

	
 Home

	 Add Document
	 Sign In
	 Create An Account

	
 Viewer

	
 Transcript

A Framework for Systematic Speci cation and Ecient Veri cation of Processors Laurent Arditi Helene Collavizza Universite de Nice { Sophia Antipolis Laboratoire d'Informatique I3S, CNRS-URA 1376 Abstract

We propose a framework for the speci cation and formal veri cation of processors, based on generic interpreters. The originality of our method is to combine a generic speci cation environment and an ecient veri cation system. Computer experiments with our framework have clearly shown three main advantages: processor descriptions are concise and very easy to write down, the core of the veri cation system is generic so it may be applied without any modi cation to dierent processors, and last, the proof times are very short compared with previous approaches.

Keywords: Automatic veri cation of hardware descriptions, very high level speci cation techniques and tools, formal systems for reasoning about hardware.

1 Introduction 1.1 Motivations

In order to produce correct circuits, attention has been paid these last ten years on formal veri cation methods (for a survey and further justi cations see [12]). Formally verifying a circuit consists in proving that its speci cation is logically equivalent to its implementation, in the sense of a logical equivalence. More explicitly, the veri cation process is decomposed in three steps: in the rst step, a formal model of the speci cation of the circuit is de ned, in the second step, a formal model of the implementation of the circuit is de ned, and in the third step, a proof that for any input and any state variable values, the two models are equal is performed. 1

This amounts to the proof of a universally quanti ed formula and can be realized using theorem proving techniques such as simpli cation or inductive reasoning. This veri cation process is crucial when dealing with complex circuits such as processors. The key to the formal veri cation of processors is the decomposition in successive proofs at successive abstraction levels: a more and more detailed view of the same processor is described [2]. The speci cation of the circuit is then a description of an abstract level (such as the assembly language level), while its implementation is a description at a more concrete level (for instance, the microinstruction level or the electronic block model). For each level, one exactly keeps the same description and veri cation process: the processor is speci ed as a set of components on which a set of actions is performed. The veri cation consists to prove that a transition at an abstract level is correctly realized by a series of transitions at a more concrete level. Let level be an abstract speci cation level, and level +1 a more concrete one. The set of objects at level is included in the set of objects at level +1 , and an action at level is realized by composing a set of actions at level +1 . Then to verify the correctness between these two adjacent levels one must show that the following diagram commutes: i

i

i

i

i

i

transition(instr) i

" state abstraction state +1 ! i

i

?!

state

!

transition(instr

state

i;af ter

state abstraction "

::: ! ! state +1 2 instr +1 : : : instr +1) i

1 i+1

i

;af ter

n i

Diagram 1: veri cation schema For instance, if level is the processor as seen by the assembly programmer, and level +1 is the architecture of the processor, the commutation property of the above diagram means that an assembly instruction is correctly realized by a sequence of microinstructions. i

i

1.2 Aims of the paper and related works

The rst attempt to formally verifying processors according to the previous abstract schema, was initiated by Gordon [11] who rst veri ed a simple processor using LCS-LSM. This experience has been succeeded by two main signi cative case studies: the VIPER processor was partly veri ed with the HOL proof system [8], and the FM8501 processor with the Boyer & Moore proof system [13]. These two large examples, raise the need for a general methodology of processor veri cation. In fact, these proofs were speci c to a particular processor, and the 2

proof of another processor has to be built from the scratch. To ll this gap, a general functional model has rst been proposed in [6] for describing processors at abstract levels. More recently, Windley has proposed a methodology based on generic interpreters [20] for the veri cation of processors at any abstraction level. This approach has been adopted by several authors [22, 19], and we follow its general lines in this paper. Its main advantages is that it is generic and may be applied to a large class of processors. However, in our opinion, the major characteristic of processor veri cation is the large amount of components and operations to describe, and not the intrinsic complexity of each operation. So we believe that emphasis must lay on the two following criteria:

 speci cation facility: specifying a processor is a tedious task that must be

facilitated by a user-friendly speci cation environment, and eciency: each elementary operation must be performed in an ecient way. So, simple proof methods such as simpli cation must be prefered as often as possible to complex theorem proving techniques. These simple proof methods are sucient in most cases, nevertheless we are now embedding other techniques such as *BMD [7] for complex arithmetic instructions.

