

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

A Survey on Middleware for Context-Awareness in Ubiquitous Computing Environments N.Q. Hung, N.C. Ngoc, L.X. Hung, Shu Lei, S.Y. Lee Department of Computer Engineering Kyung Hee University, Korea. {nqhung, ncngoc, lxhung, sl8132, sylee}@oslab.khu.ac.kr

1. Introduction In 1991, Mark Weiser, in his vision for the 21st century computing, described that ubiquitous computing, or pervasive computing, is the process of removing the computer out of users’ awareness and seamlessly integrating it into everyday life [1]. And recently, mobile devices, wireless networking and low-cost, lowpower, multifunctional sensor technologies have developed rapidly. This has enabled the appearance of ubiquitous computing environment possibly. Ubiquitous computing environments consist of numerous wearable, handheld, and embedded devices that work together to transform physical spaces into smart and interactive environments, and they enhanced the computing and communication capabilities of the humans by integrating embedded computers with various environments and daily lives, thus making computing and communication essentially autonomous and transparent to the users. We can describe ubiquitous computing as the combination between mobile computing and intelligent environment, where intelligent environment is a prerequisite to pervasive computing. Mobile computing addresses location- and mobility-management issues but in a reactive context-responding to discrete events, thus cannot make timely, context-sensitive decisions. Ubiquitous computing requires systems and devices that perceive context in a proactive manner. Nowadays the research is developed on the belief that in order for ubiquitous computing to be successful, we must develop computer systems that draw computing into the natural world of the humans, as oppose to drawing humans into the complex world of computers. Computer systems need to automatically reason about the situation of human users. Thus, it allows systems to anticipate the needs of users and act on their behalf. For example, when the network bandwidth changes, the video streaming application on a wireless PDA must be able to dynamically adjust the streaming quality without interrupting the viewer’s attention; in a public social environment, when not all people are trusted users, a document sharing service must be able to dynamically adjust the policy for sharing sensitive documents based on the role of the users. That is context-awareness. Context-awareness (or context sensitivity) is an application software system’s ability to sense and analyze context from various sources; it lets application software take different actions adaptively in different contexts [2]. One of the goals of a smart environment is that it supports and enhances the abilities of its occupants in executing tasks. These tasks range from navigating through an unfamiliar space, to providing reminders for activities, to moving heavy objects for the elderly or disabled. In order to support the occupants, the smart environment must be able to detect the current state or context in the environment and also determine what actions to take based on this context information. Therefore, applications and devices in ubiquitous computing environments need to be context-aware so that they can adapt themselves to different situations. During the last decade, wireless technology has experienced an exponential growth. The increasing popularity of wireless devices, such as mobile phones, personal digital assistants, watches and the like, is enabling new classes of application that present challenging problems to designers. On the other hand, recent progress in fabrication of micro-electromechanical systems-based (MEMS) sensors has provided the environment with diverse sensor types deployed in distributed wide areas. In order to solve the distributed problems, such as heterogeneity, scalability, resource sharing, etc, middleware is needed to acts as the mediator, glue between application layer and the underlying platforms. Middleware developed upon network operating systems provides application designers with a higher level of abstraction, hiding the complexity introduced by distribution and heterogeneity. Like distributed computing and mobile computing, pervasive computing requires a middleware “shell” to interface between the networking kernel and the end-user applications running on pervasive devices. Furthermore, typical applications in ubiquitous computing environments are context-aware, which means applications using various data about the surrounding environment to control their interactions with other

1

devices. Since various contexts depend on external and runtime conditions, context-aware communication among devices occurs transparently and dynamically. A middleware to provide the necessary support for such type of communication is appropriate due to interoperability, application development support, and runtime services that are basic functions of a middleware framework. For ubiquitous computing environments, middleware architecture should itself be context-aware to manage the communication among objects in a transparent fashion. Moreover, the middleware allows applications to acquire contextual information easily, reason about it using different logics and then adapt themselves to changing contexts. And by using middleware for context-awareness, there will be huge benefits include reduced development times of context-aware applications and great ease in specifying complex behaviors of these applications. Context-aware middleware provides an easy way for developers to specify the way in which an environment should automatically respond to different contexts. Developers do not have to worry about the details of getting contextual information from different sources or the mechanics of triggering different actions in different situations. This helps in rapid development and prototyping of applications. Middleware for context-awareness would allow autonomous, heterogeneous agents to seamlessly interact with one another. Context-aware middleware also makes it pretty simple to insert new sensors and deploy new devices. The emerging projects in ubiquitous computing show that context-sensitive (or context-aware) applications are the current research trend. The goal of this article is to survey the most relevant literature and practical projects in this field. We will discuss about context and context-awareness in section 2. In section 3, we argue why to use middleware for context-awareness, and figure out some important characteristics of this middleware we studied form the survey. In section 4 we analyze three case studies that provide us seminal paradigms for context-aware middleware. We describe in section 5 the most related projects that we have seen. Section 6 discusses challenges ahead and section 7 gives a final summary and our conclusions of this article.

