¢ 1 3¡ 1 2 2 3 3 2 r 2 + 9r − 6r + r + µ1c τr 1 + 7r − 2r + 6r 18 12 ¶ µ ¶ µ ¡ ¢ 1 1 1 1 2 r (3 − r ) + µ1c τr2 (5 − r ) + r4 + µ1c τ + O µ2c τ 2 − 4r3 6 8 3 2 ¡ ¢ 1 4 = r (1 − r )4 (2 + 3µ1c τ ) + O µ2c τ 2 , 6

=

Z (s) ds

which in turn implies Z 1 0

or

Z 1 0

"µZ E

"

0

µZ c4i

E

r

r 0

¶4 # Z (s) ds

dr =

¡ ¢ 1 (2 + 3µ1c τ ) + O µ2c τ 2 , 3780

dr =

¡ ¢ 1 1 µ4c + µ5c τ + O µ6c τ 2 . 1890 1260

¶4 # Z (s) ds

This establishes (b). Finally, consider (c). From µZ

r 0

¶3 Z (s) ds

µZ

=

r 0

¶3 W1 (s) ds

µZ

+ 3r

r

2 0

µZ

− 3r

0

¶ µZ W1 (s) ds

1 0

31

r

¶2 Z W1 (s) ds

W1 (s) ds

1 0

¶2

−r

W1 (s) ds

µZ

1

3 0

¶3 W1 (s) ds

,

we get " E U (r )

µZ

r 0

¶3 #

"

µZ

= E (W (r ) − rW (1))

Z (s) ds

"

µZ

= E W (r ) − 3rE W (r )

W1 (s) ds

0

µZ

+ 3r E W (r )

r 0

µZ

− r 3 E W (r ) "

¶2 Z

r

2

"

1 0

µZ

− rE W (1) + 3r2 E W (1)

µZ

"

r 0

µZ

+ r E W (1)

1 0

W1 (s) ds

1 0

¶2 # W1 (s) ds

W1 (s) ds

r

3

4

¶ µZ ¶3 #

0

− 3r E W (1)

W1 (s) ds

0

W1 (s) ds

µZ

"

#

1

¶3 #

r 0

"

Z (s) ds

W1 (s) ds

µZ

"

0

¶3 #

¶3 #

r 0

"

r

¶2 Z W1 (s) ds

1 0

¶ µZ W1 (s) ds ¶3 #

# W1 (s) ds

1 0

¶2 # W1 (s) ds

W1 (s) ds

= Crrrr − 3rCr1rr + 3r2 Cr11r − r3 Cr111 − rC1rrr + 3r2 C11rr − 3r3 C111r + r4 C1111 , where µ ¶ Z s Z t Z u Crstu = E W (r ) W (w) dw W ( x ) dx W (y) dy 0 0 0 · µZ s Z w ¶Z t ¸ Z u + µ1c τE W (r ) W (z) dzdw W ( x ) dx W (y) dy 0 0 0 0 · µZ t Z x ¶Z u ¸ Z s + µ1c τE W (r ) W (w) dw W (z) dzdx W (y) dy 0 0 0 0 · µ ¶¸ Z s Z t Z uZ y ¡ ¢ + µ1c τE W (r ) W (w) dw W ( x ) dx W (z) dzdy + O µ2c τ 2 . 0

0

0

32

0

Note that µ E W (r )

= 3!

Z r

implying

W (w) dw

0

Z w Z x

w =0 x =0 y =0 r Z w Z x

Z

= 6

Z r

w =0

x =0

y =0

Z r 0

Z r

W ( x ) dx

0

¶ W (y) dy

E (W (r ) W (w) W ( x ) W (y)) dydxdw 1 5 r , 2

y (w + 2x ) dydxdw =

¶ µ Z 1 Z 1 Z 1 1 E W (1) W (w) dw W ( x ) dx W (y) dy = . 2 0 0 0

Similarly, µ E W (1)

= 3!

Z r

Z

= 6

Z r 0

W (w) dw

Z w Z x

w =0 x =0 y =0 r Z w Z x w =0

x =0

y =0

Z r 0

Z r

W ( x ) dx

0

¶ W (y) dy

E (W (1) W (w) W ( x ) W (y)) dydxdw

y (w + 2x ) dydxdw =

1 5 r . 2

Moreover, by using Z 1

= 2 = 2

= 2

= 2

E (W (r ) W (w) W ( x ) W (y)) dydxdw

x =0 Z r

y =0 Z x

w =r Z 1

x =0 Z r

y =0 Z x

w =r

x =0

y =0

Z r

Z r

x =0 Z r

y =0 Z x

w =r Z 1

x =0 Z r

y =0 Z x

w =r

x =0

y =0

Z 1 Z r

E (W (w) W (r ) W ( x ) W (y)) dydxdw y (r + 2x ) dydxdw =

5 4 r (1 − r ) , 6

E (W (1) W (w) W ( x ) W (y)) dydxdw

w =r Z 1

Z 1

= 2

Z r

w =r Z 1

Z 1

= 2

Z r

E (W (1) W (w) W ( x ) W (y)) dydxdw y (w + 2x ) dydxdw =

1 3 r (4r + 1) (1 − r ) , 6

E (W (r ) W (w) W ( x ) W (y)) dydxdw

w =r Z 1

x =r y =0 Z w Z r

w =r Z 1

x =r Z w

y =0 Z r

w =r

x =r

y =0

E (W (w) W ( x ) W (r ) W (y)) dydxdw y ( x + 2r ) dydxdw =

33

1 2 r (8r + 1) (1 − r )2 , 6

Z 1

= 2

Z 1 Z r

E (W (1) W (w) W ( x ) W (y)) dydxdw

w =r Z 1

x = r y =0 Z w Z r

w =r Z 1

x =r Z w

y =0 Z r

w =r

x =r

y =0

= 2

E (W (1) W (w) W ( x ) W (y)) dydxdw y (w + 2x ) dydxdw =

1 2 r (5r + 4) (1 − r )2 , 6

and Z 1

Z 1 Z 1

E (W (r ) W (w) W ( x ) W (y)) dydxdw

w =r x =r y =r Z 1 Z w Z x

= 3!

Z

= 6

w =r x =r y =r 1 Z w Z x w =r

x =r

y =r

E (W (w) W ( x ) W (y) W (r )) dydxdw

r ( x + 2y) dydxdw = r (2r + 1) (1 − r )3

we obtain µ ¶ Z 1 Z r Z r E W (r ) W (w) dw W ( x ) dx W (y) dy

= + =

Z r

Z r

w =r

x =0

=

y =0

0

E (W (r ) W (w) W ( x ) W (y)) dydxdw E (W (r ) W (w) W ( x ) W (y)) dydxdw

1 5 5 4 1 r + r (1 − r ) = r4 (5 − 2r ) , 2 6 6

E W (1)

+

0

w =0 x =0 y =0 Z 1 Z r Z r

µ

=

0

Z r

Z r

Z r

Z 1 0

W (w) dw

Z r

w =0 x =0 y =0 Z 1 Z r Z r w =r

x =0

y =0

Z r 0

W ( x ) dx

Z r 0

¶ W (y) dy

E (W (1) W (w) W ( x ) W (y)) dydxdw E (W (1) W (w) W ( x ) W (y)) dydxdw

¢ 1 5 1 3 1 ¡ r + r (4r + 1) (1 − r ) = r3 1 + 3r − r2 , 2 6 6

34

µ

Z 1

E W (r ) Z r

=

+ 2 Z

+

w =0 Z 1

E W (1)

+ =

Z r

x =0 Z r

y =0 Z r

x =r

y =0

0

W ( x ) dx

0

¶ W (y) dy

E (W (r ) W (w) W ( x ) W (y)) dydxdw

w =r x =0 y =0 1 Z 1 Z r

µ Z r

Z

W (w) dw

Z r

E (W (r ) W (w) W ( x ) W (y)) dydxdw

E (W (r ) W (w) W ( x ) W (y)) dydxdw

1 1 5 5 4 r + r (1 − r ) + r2 (8r + 1) (1 − r )2 2 3 6 ¢ 1 2¡ 2 r 1 + 6r − 5r + r3 , 6