Most of the previous works on processor veri cation, based on general proof tools, do not satisfy at least one of the two previous criteria. So we propose here a new framework to specify processors in a user-friendly envirnement, that performs ecient and automatic proofs (see gure 1). Our methodology follows three principles: 1. rst, we provide a speci cation framework to describe processors and veri cations to perform. The speci cation just consists to declare components from a prede ned library, and assignements to components. 2. second, internal representations of processor and proof speci cations are automatically built from the user interface. The internal representation is based on a class hierarchy that provides a prede ned environment for processor and proof descriptions, and 3. third, a generic veri cation engine is able to prove or disprove equivalence of two speci cations of a processor at dierent levels. The genericity of the proof engine is ensured by an object-oriented approach. Its eciency by a computer algebra simpli cation system. Our system has been successfully used to verify signi cant processors. Compared with approaches (see table 2), our proof times are shorter. Furthermore, the speci cations are concise and easy to write down. 3

user

specification description

implementation description

proof description

user interface

Scheme object

component library

Scheme object

symbolic evaluator

Scheme object

computer algebra system

Figure 1: Overview of the framework

Layout of the paper: In the second section, we present the speci cation

process. In section 3, we show how a class hierarchy provides a well-suited environment for building speci cations from a user-friendly interface. In section 4 we detail the veri cation algorithm. In section 5, we describe the core of the veri cation system. In section 6 we give veri cation benchmarks, and we last conclude.

2 Speci cation process The usual approach for processor speci cation is the decomposition at dierent abstraction levels. Most commonly considered levels are the assembly language level, the microinstruction level and the electronic block level. The proof is decomposed in simpler proofs between adjacent levels, and transitivity allows to show the coherence of two speci cations with a great gap between them. In our mind, one essential property of a processor speci cation and proof environment is to be reusable for all the processors of a same category. Therefore, we need two kinds of genericity: horizontal genericity: the model should be reusable to specify dierent processors, and vertical genericity: at each abstraction level, the same generic model and proof method should be reused. 4

2.1 Processor speci cation

To satify this genericity requirement, we follow the generic interpreter approach [2, 21]. An interpreter speci es a processor at a given level. It is a set of three elds (also named \attributes"): state: describes the processor state type as a set of components. All these components are visible at the current level, they represent components commonly used when designing processors: registers, signals, buses, memories: : : . select: re ects the control part behaviour. At any time, it determines the name of the instruction that is being executed, from the processor state. For instance, at the assembly language level, select computes the instruction code that is generally in the instruction memory at address PC. transitions: is a function that describes the processor behaviour in terms of component assignements. It returns a state transition function from an instruction code.

An example: Let us take as example, through all this section, the Tamarack-3 processor. This processor is a benchmark processor that has been widely studied [11, 17, 22, 9]. It is speci ed as follows in terms of interpreters. At the instruction level (denoted macro level), the state attribute value is a tuple of three 16-bit registers, two 1-bit registers and a memory. They are the respective types of the program counter, the accumulator register, the return address register, the interrupt acknowledge and interrupt request registers, and the memory. The select attribute returns the memory word at address PC if there is no interrupt. The transitions attribute gives the semantics of each intruction as detailed later. At the microinstruction level (denoted micro level), the state is increased with the instruction register, the microprogram counter and a set of internal buer registers. The select attribute gives the name of the microinstruction pointed by microinstruction counter. transitions gives the microinstruction semantics.

