Arithmetic series General (kth) term, last (nth) term, l = Sum to n terms,

W

or

uk = a + (k – 1)d un = a + (n – l)d Sn = 1–2 n(a + l) = 1–2 n[2a + (n – 1)d]

Geometric series General (kth) term, Sum to n terms, Sum to infinity

ld

uk = a r k–1 a(1 – r n) a(r n – 1) Sn = –––––––– = –––––––– 1–r r–1

Of

()

M

()

at

() ( ) (

2

h) e m

(x – a)2 (x – a)rf(r)(a) = f(a) + (x – a)f'(a) + –––––– f"(a) + ... + –––––––––– + ... r! 2!

f(a + x)

x2 xr = f(a) + xf'(a) + –– f"(a) + ... + –– f(r)(a) + ... 2! r!

ln(1 + x)

x2 x3 xr = x – –– + –– – ... + (–1)r+1 –– + ... , – 1 < x < 1 2 3 r

sin x

x3 x5 x 2r+1 = x – –– + –– – ... + (–1)r –––––––– + ... , all x 3! 5! (2r + 1)!

cos x

x2 x4 x 2r = 1 – –– + –– – ... + (–1)r –––– + ... , all x 2! 4! (2r)!

arctan x

x3 x5 x 2r+1 = x – –– + –– – ... + (–1)r –––––– + ... , – 1 < x < 1 3 5 2r + 1

at

sinh x

General case n(n – 1) 2 n(n – 1) ... (n – r + 1) ––––––––––––––––– xr + ... , |x| < 1, (1 + x)n = 1 + nx + ––––––– x + ... + 2! 1.2 ... r n∈R Logarithms and exponentials exln a = ax

f(x)

logbx loga x = ––––– logba

Numerical solution of equations f(xn) Newton-Raphson iterative formula for solving f(x) = 0, xn+1 = xn – –––– f'(xn) Complex Numbers {r(cos θ + j sin θ)}n = r n(cos nθ + j sin nθ) ejθ = cos θ + j sin θ 2πk j) for k = 0, 1, 2, ..., n – 1 The roots of zn = 1 are given by z = exp( –––– n Finite series n n 1 1 ∑ r2 = – n(n + 1)(2n + 1) ∑ r3 = – n2(n + 1)2 4 6 r=1 r=1

ics

ALGEBRA

n n n (a + b)n = an + 1 an – 1 b + 2 an –2 b2 + ... + r an–r br + ... bn , n ∈ N where n n n n+1 n! n + r+1 = r+1 r = Cr = –––––––– r r!(n – r)!

()

x2 xr = f(0) + xf'(0) + –– f"(0) + ... + –– f (r)(0) + ... 2! r!

x2 xr ex = exp(x) = 1 + x + –– + ... + –– + ... , all x 2! r!

a ,–1
Binomial expansions When n is a positive integer

()

Infinite series f(x)

x3 x5 x 2r+1 = x + –– + –– + ... + –––––––– + ... , all x 3! 5! (2r + 1)!

cosh x

x2 x4 x 2r = 1 + –– + –– + ... + –––– + ... , all x 2! 4! (2r)!

artanh x

x3 x5 x 2r+1 = x + –– + –– + ... + –––––––– + ... , – 1 < x < 1 3 5 (2r + 1)

&

Hyperbolic functions

St

at

cosh2x – sinh2x = 1, sinh2x = 2sinhx coshx, cosh2x = cosh2x + sinh2x arcosh x = ln(x + x 2 + 1 ), 1 + x 1 artanh x = –2 ln ––––– 1 – x , |x| < 1

arsinh x = ln(x +

(

)

ist ics(

Matrices Anticlockwise rotation through angle θ, centre O: Reflection in the line y = x tan θ :

x 2 – 1 ), x > 1

cos θ sin θ

2θ ( cos sin 2θ

–sin θ cos θ

)

sin 2θ –cos 2θ

)

Cosine rule

A

b2 + c2 – a2 (etc.) cos A = ––––––––––

W

2bc

c

a2 = b2 + c2 –2bc cos A (etc.)