=

+ 2

Z r

w =r

=

=

0

Z 1

Z r

w =0 Z 1

Z 1 0

W (w) dw

Z r

x =0 Z r

y =0 Z r

x =r

y =0

0

W ( x ) dx

Z r 0

¶ W (y) dy

E (W (1) W (w) W ( x ) W (y)) dydxdw

w = r x =0 y =0 1 Z 1 Z r w =r

Z 1

E (W (1) W (w) W ( x ) W (y)) dydxdw

E (W (1) W (w) W ( x ) W (y)) dydxdw

1 1 1 5 1 3 r + r (4r + 1) (1 − r ) + r2 (5r + 4) (1 − r )2 = r2 (4 − r ) . 2 3 6 6

and µ E W (r )

=

Z r

+ 3 + 3 Z

+ = =

Z r

Z 1 0

W (w) dw

Z r y =0 Z r

x =0 Z r

w =r Z 1

x =0 y =0 Z 1 Z r

w =r x =r y =0 1 Z 1 Z 1 x =r

y =r

0

W ( x ) dx

Z 1 0

¶ W (y) dy

E (W (r ) W (w) W ( x ) W (y)) dydxdw

w =0 Z 1

w =r

Z 1

E (W (r ) W (w) W ( x ) W (y)) dydxdw E (W (r ) W (w) W ( x ) W (y)) dydxdw

E (W (r ) W (w) W ( x ) W (y)) dydxdw

1 5 5 4 1 r + r (1 − r ) + r2 (8r + 1) (1 − r )2 + r (2r + 1) (1 − r )3 2 2 2 1 r (2 − r ) . 2

35

Thus, by putting everything together, " µZ r ¶3 # ¢ 1 5 1 1 ¡ E U (r ) Z (s) ds r − 3r r4 (5 − 2r ) + 3r2 r2 1 + 6r − 5r2 + r3 = 2 6 6 0 ¢ 1 1 1 ¡ − r3 r (2 − r ) − r r5 + 3r2 r3 1 + 3r − r2 2 2 6 1 1 − 3r3 r2 (4 − r ) + r4 + O (µ1c τ ) 6 2 = O (µ1c τ ) . Consider the O (µ1c τ ) term. We have ¶Z r ¸ · µZ r Z w Z r W ( x ) dx W (y) dy E W (r ) W (z) dzdw 0 0 0 0 · ¸ Z r Z r Z r Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z x Z r Z w = 2 E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 µZ r Z x Z y 1 2 = 2 w ( x + 2y) dwdydx x =0 y =0 w =0 2 Z r Z x Z x ¢ 1 ¡ 2 + y 2w + 2xw − xy dwdydx x =0 y =0 w = y 2 ¶ Z r Z x Z r ¢ 1 ¡ 2 13 6 2 − y x − 4xw + yx − w dwdydx = r , 72 x =0 y =0 w = x 2 which implies Crrrr =

¡ ¢ 1 5 13 r + µ1c τr6 + O µ2c τ 2 , 2 24

and therefore, C1111 =

¡ ¢ 1 13 + µ1c τ + O µ2c τ 2 . 2 24

Similarly, · µZ r Z E W (1)

¸ W (y) dy 0 0 0 0 · ¸ Z r Z r Z r Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z x Z r Z w 13 6 = 2 E W (1) W ( x ) W ( y ) W (z) dz dwdydx = r , 72 x =0 y =0 w =0 0 w

¶Z

W (z) dzdw

giving C1rrr =

r

W ( x ) dx

Z r

¡ ¢ 1 5 13 r + µ1c τr6 + O µ2c τ 2 . 2 24

36

Let us now consider Cr1rr , which contains two types of terms. The first one is · µZ 1 Z w ¶Z r ¸ Z r E W (r ) W (z) dzdw W ( x ) dx W (y) dy 0 0 0 0 · ¸ Z r Z r Z 1 Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z 1 Z w + E W (r ) W ( x ) W ( y ) W (z) dz dwdydx, x =0

y =0

w =r

0

where Z r

= 2 = 2 =

·

Z r Z 1

x =0 Z r x =0

Z r

x =0

y =0 w =r Z x Z 1

¸

Z w

E W (r ) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx

y =0

w =r

y =0

¢ 1 ¡ − y xy − 2rw − 4xw + r2 + x2 dwdydx 2 w =r

0

Z x Z 1

1 4 r (r + 5) (1 − r ) , 12

such that ·

µZ

E W (r )

=

1

Z w

0

0

¶Z W (z) dzdw

r 0

W ( x ) dx

Z r 0

¸ W (y) dy

¢ 1 1 4¡ 13 6 r + r 4 (r + 5) (1 − r ) = r 30 − 24r + 7r2 . 72 12 72

The second type of term is · µZ r Z E W (r )

w

¶Z

x =r

y =0

0

·

w =0

0

W ( x ) dx

Z r

¸

W (y) dy ¸ Z 1 Z r Z Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z 1 Z r Z r Z w + E W (r ) W ( x ) W ( y ) W (z) dz dwdydx, 0 r

W (z) dzdw

1

0

37

0

where ·

Z 1 Z r Z r

¸

Z w

E W (r ) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x = r y =0 w =0 0 · ¸ Z w Z 1 Z r Z r E W (r ) W ( x ) W ( y ) W (z) dz dwdydx +

= +

x =r Z 1

y =0 Z r

w =0 Z y

x =r

y =0

w=y

Z 1 Z r Z y x =r

y =0

w =0

x =r

y =0

w=y

Z 1 Z r Z r

0

1 2 w (r + 2y) dwdydx 2 ¢ 7 5 1 ¡ 2 y 2w + 2rw − ry dwdydx = r (1 − r ) , 2 24

suggesting · E W (r )

µZ r Z 0

w 0

¶Z W (z) dzdw

1 0

W ( x ) dx

Z r 0

¸ W (y) dy

7 1 5 13 6 r + r 5 (1 − r ) = r (21 − 8r ) . 72 24 72

= We therefore obtain Cr1rr =

=

µ ¶ ¢ ¡ ¢ 1 4¡ 1 5 1 4 2 r (5 − 2r ) + µ1c τ r 30 − 24r + 7r + r (21 − 8r ) + O µ2c τ 2 6 72 36 ¡ ¢ ¡ ¢ 1 4 1 r (5 − 2r ) + µ1c τr4 10 + 6r − 3r2 + O µ2c τ 2 . 6 24

As for C11rr , we have · µZ E W (1)

1

Z w

¶Z

x =0

y =0

0

·

w =r

0

W ( x ) dx

¸

Z r

W (y) dy ¸ Z r Z r Z Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z 1 Z w + E W (1) W ( x ) W ( y ) W (z) dz dwdydx, 0 1

W (z) dzdw

r

0

0

where Z r

= 2 = 2 =

Z r Z 1

x =0 Z r x =0

Z r

x =0

y =0 w =r Z x Z 1

·

Z w

¸

E W (1) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w E W (1) W ( x ) W ( y ) W (z) dz dwdydx

y =0

w =r

y =0

¢ 1 ¡ − y x2 − 4xw + yx − w2 dwdydx 2 w =r

0

Z x Z 1

1 3 r (1 − r ) (5r + 1) (r + 2) , 36 38

suggesting ·

µZ

E W (1)

=

1 0

Z w 0

¶Z W (z) dzdw

r 0

W ( x ) dx

Z r 0

¸ W (y) dy

¢ 13 6 1 1 3¡ r + r3 (1 − r ) (5r + 1) (r + 2) = r 4 + 18r − 12r2 + 3r3 . 72 36 72

We also have ·

µZ r Z

w

¶Z

x =r

0 r

y =0

0

0

W ( x ) dx

¸

Z r

W (y) dy · ¸ Z 1 Z r Z Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z 1 Z r Z r Z w + E W (1) W ( x ) W ( y ) W (z) dz dwdydx, E W (1)