2.2 Proof speci cation

After having de ned at least two interpreters of a processor, one for the speci cation, the other for the implementation, we have to specify how to prove their equivalence. This is described by a \proof" which has the four following elds (see gure 2): specification points the speci cation interpreter, implementation points the implementation interpreter, 5

Interpreter state: Si Proof specification: Ii

trans i select: Si x trans i transitions:

(Si

Si)

(Sj

Sj)

implementation: Ij Si abstraction: Sj {true ; false} sync: Sj

Interpreter state: Sj trans j trans select: Sj x j transitions:

Figure 2: One proof and its two interpreters

abstraction is the state abstraction function. It is a function from the implementation to the speci cation state. It is often a state injection since the speci cation state is a subset of the implementation state. sync de nes the temporal abstraction. It is a predicate which value is true only when the two levels are synchronized (i.e when the implementation state corresponds with the start of a transition at the abstract level). This predicate is usually de ned as a test on the implementation program counter.

Example: For the Tamarack-3 processor, the proof between the macro and micro levels is speci ed by the four following elds: specification and implementation points the two interpreters described in section 2.1, abstraction makes the state projection, sync returns true when the microinstruction counter value is 0.

3 Speci cation framework

3.1 An object-oriented description of interpreters

The above speci cation methodology is embedded in an object-oriented framework [3]. The language we use is a functional and object-oriented language: STk [10], a Scheme with an object system very close to CLOS [18]. STk is a good compromise in order to combine object paradigmes and the ability to carry out formal operations. The rst question that naturally arises, is why we choose an object-oriented approach. There are two main reasons for that:

 rst, it is a convenient way to carry out genericity. A class hierarchy for interpreters and proofs provides a prede ned environment for processor 6

speci cation: describing a processor then just consists to make instances of prede ned classes, and the second reason is that a class hierarchy is suitable to represent processor components, that are strongly-typed objects. In fact, processor components may be classi ed according to their data type and their temporal behaviour. So, they may be built using multiple-inheritance.

3.2 Interpreter and proof classes

The class Interpreter has attributes state, select and transitions, that implement the elds given in section 2.1. The select and transitions attribute values are Lisp expressions. The state value is a set of components. This last point is detailed in section 3.3. A proof is also represented by an object of a class: Proof. Instances of Proof have attributes specification, implementation which values are Interpreter instances, abstraction and sync which are Lisp expressions.

3.3 An object-oriented library of components

The attribute state of the interpreter is a set of components built up from an object-oriented library. It consists of a collection of classes describing the variety of structural or behavioural aspects. The main data types we use are naturals (NAT), bit vectors (BV) and arrays of bit vectors (ARRAY). Major generic functions are read (read contents) and write (write contents). Speci c methods are also de ned on the dierent structural classes. To represent temporal behaviour, we distinguish between what is called in [2] \stored variables" (registers, memories, ...) and \instantaneous variables" (buses or wires). So we have de ned the behavioural classes MEMO and NO-MEMO. Using multiple inheritance, we get the major component classes to model processors. They inherit exactly from one structural class and one behavioural class. More speci c components such as ROM or stacks, are obtained by specialization of the main classes. Figure 3 shows a simpli ed class hierarchy.

Example: the Tamarack-3 internal object representation is as follows: Speci cation of macro level interpreter:

(make :name 'macro-tamarack ; processor state :state (list (make :name 'pc :size 16) (make :name 'acc :size 16) (make :name 'rtn :size 16) (make :name 'mem :size 16) (make :name 'iack :size 1)

7

NAT

BV

ARRAY

MEMO

NO−MEMO

COMPONENT−WITH−PAST

MEMORY

REGISTER

BUS

WIRE

structural class A

B

BUS−WITH−PAST

behavioural class

component class

A inherits from B

Figure 3: Hierarchy of component classes (make :name 'ireq :size 1)) ; the instruction to execute is ; either the interrupt sequence if there is an interrupt request ; otherwise the instruction in memory pointed by PC :select '(if (and ireq (not iack)) ireq_one (decw (fetch mem (address pc)))) ; instruction semantics in terms of component assignements :transitions '(jmp ((:= pc (fetch mem (address pc)))) adda ((:= acc (add acc (fetch mem (address pc)))) (:= pc (inc pc))) ...))