Trigonometry

B

or

Perpendicular distance of a point from a line and a plane b

a

Line: (x1,y1) from ax + by + c = 0 :

a2 + b2 n1α + n2β + n3γ + d Plane: (α,β,γ) from n1x + n2y + n3z + d = 0 : –––––––––––––––––– √(n12 + n22 + n32)

C

sin (θ ± φ) = sin θ cos φ ± cos θ sin φ

ld

cos (θ ± φ) = cos θ cos φ 7 sin θ sin φ

Vector product

i a1 b1 a2b3 – a3b2 a × b = |a| |b| sinθ ^n = j a2 b2 = a3b1 – a1b3 k a3 b3 a1b2 – a2b1

tan θ ± tan φ tan (θ ± φ) = –––––––––––– , [(θ ± φ) ≠ (k + W)π] 1 7 tan θ tan φ

cos θ + cos φ = 2 cos 1–2 (θ + φ) cos cos θ – cos φ = –2 sin 1–2 (θ + φ) sin

|

M

at

sin θ – sin φ = 2 cos 1–2 (θ + φ) sin 1–2 (θ – φ)

a × (b × c) = (c . a) b – (a . b) c

he m

1– 2 (θ – φ) 1– 2 (θ – φ)

3 Vectors and 3-D coordinate geometry (The position vectors of points A, B, C are a, b, c.)

The position vector of the point dividing AB in the ratio λ:µ µa + λb is ––––––– (λ + µ) Line:

)

a1 b1 c1 a. (b × c) = a2 b2 c2 = b. (c × a) = c. (a × b) a3 b3 c3

(1 + t )

sin θ + sin φ = 2 sin 1–2 (θ + φ) cos 1–2 (θ – φ)

| |( |

Cartesian equation of line through A in direction u is x – a1 y – a2 z – a3 =t = –––––– = –––––– –––––– u1 u2 u3

( )

Conics Ellipse

Parabola

Hyperbola

Rectangular hyperbola

Standard form

y2 x2 + –– –– =1 b2 a2

y2 = 4ax

y2 x2 – –– –– =1 b2 a2

x y = c2

Parametric form

(acosθ, bsinθ)

(at2, 2at)

(asecθ, btanθ)

(ct, –c–) t

e<1 b2 = a2 (1 – e2)

e=1

e>1 b2 = a2 (e2 – 1)

e = √2

(± ae, 0)

(a, 0)

(± ae, 0)

(±c√2, ±c√2)

x = ± –a e

x = –a

x = ± –ae

x + y = ±c√2

none

none

y x a– = ± –b

x = 0, y = 0

at

ics

Eccentricity

Foci

Directrices Asymptotes

&

St

at

a.u The resolved part of a in the direction u is ––––– |u|

Any of these conics can be expressed in polar coordinates (with the focus as the origin) as: where l is the length of the semi-latus rectum.

Plane: Cartesian equation of plane through A with normal n is n1 x + n2y + n3z + d = 0 where d = –a . n

Mensuration

The plane through non-collinear points A, B and C has vector equation r = a + s(b – a) + t(c – a) = (1 – s – t) a + sb + tc The plane through A parallel to u and v has equation r = a + su + tv

Cone :

Sphere : Surface area = 4π r2

l – = 1 + e cos θ r

ist ics

Curved surface area = π r × slant height

TRIGONOMETRY, VECTORS AND GEOMETRY

Of

(1 – t2) 2t , cos θ = –––––– For t = tan 1–2 θ : sin θ = –––––– 2 2 (1 + t )

ax1 + by1 + c

Differentiation f(x) tan kx sec x cot x cosec x arcsin x

W

or

arccos x

ld

arctan x sinh x cosh x tanh x

Of

f'(x) ksec2 kx sec x tan x –cosec2 x –cosec x cot x 1 ––––––– √(1 – x2) –1 ––––––– √(1 – x2) 1 ––––– 1 + x2 cosh x sinh x sech2 x 1 ––––––– √(1 + x2)