W (z) dzdw

1

w =0

0

0

with ·

Z 1 Z r Z r

¸

Z w

E W (1) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =0 0 · ¸ Z 1 Z r Z r Z w + E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =r Z 1

y =0 Z r

w =0 Z y

x =r

y =0

w=y

Z 1 Z r Z y

=

x =r

y =0

w =0

x =r

y =0

w=y

Z 1 Z r Z r

+

0

1 2 w ( x + 2y) dwdydx 2 ¢ 1 ¡ 2 1 4 y 2w + 2xw − xy dwdydx = r (11r + 3) (1 − r ) , 2 48

which implies · E W (1)

=

µZ r Z 0

w 0

¶Z W (z) dzdw

1 0

W ( x ) dx

Z r 0

¸ W (y) dy

¢ 1 1 4¡ 13 6 r + r4 (11r + 3) (1 − r ) = r 9 + 24r − 7r2 . 72 48 144

By combining these last two results, C11rr =

=

µ ¶ ¢ ¢ ¢ 1 3¡ 1 ¡ 1 3¡ r 1 + 3r − r2 + µ1c τ r 4 + 18r − 12r2 + 3r3 + r4 9 + 24r − 7r2 6 72 72 ¡ ¢ ¡ ¢ ¡ ¢ 1 3 1 r 1 + 3r − r2 + µ1c τr3 4 + 27r + 12r2 − 4r3 + O µ2c τ 2 . 6 72

39

As for Cr11r , we have the terms · µZ 1 Z E W (r )

= = + + +

w

¶Z

x =r

y =0

0

0

w =r

W ( x ) dx

¸

Z r

W (y) dy · ¸ Z 1 Z r Z Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z 1 Z r Z r Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x = r y =0 w =0 0 · ¸ Z w Z r Z r Z 1 E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =r 0 · ¸ Z 1 Z r Z 1 Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx, 0 1

W (z) dzdw

1

0

0

where ·

Z 1 Z r Z 1

¸

Z w

E W (r ) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =r 0 · ¸ Z 1 Z r Z 1 Z w + E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r Z 1

y =0 Z r

w =r Z x

x =r

y =0

w= x

0

Z 1 Z r Z x

¢ 1 ¡ = − y r2 − 4rw + yr − w2 dwdydx 2 x =r y =0 w =r Z 1 Z r Z 1 ¢ 1 ¡ + − y ry − 2xw − 4rw + r2 + x2 dwdydx 2 x =r y =0 w = x ¡ ¢ 1 2 = r 3 + 30r + 7r2 (1 − r )2 , 48 giving · E W (r )

= + =

µZ

1 0

Z w 0

¶Z W (z) dzdw

1 0

W ( x ) dx

Z r 0

¸ W (y) dy

1 1 13 6 r + r4 (11r + 3) (1 − r ) + r3 (1 − r ) (5r + 1) (r + 2) 72 48 36 ¢ 1 2¡ 2 r 3 + 30r + 7r2 (1 − r ) 48 ´ 1 2³ r 9 + 80r − 105r2 + 48r3 − 6r4 , 144

40

and · E W (r )

= = + +

µZ r Z

w

¶Z

x =r

y =r

0

0

W ( x ) dx

¸

Z 1

W (y) dy · ¸ Z 1 Z 1 Z Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z 1 Z r Z r Z w 2 E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =0 0 · ¸ Z w Z 1 Z 1 Z r E W (r ) W ( x ) W ( y ) W (z) dz dwdydx 0 r

W (z) dzdw

1

w =0

0

0

where Z 1 Z 1 Z r

= 2 = 2

x =r y =r w =0 Z 1 Z x Z r x =r

y =r

·

y =r

¸

E W (r ) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx

w =0

0

w =0

1 3 1 2 w (y + 2r ) dwdydx = r (8r + 1) (1 − r )2 2 18

Z 1 Z x Z r x =r

Z w

such that · E W (r )

=

µZ r Z 0

w 0

¶Z W (z) dzdw

1 0

W ( x ) dx

Z 1 0

¸ W (y) dy

¢ 7 1 1 3¡ 13 6 r + r5 (1 − r ) + r3 (8r + 1) (1 − r )2 = r 4 + 24r − 18r2 + 3r3 , 72 12 18 72

which yields Cr11r =

+ =

µ ´ ¢ 1 2¡ 1 2³ 2 3 r 1 + 6r − 5r + r + µ1c τ r 9 + 80r − 105r2 + 48r3 − 6r4 6 72 ¶ ¡ ¢ ¡ ¢ 1 3 r 4 + 24r − 18r2 + 3r3 + O µ2c τ 2 72 ³ ´ ¢ ¡ ¢ 1 2¡ 1 r 1 + 6r − 5r2 + r3 + µ1c τr2 3 + 28r − 27r2 + 10r3 − r4 + O µ2c τ 2 . 6 24

41

Consider C111r , where the first type of term is · µZ 1 Z w ¶Z 1 ¸ Z r E W (1) W (z) dzdw W ( x ) dx W (y) dy 0 0 0 0 · ¸ Z 1 Z r Z 1 Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z 1 Z r Z r Z w + E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =0 0 · ¸ Z w Z r Z r Z 1 E W (1) W ( x ) W ( y ) W (z) dz dwdydx + x =0 y =0 w =r 0 · ¸ Z 1 Z r Z 1 Z w + E W (1) W ( x ) W ( y ) W (z) dz dwdydx, x =r

y =0

w =r

0

which with ·

Z 1 Z r Z 1

¸

Z w

E W (1) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w = E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =r 0 · ¸ Z 1 Z r Z 1 Z w + E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =r Z 1

y =0 Z r

w =r Z x

x =r

y =0

w= x

0

Z 1 Z r Z x

¢ 1 ¡ 2 = y 2w + 2xw − xy dwdydx x =r y =0 w =r 2 Z 1 Z r Z 1 ¢ 1 ¡ + − y x2 − 4xw + yx − w2 dwdydx 2 x =r y =0 w = x ¡ ¢ 1 2 = r 13 + 18r + 9r2 (1 − r )2 , 48 gives · E W (1)

= +

µZ

1 0

Z w 0

¶Z W (z) dzdw

1 0

W ( x ) dx

Z r 0

¸ W (y) dy

1 1 13 6 r + r4 (11r + 3) (1 − r ) + r3 (1 − r ) (5r + 1) (r + 2) 72 48 36 ¢ ¢ 1 2¡ 1 2¡ 2 r 13 + 18r + 9r2 (1 − r ) = r 39 − 16r + 3r2 . 48 144

42

The second type of term is · µZ r Z E W (1)

w

¶Z

= = + +

x =r

y =r

0

0

W ( x ) dx

¸

Z 1

W (y) dy · ¸ Z 1 Z 1 Z Z w E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z 1 Z r Z r Z w 2 E W (1) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =0 0 · ¸ Z w Z 1 Z 1 Z r E W (1) W ( x ) W ( y ) W (z) dz dwdydx 0 r

W (z) dzdw

1

w =0

0

0

where Z 1 Z 1 Z r

= 2

x =r y =r w =0 Z 1 Z x Z r

= 2

x =r

y =r

·

y =r

¸

E W (1) W ( x ) W ( y ) W (z) dz dwdydx 0 · ¸ Z w E W (1) W ( x ) W ( y ) W (z) dz dwdydx

w =0

0

w =0

1 3 1 2 w ( x + 2y) dwdydx = r (5r + 4) (1 − r )2 , 2 18

Z 1 Z x Z r x =r

Z w

such that · E W (1)

= =

µZ r Z 0

w 0

¶Z W (z) dzdw

1 0

W ( x ) dx

Z 1 0

¸ W (y) dy

1 1 13 6 r + r4 (11r + 3) (1 − r ) + r3 (5r + 4) (1 − r )2 72 24 18 1 3 r (16 − 3r ) , 72

and so we obtain C111r =

=

µ ¶ ¢ 1 2 1 2¡ 1 3 2 r (4 − r ) + µ1c τ r 39 − 16r + 3r + r (16 − 3r ) 6 72 72 1 2 13 r (4 − r ) + µ1c τr2 . 6 24