Speci cation of micro level interpreter: (make :name 'micro-tamarack ; processor state :state (list (make :name 'pc :size 16) (make :name 'acc :size 16) (make :name 'rtn :size 16) (make :name 'mem :size 16) (make :name 'iack :size 1) (make :name 'ireq :size 1) (make :name 'ir :size 16)

8

(make (make (make (make (make (make

:name :name :name :name :name :name

'arg :size 16) 'buf :size 16) 'mar :size 16) 'idle :size 1) 'dack :size 1) 'mpc :size 4))

; the microinstruction to execute is pointed by mpc :select '(case (val4 mpc) (0.u0) (1.u1) (2.u2) ...) ; microinstruction semantics :transitions '(u0 ((:= ir (fetch mem (address pc))) (:= pc (inc pc)) (:= mpc (inc mpc)))) ; mpc points the next microinstruction '(u1 ...))

Proof speci cation between macro and micro levels: (make :specification macro-tamarack :implementation micro-tamarack :abstraction '(id id id id id id nil nil nil nil nil nil nil) ; id is the identity function ; nil suppress the corresponding component :sync '(= mpc (word4 0)) ; the first microinstruction of the fetch sequence is at ; address 0)

This internal representation will be used by our proof system as explained in part 4.

3.4 Speci cation facilities

In order to facilitate interpreter and proof descriptions, we designed a textual interface to easily describe processors as interpreters, and proofs between these interpreters. This interface is a simple language to enforce designers to ll all the elds of interpreter and proof objects. Its syntax is coming closer to the VHDL one. Starting from this more readable form, a translator automatically produces internal object representations. 9

Example: The previous description of interpreters and proof for the Tamarack3 processor is given in the textual interface as follows: INTERPRETER macro-Tamarack: STATE pc,acc,rtn: REGISTER(16) mem: MEMORY(16) iack,ireq: REGISTER(1) END SELECT = IF (ireq AND NOT iack) THEN ireq_one ELSE decw(fetch(mem,address(pc))) END IF {Instruction semantics} INSTRUCTION jmp: pc := fetch(mem,address(pc)) END INSTRUCTION adda: acc := acc ADD fetch(mem,address(fetch(mem,address(pc)))) pc := inc(pc) END ...

The micro level is speci ed in the same way. We only give below the proof speci cation: PROOF Tamarack_micro_implements_macro: SPECIFICATION = 'macro-Tamarack' IMPLEMENTATION = 'micro-Tamarack' SYNC = (mpc=word4(0)) ABSTRACTION = (id,id,id,id,id,id,nil,nil,nil,nil,nil,nil,nil)

From this speci cation, the previous internal object representation is automatically built.

Having described internal representations of processors and proofs, we are now able to present the proof process.

10

4 The proof algorithm The proof algorithm takes as input a proof object. As we already mentioned in section 2.2, this object points two interpreters, and describes state and time abstractions. This algorithm is generic and does not need any modi cation in order to prove a large class of processors, from the assembly language level to the electronic block level. Its general schema is as follows: execute a transition of the speci cation, execute a set of transitions of the implementation. Then the implementation is correct if the speci cation nal state is an abstraction of the implementation nal state when sync is true. The proof algorithm is presented below. We note o.a the access to the attribute a of object o. The following function returns true if an instruction \instr" can be proved in a given proof object \p": 1 function Prove(p: Proof; instr: key type): boolean;

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

type

state type = p.speci cation.state; state type = p.implementation.state; s

i

var

S : state type; S : state type; key : key type; t : transition type; s

s

i

i

begin Initialization phase:

S := init(state type, instr); S := p.abstraction(S); i

i

s

i

 Speci cation state transition phase: key := p.speci cation.select(S); t := p.speci cation.transitions(key); execute(S , t); s

s

 Implementation state transition phase: repeat key := p.implementation.select(S); t := p.implementation.transitions(key); execute(S , t); until p.sync(S); i

i

i

 Comparaison of nal states: return eq(p.abstraction(S), S); i

s

11

31

end;