Integration f(x) sec2 kx tan x cot x cosec x

M

at

arsinh x

artanh x 4

he m

du dv v ––– – u ––– dx dx u dy Quotient rule y = – , ––– = 2 v v dx b ––– a ∫a ydx ≈ 1–2 h{(y0 + yn) + 2(y1 + y2 + ... + yn –1)}, where h = ––– n b

Integration by parts Area of a sector

Arc length

dv du dx = uv – ∫ v ––– dx ∫ u ––– dx dx A = 1–2 ∫ r dθ (polar coordinates) A = 1–2 ∫ (x˙y – yx˙) dt (parametric form) s = ∫ √ (x˙ + y˙ ) dt (parametric form) dy s = ∫ √ (1 + [ –––] ) dx (cartesian coordinates) dx dr s = ∫ √ (r + [ –––] ) dθ (polar coordinates) dθ 2

2

2

2

2

2

at

ics

Surface area of revolution

Curvature

&

| (

)|

| | x arcsin ( – a ) , |x| < a 1 x – a arctan( – a) 1 1 x a+x –– ln ––––– = – artanh ( – a ) , |x| < a 2a | a – x | a

cosh x sinh x ln cosh x x 2 2 arsinh – a or ln (x + x + a ),

() x arcosh ( – a ) or ln (x + x S = 2π∫y ds = 2π∫y√(x˙ S = 2π∫x ds = 2π∫x√(x˙

2

– a 2 ), x > a , a > 0

2

+ y˙ 2) dt

2

+ y˙ 2) dt

x

y

d2y ––– dψ x˙ ÿ – x¨ y˙ dx2 κ = ––– = –––––––– 3/2 = ––––––––––––– 2 2 ds dy 2 3/2 (˙x + y˙ ) 1 + –– dx

St ( [ ] ) at ist i

1 Radius of curvature ρ = –– κ, L'Hôpital’s rule

Centre of curvature c = r + ρ n^

If f(a) = g(a) = 0 and g'(a) ≠ 0 then

f(x) f'(a) Lim –––– = –––– x ➝a g(x) g'(a)

cs

Multi-variable calculus ∂g/∂x ∂w ∂w ∂w grad g = ∂g/∂y For w = g(x, y, z), δw = ––– δx + ––– δy + ––– δz ∂x ∂y ∂z ∂g/∂z

( )

CALCULUS

1 ––––––– √(x2 – 1) 1 ––––––– (1 – x2)

arcosh x

Trapezium rule

sec x 1 –––––– x2 – a2 1 ––––––– √(a2 – x2) 1 –––––– a2 + x2 1 –––––– a2 – x2 sinh x cosh x tanh x 1 ––––––– √(a2 + x2) 1 ––––––– √(x2 – a2)

∫f(x) dx (+ a constant) (l/k) tan kx ln |sec x| ln |sin x| x –ln |cosec x + cot x| = ln |tan – 2| x π ln |sec x + tan x| = ln tan – + – 2 4 1 x–a –– ln ––– x +–– a 2a

Centre of mass (uniform bodies)

Moments of inertia (uniform bodies, mass M)

W

Triangular lamina: Solid hemisphere of radius r:

or

Hemispherical shell of radius r:

ld

Solid cone or pyramid of height h:

Of

Sector of circle, radius r, angle 2θ:

2 – along median from vertex 3 3 – r from centre 8 1 – r from centre 2 1 – h above the base on the 4

Thin rod, length 2l, about perpendicular axis through centre: Rectangular lamina about axis in plane bisecting edges of length 2l: Thin rod, length 2l, about perpendicular axis through end: Rectangular lamina about edge perpendicular to edges of length 2l:

line from centre of base to vertex

Rectangular lamina, sides 2a and 2b, about perpendicular 1 – M(a2 + b2) axis through centre: 3