43

Finally, we have Cr111 , which only contains one term, namely, · µZ 1 Z w ¶Z 1 ¸ Z 1 E W (r ) W (z) dzdw W ( x ) dx W (y) dy 0 0 0 0 · ¸ Z 1 Z 1 Z 1 Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z r Z r Z r Z w = E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =0 y =0 w =0 0 · ¸ Z 1 Z r Z r Z w + 2 E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =0 0 · ¸ Z w Z r Z r Z 1 E W (r ) W ( x ) W ( y ) W (z) dz dwdydx + x =0 y =0 w =r 0 · ¸ Z 1 Z 1 Z r Z w + E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r y =r w =0 0 · ¸ Z 1 Z r Z 1 Z w + 2 E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r y =0 w =r 0 · ¸ Z 1 Z 1 Z 1 Z w + E W (r ) W ( x ) W ( y ) W (z) dz dwdydx, x =r

y =r

w =r

0

where · ¸ Z w E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r y =r w =r 0 · ¸ Z 1 Z x Z y Z w = 2 E W (r ) W ( x ) W ( y ) W (z) dz dwdydx x =r y =r w =r 0 · ¸ Z 1 Z x Z w Z w + 2 E W (r ) W ( x ) W ( y ) W (z) dz dydwdx x =r w =r y =r 0 · ¸ Z 1 Z w Z x Z w + 2 E W (r ) W ( x ) W ( y ) W (z) dz dydxdw Z 1 Z 1 Z 1

w =r

= + + =

x =r

y =r

0

Z 1 Z x Z y

¢ 1 ¡ 2 2 r 2w + 2yw − yr dwdydx x =r y =r w =r 2 Z 1 Z x Z w ¢ 1 ¡ 2 − r y2 − 4yw + ry − w2 dydwdx 2 x =r w =r y =r Z 1 Z w Z x ¢ 1 ¡ 2 − r yr − 2xw − 4yw + x2 + y2 dydxdw 2 w =r x =r y =r ¢ 1 ¡ r 5 + 10r + 3r2 (1 − r )3 , 12

44

such that ·

µZ

E W (r )

1

Z w

0

0

¶Z W (z) dzdw

1 0

W ( x ) dx

Z 1 0

¸ W (y) dy

13 6 7 1 r + r 5 (1 − r ) + r 4 (r + 5) (1 − r ) 72 12 12 ¢ 1 3 1 ¡ r (8r + 1) (1 − r )2 + r2 3 + 30r + 7r2 (1 − r )2 18 24 ¢ ¢ 1 ¡ 1 ¡ r 5 + 10r + 3r2 (1 − r )3 = r 30 − 21r + 4r2 , 12 72

= + + implying

Cr111 =

¡ ¢ ¡ ¢ 1 1 r (2 − r ) + µ1c τr 30 − 21r + 4r2 + O µ2c τ 2 . 2 24

By putting everything together, " µZ ¶ # r

E U (r )

= + − + − = implying

0

3

Z (s) ds

µ ¶ ¡ ¢ 1 5 13 1 4 1 6 4 2 r + µ1c τr + 3r r (5 − 2r ) + µ1c τr 10 + 6r − 3r 2 24 6 24 µ ³ ´¶ ¡ ¢ 1 1 2 r 1 + 6r − 5r2 + r3 + µ1c τr2 3 + 28r − 27r2 + 10r3 − r4 3r2 6 24 µ ¶ µ ¶ ¡ ¢ 1 1 5 13 3 1 2 6 r r (2 − r ) + µ1c τr 30 − 21r + 4r −r r + µ1c τr 2 24 2 24 ¶ µ ¡ ¢ ¡ ¢ 1 2 3 2 3 2 1 3 r 1 + 3r − r + µ1c τr 4 + 27r + 12r − 4r 3r 6 72 µ ¶ µ ¶ ¡ ¢ 13 13 3 1 2 2 4 1 3r r (4 − r ) + µ1c τr + r + µ1c τ + O µ2c τ 2 6 24 2 24 ¡ ¢ ¡ ¢ 1 − µ1c τr4 8 − 24r + 7r2 (1 − r )2 + O µ2c τ 2 , 24 Z 1 0

" E U (r )

µZ

r 0

¶3 # Z (s) ds

dr =

45

¡ ¢ 7 µ1c τ + O µ2c τ 2 . 4320

¡ ¢ Consider the O µ2c τ 2 term. We have µ ¶ Z s Z t Z u Crstu = E W (r ) W (w) dw W ( x ) dx W (y) dy 0 0 0 · µZ s Z w ¶Z t ¸ Z u + µ1c τE W (r ) W (z) dzdw W ( x ) dx W (y) dy 0 0 0 0 · µ ¶ ¸ Z s Z tZ x Z u + µ1c τE W (r ) W (w) dw W (z) dzdx W (y) dy 0 0 0 0 · µZ u Z y ¶¸ Z s Z t + µ1c τE W (r ) W (w) dw W ( x ) dx W (z) dzdy 0 0 0 0 · µZ s Z w ¶ µZ t Z x ¶Z u ¸ + µ2c τ 2 E W (r ) W (z) dzdw W (v) dvdx W (y) dy 0 0 0 0 0 · µZ s Z w ¶Z t µZ u Z y ¶¸ 2 W (z) dzdw W ( x ) dx W (v) dvdy + µ2c τ E W (r ) 0 0 0 0 0 · µZ t Z x ¶ µZ u Z y ¶¸ Z s + µ2c τ 2 E W (r ) W (w) dw W (z) dzdx W (v) dvdy 0 0 0 0 0 ¡ ¢ 3 + O µ3c τ . Thus, to able to compute Crrrr we need · µZ r Z w ¶ µZ r Z x ¶Z r ¸ E W (r ) W (z) dzdw W (v) dvdx W (y) dy 0 0 0 0 0 · ¸ Z r Z r Z r Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z w Z x Z r Z y Z x E W (r ) W ( y ) W (z) dz W (v) dv dwdxdy = 2 0 0 y =0 x =0 w =0 · ¸ Z r Z x Z y Z w Z x + 2 E W (r ) W ( y ) W (z) dz W (v) dv dwdydx x =0 y =0 w =0 0 0 · ¸ Z r Z x Z w Z w Z x + 2 E W (r ) W ( y ) W (z) dz W (v) dv dydwdx x =0

w =0

y =0

0

Z r Z y Z x

0

¢ 1 2¡ = 2 w 3yx − yw + 3x2 dwdxdy y =0 x =0 w =0 6 Z r Z x Z y ¡ ¢ 1 + 2 − w2 −12yx + 2yw + 3y2 − 3x2 dwdydx 12 x =0 y =0 w =0 Z r Z x Z w ¢ 1 ¡ 167 7 + 2 − y 2x3 − 12x2 w + 3yx2 − 6xw2 + 3yw2 dydwdx = r , 12 2520 x =0 w =0 y =0 which gives Crrrr =

¡ ¢ 1 5 13 167 r + µ1c τr6 + µ2c τ 2 r7 + O µ3c τ 3 . 2 24 840

This implies C1111 =

¡ ¢ 1 13 167 + µ1c τ + µ2c τ 2 + O µ3c τ 3 . 2 24 840

46

Similarly, since · µZ r Z E W (1) 0

w 0

W (z) dzdw

we obtain

¶ µZ r Z 0

x 0

¶Z W (v) dvdx

r 0

¸ W (y) dy =

167 7 r , 2520

¡ ¢ 1 5 13 167 r + µ1c τr6 + µ2c τ 2 r7 + O µ3c τ 3 . 2 24 840

C1rrr =

Cr1rr is comprised of two types of terms. The first one is · µZ r Z w ¶ µZ 1 Z x ¶Z r ¸ E W (r ) W (z) dzdw W (v) dvdx W (y) dy 0 0 0 0 0 · ¸ Z r Z r Z 1 Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z r Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z 1 Z w Z x + E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy, y =0

w =0

x =r

0

0

Z w

Z x

0

0

where ·

Z r Z r

Z 1

y =0 Z r

w =0 Z y

x =r Z 1

y =0

w=y

¸

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =r 0 0 · ¸ Z r Z r Z 1 Z w Z x + E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy

= +

Z r Z y y =0

w =0

Z r Z r y =0 3

x =r

Z 1

x =r



Z 1

w=y

x =r

1 w 12

¡ 2

¢ −6rx − 12yx + 2yw + 3r2 + 3y2 dxdwdy

1 y(−12r3 + 12r2 w + 3yr2 + 6rx2 − 6yrx + 6rw2 12

2

+ 4x − 3yw )dxdwdy ¡ ¢ 1 3 = r (1 − r ) 10 + 30r + 54r2 + 35r3 , 720 such that · E W (r )

= =

µZ r Z 0

w 0

¶ µZ W (z) dzdw

1 0

Z x 0

¶Z W (v) dvdx

¡ ¢ 1 3 167 7 r + r (1 − r ) 10 + 30r + 54r2 + 35r3 2520 720 ´ 1 3³ r 70 + 140r + 168r2 − 133r3 + 89r4 . 5040

47

r 0

¸ W (y) dy

The second type of term is · µZ r Z E W (r )

=

0 r

Z 1 Z r

Z

y =0 Z r

w =0 Z r

x =0 Z r

y =r

w =0

x =0

w 0

W (z) dzdw

¶ µZ r Z

·

Z w

0

x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¸

Z x

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z x Z w E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy = y =0 w =0 x =0 0 0 · ¸ Z 1 Z r Z r Z w Z x + E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy, 0

0

where Z 1 Z r

= 2 = 2

Z r

y =r w =0 Z 1 Z r y =r

x =0 Z x

x =0

Z 1 Z r y =r

x =0

·

Z w

¸

Z x

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x E W (r ) W ( y ) W (z) dz W (v) dv dwdxdy

w =0

Z x

w =0

0

0

¢ 19 6 1 2¡ w 3rx − rw + 3x2 dwdxdy = r (1 − r ) , 6 180

and therefore, · E W (r )

=

µZ r Z 0

w 0

W (z) dzdw

¶ µZ r Z 0

x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

19 6 1 6 167 7 r + r (1 − r ) = r (266 − 99r ) . 2520 180 2520

Hence, Cr1rr =

+ + = +

¡ ¢ 1 4 1 r (5 − 2r ) + µ1c τr4 10 + 6r − 3r2 6 24 ¶ µ ³ ´ 1 6 1 2 3 2 3 4 µ2c τ r 70 + 140r + 168r − 133r + 89r + r (266 − 99r ) 2520 2520 ¡ ¢ O µ3c τ 3 ¡ ¢ 1 4 1 r (5 − 2r ) + µ1c τr4 10 + 6r − 3r2 6 24 ³ ´ ¡ ¢ 1 2 3 µ2c τ r 70 + 140r + 168r2 + 133r3 − 10r4 + O µ3c τ 3 . 2520

The first term in C11rr is · µZ r Z E W (1)

=

0 1

Z r Z r

Z

y =0 Z r

w =0 Z r

x =0 Z r

y =0

w =0

x =r

w 0

·

¶ µZ W (z) dzdw Z w

1 0

Z x 0

¶Z W (v) dvdx Z x

r 0

¸ W (y) dy

¸

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x = E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z 1 Z w Z x + E W (1) W ( y ) W (z) dz W (v) dv dxdwdy, 0

48

0

where

·

Z r Z r

Z 1

y =0 Z r

w =0 Z y

x =r Z 1

y =0

w=y

Z w

Z x

0

0

¸

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x = E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x = r 0 0 · ¸ Z r Z r Z 1 Z w Z x + E W (1) W ( y ) W (z) dz W (v) dv dxdwdy Z r Z y

x =r

Z 1

¢ 1 2¡ w −12yx + 2yw + 3y2 − 3x2 dxdwdy 12 y =0 w =0 x = r Z r Z r Z 1 ¢ 1 ¡ + − y 2x3 − 12x2 w + 3yx2 − 6xw2 + 3yw2 dxdwdy 12 y =0 w = y x = r ¡ ¢ 1 3 = r (1 − r ) −5 + 25r + 67r2 + 42r3 , 720

=

suggesting

· E W (1)

= =



µZ r Z 0

0

¶ µZ W (z) dzdw

1

Z x

0

0

¶Z W (v) dvdx

r 0

¸ W (y) dy

¡ ¢ 1 3 167 7 r + r (1 − r ) −5 + 25r + 67r2 + 42r3 2520 720 ´ 1 3³ r −35 + 210r + 294r2 − 175r3 + 40r4 . 5040

The second term is · µZ r Z E W (1)

=

w

Z 1 Z r

Z

0 r

w 0

W (z) dzdw

·

¶ µZ r Z Z w

0

x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¸

Z x

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z r Z w Z x = E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z 1 Z r Z r Z w Z x + E W (1) W ( y ) W (z) dz W (v) dv dxdwdy, y =r

w =0

x =0

where Z 1 Z r

= 2 = 2 such that

Z r

y =r w =0 Z 1 Z r y =r

x =0

Z 1 Z r y =r

x =0

x =0 Z x

·

0

Z w

Z x

¸

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x E W (1) W ( y ) W (z) dz W (v) dv dwdxdy

w =0

Z x

w =0

0

0

0

¢ 1 2¡ 1 5 w 3yx − yw + 3x2 dwdxdy = r (29r + 9) (1 − r ) 6 360

· µZ r Z E W (1)

=

0

w 0

W (z) dzdw

¶ µZ r Z 0

x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¢ 167 7 1 5 1 5¡ r + r (29r + 9) (1 − r ) = r 63 + 140r − 36r2 , 2520 360 2520 49

giving ¢ ¡ ¢ 1 3¡ 1 r 1 + 3r − r2 + µ1c τr3 4 + 27r + 12r2 − 4r3 6 72 µ ³ ´ 1 µ2c τ 2 r3 −35 + 210r + 294r2 − 175r3 + 40r4 2520 ¶ ¢ ¡ ¢ 1 5¡ 2 r 63 + 140r − 36r + O µ3c τ 3 2520 ¢ ¡ ¢ 1 1 3¡ r 1 + 3r − r2 + µ1c τr3 4 + 27r + 12r2 − 4r3 6 72 ³ ´ ¡ ¢ 1 µ2c τ 2 r3 −35 + 210r + 357r2 − 35r3 + 4r4 + O µ3c τ 3 . 2520

C11rr =

+ + = +

As for Cr11r , we have · µZ E W (r )

=

Z r Z 1

Z

1

Z w

0 1

0

¶ µZ W (z) dzdw

·

Z w

1 0

Z x 0

¶Z W (v) dvdx

r 0

¸ W (y) dy

¸

Z x

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z r Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z 1 Z w Z x + 2 E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x = r 0 0 · ¸ Z r Z 1 Z 1 Z w Z x + E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0

w =r

x =r

0

0

Z w

Z x

with Z r Z 1

= 2 = 2

y =0 Z r y =0

·

Z 1

w =r Z 1

x =r Z x

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x E W (r ) W ( y ) W (z) dz W (v) dv dwdxdy

x =r

w =r

x =r

1 − y(3r2 x − 3r2 y + 3r2 w − 3x2 w 6 w =r

0

Z r Z 1 Z x y =0

¸

0

3

+ x + 3ryx + 3ryw − 12rxw)dwdxdy ¡ ¢ 1 2 = r (1 − r )2 2 + 39r + 16r2 + 3r3 , 120 giving · E W (r )

= + =

µZ

1 0

Z w 0

¶ µZ W (z) dzdw

1 0

Z x 0

¶Z W (v) dvdx

¡ ¢ 1 3 167 7 r + r (1 − r ) 10 + 30r + 54r2 + 35r3 2520 360 ¡ ¢ 1 2 r (1 − r )2 2 + 39r + 16r2 + 3r3 120 ´ 1 2³ r 42 + 805r − 1120r2 + 378r3 + 77r4 − 15r5 . 2520 50

r 0

¸ W (y) dy

Also, · E W (r )