In this function, p is a proof object, p.speci cation and p.implementation are the two interpreters specifying the speci cation and implementation. Lines 3 and 4 correspond to the speci cation of the two interpreter state types. Lines 13 to 15 are the initialization phase. They give an initial value to the implementationstate (line 14), the speci cation initial state is then an abstraction of the implementation one (line 15). This initial value is a symbolic value for all components, except for the program counter that points the rst instruction to execute. Lines 17 to 20 are the execution of one state transition from the speci cation initial state. The key (name) of the transition is selected from the state (line 18). The state transition corresponding to the selected key (line 19) is then extracted and this transition is performed (line 20). S is then the speci cation nal state. Lines 22 to 27 are the execution of state transitions from the implementation initial state. The implementation nal state is computed by a loop until there exists a temporal abstraction from the implementation to the speci cation states (lines 23 to 27). As for the speci cation, in lines 24 the next instruction key is rst selected, then the state transition is extracted (line 25) and executed (line 26). Exiting from the loop, S is the implementation nal state. The nal step consists in comparing the nal speci cation state with an abstraction of the implementation one (line 30). This algorithm exactly implements the test for the commutation of the introductory diagram. s

i

In the previous algorithm, part of functions and procedures are related to the speci cation and are speci c to a given proof and its interpreters: p.*.select, p.*.transitions, p.abstraction and p.sync (see sections 2.1 and 2.2). However, the key of the previous algorithm in order to ensure genericity depends on other functions that remain the same whatever are the proof and the interpreters. They are part of the proof engine:

 The function init returns a state where all components have symbolic values

except that the program pointer points the rst instruction. eq returns true when the two states S and S have all their component values syntactically equal. If this syntactic test is not sucient, more elaborated methods such as *BMDs [7] are used. execute(S,t) is a procedure that executes the state transition t over the initial state S. To ensure eciency it is performed using symbolic execution as we detail in the next section. s

12

i

5 The proof engine In order to ensure eciency, our proof engine uses symbolic execution to perform state transitions, and a computer algebra system to simplify expressions. These two points are exhibited in this section.

5.1 Symbolic execution of a state transition

A state transition is a set of component assignments. All assignments are performed in parallel and can be conditional assignments (if then else and case of). Assume we are given an assignment dest source. Then our symbolic evaluator executes this assignment as follows: call on read method to get the value of source, call on the computer algebra system in order to simplify the resulting value if possible, call on the write method to modify the value of dest. The symbolic evaluator takes convenience of the object-oriented approach. The evaluation process is generic since read and write are methods associated to all component classes. Of course, it is not the same thing to read a memory or to read a register but these distinct behaviours are discriminated by inheritance. The computer algebra is in fact implicitely called by the head operators involved in the source expression. The advantage of this method is that expressions are reduced as soon as possible, so they remain simple. This is much more ecient than reducing all expressions at the end of the proof process.

5.2 A computer algebra simpli cation system

In order to simplify the expressions involved in state transitions, we use a computer algebra system. This system is less powerful than general provers such as HOL or the Boyer & Moore theorem prover. However, it is enough powerful for processor veri cation, and furthermore, it is much more ecient and easy to use. It is especially well adapted for this speci c problem where expressions to be proved are simple but numerous, and for which eciency and simplicity must surpass power. Some other simpli cation systems use rewriting techniques for symbolic expression reduction (see for example [16, 17, 1]). We choose the computer algebra point of view because it is much more ecient and can easily deal with commutative operators. The simpli cation of an expression like (op e1 : : : e) is driven by the head operator op, so the reduction strategy associated to op is used. The underlying algebra includes data types such as naturals, bit vectors, booleans,: : : N

13

Processor instr. instr. user registers word size addressing modes AVM-1 30 51 35 32 1 DP-32 20 10 258 32 2 MTI 22 149 38 16 5 Anceau's proc. 8 14 4 16 4 Tamarack-3 8 16 3 16 1 Table 1: Size complexity of processors we speci ed and proved For example, here is the reduction of the expression (

(V1 ; bv-concat(V2 ; V3)))

bv-to-nat bv-concat

which is the conversion from bit vectors to naturals of the concatenation of three bit vectors. First, using associativity of concatenation we get (