2r sin θ ––––––– from centre 3θ

M

Hoop or cylindrical shell of radius r about perpendicular axis through centre:

r sin θ from centre Arc of circle, radius r, angle 2θ at centre: –––––––

θ

at

Hoop of radius r about a diameter:

1 – h above the base on the 3 line from the centre of

Conical shell, height h:

Solid sphere of radius r about a diameter:

5

at

Spherical shell of radius r about a diameter:

Motion in a circle Transverse velocity: v = rθ˙ v2 Radial acceleration: –rθ˙ 2 = – –– r Transverse acceleration: v˙ = rθ¨ General motion Radial velocity: Transverse velocity: Radial acceleration: Transverse acceleration:

Disc of radius r about a diameter:

r˙ rθ˙

r¨ – rθ˙ 2 1 d rθ¨ + 2r˙θ˙ = – –– (r2θ˙) r dt

Moments as vectors The moment about O of F acting at r is r × F

ics

1 – Mr2 2 1 – Mr2 2 1 – Mr2 4 2 – Mr2 5 2 – Mr2 3

IA = IG + M(AG)2

Parallel axes theorem:

&

Mr2

Iz = Ix + Iy (for a lamina in the (x, y) plane)

Perpendicular axes theorem:

St

at

ist ics

MECHANICS

he m

Disc or solid cylinder of radius r about axis:

base to the vertex

Motion in polar coordinates

1 – Ml2 3 1 – Ml2 3 4 – Ml2 3 4 – Ml2 3

Probability

Product-moment correlation: Pearson’s coefficient ∑ xi yi –xy Sxy Σ( xi – x )( yi – y ) n r= = = 2 2 Sxx Syy  ∑ xi 2   ∑ yi 2  Σ( xi – x ) Σ( yi – y ) − x2 − y2     n  n

P(A∪B) = P(A) + P(B) – P(A∩B) P(A∩B) = P(A) . P(B|A) P(B|A)P(A) P(A|B) = –––––––––––––––––––––– P(B|A)P(A) + P(B|A')P(A')

W

[

or

P(Aj)P(B|Aj) Bayes’ Theorem: P(A j |B) = –––––––––––– ∑P(Ai)P(B|Ai)

ld

Populations Discrete distributions

Of

Rank correlation: Spearman’s coefficient 6∑di2 rs = 1 – –––––––– n(n2 – 1)

X is a random variable taking values xi in a discrete distribution with P(X = xi) = pi Expectation: µ = E(X) = ∑xi pi σ2 = Var(X) = ∑(xi – µ)2 pi = ∑xi2pi – µ2 Variance: For a function g(X): E[g(X)] = ∑g(xi)pi

Regression

M

at

Cumulative x distribution function F(x) = P(X < x) = ∫–∞f(t)dt

n

, Syy = ∑(yi – y )2 = ∑yi2 –

(∑xi)(∑yi) Sxy = ∑(xi – x )(yi – y ) = ∑xi yi – ––––––––– n Covariance

Sxy = ∑( xi – x )( yi – y ) = ∑ xi yi – x y –––– n n n

ics

1 ∑(x – x )2f S2 for population variance σ 2 where S2 = –––– i i n–1

&

Probability generating functions For a discrete distribution

For a sample of n pairs of observations (xi, yi) (∑xi)2 –––––

at

(∑yi)2 ––––– n

,

G(t) = E(tX)

St

at

E(X) = G'(1); Var(X) = G"(1) + µ – µ2

ist ics

GX + Y (t) = GX (t) GY (t) for independent X, Y Moment generating functions: MX(θ) =

E(eθX)

E(X) = M'(0) = µ;

E(Xn) = M(n)(0)

