A “Polywell” p+11B Power Reactor Joel G. Rogers, Ph.D. [email protected] Aneutronic fusion is the holy grail of fusion power research. A new method of operating Polywell was developed  which maintains a non­Maxwellian plasma energy distribution. The method extracts down­scattered electrons and  replaces them with electrons of a unique higher energy. The confined electrons create a stable electrostatic  potential well which accelerates and confines ions at the optimum fusion energy, shown in the graph below.  Particle­in­cell(PIC) simulations proceeded in two steps; 1) operational parameters were varied to maximize power  balance(Q) in a small­scale steady­state reactor; and 2) the small scale simulation results were scaled up to  predict how big a reactor would need to be to generate net power. Q was simulated as the ratio of fusion­power­ output to drive­power­input. Fusion­power was computed from simulated ion density and ion velocity. Power­input  was simulated as the power required to balance non­fusing ion losses. The predicted break­even reactor size was  13m diameter. Bremsstrahlung losses were also simulated and found manageable.

Robert W. Bussard, “Should Google Go Nuclear”, http://askmar.com/Fusion.html, November, 2006

Fig. 2 - “Polywell” Patent Pending

Fig. 3 - PIC Simulation Flowchart

The Figure(above) and caption were scanned from the textbook, Birdsall and Langdon, “Plasma Physics via Computer Simulation”, McGraw Hill, New York, 1985, pg. 11.

Fig. 4 - Electrons' 2D Positions 200,000 Electron Particles Confined in Core + Cusps

Magnet Boxes 11B

Emitter

Electron Emitter/Scraper Removes Down-Scattered Electrons Face Cusp

Proton Emitter Vacuum Tank Wall Vacuum Pumping Aperture

Corner Cusp

Up-scattered Electrons Removed by Hitting Tank Wall at This Point

Fig. 5 - Confining Electrostatic Potential 1% Equipotential Contour = 4kV 10% Equipotential Contour = 40kV 90% Equipotential Contour = 360kV Electron Emitter/Scraper Located in Face Cusp “Virtual Anode Height” = Voltage at the Center

Fig 6 - Rider's 2005 Analysis of IEC

Slide-16 from Rider's 2005 talk: http://www.longwood.edu/assets/chemphys/FusionRoute.pdf

Fig. 7 - Scraping Down-Scattered e's Wide(=H.E.)-Scraper

Narrow(=L.E.)-Scraper Extracted Energy Spectra

0

Enlarged Views

Energy(keV)

50

Face Cusps' Center Line

Fig. 8 - Ion Loss Power Calculation ●



Pin ≡ proton energy-loss-rate + boron energy-loss-rate (through corner cusps) = (# slabs/cube) (# cusps/slab) {Σ[Particle Loss-energy)][Particle loss-rate]} = (L/λD) (4) {[½(956MeV)(8e6)²/c²][½(114-110)(9e10)/(11e-6s)] +[½(11)(931MeV)(5.4e6)²/c²][½(114-110)(1.2e10)]/[(11e-6s)]} = (30)(4){[(340keV)(1.6e16/s)]+[(1700keV)(2.2e15/s)]} = 6.5e23 + 4.5e23 Pin = 1.1e24 eV/s

P

B

Fusing Ions' Diameter ≡ L = 30cm

Fig. 9 - Power Balance Q ●

Simulated (R = 35cm) power balance: Q(R) ≡ Pfus / Pin where: ●

Pfus = np nb <σf v> L³ Ef eV/s [6] –

np = proton 3D density ≡ Np / λD = 1.1e17/m3



nb = boron 3D density = np / Z (Proton and boron partial pressures are made equal.)



Z = boron charge state from ion gun = 5 Np = simulated (2D) proton density = 1.1e15/m2 (Fig. 10)



λD = Debye length = 7.43e2 Ee1/2 ne−1/2 cm = 0.01m (Fig.10 & Formulary pg. 28 [7])



Ee = maximum electron energy inside well = 400keV (Fig. 10)



ne = 2np (Plasma quasi-neutrality is an inherent property of the simulation.)



