A Joint Topic and Perspective Model for Ideological Discourse Wei-Hao Lin, Eric Xing, and Alex Hauptmann Language Technologies Institute School of Computer Science Carnegie Mellon University European Conference on Machine Learning, Antwerp, Belgium, September 2008
On abortion issue
On abortion issue
Barack Obama
On abortion issue
•
“Abortion should be legally available in accordance with Roe v. Wade.”
Sources: 1998 IL State Legislative National Political Awareness Test, Jul 2, 1998
Barack Obama
On abortion issue
•
“Abortion should be legally available in accordance with Roe v. Wade.”
Sources: 1998 IL State Legislative National Political Awareness Test, Jul 2, 1998
Barack Obama
John McCain
On abortion issue
•
“Abortion should be legally available in accordance with Roe v. Wade.”
Sources: 1998 IL State Legislative National Political Awareness Test, Jul 2, 1998
Barack Obama
•
“I have stated time after time that Roe v. Wade was a bad decision, that I support the rights of the unborn.” Sources: Meet the Press: 2007 “Meet the Candidates” series, May 13, 2007
John McCain
Echo Chamber Percentage of Internet users in the United States who seek news sources that challenge their views:
Echo Chamber Percentage of Internet users in the United States who seek news sources that challenge their views:
20%
Too many newspapers, too little time
Credit: http://www.flickr.com/photos/china-beijing-photowall/1537705755/
Automatic detection of biased articles
Automatic detection of biased articles Warning: Strongly pro-life bias!
Automatic detection of biased articles Warning: Strongly pro-life bias!
Want to read some pro-choice articles?
Goal
•
Develop statistical models for ideological discourse
• • • •
Automatic identify an article’s viewpoint Justify models’ decisions on perspectives Raise awareness of individual news sources’ biases Facilitate mutual understanding between people holding different beliefs
Outline
• •
• •
Goal: Model ideology discourse Joint Topic and Perspective Model
• • •
Emphatic patterns in word frequency Model specification Approximate inference using variational methods
Evaluation Conclusions
Emphatic patterns in word frequency
Israeli view
Palestinian view
Emphatic patterns in word frequency
Israeli view
Palestinian view
Emphatic patterns in word frequency Topical factor
Israeli view
Palestinian view
Emphatic patterns in word frequency
Israeli view
Palestinian view
Emphatic patterns in word frequency
Israeli view
Palestinian view
Emphatic patterns in word frequency Ideological factor
Israeli view
Palestinian view
Encode emphatic patterns into ß structure
Encode emphatic patterns into ß structure
Joint Topic and Perspective Model (jTP) µτ τ π
Pd
Wd,n
Στ
βv Nd D
Document view Pd ∼
V
µφ
φv V
Σφ
Bernoulli(π), d = 1, . . . , D
word Wd,n |Pd = v ∼ Multinomial(βv ), n = 1, . . . , Nd βvw =
topical weight τ ∼
ideological weight φv ∼
exp(τ w ×φw v ) P ! ! ,v w w ×φv ) w! exp(τ
= 1, . . . , V
N(µτ , Στ ) N(µφ , Σφ ).
Joint Topic and Perspective Model (jTP) µτ τ π
Pd
Wd,n
Στ
βv Nd D
Document view Pd ∼
V
µφ
φv V
Σφ
Bernoulli(π), d = 1, . . . , D
word Wd,n |Pd = v ∼ Multinomial(βv ), n = 1, . . . , Nd βvw =
topical weight τ ∼
ideological weight φv ∼
exp(τ w ×φw v ) P ! ! ,v w w ×φv ) w! exp(τ
= 1, . . . , V
N(µτ , Στ ) N(µφ , Σφ ).
Joint Topic and Perspective Model (jTP) µτ τ π
Pd
Wd,n
Στ
βv Nd D
Document view Pd ∼
V
µφ
φv V
Σφ
Bernoulli(π), d = 1, . . . , D
word Wd,n |Pd = v ∼ Multinomial(βv ), n = 1, . . . , Nd βvw =
topical weight τ ∼
ideological weight φv ∼
exp(τ w ×φw v ) P ! ! ,v w w ×φv ) w! exp(τ
= 1, . . . , V
N(µτ , Στ ) N(µφ , Σφ ).
Joint Topic and Perspective Model (jTP) µτ τ π
Pd
Wd,n
Στ
βv Nd D
Document view Pd ∼
V
µφ
φv V
Σφ
Bernoulli(π), d = 1, . . . , D
word Wd,n |Pd = v ∼ Multinomial(βv ), n = 1, . . . , Nd βvw =
topical weight τ ∼
ideological weight φv ∼
exp(τ w ×φw v ) P ! ! ,v w w ×φv ) w! exp(τ
= 1, . . . , V
N(µτ , Στ ) N(µφ , Σφ ).