Var(X) = M"(0) – {M'(0)}2

MX + Y (θ) = MX (θ) MY (θ) for independent X, Y

STATISTICS

6

X is a continuous variable with probability density function (p.d.f.) f(x) Expectation: µ = E(X) = ∫ x f(x)dx Variance: σ2 = Var (X) = ∫(x – µ)2 f(x)dx = ∫x2 f(x)dx – µ2 For a function g(X): E[g(X)] = ∫g(x)f(x)dx

Sxx = ∑(xi – x )2 = ∑xi2 –

Least squares regression line of y on x: y – y = b(x – x ) ∑ xi yi –xy Sxy ∑(xi – x) (yi – y ) n = ––––––––––––––– = b = ––– Sxx ∑ xi 2 ∑(xi – x )2 – x2 n Estimates Unbiased estimates from a single sample σ2 X for population mean µ; Var X = –– n

he m

Continuous distributions

Correlation and regression

]

Regression

Markov Chains pn + 1 = pnP Long run proportion p = pP

W

or

Bivariate distributions Covariance Cov(X, Y) = E[(X – µX)(Y – µY)] = E(XY) – µXµY

ld

Cov(X, Y) ρ = –––––––– Product-moment correlation coefficient σX σY Sum and difference Var(aX ± bY) = a2Var(X) + b2Var(Y) ± 2ab Cov (X,Y) If X, Y are independent: Var(aX ± bY) = a2Var(X) + b2Var(Y) E(XY) = E(X) E(Y) Coding X = aX' + b ⇒ Cov(X, Y) = ac Cov(X', Y') Y = cY ' + d

Of

α + βf(xi) + εi α + βxi + γzi + εi

∑(yi – a –

εi ~ N(0, σ2)

Ti2 T 2 SSB = ∑ni ( x i – x )2 = ∑ ––– ni – –– n i i x )2 =

∑ ∑ xij i j

2

2 –– – T n

2 2

czi)2

3

a, b, c are estimates for α, β, γ.

b−β ~ tn – 2 σˆ 2 / Sxx

)

σ 2∑xi2 a = y – b x , a ~ N α, ––––––– nS

(

xx

RSS σ^2 = n–––– –p

)

(x0 – x )2 a + bx0 ~ N(α + βx0, σ2 1 + ––––––– – n Sxx 2 (Sxy) RSS = Syy – ––––– = Syy (1 – r2) Sxx

{

at

}

Randomised response technique

ics

–y – (1 – θ)

n E(p^) = –––––––––– (2θ – 1)

Factorial design

&

[(2θ – 1) p + (1 – θ)][θ – (2θ – 1)p]

Var(p^) = –––––––––––––––––––––––––––––– 2 n(2θ – 1)

St

Interaction between 1st and 2nd of 3 treatments (–)

{

at

(Abc – abc) + (AbC – abC) (ABc – aBc) + (ABC – aBC) ––––––––––––––––––––– – –––––––––––––––––––––– 2 2

Exponential smoothing

ist ics

}

y^n+1 = α yn + α(1 – α)yn–1 + α(1 – α)2 yn–2 + ... + α(1 – α)n–1 y1 + (1 – α)ny0 ^y = y^ + α(y – y^ ) n n n+1 n y^n+1 = α yn + (1 – α) y^n

STATISTICS

7

One-factor model: xij = µ + αi + εij, where εij ~ N(0,σ2)

∑(yi – a – bxi –

(

he m

No. of parameters, p

bf(xi))2

For the model Yi = α + βxi + εi, Sxy σ2 , b = ––– , b ~ N β, ––– Sxx Sxx

M

Analysis of variance

i j

RSS ∑(yi – a – bxi)2

at

}

SST = ∑ ∑ (xij –

Yi α + βxi + εi

W

Description

Pearson’s product moment correlation test

or

ld

∑ xi yi –xy n  ∑ xi 2    ∑ yi 2 – x2 – y2     n  n

Of

8

x–µ σ/ n

t-test for a mean

x–µ s/ n

t-test for paired sample

Normal test for the difference in the means of 2 samples with different variances



(f

o

– fe )

