

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

A Haskell Interpreter for Object Calculus Shobhit Maheshwari Univ. of California, Santa Cruz

Aneesh Neelam Univ. of California, Santa Cruz

March 16, 2016

Abstract We present an interpreter developed in Haskell for the Object Calculi introduced and detailed by M. Abadi and L. Cardelli. Object Calculus has been devised to represent objects directly as primitives, rather than to try to make use of Lambda Calculus that use function primitives, to objects. Since Haskell is not an object oriented language, we shall be deviating slightly from the syntax of the Object Calculi in our interpreter. But the Haskell interpreter will be based on the semantics, and typing rules of objectoriented languages specified by these Object Calculi.

1

Introduction

Lambda Calculus has been introduced by Church in the 1930s as a formal system in mathematical logic to express computation based on function abstraction and application using variable binding and substitution [9, 11]. Church numerals and encoding are used to represent data and operators in Lambda Calculus [10]. Functions are primitives in Lambda Calculus, and are directly implemented by functional programming languages. For a given Lambda Calculus, one can implement a Haskell interpreter trivially. Various Lambda Calculi have been used as a foundation for procedural languages [2]. Interpreters can be built quickly for them. However, Object-Oriented languages cannot be represented easily by Lambda Calculus. Object Oriented Programming constructs like Inheritance, Polymorphism cannot be represented easily by the Lambda Calculus and notation devised by Church. This is especially true for typed Object Oriented languages, when using typed Lambda Calculus [3]. It is not trivial even with Object Calculus to develop an interpreter in Haskell, a typed functional language, but it certainly is easier than directly adapting Lambda Calculus for object-oriented languages and then developing an interpreter for that [2].

Abadi and Cardelli devised Object Calculus to complement Lambda Calculus, and help represent objectoriented concepts in programming languages more easily [1–4]. There are a number of approaches that others have tried with various degrees of success when representing these languages and concepts. In the next section, we shall see approaches that others have taken to model object-oriented languages, either adapting or directly using Lambda Calculus or in this case, devising a new formal mathematical system. In Section III, we shall have a quick overview of the Object Calculi devised by Abadi and Cardelli [2], and walk through the given syntax. In Section IV, we shall present our Haskell interpreter for untyped imperative Object Calculi, and in Section V, we conclude and discuss future work.

2

Related Work

These are the broad approaches taken to model objectoriented languages. More work has been done pertaining to each of the following approaches. One of the earliest approaches to developing a formal system for modeling object-oriented languages was to use typed Lambda Calculus to encode objects, classes and methods in more primitive constructs like functions. Pierce specifies how lambdas and recursive records can be used to obtain a foundation for object oriented languages [8]. However, Abadi and Cardelli argue that Lambda Calculus is quite unsuitable for representing some of the concepts in object-oriented languages and hence devised Object Calculus [2, 3]. Castagna uses multimethod calculus to help represent object oriented theory and abstractions [6]. This approach is somewhat similar to Object Calculus, but it is more verbose and complicated. Object Calculus was devised to have a minimal syntax [2]. Bruce devised class-based calculi to model class-based programming. But the focus is on class-based languages,

and a limited set of object oriented concepts like classes can be added to it. This represents method overriding and and inheritance [5]. Abadi and Cardelli’s Object Calculus polymorphism in conventional object-oriented languages. manages to represent both Class-based and the broader Object-based languages [3].

4

Implementation

Based on the rules and syntax specified in the previous section we can now implement an Haskell interpreter for untyped imperative Object Calculus. First, we define the We chose to implement the interpreter for the imperative data types and then the functions to evaluate method invountyped Object Calculus devised by Abadi and Cardelli in cation, method update and object cloning. Haskell. The Object Calculus consists of objects, method invocation, method update, object cloning and local vari4.1 Object Calculus able definitions [2, 3]. The syntax is as follows:

3

Overview

The Object Calculus is defined as a simple data structures in Haskell: -- Object Calculus Term data Term = Var String | Obj Object | MetInv String | MetUpd String Method deriving (Show, Eq)