= = + + +

µZ r Z 0 1

Z 1 Z r

Z

y =0 Z r

w =0 Z r

x =0 Z r

y =r

w =0

x =r

¶ µZ

w 0

W (z) dzdw

·

Z w

1 0

Z x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¸

Z x

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z 1 Z r Z r Z w Z x E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =r w =0 x =0 0 0 · ¸ Z w Z x Z r Z r Z 1 E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x = r 0 0 · ¸ Z 1 Z r Z 1 Z w Z x E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy, 0

0

Z w

Z x

0

0

where ·

Z 1 Z r

Z 1

y =r Z 1

w =0 Z r

x =r Z y

y =r

w =0

¸

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =r w =0 x = r 0 0 · ¸ Z 1 Z r Z 1 Z w Z x + E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy Z 1 Z r

x =y

Z y

¡ ¢ 1 = − w2 −12rx + 2rw + 3r2 − 3x2 dxdwdy 12 y =r w =0 x = r Z 1 Z r Z 1 ¡ ¢ 1 + − w2 −6yx − 12rx + 2rw + 3y2 + 3r2 dxdwdy 12 y =r w =0 x = y ¡ ¢ 1 3 = r 1 + 10r + 3r2 (1 − r )2 , 48 such that · E W (r )

= + =

µZ r Z 0

w 0

¶ µZ W (z) dzdw

1 0

Z x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¡ ¢ 19 6 1 3 167 7 r + r (1 − r ) + r (1 − r ) 10 + 30r + 54r2 + 35r3 2520 180 720 ¢ 1 3¡ r 1 + 10r + 3r2 (1 − r )2 48 ´ 1 3³ r 175 + 980r − 1512r2 + 819r3 − 128r4 . 5040

51

It follows that Cr11r =

+ + = +

³ ´ ¢ 1 2¡ 1 r 1 + 6r − 5r2 + r3 + µ1c τr2 3 + 28r − 27r2 + 10r3 − r4 6 24 µ ³ ´ 1 µ2c τ 2 r2 42 + 805r − 1120r2 + 378r3 + 77r4 − 15r5 2520 ³ ´¶ ¡ ¢ 1 3 r 175 + 980r − 1512r2 + 819r3 − 128r4 + O µ3c τ 3 2520 ³ ´ ¢ 1 2¡ 1 r 1 + 6r − 5r2 + r3 + µ1c τr2 3 + 28r − 27r2 + 10r3 − r4 6 24 ³ ´ ¡ ¢ 1 2 2 µ2c τ r 42 + 980r − 140r2 − 1134r3 + 896r4 − 143r5 + O µ3c τ 3 . 2520

The first term in C111r is · µZ E W (1)

=

Z w

1 0

0

Z r Z 1

Z 1

y =0 Z r

w =0 Z r

x =0 Z r

y =0

w =r

x =r

¶ µZ W (z) dzdw

·

Z w

1 0

Z x 0

¶Z W (v) dvdx

r 0

¸ W (y) dy

¸

Z x

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x = E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z 1 Z w Z x + 2 E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =r 0 0 · ¸ Z r Z 1 Z 1 Z w Z x + E W (1) W ( y ) W (z) dz W (v) dv dxdwdy, 0

0

where Z r Z 1

= 2

y =0

w =r Z 1

x =r Z x

x =r

Z w

¸

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x E W (1) W ( y ) W (z) dz W (v) dv dwdxdy

w =r

Z r Z 1 Z x

Z x

0

0

¢ 1 y 2x3 − 12x2 w + 3yx2 − 6xw2 + 3yw2 dwdxdy 12 y =0 x = r w =r ¡ ¢ 1 2 r (1 − r )2 36 + 67r + 58r2 + 19r3 360

= 2 =

y =0 Z r

·

Z 1



¡

which implies · E W (1)

= + =

µZ

1 0

Z w 0

¶ µZ W (z) dzdw

1 0

Z x 0

¶Z W (v) dvdx

¡ ¢ 167 7 1 3 r + r (1 − r ) −5 + 25r + 67r2 + 42r3 2520 360 ¡ ¢ 1 2 r (1 − r )2 36 + 67r + 58r2 + 19r3 360 ´ 1 2³ r 252 − 70r − 70r2 + 84r3 − 35r4 + 6r5 . 2520 52

r 0

¸ W (y) dy

The second term is · µZ r Z E W (1)

=

0 1

Z 1 Z r

Z

y =0 Z r

w =0 Z r

x =0 Z r

y =r

w =0

x =r

¶ µZ

w 0

W (z) dzdw

·

Z w

1 0

Z x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¸

Z x

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z 1 Z r Z r Z w Z x E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =r w =0 x =0 0 0 · ¸ Z w Z x Z r Z r Z 1 E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x = r 0 0 · ¸ Z 1 Z r Z 1 Z w Z x E W (1) W ( y ) W (z) dz W (v) dv dxdwdy.

= + + +

0

0

Z w

Z x

0

0

Hence, since ·

Z 1 Z r

Z 1

y =r Z 1

w =0 Z r

x =r Z y

y =r

w =0

y =r

w =0

¸

E W (1) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x = E W (1) W ( y ) W (z) dz W (v) dv dxdwdy y = r w =0 x = r 0 0 · ¸ Z 1 Z r Z 1 Z w Z x + E W (1) W ( y ) W (z) dz W (v) dv dxdwdy

= + =

Z 1 Z r Z 1 Z r

x =y

Z y ¢ 1 2¡ w 3yx − yw + 3x2 dxdwdy x =r

Z 1

6

¢ 1 2¡ w −12yx + 2yw + 3y2 − 3x2 dxdwdy 12 y = r w =0 x = y ¡ ¢ 1 3 r 13 + 19r + 10r2 (1 − r )2 , 144



we obtain · E W (1)

= + =

µZ r Z 0

w 0

¶ µZ W (z) dzdw

1 0

Z x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¡ ¢ 1 5 1 3 167 7 r + r (29r + 9) (1 − r ) + r (1 − r ) −5 + 25r + 67r2 + 42r3 2520 360 720 ¢ 1 3¡ 2 r 13 + 19r + 10r2 (1 − r ) 144 ´ 1 3³ r 420 − 35r − 105r2 + 70r3 − 16r4 , 5040

53

which in turn implies C111r =

+ + = +

1 2 13 r (4 − r ) + µ1c τr2 6 24 µ ³ ´ 1 µ2c τ 2 r2 252 − 70r − 70r2 + 84r3 − 35r4 + 6r5 2520 ³ ´¶ ¡ ¢ 1 3 2 3 4 r 420 − 35r − 105r + 70r − 16r + O µ3c τ 3 2520 13 1 2 r (4 − r ) + µ1c τr2 6 24 ³ ´ ¡ ¢ 1 2 2 µ2c τ r 252 + 350r − 105r2 − 21r3 + 35r4 − 10r5 + O µ3c τ 3 . 2520

Finally, we have Cr111 , where · µZ 1 Z w ¶ µZ 1 Z x ¶Z 1 ¸ E W (r ) W (z) dzdw W (v) dvdx W (y) dy 0 0 0 0 0 · ¸ Z 1 Z 1 Z 1 Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z r Z r Z r Z w Z x = E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x =0 0 0 · ¸ Z 1 Z r Z r Z w Z x + E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y = r w =0 x =0 0 0 · ¸ Z r Z r Z 1 Z w Z x + 2 E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y =0 w =0 x = r 0 0 · ¸ Z 1 Z r Z 1 Z w Z x + 2 E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy y = r w =0 x =r 0 0 · ¸ Z w Z x Z r Z 1 Z 1 E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy + y =0 w =r x =r 0 0 · ¸ Z 1 Z 1 Z 1 Z w Z x + E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy, y =r

w =r

x =r

0

54

0

with Z 1 Z 1

·

Z 1

Z w

¸

Z x

E W (r ) W ( y ) W (z) dz W (v) dv dxdwdy 0 0 · ¸ Z w Z x = 2 E W (r ) W ( y ) W (z) dz W (v) dv dwdxdy y =r x =r w =r 0 0 · ¸ Z 1 Z x Z y Z w Z x + 2 E W (r ) W ( y ) W (z) dz W (v) dv dwdydx x =r y =r w =r 0 0 · ¸ Z w Z x Z 1 Z x Z w E W (r ) W ( y ) W (z) dz W (v) dv dydwdx + 2 y =r w =r Z 1 Z y

x =r

= 2 + 2

x =r Z x

w =r

y =r

Z 1 Z y Z x y =r

x =r

w =r

Z 1 Z x Z y x =r 2

y =r w =r 3

0



0

¢ 1 ¡ 3 r 2x − 12x2 w + 3rx2 − 6xw2 + 3rw2 dwdxdy 12

1 r (−12y3 + 12y2 w + 3ry2 + 6yx2 − 6ryx 12

+ 6yw + 4x − 3rw2 )dwdydx Z 1 Z x Z w 1 + 2 − r (3y2 x − 3y2 r + 3y2 w − 3x2 w 6 x =r w =r y =r + x3 + 3yrx + 3yrw − 12yxw)dydwdx ¢ 1 ¡ = r 25 + 42r + 21r2 + 12r3 (1 − r )3 , 120 which implies