( x – y ) – ( µ1 – µ2 ) 1 1 + s n1 n2

t-test for the difference in the means of 2 samples

at

N(0, 1)

tn – 1

2

( x1 – x2 ) – µ s/ n

χ 2v

at

Wilcoxon Rank-sum (or Mann-Whitney) 2-Sample test

ics

&

Normal test on binomial proportion t with (n – 1) degrees of freedom

χ2 test for variance

( x – y ) – ( µ1 – µ2 ) N(0, 1)

F-test on ratio of two variances

Distribution

tn

1

+ n2 – 2

(n1 – 1)s12 + (n2 – 1)s22 where s2 = ––––––––––––––––––––––– n1 + n2 – 2

Wilcoxon single sample test

he m

fe

σ 12 σ 2 2 + n1 n2

Test statistic

M

6∑di2 rs = 1 – ––––––– n(n2 – 1)

Normal test for a mean

χ2 test

Description

Distribution

A statistic T is calculated from the ranked data.

See tables

Samples size m, n: m < n Wilcoxon W = sum of ranks of sample size m Mann-Whitney T = W – 1–2 m(m + 1)

See tables

p –θ

St

 θ (1 – θ )   n 

at

(n – 1)s 2

ist ics

σ2

s12 /σ12 ––––––– s22 /σ22

, s12 > s22

N(0, 1)

χ2n – 1 Fn

1

–1, n2 –1

STATISTICS: HYPOTHESIS TESTS

Spearman rank correlation test

r=

Test statistic

W

or

Variance

p.g.f. G(t) (discrete) m.g.f. M(θ) (continuous)

ld

Binomial B(n, p) Discrete

P(X = r) = nCr qn–rpr , for r = 0, 1, ... ,n , 0 < p < 1, q = 1 – p

np

npq

G(t) = (q + pt)n

Poisson (λ) Discrete

Of

λr P(X = r) = e–λ ––– r! , for r = 0, 1, ... , λ > 0

λ

λ

G(t) = eλ(t – 1)

µ

σ2

M(θ) = exp(µθ + Wσ 2θ 2)

M

at ( ( ) ) he m 1

x–µ exp – W ––––– σ

f(x) =

Uniform (Rectangular) on [a, b] Continuous

1 f(x) = ––––– b–a

Exponential Continuous

f(x) = λe–λx

Geometric Discrete

P(X = r) = q r – 1p ,

9

Normal N(µ, σ2) Continuous

Negative binomial Discrete

σ 2π

2

–∞ < x < ∞

, a
,

0
,

at

x > 0, λ > 0 r = 1, 2, ... ,

, q=1–p

r – 1C n–1

qr – n pn , r = n, n + 1, ... ,

0
q=1–p

ics

a+b ––––– 2

&

1 –– λ

1 –– 12

ebθ – eaθ M(θ) = ––––––––– (b – a)θ

(b – a)2

λ M(θ) = ––––– λ–θ

1 –– λ2

1 –– p

St

n –– p

nq ––2 p

q ––2 p

at

pt G(t) = ––––– 1 – qt

ist ( ) ics pt G(t) = ––––– 1 – qt

n

STATISTICS: DISTRIBUTIONS

Mean

Function

Name

Numerical Solution of Equations

f(xn) The Newton-Raphson iteration for solving f(x) = 0 : xn + 1 = xn – –––– f'(xn) Numerical integration The trapezium rule b 1 b–a ydx ≈ –2 h{(y0 + yn) + 2(y1 + y2 + ... + yn – 1)}, where h = ––––– n a

W

Taylor polynomials h2 f(a + h) = f(a) + hf '(a) + ––– f"(a) + error 2! h2 f(a + h) = f(a) + hf '(a) + ––– f"(a + ξ), 0 < ξ < h 2!

or



ld

The mid-ordinate rule

∫a ydx ≈ h(y b

1 – 2

1– 3 h{(y0

M

at

+ yn) + 4(y1 + y3 + ... + yn – 1) + 2(y2 + y4 + ... + yn– 2)},

(x – a)2 = f(a) + (x – a)f '(a) + –––––– f"(η) , a < η < x 2!