(V1 ; V2; V3))

bv-to-nat bv-concat

By applying a speci c reduction rule for conversion we get: (bv-to-nat(V1) 2length(2) + bv-to-nat(V2)) 2length(3) + bv-to-nat(V3) V

V

Finally by using distributivity of multiplication, we obtain: (V1)2length(

bv-to-nat

+

(V2)2length(3) +bv-to-nat(V3)

length(V3) bv-to-nat

V2)+

V

6 Veri cation benchmarks We applied our methodology to verify several microprocessors without any change to the Interpreter and Proof classes, or their methods, nor the proof algorithm of section 4. The complexity of these benchmark processors is illustrated in table 1. The comparative table 2 shows speci cation code sizes and proof times for a number of processors already veri ed with other methods. Tamarack-3 and Anceau's processors [2] (pages 181{212) are school processors. Their speci cations and proofs do not pose any problem. It is interesting to compare results for Tamarack-3. Stavridou [17] used the OBJ3 theorem prover. It is based on rewriting techniques and one can see that proof time is not acceptable. Furthermore the proof is not automatic. Cyrluk et al. [9] used the PVS veri cation system with the help of a BDD-based propositional simpli er using hashing. Proof time is of the same order of ours but they do not provide 14

Processor #SL SS (p.) PT (sec.) other SS other PT ref AVM-1 4 22 1775 110 58 h [20] DP-32 2 9 470 MTI 2 17 1973 Anceau's proc. 2 4 183 Tamarack-3 4 3 197 17 10 days [17] ? 545 sec. [9] ? 360 sec. [22] Table 2: Processors we speci ed and proved. #SL is the number of dierent speci cation levels, SS is approximative speci cation code size in number of pages, PT is proof time in seconds on a SUN IPC workstation. a generic framework. Time proofs in [22] are also satisfactory, but to the best of our knowledge, the speci cations are given in HOL, which is in our opinion not well-adapted to processor speci cation. The other processors are rather complex and their proofs emphasize the usefulness of our speci cation and proof methodology. DP-32 is a processor described in VHDL in [5]. Its veri cation has raised one error in its implementation. This proof shows that our framework is able to specify, and then to prove, a processor starting from its VHDL description. A VHDL description style provable in our framework has been derived from its veri cation [4]. AVM-1 [20] has already been veri ed by Windley using HOL. Our speci cation is much more concise than his one, and our proof times are also much more satisfactory. MTI is a processor designed by CNET in France [15]. It has already been studied but never fully proved. Our system discovered several errors in its design.

7 Conclusion and perspectives We have presented a framework for processor speci cation and veri cation. It combines a class hierarchy for building speci cations and a computer algebra system for simplifying expressions. The main advantages of this approach is that the speci cation process is very easy and systematic since it just consists to instanciate prede ned classes. Furthermore, the veri cation times are very satisfactory compared with other methods. Although we were able to verify several processors without any modi cation to the core of our system, we plan to extend it in two major directions. First, we are developping a graphical interface for processor description. Thanks to the object framework, this will be a very simple task. Second, we will extend 15

the class of processors we are able to prove, to more complex architectures such as DSP or pipelined architectures. We hope that this extension will only consist to an enrichment of the class hierarchy. We are also considering, complex arithmetic instructions and loop instructions for which the symbolic execution approach is not sucient. Such veri cations need inductive techniques or elaborated representations as BDDs or *BMDs [7] that we are now embedding in our proof framework.