·

µZ

E W (r )

= + + =

1 0

Z w 0

¶ µZ W (z) dzdw

1 0

Z x 0

¶Z W (v) dvdx

1 0

¸ W (y) dy

¡ ¢ 19 6 1 3 167 7 r + r (1 − r ) + r (1 − r ) 10 + 30r + 54r2 + 35r3 2520 180 360 ¢ ¡ ¢ 1 3¡ 1 2 r 1 + 10r + 3r2 (1 − r )2 + r (1 − r )2 2 + 39r + 16r2 + 3r3 24 120 ¢ 1 ¡ 2 3 r 25 + 42r + 21r + 12r (1 − r )3 120 ´ 1 ³ r 525 − 651r + 280r2 + 770r3 − 1617r4 + 1078r5 − 218r6 , 2520

giving ¡ ¢ 1 1 r (2 − r ) + µ1c τr 30 − 21r + 4r2 2 24 ³ ´ 1 2 + µ2c τ r 525 − 651r + 280r2 + 770r3 − 1617r4 + 1078r5 − 218r6 840 ¡ ¢ + O µ3c τ 3 .

Cr111 =

By adding everything together, " µZ ¶ # E U (r )

r

0

3

Z (s) ds

¡ ¢ 1 µ1c τr4 8 − 24r + 7r2 (1 − r )2 24 ¡ ¢ ¡ ¢ 1 µ2c τ 2 r4 193 + 170r − 114r2 (1 − r )4 + O µ3c τ 3 , 420

= − −

55

giving Z 1 0

or

Z 1 0

"

µZ

E U (r )

0

" E

r

µZ c3i U

(r )

¶3 #

r 0

dr =

Z (s) ds

¡ ¢ 97 7 µ1c τ − µ2c τ 2 + O µ3c τ 3 , 4320 103950

¶3 # dr =

Z (s) ds

¡ ¢ 7 97 µ4c τ − µ5c τ 2 + O µ6c τ 3 . 4320 103950

This completes the proof of (c). As for (d), since Z r 0

Z (s)ds =

Z rµ 0

W1 (s) −

Z 1 0

¶ W1 (t) dt ds =

Z r 0

W1 (s) ds − r

Z 1 0

W1 (s) ds

we have · 3

= = − + −

µZ

r

¶¸

E U (r ) Z (s)ds 0 · µZ r ¶¸ Z 1 E (W (r ) − rW (1))3 W1 (s) ds − r W1 (s) ds 0 0 · ¸ · ¸ Z r Z 1 3 3 E W (r ) W1 (s) ds − rE W (r ) W1 (s) ds 0 0 · ¸ · ¸ Z r Z 1 2 2 2 3rE W (r ) W (1) W1 (s) ds + 3r E W (r ) W (1) W1 (s) ds 0 0 · ¸ · ¸ Z r Z 1 2 2 2 3 3r E W (r ) W (1) W1 (s) ds − 3r E W (r ) W (1) W1 (s) ds 0 0 · ¸ · ¸ Z r Z 1 3 3 3 4 r E W (1) W1 (s) ds + r E W (1) W1 (s) ds 0

0

2

2

= Drrrr − rDrrr1 − 3rD1rrr + 3r D1rr1 + 3r D11rr − 3r3 D11r1 − r3 D111r + r4 D1111 , where ·

¸

Z u

Drstu = E W (r ) W (s) W (t) W1 (v) dv 0 · Z uµ Z = E W (r ) W ( s ) W ( t ) W ( v ) + ci τ 0

v 0

¶¸

=

W (w) dw

Z u 0

grstv dv,

with ·

µ

grstv = E W (r ) W (s) W (t) W (v) + ci τ

Z v

·

0

¶¸ W (w) dw

= E [W (r ) W (s) W (t) W (v)] + ci τE W (r ) W (s) W (t)

Z v 0

¸ W (w) dw .

Consider Drrrr . By using the same technique as in the proof of (a)–(c), for r ≥ v, 3 grrrv = 3vr + µ1c τv2 r, 2 56

suggesting Drrrr =

Z r 0

grrrv dv =

Z rµ 0

¶ 3 1 2 3vr + µ1c τv r dv = r3 (3 + µ1c τr ) , 2 2

which in turn implies D1111 =

1 (3 + µ1c τ ) . 2

In order to obtain Drrr1 we use the fact that for r < v, 3 grrrv = 3r2 − µ1c τr2 (r − 2v) , 2 which, together with the above results, yilds Drrr1 =

=

¶ Z 1µ 1 3 3 2 2 grrrv dv + grrrv dv = r (3 + ar ) + 3r − µ1c τr (r − 2v) dv 2 2 0 r r 1 3 3 3 1 r (3 + µ1c τr ) − r2 (r − 1) (2 + µ1c τ ) = r2 (2 − r ) + µ1c τr2 (3 − 3r + r2 ). 2 2 2 2

Z r

Z 1

Next, consider D1rrr . We have D1rrr =

Z r 0

g1rrv dv,

where, for r ≥ v, 3 g1rrv = 3vr + µ1c τv2 r, 2 such that D1rrr =

Z r 0

g1rrv dv =

Z rµ 0

¶ 3 1 2 3vr + µ1c τv r dv = r3 (3 + µ1c τr ) . 2 2

For r < v ≤ 1, we have 1 g1rrv = r (v + 2r ) − µ1c τr (2r2 − 4vr − v2 ), 2 suggesting D1rr1 =

= = =

Z r

g1rrv dv +

Z 1

g1rrv dv ¶ Z 1µ 1 3 1 2 2 r (3 + µ1c τr ) + r (v + 2r ) − µ1c τr (2r − 4vr − v ) dv 2 2 r ¡ ¡ ¢¢ 1 3 1 r (3 + µ1c τr ) − r (r − 1) 3 + 15r + µ1c τ 1 + 7r + r2 2 6 ¢ ¡ ¢ 1 ¡ 1 r 1 + 4r − 2r2 + µ1c τr 1 + 6r − 6r2 + 2r3 . 2 6 0

r

57

D11rr can be written as D11rr =

Z r 0

g11rv dv,

where, for r ≥ v, 1 g11rv = v (1 + 2r ) + µ1c τv2 (1 + 2r ) , 2 and therefore D11rr =

Z r 0

g11rv dv =

Z rµ 0

¶ 1 1 2 v (1 + 2r ) + µ1c τv (1 + 2r ) dv = r2 (2r + 1) (3 + µ1c τr ) . 2 6

For r < v ≤ 1, we have ¡ ¢ 1 g11rv = r (1 + 2v) + µ1c τr 2v2 + 2v − r , 2 which we can use to obtain D11r1 =

Z r

= = =

0

g11rv dv +

Z 1 r

g11rv dv

¶ Z 1µ ¡ 2 ¢ 1 2 1 r (2r + 1) (3 + µ1c τr ) + r (1 + 2v) + µ1c τr 2v + 2v − r dv 6 2 r ¡ ¡ ¢¢ 1 2 1 r (2r + 1) (3 + µ1c τr ) − r (r − 1) 12 + 6r + µ1c τ 5 + 2r + 2r2 6 6 ¡ ¢ 1 1 r (4 − r ) + µ1c τr 5 − 3r + r2 . 2 6