Figure 1: The syntax of untyped Object Calculus as defined by Abadi and Cardelli [3]. In Object Calculus, the Methods and Fields of the Objects are not defined individually. Methods and Fields are both defined as a mapping from label to method body in an object [2]. Labels are unique in Objects [2], otherwise it can break the mapping in the Object. A Method body without a function is a field [3], and treated as a field of the object. The function body can be construed as an adapted form of Lambda Calculus. Objects are defined as a collection (or map from) of labels to methods. The labels are distinct within an object. Methods in an object can be looked up using the labels. Method invocation evaluates the body of the method corresponding to the given label in an object, and assigns the result to the method’s label and returns it [2]. Method update is used to add or update the methods of an object [3]. It replaces the method corresponding to the given label with the given method, or adds the given method and assigns the given label in the object. Objects can be cloned easily in Object Calculus [2]. It is required to create multiple objects from an existing template. This can also be represented as a creating objects from classes in class-based object-oriented languages. clone(o) produces a new object, with the same labels and the same corresponding methods as Object o [2]. Inheritance can be demonstrated by cloning an existing object. This is more akin to dynamic inheritance in object-based languages than the class-based inheritance in class-based languages [2]. The methods of the cloned object can be updated with different ones or new methods

We shall break the syntax down and specify what each of them correspond to in the Object Calculus specified by Abadi and Cardelli [2]: Var String

This refers to the local variable definitions in Object Calculus. Since Haskell is a typed language, we specified it as a String. However, in untyped imperative Object Calculus, it can be of any type. type Object = (Map String Method) Obj Object

This refers to an object in Object Calculus. In Haskell, we defined an Object as a Map (Haskell’s Data.Map) between labels(of type String) and Methods. Methods are defined as a separate data type in Haskell. MetInv String

This corresponds to Method Invocation of Object Calculus. When evaluated, the Method corresponding to the given label (String) is evaluated. If the Method body is a field and not a function body then the evaluation simply returns the same field. If the Method body is a function, then it is evaluated in a manner similar to Lambda Calculus and the result is assigned to the same label in the object. 2

4.4

MetUpd String Method

Method Update is simple, and is defined as a function that updates the method corresponding to the given label in an Object. Like Method Invocation, this is also used to evaluate the Object Calculus. The label is looked up in the given Object, and the method is replaced and the modified Object is returned.

This corresponds to Method Update of Object Calculus. When evaluated, the Method corresponding to the given label (String) is replaced by the given method. If there is nothing corresponding to the given label, then the given Method is added to the Object as a new Method. As mentioned before, Methods can be Fields or Function Bodies [3].

4.2

Method Update

-- Update Method with given Method methodUpdate :: Object -> String -> Method -> Object methodUpdate obj label m = resultantObj where f m’ = if (m’ == m) then Just m else Nothing resultantObj = Map.update f label obj

Object Method and Body

The Method is another data type defined to be either a field, or a Function Body. data Method = VarM Int | Fun Body | FunM (Maybe Body) deriving (Show, Eq)

4.5

Object Cloning

This is the simplest one of the functions. It simply returns the same object, as a copy. Method update can be apThe Method can either be a Field or a Function Body. A plied on the copy to obtain a derived object, this represents Field in this case is defined to be an Integer. However, it object-based inheritance in many object-based languages. can be of any other type as well. The Function Body is defined similar to Lambda Calculus. -- Clone an object

4.3

objClone :: Object -> Object objClone obj = obj

Method Invocation

Method Invocation is defined as a function that evaluates invokes a Method in an Object. It is used by when evaluating the Object Calculus. The label is looked up in the 5 Conclusion given Object, and the method is evaluated. The function body is evaluated in a manner similar to Lambda Calcu- The Haskell interpreter for Object Calculus can be used to gain a better understanding of how Object-oriented lanlus. guages are represented using Object Calculi. As we mentioned in a previous section, there are other approaches to -- Method Invocation methodInvocation :: Object -> String -> modeling object-oriented languages. However, we chose Object to build upon Abadi and Cardelli’s Object Calculus bemethodInvocation obj label = resultantObj cause we feel it is a more generic representation of objectwhere oriented languages and hence can be used to model any m = (lookup label obj) type of object oriented language [3]. m’ = evalMethod m Mapping Object Calculus devised for representing f m2 = if (m2 == m’) then Just m’ else Object-Oriented Languages in a Functional Language like Nothing Haskell has been quite difficult. Untyped Imperative ObresultantObj = Map.update f label obj ject Calculus is the more generic and minimal form of Object Calculus. But as Haskell is a typed functional lan-- Evaluate a Method evalMethod :: Method -> Method guage with lazy evaluation, there is often a mismatch beevalMethod (VarM number) = VarM number tween the implementation, and the given typing rules, seevalMethod (Fun body) = FunM (evalBody mantics and the Object Calculus syntax. Unfortunately, body) the current implementation of the interpreter does not fully parse the more advanced expressions in Object Cal3