Numerical solution of differential equations dy For –– = f(x, y): dx Euler’s method : yr + 1 = yr + hf(xr, yr); xr+1 = xr + h

he m

b–a where h = ––––– n

The Gaussian 2-point integration rule 10

  −h   h   f ( x )dx ≈ h f   + f    –h   3  3 Interpolation/finite differences



f(x)

h

Runge-Kutta method (order 2) (modified Euler method) yr + 1 = yr + 1–2 (k1 + k2)

at

where k1 = h f(xr, yr), k2 = h f(xr + h, yr + k1) Runge-Kutta method, order 4:

n x – xi Lagrange’s polynomial : Pn(x) = ∑ Lr(x)f(x) where Lr(x) = ∏ –––––– x i=0 r – xi i≠r

Newton’s forward difference interpolation formula (x – x0)(x – x1) (x – x0) –––––––––––– f(x) = f(x0) + –––––– ∆f(x ) + ∆2f(x0) + ... 0 2!h2 h Newton’s divided difference interpolation formula

ics

f(x + h) – 2f(x) + f(x – h) f"(x) ≈ ––––––––––––––––––––– h2

&

k2 = hf(xr + 1–2 h, yr + 1–2 k1)

where k1 = hf(xr, yr)

St

k3 = hf(xr + 1–2 h, yr + 1–2 k2) Logic gates

f(x) = f[x0] + (x – x0]f[x0, x1] + (x – x0) (x – x1)f[x0, x1, x2] + ... Numerical differentiation

yr+1 = yr + 1–6 (k1 + 2k2 + 2k3 + k4),

NOT

OR

k4 = hf(xr + h, yr + k3).

at

ist ics AND

NAND

NUMERICAL ANALYSIS DECISION & DISCRETE MATHEMATICS

∫a ydx ≈

(x – a)2 = f(a) + (x – a)f '(a) + –––––– f"(a) + error 2!

b–a + y1 1– + ... + yn – 1 1– + yn – 1– ), where h = ––––– n 2 2 2

Simpson’s rule for n even b

Of

f(x)

2 Math Formulae.pdf

3. 4. –. 3. 1. –. 3. 1. –. 3. Page 4 of 9. 2 Math Formulae.pdf. 2 Math Formulae.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying 2 Math Formulae.pdf.

131KB Sizes 3 Downloads 232 Views

Recommend Documents

H1N1 Math day 2
A biologist is studying a viral cell. He finds that in one hour, the virus has tripled the number of cells. Complete the table. When will there be at least 2000 cells?

math (2).pdf
Page 3 of 15. Tasked with inventing a social network,. we addressed the needs of long- distance relationships of all kinds! hakuna. Page 3 of 15. Page 4 of 15. CQ-5101U. 4. Customer Services Directory. U.S.A.. Customer Services Directory. (United Sta

killer math 2 -
went to trade school. If. 1. 12 of the students both went to college and entered the workforce, and if no students went to both college and trade school, then how ...

killer math 2 -
The total cost of a long-distance call is the sum of. (1) a basic connection fee to place the call, and. (2)an additional charge for each minute of connection time.

Math Converts & Abbreviations 2 Math Converts.pdf
Page 1 of 1. mathematics converts and abbreviations. prefics for metric equivalents CONVERTS: metric angles. Deca = da = 10 33 1/3% = .33 = 1/3 Works for grams, etc. Right 90°. Deci = d = .1 66 2/3 % = .66 = 2/3 1 hL 10,000 cL Acute less than 90°.

Math Converts & Abbreviations 2 Math Converts.pdf
0.3 m. 2 radii (radius) is 1 diameter A = Π x R2. M = 1,000 Rectangle: 360° 1 cm. .39 in. C = Π x D C = 2 x Π x r. lechaimontheright.blogspot.com - do not copy/ ...