2. Contexts and Context-awareness Context plays an important role in developing intelligent applications in ubiquitous computing environments. The word “context” is defined as “the interrelated conditions in which something exists or occurs” in Merriam-Webster’s Collegiate Dictionary (http://www/m-w.com). Not satisfied by a general definition, many researchers have attempted to define context which has the meaning related to computer environment [3], [4], [5], [6]. Schilit et al. characterize context as a collection of information that describe the users in a context-aware system. Schilit describes context as the following [3]: In a mobile distributed computing system, contexts are the location of the user, the identity of people and physical objects that are nearby the user, and the states of devices that the user interact with. However, it does not cover any other types of contexts that are useful for building context-aware systems (e.g. the intentions of the users, the activities that the users are participating etc.). Dey defines context as “Any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves” [4]. We can understand that context is a general word and has a loose definition. Moreover, context in mobile computing really has two different aspects. One aspect of context includes the characteristics of the surrounding environment that determine the behavior of application. The other aspect of context is relevant to application but not critical. None of the formal definitions we have read delivers this difference, so we give out definition here: “Context” is any information about the circumstances, objects, or conditions by which a user is surrounded that is considered relevant to the interaction between the user and the ubiquitous computing environment. In a mobile sense, context-awareness is the ability for a device to perceive the user and his surroundings, which are used by services (within that context) to adapt to the user’s needs. For instance, location awareness is one of the major elements of context-aware computing. Several research initiatives are focused on implementing context-aware environments, for example, proprietary toolkits to support application development and testbeds, such as [7], [8]. Schilit defines context-awareness by categorizing context-aware applications as [9]: proximate selection: a user interface technique where the objects located nearby are emphasized or otherwise made easier to choose. Automatic contextual reconfiguration: a process of adding new components, removing existing

2

components, or altering the connections between components due to context changes. Contextual information and commands: which can produce different results according to the context in which they are issued. Context-triggered actions: simple IF-THEN rules used to specify how context-aware systems should adapt. Pascoe [10] classified context-aware features into several types, including contextual sensing, contextual adaptation, contextual resource discovery and contextual augmentation (the ability to associate digital data with a user’s context). Dey combines these ideas and maps them to three general categories of contextaware features that context-aware applications may support [4]. This classification introduces three categories of functions, related to the presentation of information, the execution of services, and the storage of context information attached to other captured information for later retrieval. The first category, presenting information and services, refers to applications that either present context information to the user, or use context to propose appropriate selections of actions to the user. There are several examples of this class of functions in the literature and in commercially available systems: showing the users’ or their vehicles’ location on a map and possibly indicating nearby sites of interest, presenting a choice of printers close to the user etc. The second category, automatically executing a service, describes applications that trigger a command, or reconfigure the system on behalf of the user according to context changes. Examples include: car navigation systems that recompute driving directions when the user misses a turn; mobile devices enhanced with sensors that determine their context of use to change their settings and actions; a camera that captures an image when the user is startled as sensed by biometric sensors; devices that deliver reminders when users are at a specified location, etc. In the third category, attaching context information for later retrieval, applications tag captured data with relevant context information. For example, the informal meeting capture system provides an interface to access informal meeting notes based on who was there, when the meeting occurred and where the meeting was located; Time-Machine Computing and Placeless Documents are two systems that attach context to desktop or networked files to enable easier retrieval. Through our article we will learn why and how to achieve those context-aware functions based on the approach of using middleware for context-awareness in ubiquitous computing environments.