culus. But it is able to parse and evaluate the untyped imperative Object Calculi of the previous sections. In the future, this interpreter can be extended to support Typed Object Calculus as well [7]. A Type system for the Object Calculus has already been devised by Abadi and Cardelli [2]. However, whether it is feasible to do so in Haskell remains to be seen.

References [1] M. Abadi and L. Cardelli. A semantics of object types, 1994. [2] M. Abadi and L. Cardelli. An imperative object calculus: Basic typing and soundness, 1995. [3] M. Abadi and L. Cardelli. A theory of objects, 1996. [4] M. Abadi and L. Cardelli. A logic of object-oriented programs, 2003. [5] K. B. Bruce. Foundations of object-oriented languages, 2002. [6] G. Castagna. Object-oriented programming, 1997. [7] M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A nominal theory of objects with dependent types, 2003. [8] B. C. Pierce and D. N. Turner. Simple type-theoretic foundations for object-oriented programming., 1994. [9] R. Rojas. A tutorial introduction to the lambda calculus, 2015. [10] Wikipedia. Article on church encoding. [11] Wikipedia. Article on lambda calculus.

4

[image: Haskell for LATEX2e - GitHub]
Haskell for LATEX2e - GitHub

[image: haskell-Tensor haskell-OpenGL haskell-GLUT xmobar ... - GitHub]
haskell-Tensor haskell-OpenGL haskell-GLUT xmobar ... - GitHub

[image: Categories and Haskell - GitHub]
Categories and Haskell - GitHub

[image: Predicate calculus - GitHub]
Predicate calculus - GitHub

[image: FLTKHS - Easy Native GUIs in Haskell, Today! - GitHub]
FLTKHS - Easy Native GUIs in Haskell, Today! - GitHub

[image: Applying Type-Level and Generic Programming in Haskell - GitHub]
Applying Type-Level and Generic Programming in Haskell - GitHub

[image: Calculus on Computational Graphs: Backpropagation - GitHub]
Calculus on Computational Graphs: Backpropagation - GitHub

[image: Component-based game object system - GitHub]
Component-based game object system - GitHub

[image: A Modular Interpreter In Scheme With Objects - Computer Science ...]
A Modular Interpreter In Scheme With Objects - Computer Science ...

[image: A Modular Interpreter In Scheme With Objects - Computer Science ...]
A Modular Interpreter In Scheme With Objects - Computer Science ...

[image: The Interlingual Interpreter]
The Interlingual Interpreter

[image: The Interlingual Interpreter]
The Interlingual Interpreter

[image: haskell-book.pdf]
haskell-book.pdf

[image: A Programmerâ€“Interpreter Neural Network Architecture ...]
A Programmerâ€“Interpreter Neural Network Architecture ...

[image: haskell-book.pdf]
haskell-book.pdf

[image: Handling Exceptions in Haskell]
Handling Exceptions in Haskell

[image: Handling Exceptions in Haskell]
Handling Exceptions in Haskell

A Haskell Interpreter for Object Calculus - GitHub

Church numerals and encoding are used to represent data and operators in Lambda ... ers have taken to model object-oriented languages, ei- ther adapting or ...

 Download PDF

 135KB Sizes
 1 Downloads
 271 Views

 Report

Recommend Documents

[image: alt]

Haskell for LATEX2e - GitHub

School of Computer Science and Engineering. University of New South Wales, Australia Research report, Yale University, April 1997. 4.