Joint Topic and Perspective Model (jTP) µτ τ π
Pd
Wd,n
Στ
βv Nd D
Document view Pd ∼
V
µφ
φv V
Σφ
Bernoulli(π), d = 1, . . . , D
word Wd,n |Pd = v ∼ Multinomial(βv ), n = 1, . . . , Nd βvw =
topical weight τ ∼
ideological weight φv ∼
exp(τ w ×φw v ) P ! ! ,v w w ×φv ) w! exp(τ
= 1, . . . , V
N(µτ , Στ ) N(µφ , Σφ ).
Joint Topic and Perspective Model (jTP) µτ τ π
Pd
Wd,n
Στ
βv Nd D
Document view Pd ∼
V
µφ
φv V
Σφ
Bernoulli(π), d = 1, . . . , D
word Wd,n |Pd = v ∼ Multinomial(βv ), n = 1, . . . , Nd βvw =
topical weight τ ∼
ideological weight φv ∼
exp(τ w ×φw v ) P ! ! ,v w w ×φv ) w! exp(τ
= 1, . . . , V
N(µτ , Στ ) N(µφ , Σφ ).
Two Difficulties in jTP 1. Computationally intractable inference on weights P (τ, {φv }|{Wd,n }, {Pd }; Θ) ! ! ! ∝ N(τ |µτ , Στ ) Bernoulli(Pd |π) Multinomial(Wd,n |Pd , β) N(φv |µφ , Σφ ) v
•
d
n
Approximate inference using variational methods
P (τ, {φv }|{Pd }, {Wd,n }; Θ) ≈ qτ (τ )
•
v
qφv (φv )
Cope with non-conjugate logistic-normal distributions using Laplace approximation
2. Under-constrained model parameters
•
!
Fix corner points
Generalized Mean Fields inference µτ τ π
Pd
Wd,n
Στ
βv Nd D
V
µφ
φv V
Σφ
Generalized Mean Fields inference Variational E step
µτ τ π
Pd
Wd,n
βv Nd D
qτ (τ ) =
Στ
V
µφ
φv V
P (τ |{Wd,n }, {Pd }, {!φv "}; Θ)
Σφ
N(τ |µτ , Στ ) Multinomial({Wd,n }|{Pd }, τ, {!φv "}) ≈ N (τ |µ∗ , Σ∗ ) #−1 ! −1 " T ∗ τ • !φv ") → !φv " Σ = Στ + v nv 1!φv " ↓ H(ˆ ! −1 " " T ∗ ∗ µ = Σ Στ µτ + v nv • !φv " − v nv 1∇C(ˆ τ • !φv ") • !φv " # " T + v nv 1!φv " • (H(ˆ τ • !φv ")(ˆ τ • !φv ")) ∝
Generalized Mean Fields inference Variational E step
µτ τ π
Pd
Wd,n
βv Nd D
qφv (φv ) =
Στ
V
µφ
φv V
P (φv |{Wd,n }, {Pd }, !τ "; Θ)
Σφ
∝ N(φv |µφ , Σφ ) Multinomial({Wd,n }|{Pd }, {φv }, !τ ") ≈ N (φv |µ† , Σ† ) ! "−1 −1 † Σ = Σφ + nTv 1!τ " ↓ H(!τ " • φˆv ) → !τ " ! −1 † † µ = Σ Σφ µφ + nv • !τ " − nTv 1∇C(!τ " • φˆv ) • !τ "
Generalized Mean Fields inference Variational M step
µτ τ π
Pd
Wd,n
Στ
βv Nd D
V
µφ
φv V
Σφ
Outline
• • •
•
Goal: Model ideology discourse Joint Topic and Perspective Model Evaluation
• • •
Synthetic and real data Uncovered topical and ideological weights Predict unseen data
Conclusions
Experimental Data
• •
Synthetic data for verifying the inference algorithm Two real data
• •
Editorials published on http://bitterlemons.org
• •
Israeli vs. Palestinian 594 documents (302 vs. 292), 462,308 words
2000-04 US presidential debate speech transcripts
• •
Democratic vs. Republican 1232 documents (214 vs. 235), 122,056 words
w3
0.4 0.3 0.2 0.1 0.0
w2
w1 !
maximal absolute difference
Synthetic Data
0
200
400
600
training examples
800
1000
Israeli vs. Palestinian
Democratic vs. Republican
Reduce perplexity
Encode emphatic patterns into ß structure
Encode emphatic patterns into ß structure
Conclusions
• • •
•
New challenge: identifying ideological perspectives Emphatic patterns in ideological discourse New model: Joint topic and perspective model
• •
Inference algorithms using variational methods
•
Predict real data better than view-ignorant models
Automatic discovery of topical and ideological weights of words
Emphatic patterns found in user-generated tags, visual content, etc.