It remains to consider D111r , which can be written as D111r =

Z r 0

g111v dv,

where, for v ≤ 1, 3 g111v = 3v + µ1c τv2 , 2 giving D111r =

Z rµ 0

¶ 3 1 2 3v + µ1c τv dv = r2 (3 + µ1c τr ) . 2 2

58

By adding all the results, · µZ r ¶¸ 3 E U (r ) Z (s)ds = 0

− + + − −

µ ¶ ¡ ¢ 1 3 3 2 1 2 2 r (3 + µ1c τr ) − r r (2 − r ) + µ1c τr 3 − 3r + r 2 2 2 1 3r r3 (3 + µ1c τr ) 2µ ¶ ¢ 1 ¡ ¢ 1 ¡ 3r2 r 1 + 4r − 2r2 + µ1c τr 1 + 6r − 6r2 + 2r3 2 6 1 3r2 r2 (2r + 1) (3 + µ1c τr ) 6µ ¶ ¡ ¢ 1 3 1 2 r (4 − r ) + µ1c τr 5 − 3r + r 3r 2 6 1 1 r3 r2 (3 + µ1c τr ) + r4 (3 + µ1c τ ) = −µ1c τr3 (1 − r )3 , 2 2

such that ·Z E

1 0

U (r )

3

µZ

r 0



¸

Z (s)ds dr = −µ1c τ

Z 1 0

r3 (1 − r )3 dr = −

1 µ1c τ. 140

¥

This establishes (d).

59

1 Results

Sep 27, 2010 - 0. W(s)ds,. U(r) = W(r) − rW(1),. Z(r) = W1(r) −. ∫. 1. 0. W1(s)ds, where τ = T1−δ. Nη . This is the same notation used in the main paper with the dependence upon i in W(r), W1(r), U(r) and Z(r) suppressed. Lemmas A.2 and A.5 can be stated in the following way. Lemma A.2. Under the above conditions,.

253KB Sizes 1 Downloads 243 Views

Recommend Documents

Stage 1 - Desired Results
344. T.ELA8W3.21 : The student selects and uses a variety of technology tools to locate, analyze, synthesize, evaluate and/or apply information to accomplish a content specific task. T.ELA8W4.6 : The student uses brainstorming/webbing software in pla

2016 mssm results - final results (#1 - #90).pdf
12 Parvin Rajendran 16 MEL 2:22.46. 13 Yee Zhe NG 16 MEL 2:22.61. Page 3 of 15. 2016 mssm results - final results (#1 - #90).pdf. 2016 mssm results - final ...

Results Day 1.pdf
Clifton Mayer Gandha. Joshea Hanzel Ariawan. Milanesa Briana Susanto. Ryon Audric Tan. Round Robin Format. POOL B. Players Preston Dharmadi Karen Yap Matthew Dharma Surjaputra Atharva Yadav Sasha Seow Ai Wei Jacob Bryant Dinata Rene Kadir. Preston Dh

AAI-Results-1.pdf
Page 1 of 1. AIRPORTS AUTHORITY OF INDIA. RAJIV GANDHI BHA WAN, SAFDARJUNG AIRPORT. NEW DELHI-110003. FIN \L RESULT OF DIRECT ...

Reventon Matchplay results 2018 Series 1
Thursday April 19th. 7:00 PM. 3. 3, 4. Thursday April 26th. 7:00 PM. 3. 5, 6. Saturday. April 28th. 10:00 AM 1 and 2. 7, Finals reventon.com.au. Sunday. April 29th.

Chapter 1 Recent Results
1.1.1 Introduction. With the large complexity they are often associated with, networks impose a challenge in many areas of research and visualization plays a ...

2017 Results Canada Cup 1 - Day 1.pdf
2017 Results - SAUCIER, Amelia STEPHENSON. Pointe-Claire 2:14.073 0:08.841. Page 3 of 22. 2017 Results Canada Cup 1 - Day 1.pdf. 2017 Results Canada ...

2017 Results Canada Cup 1 - Day 1.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. 2017 Results ...

2015 BHFR Results final 1.pdf
195 708 Harry Dannock Male U15 Male 23:44. Page 3 of 12. 2015 BHFR Results final 1.pdf. 2015 BHFR Results final 1.pdf. Open. Extract. Open with. Sign In.

2017 Results Canada Cup 1 - Day 2.pdf
2017 Results - ... Natalie STRINGER Ontario 2:29.765 0:22.688. Page 3 of 24. 2017 Results Canada Cup 1 - Day 2.pdf. 2017 Results Canada Cup 1 - Day 2.pdf.

Thesis Results (Part 1) - Ballistic Relaxation ...
They are the transitional material between dust and meter sized stones. They present a geological record of the conditions present in the protosolar nebula.

MEET 4E - UAlbany Results 1-5-14.pdf
3 4 X 200 VA - Scratched 02:19.6 Gleason, Quinn X Dickenson, Justin. Leg 1 Ellis, Austin, Scratched MacFarlane, Paul. Scratch ran. 1000 Van Epps, Justin.

Arctic Cross Race#1 results v3
Oct 9, 2016 - 2) Tony Brugliera, 9 laps, 67:39;. 3) Andy Pohl, 8 laps, 61:27;. 4) Patrick Crabb, 8 laps, 63:09;. 5) Ed Wise, 8 laps, 66:11;. 6) John Lynn, 8 laps, 66:15; ... 16) Mark Stewart, 5 laps, 48:53;. 17) Adam Reich, 5 laps, 48:57;. 18) John I

2017 Results Canada Cup 1 - Day 2.pdf
2017 Results - Page 1 of 24. 7/3/2017 Regatta Results. http://canoekayak.ca/wp-content/uploads/2017/07/2017-Canada-Cup-1-Ottawa_Results_Day_2-3.htm 1/ ...

Proofs of the Results in [1]
The coverage probability for JT with MRC can be expressed as. PMRC = P(SIR1 > ... n1. )3−n1 ∏ i>3. 1. 1 + Dα n1(θ − Z)+ xi −α.... =EΦ,Z [(f1(D))3−n1 ∏ i>3 f1(xi )]. (5) ..... ∼(1 − 4G(θ, 0) + 12(G(θ, 0)2))(1 + 2θ)(1 − 2θ + 3

Lead in Water Test Results 2 (1).pdf
SAMPLE TYPE: CONTACT NAME: SHAWN THATCHER ... Comments: Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ...

APN Full Year Results - Presentation (1).pdf
Page 2 of 33. 2013 Full year results. Page. PRESENTATION OVERVIEW. • 2013 Full year results presentation. • Acquisition of Australian Radio Network and ...

@Road Race Results Caribbean Junior Championships 2011-1.pdf ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. @Road Race ...

Section 1 Week by Week Results & Power Ratings - 2015 (Thru ...
Horace Greeley W 2 - 0 0.167 0.000 ... Horace Greeley W 2 - 2 0.167 0.000 ... 1 Week by Week Results & Power Ratings - 2015 (Thru Week # 6) - AA.pdf. Page 1 ...

1. Introduction 2. Method 3. Results
The reconnection rate (electric eld at the X-Line) should also approach a constant value. Mass ux and reconnection rate are tracked to determine the state of the reconnection process. Attention is paid to the evolution of the current sheet structure.

Regatta - Race 1 Results, Regatta Network.pdf
Regatta Network is a registered Trademark of Regatta Network Inc. Page 2 of 2. Regatta - Race 1 Results, Regatta Network.pdf. Regatta - Race 1 Results, ...

Rnd 1 Results PM Event results.pdf
20 400 75 Simon Howard 9 12:30.6 01:49.0 39:03.6. 21 198 29 Liam Radcliffe 9 09:04.8 07:07.0 44:21.6. DNF 200 50 Sam Winterburn 11 07:39.6 55:00.0 13: ...