[image: alt]

haskell-Tensor haskell-OpenGL haskell-GLUT xmobar ... - GitHub

haskell-blaze-html haskell-lcs haskell-ansi-terminal haskell-ansi-wl-pprint hscolour haskell-haskell-src haskell-hostname haskell-StateVar haskell-temporary.

[image: alt]

Categories and Haskell - GitHub

This is often summarized as a side-effect free function. More generally ... The composition g â—¦ f is only defined on arrows f and g if the domain of g is equal to the codomain of f. http://files.meetup.com/3866232/foldListProduct.pdf ... Pag

[image: alt]

Predicate calculus - GitHub

The big picture. Humans can use logical reasoning to draw conclusions and prove things. Is it possible to teach computers to do this automatically? Yes it is!

[image: alt]

FLTKHS - Easy Native GUIs in Haskell, Today! - GitHub

Feb 5, 2016 - Call. valuatorRef->bounds(1.0, 10.0). In FLTKHS bounds valuatorRef 1.0 10.0. Aditya Siram (@deech). FLTKHS - Easy Native GUIs in Haskell, ...

[image: alt]

Applying Type-Level and Generic Programming in Haskell - GitHub

Feb 10, 2018 - (Haskell allows to say deriving Eq on a datatype declaration, invoking compiler magic that conjures up a Since type-level programming is a bit peculiar in Haskell, we'll move step by step: from normal lists over Before we mov

[image: alt]

Calculus on Computational Graphs: Backpropagation - GitHub

ismp/52_griewank-andreas-b.pdf)). The general cheap, and us silly humans have had to repeatedly rediscover this fact. ... (https://shlens.wordpress.com/),.

[image: alt]

Component-based game object system - GitHub

3.7.2 Can we reuse game object types, or their behaviors, in new games? . 7. 3.7.3 Is it easy to gameprogrammingpatterns.com/component.html. [16] Pie21.

[image: alt]

A Modular Interpreter In Scheme With Objects - Computer Science ...

guage has the advantages of greater uniformity and flexibility. 1 The Problem of ... must be made retroactively to recursions within the ... programs makes them easier to understand. The The default initializer will yield to custom initializers

[image: alt]

A Modular Interpreter In Scheme With Objects - Computer Science ...

Programming. Extensibility is the ability of a program to be ... the cases of program and of data, the extension plemented directly on top of Scheme, rather than.

[image: alt]

The Interlingual Interpreter

Dunham 1991 U.S. App. LEXIS 10945;. United States v. Ushakow 474 F.2d ... â€œimprovisedâ€� interpreters are unable to achieve what he calls the. â€œtransparencyâ€�.

[image: alt]

The Interlingual Interpreter

a phonograph,4 a transmission belt, transmission wire or telephone,5 a court reporter,6 a Prevention, Services, Training and Research (Rockville, Md.: National Institute of Interpreter: â€œWas your wife pregnant when you came home?â€�

[image: alt]

haskell-book.pdf

Page 2 of 15. PROGRAMACIÃ“ TRIMESTRAL Escola del Mar, curs 2017-18. 5Ã¨. 2. SEGON TRIMESTRE. NumeraciÃ³ i cÃ lcul. - Nombres decimals: part sencera i part decimal. - DÃ¨cimes, centÃ¨simes i milÂ·lÃ¨simes. - DescomposiciÃ³, comparaciÃ³ i ordenaciÃ³ de

[image: alt]

A Programmerâ€“Interpreter Neural Network Architecture ...

May 18, 2015 - A Programmerâ€“Interpreter Neural Network Architecture for Prefrontal Cognitive Control. Francesco Donnarumma. âˆ—. Institute of Cognitive ...

[image: alt]

haskell-book.pdf

Getting Started . 7. 2.1.1. Simple Arithmetic . 7. 2.1.2. Boolean Algebra haskell-b

[image: alt]

Handling Exceptions in Haskell

Jan 19, 1999 - ... less idealistic programmers can write in C, Java, Ada and other useful since the Prelude is not just ordinary Haskell code, requires a lot of ...

[image: alt]

Handling Exceptions in Haskell

Jan 19, 1999 - Handling Exceptions in Haskell. Alastair Reid. Yale University. Department of Computer Science. New Haven, CT 06520 .

×
Report A Haskell Interpreter for Object Calculus - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