References [1] M. Allemand. A rewriting based method for the formal veri cation of microprocessors. In 11 International Conference on Computer Hardware Description Languages and their Applications, pages 115{122, Ottawa, Canada, Apr. 1993. Elsevier Science Publishers B.V. (North-Holland). [2] F. Anceau. The Architecture of Microprocessors. Addison-Wesley Publishing Company, 1986. [3] L. Arditi and H. Collavizza. An object oriented framework for the formal veri cation of processors. In European Conference on Object-Oriented Programming, 1995. [4] L. Arditi and H. Collavizza. Towards verifying VHDL descriptions of processors. Technical report, Laboratoire I3S, Universite de Nice, Jan. 1995. [5] P. J. Ashenden. The VHDL Cookbook. Dept. Computer Science, University of Adelaide, South Australia, rst edition, July 1990. [6] D. Borrione, P. Camurati, J. Paillet, and P. Prinetto. A functional approach to formal hardware veri cation: The MTI experience. In IEEE International Conference on Computer Design ICCD'88, Port Chester, New-York, Oct. 1988. IEEE Computer Society Press. [7] R. E. Bryant and Y.-A. Chen. Veri cation of arithmetic functions with binary moment diagrams. Technical Report CMU-CS-94-160, School of Computer Science, Carnegie Mellon University, June 1994. [8] A. Cohn. A proof of correctness of the Viper microprocessor: the rst level. In G. Birtwhistle and P. Subrahmanyam, editors, VLSI Speci cation, Veri cation and Synthesis, Calgary, Canada, Jan. 1987. Kluwer Acad. Publishers. [9] D. Cyrluk, S. Rajan, N. Shankar, and M. Srivas. Eective theorem proving for hardware veri cation. In Theorem Provers in Circuit Design: Theory, Practice and Experience - TPCD'94, Bad Herrenalb, Germany, Sept. 1994. th

16

[10] E. Gallesio. STklos: a Scheme object oriented system dealing with the TK toolkit. In Xhibition 94, San Jose, Jul. 1994. ICS. [11] M. Gordon. HOL, a machine oriented formulation of higher order logic. Technical Report 68, University of Cambridge, Computer Laboratory, 1985. [12] A. Gupta. Formal hardware veri cation methods: a survey. Formal Methods in System Design, 1(2/3):151{238, Oct. 1992. [13] W. A. Hunt Jr. Microprocessor design veri cation. Journal of Automated Reasoning, 5(4):429{460, Dec. 1989. [14] Milne and Pierre, editors. Advanced Research Working Conference on Correct HARdware design MEthodologies, CHARME'93, volume 683 of LNCS, Arles, France, May 1993. IFIP WG 10.2, Springer-Verlag. [15] J. Pulou, J. Rainard, and P. Thorel. Microprocesseur a test integre MTI { description fonctionnelle et architecture. Technical Report NT/CNS/CC/59, CNET, Grenoble, Jan. 1987. [16] R. Sekar and M. Srivas. Equational techniques. In G. Birtwistle and P. Subrahmanyam, editors, Current Trends in Hardware Veri cation and Automatic Theorem Proving, New-York, 1989. Springer-Verlag. [17] V. Stavridou. Formal Methods in Circuit Design. Number 37 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1993. [18] G. L. Steele Jr. Common Lisp the Language. Digital Press, second edition, 1990. [19] S. Tahar and R. Kumar. Towards a methodology for the formal hierarchical veri cation of RISC processors. In International Conference on Computer Design ICCD'93, Cambridge, Massachusetts, Oct. 1993. IEEE Computer Society Press. [20] P. J. Windley. The Formal Veri cation of Generic Interpreters. PhD thesis, University of California, Division of Computer Science, 1990. [21] P. J. Windley. A theory of generic interpreters. In [14], pages 122{134, 1993. [22] Z. Zhu, J. Joyce, and C. Seger. Veri cation of the Tamarack-3 microprocessor in a hybrid veri cation environment. In J. J. Joyce and C.-J. H. Seger, editors, Higher Order Logic Theorem Proving and Its Applications. 6 Int. Work. HUG'93, volume 780 of LNCS, pages 253{266, Vancouver, Canada, Aug. 1993. Springer-Verlag. th

17

Specification and verification challenges for sequential ...

Specification and verification challenges for sequential ...

Specification and Verification of Object Models with TLA ...

Parallel Computing System for e cient computation of ...

E cient Approaches to Subset Construction

An Approach to the Specification and Verification of a ...

Generation 2.0 and e-Learning: A Framework for ...