– – – ●



<> = fusion x.c. times c.m. velocity = 8e-29m2 x 1e7m/s = 8e-22m3/s (Title page) L = ion plasma cube dimension in meters = 0.3m (from previous slide) Ef = fusing ion pair energy release in eV = 8.7 MeV (Formulary pg. 44 [7])

Pfus = (1.1e17) (2.2e16) (8e-22) (0.3³) (8.7e6) eV/s = 4.5e17 eV/s

Q(R=35cm) = Pfus / Pin = 4.5e17 / 1.1e24 = 4.1e-7 (Pin from Fig. 8)

[6] Glasstone and Lovberg, “Controlled Thermonuclear Reactions”, van Nostrand, 1960, eq. 2.10 [7] NRL Plasma Formulary, http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY_11.pdf

2D Electrostatic Potential

Ee = 400keV (to evaluate λD) y=1.42m Section 2D Particle Densities

Potential (volts)

Fig. 10 - Diagnostics Determining Pfus

Np = 1.1e15/m²

Protons

Face-cusp losses 0

Corner-cusp losses Borons

x-Position (m) Nb = 2.0e14/m²

2.645

Fig. 11 - Reactor Break-Even Radius ●

Bussard's Scaling Formula: Q1/Q2 = (R1/R2)5 [8]



Break-Even Formula: Q(R=35cm)/Q(R b) = (R/Rb)5 ●

Q(Rb) ≡ 1



Solving for Break-Even Radius: Rb = R/Q1/5



Rb = 0.35m/(4.1e-7)0.2 = 6.6m = smaller than ITER y = 1.42m Proton Density R = 35cm

y = 2.12m Proton Density R = 52cm

L = 50cm

0.5

x(m)

2.5

L = 75cm

1.0

x(m)

3.0

Fig. 12 - Bremsstrahlung Power Loss ●

Pb = 1.69e-32 ne Te½ [np+Z²nb] L³ W [Formulary p.58]



Pb = 1.1e-13 ne² Te½ [0.5 + (25)(0.1)] L³ eV/s ●

ne = electron density in cm-3 = 2.2e11/cm³ (Fig. 9)



Te = electron kinetic energy in eV = 80keV (Fig 13)



L = electron core edge dimension in cm = 30cm (Fig. 13)



Pb = 1.1e-13 (2.2e11)² (8e4)½ [3.0] (30)³ eV/s



Pb = 1.3e17 eV/s



Pb ≈ 30% Pfus (Fig. 9)



Bremsstrahlung losses ≈ 1/3 fusion output power

Fig. 13 - Diagnostics Determining Pb Electrostatic Potential

2D Electron Density y=1.42m Section

Electron Kinetic Energy Te = 80keV Te = 0

Electron Density (/m²)

y-Position (m)

y=1.42m Section

Potential (volts)

Horizontal 1D Sections

L = 30cm

0.25

x-Position (m)

2.29

These arrows mark chosen electron-emitter positions. Electrons have ~zero kinetic energy at these points.

Fig. 14 - How to Reduce Pb Losses ●

Pb ~ Te½ [1 + 25 (nb/np) ]



To reduce Pb the reactor design can change:





Reducing Te to 1% Ee would reduce Pb by 4.5X. [4]



Boron fraction nb/np 20 -> 10% would reduce Pb by ~2X.

Reducing Te might increase reactor size (Rb). ●



Not yet tested in simulation.

Radiation might be reduced to 5% of fusion power.

Fig. 15 - p + 11B Power; Conclusions ●

New method efficiently recycles electron energy.



Simulation predicts break-even Rb = 6.6m



Additional design issues still need attention: ●

Electron power drain must be reduced.



Bremsstrahlung power drain must be reduced.



A 3D simulation is needed for more realistic P in.



The future of aneutronic fusion power is bright.

A “Polywell” p+11B Power Reactor

balance(Q) in a smallscale steadystate reactor; and 2) the small scale ... http://askmar.com/Fusion.html, November, 2006 ... Fig. 2 - “Polywell” Patent Pending ...