Math Converts & Abbreviations 2 Math Converts.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Math Converts & Abbreviations 2 Math Converts.pdf. Math Converts & Abbreviations 2 Math Converts.pdf. Open.

PDF SAT Subject Test Math Level 2 (Barron's SAT Subject Test Math Level 2) Full Books
SAT Subject Test Math Level 2 (Barron's SAT Subject Test Math Level 2) Download at => https://pdfkulonline13e1.blogspot.com/1438000316 SAT Subject Test Math Level 2 (Barron's SAT Subject Test Math Level 2) pdf download, SAT Subject Test Math Leve

PWNtheSAT math diagnostic 2.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. PWNtheSAT ...

Math Guide K-2.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Math Guide K-2.

Math 2 NCFE Review.pdf
c. construct a rough draft. 3. The time it takes to fill a swimming pool varies proportionally with. the rate of water flow. Suppose it takes 96 minutes to fill the pool.

Math 30-2 Formula Sheet.pdf
y: [ymin, ymax, yscl]. Exponents and Logarithms. y = ax ↔ x = loga. y. logb. c = log. log. b. c. a. a. Laws of Logarithms. logb. (MrN) = logb. M + logb. N. logb N. E O M = logb. M – logb. N. logb. (Mn. ) = n logb. M. Exponential functions. y = ar

Math 30-2 Formula Sheet.pdf
Relations and Functions. Graphing Calculator Window Format. x: [xmin, xmax, xscl]. y: [ymin, ymax, yscl]. Exponents and Logarithms. y = ax ↔ x = loga. y. logb. c = log. log. b. c. a. a. Laws of Logarithms. logb. (MrN) = logb. M + logb. N. logb N. E

Math 6+ Unit 2 Overview.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Math 6+ Unit 2 Overview.pdf. Math 6+ Unit 2 Overview.pdf. Open. Extract. Open with. Sign In. Main menu.

Math Coaching 2.pdf
A rectangular parallelepiped whose length is 4m and 5m and the. altitude is 6m. What is the area of the cross section of the opposite. edges of the parallelepiped ...

Grade 2 Math Scope Sequence_PDF.pdf
2.G.A.2​ Partition a rectangle into rows. and columns of same-size squares and. Whoops! There was a problem loading this page. Retrying... Grade 2 Mat ... nce_PDF.pdf. Grade 2 Math ... ence_PDF.pdf. Open. Extract. Open with. Sign In. Main menu. Dis

Math 2 NCFE Review.pdf
Page 1 of 6. Math 2 NCFE Review #1 (Algebra) Name: 1. Simplify. 2. Without using a calculator,. a. identify the zeroes of x. 2+9x+18. b. determine the vertex.

Math 30-2 Formula Sheet.pdf
P(A ∩ B) = P(A)rP. # ". Logical Reasoning. A′ Complement. ∅ Empty set. ∩ Intersection. ⊂ Subset. ∪ Union. 87. Page 1 of 1. Math 30-2 Formula Sheet.pdf.

(>
(PDF Kindle) Math, Grade 2 (Interactive Notebooks) ... software software to be used on the computer, including Microsoft's totally free Reader application, ...

Math 8 Unit 2 Overview.pdf
Teaching videos made by Wake County teachers. WCPSS YouTube Channel – Math Playlist. Repeating Decimals Overview. Converting Overview. Real Numbers Overview. Repeating Decimals Practice. Fractions to Decimals Practice. Decimals to Fractions Practic

Read [PDF] SAT Subject Test Math Level 2 (Barron's SAT Subject Test Math Level 2) Full Pages
SAT Subject Test Math Level 2 (Barron's SAT Subject Test Math Level 2) Download at => https://pdfkulonline13e1.blogspot.com/1438000316 SAT Subject Test Math Level 2 (Barron's SAT Subject Test Math Level 2) pdf download, SAT Subject Test Math Leve