A Modular Verification Framework Based on Finite ...

Decompilation is the E cient Enumeration of Types

An E cient Algorithm for Finding a Path Subject to Two ...

NetTopo: A Framework of Simulation and Visualization for ... - CiteSeerX

NetTopo: A Framework of Simulation and Visualization for ... - CiteSeerX

A framework for parallel and distributed training of ...

The Legnaro Francium MOT: e cient detection ...

Towards A Unified Modeling and Verification of Network and System ...

A Framework for Systematic Specification and E cient Verification of ...

then a description of an abstract level (such as the assembly language level), while its In section 6 we give veri cation benchmarks, and we last conclude.

 Download PDF

 229KB Sizes
 1 Downloads
 297 Views

 Report

Recommend Documents

Specification and verification challenges for sequential ...

The specification challenge of dealing with computer versus infinite arithmetic (A.1) has been addressed in the con- modifier is supported by Spec#, but not by the current version of JML. Listing Journal of the ACM, 52(3):365â€“473, 2005

Specification and verification challenges for sequential ...

Side effects in expressions (B.2) as well as aliasing (C.3) are handled by for instance a method C.caller that calls D.middle, which in turn calls C.callee.

Specification and Verification of Object Models with TLA ...

this to state machines for objects and sequence diagrams for modelling object collaboration. Further we have checked consistency between all these models for specific examples. However, this is outside the scope of this paper. 5 Case Study: A Library

Parallel Computing System for e cient computation of ...

Host Code: C++. The string comparison process is made in parallel. Device Code: CUDA for C. Raul Torres. Parallel Computing System for e cient computation ...

E cient Approaches to Subset Construction

Technology Research Center, and the Natural Sciences and Engineering ... necessary to analyze searching and sorting routines, abstract data types, and 6.4 Virtual Power-Bit Vector : 5

An Approach to the Specification and Verification of a ...

systems where safety or security is paramount. A prototype Composite Design. To assemble hardware components to form a network, both parallel Hoare. Between 1979 and 1984 he worked at Imperial College, Lon- don as a research ...

Generation 2.0 and e-Learning: A Framework for ...

There are three generations in the development of AT. ... an organising framework this paper now conducts a ... ways in which web 2.0 technologies can be used.

A Modular Verification Framework Based on Finite ...

strongly connect components that we will talk about from now on. 0: no push button; 1: using push button1; 2: using push buttons 1 &. 2; using push buttons 1 ...

Decompilation is the E cient Enumeration of Types

treated by unstructured approaches. A ... of converting the data-type description in. Figure 1 to a program ... code as a user-defined free data type. like DECL v1 ...

An E cient Algorithm for Finding a Path Subject to Two ...

Jun 14, 1999 - Integrated network services (e.g., ATM, Intserv) are being designed to Phase 1, the algorithm assigns each edge e 2 E a weight l1(e) def.

NetTopo: A Framework of Simulation and Visualization for ... - CiteSeerX

Oct 30, 2008 - networks (WSNs) applications drive the fast development of research in various e.g., energy consumption, bandwidth management. NetTopo.

NetTopo: A Framework of Simulation and Visualization for ... - CiteSeerX

Oct 30, 2008 - hazardous situations [3], deploying a testbed is unwanted since ... in a physical WSN testbed and interact with each other to The private variable is initialized by calling the an easy way for users to configure their input

A framework for parallel and distributed training of ...

Accepted 10 April 2017 ... recently proposed framework for non-convex optimization over networks, ... Convergence to a stationary solution of the social non-.

The Legnaro Francium MOT: e cient detection ...

sensitive detection system based on a CCD camera and on subtraction of stray written as a 6 6 matrix: H = ~. 0. BBBBBBBBBBBB@ 0 0 A A 0 0. 0 !b. 0 0 C C.

Towards A Unified Modeling and Verification of Network and System ...

be created by users or services running on top of hosts in the network. The services in our model can also transform a request into another one or more requests ...

×
Report A Framework for Systematic Specification and E cient Verification of ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