3MB Sizes 1 Downloads 49 Views

Recommend Documents

A “Polywell” p+11B Power Reactor
90% Equipotential Contour = 360kV. 10% Equipotential Contour = 40kV. 1% Equipotential Contour = 4kV .... 0.35m/(4.1e-7)0.2 = 6.6m = smaller than ITER y = 1.42m Proton Density. R = 35cm. 1.0 x(m). 3.0. 0.5 x(m). 2.5. L = 50cm. L = 75cm y = 2.12m Proto

Reactor Piping Systems
oscillations in a nuclear reactor cavity, startup or stoppage of a centrifugal pump, ... fully understood so that a proper design of pipeline system can be ..... Streeter, V.L. e Wylie, E.B., Hydraulic Transients, McGraw-Hill Company, USA, 1967.

the traveling wave reactor - TerraPower
BRINGING NUCLEAR TECHNOLOGY TO ITS FULLEST POTENTIAL. TerraPower's ... and funding to develop the TWR design and a path to commercialization.

Reactor vessel supports
ABSTRACT: A reactor vessel support is disclosed wherein the main coolant flow .... The pressure vessel 10 has a number of coolant flow inlet means 14 and.

trickle bed reactor pdf
Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. trickle bed reactor pdf. trickle bed reactor pdf. Open. Extract.

Inertial Electrostatic Confinement Fusion Reactor done.pdf ...
Simulation and Optimization of an Inertial. Electrostatic Confinement Fusion Reactor. by. Jimmy Zhan. A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in. conformity with the requirements of ENPH 455. Supervisor: Dr.

lpr-60 electrolytic reactor -
Feb 3, 2011 - Steel / Powder Coated. Fluid Holding ... Mild Steel / Aluminum. Spacing ... Electrode Consumption Table For Iron (FE) Plate Electrodes.

retromezcla: a dynamic stirred tank reactor simulator
Dr. Jorge A. Velásquez. Dept. of Chemical Engineering. Universidad Pontificia Bolivariana. Circular 1ª #70 - 01. Medellín, Antioquia. Colombia [email protected]. Tel. (574)-4159020 Ext. 9598. Retromezcla, page 1. Page 2. ABSTRACT. Retromezc

man-65\a-nuclear-reactor-if8767.pdf
Download. Connect more apps... Try one of the apps below to open or edit this item. man-65\a-nuclear-reactor-if8767.pdf. man-65\a-nuclear-reactor-if8767.pdf.

Desorption Studies in a Foam-bed Reactor
Experimental data have been generated and analyzed to assess the role of ... aqueous solution with sodium chloride significantly increases the electron-donor.

Knief, Nuclear Reactor Theory.pdf
... neutrons Neutrons emitted after fission fol- lowing the first radioactive decay of certain fission ... number definition recognizes that the proton and neutron.

Generation IV Supercritical Water Cooled Reactor
Jul 12, 2012 - Canada is developing a pressure-tube SCWR because of its ... Known Technology: Supercritical fossil fuel plant technology has been.

Web-casting of Nuclear Reactor Experiments
modern day education system. Burgeoning as a ... towards developing and testing a distance reactor ... the UMLRR Online link [5] described above. This was.

PDF Chemical Reactor Modeling: Multiphase Reactive ...
techniques employed in order to get data for model validation are outlined. ... in the fourth and fifth years graduate courses in transport phenomena and chemical.

be-dressed-results-shelters-the-have-a-spat-protection-atomic-reactor ...
How-To-Build-A-Bomb-Shelter. Page 2 of 2. be-dressed-results-shelters-the-have-a-spat-protecti ... ic-reactor-onset-endurance-draught-1499493185440.pdf.

An Overview of the Integral Molten Salt Reactor
Oct 5, 2016 - Terrestrial Energy is a leading advanced reactor developer in a fast developing cleantech ... Low pressure, high thermal efficiency, superior coolants (smaller pumps, heat exchangers). ... Alternate salt and new off gas system.