3. Middleware for Context-awareness in Ubiquitous Computing Environments 3.1 MIDDLEWARE OVERVIEW The development of middleware is closely related to the evolution of ubiquitous computing began in the mid of 1970s, when the PC first brought computers closer to people. With the advent of networking, personal computing evolved to distributed computing. With seamless access and World Wide Web, distributed computing marked a next step toward pervasive computing, and mobile computing emerged from the integration of cellular technology with the Web. The “anytime anywhere” goal of mobile computing is essentially a reactive approach to information access, and it prepares the way for pervasive computing’s proactive, “all the time everywhere” goal [11][12]. As figure 1 shows, pervasive computing is a superset of mobile computing [12].

Figure 1. System view of Pervasive Computing [12].

3

It is in distributed system that middleware was emerged to hide the heterogeneity nature of distributed environment. Middleware acts as the mediator, glue between application layer and the underlying platforms and its ultimate goal is to provide the distribution transparency to the users. With the development towards ubiquitous computing, in mobile computing, the mobility and dynamic reconfiguration become inherent features in the environment. Devices will automatically detect other devices, forming wireless, ad hoc communications spontaneously. The middleware must withstand these dynamic challenges. Middleware solutions for wired distributed systems are not well suited to the mobile setting, as they do not allow dynamic adaptation of the middleware behavior to changes in the context of execution, and that hence new middleware capabilities are required. Heterogeneity is not the ultimate goal any more, instead, the middleware needs a balance between the transparency and awareness: replication awareness against replication transparency, in order to decide what to store locally and what to access remotely; context-awareness against context transparency, to react properly to frequent changes of the execution context; and location awareness instead of location transparency [13]. In recent years, with the developing of Wireless Sensor Network (WSN) based on the MEMS technology, due to the architecture of WSN (limited computing resources: processors, memory, power, and bandwidth), middleware built on WSN must be lightweight (an evolvable and reduced platform footprint to support diverse devices with limited resources) and provide additional functionality. In order to separate the low-level sensor data processing from high-level applications, it is necessary to introduce a middleware layer whose functionalities are collecting raw sensor information, translating it to an applicationunderstandable format, and disseminating it to interested applications. And nowadays, middleware for context-awareness is considered the further step for ubiquitous computing era to become reality. Some initial research was set up. Schmidt et al. [14] are developing (and to standardize) an Adaptive and Reflective Middleware System (ARMS) for the Department of Defense combat systems (in the US). They claim that combat systems needs to be highly adaptive due to the unexpected conditions, which may arise in real-time and enable a rich set of services by linking existing multi-technology combat systems. In UCL (University College London), Mascolo et al. [15], have designed a mobile middleware (XMIDDLE) based on XML to interact and share meta-information among heterogeneous hosts using an ad hoc network configuration. Their key objective was to allow mobile devices to form peer-to-peer networks regardless of the underlying network (i.e. Wireless LAN, Bluetooth etc) and share XML documents. 3.2 WHY A MIDDLEWARE FOR CONTEXT-AWARENESS? Different approaches have been suggested for promoting context-awareness among agents. Anind Dey et al. [16] have proposed the Toolkit approach, which provides a framework for the development and execution of sensor-based context-aware applications and provides a number of reusable components. The toolkit supports rapid prototyping of certain types of context-aware applications. Another approach using middleware would give us certain advantages. A middleware would provide uniform abstractions and reliable services for common operations. It would, thus, simplify the development of context-aware applications. A middleware would greatly simplify the tasks of creating and maintaining context-aware systems [17]. It would also make it easy to incrementally deploy new sensors and contextaware agents in the environment. A middleware would be independent of hardware, operating system and programming language. Finally, a middleware would also allow us to compose complex systems based on the interactions between a number of distributed context-aware agents. While traditional middleware like CORBA and Jini do provide the basic mechanisms for different objects (or agents) to communicate with each other, they fall short in providing ways for agents to be contextaware. Context-awareness involves acquisition of contextual information, reasoning about context and modifying one’s behavior based on the current context. A middleware for context-awareness would provide support for each of these tasks. It would also define a common model of context, which all agents can use in dealing with context. It would also ensure that different agents in the environment have a common semantic understanding of contextual information [18]. 3.3 CHARACTERISTICS OF MIDDLEWARE FOR CONTEXT-AWARENESS Besides the middleware characteristics mentioned in [2] and somewhere [17], [19], in this article we have identified several key requirements for a context-aware middleware in ubiquitous computing environments:

4

1. We need context-aware middleware to support for gathering of context information from different sensors and delivery of appropriate context information to different agents. One of the approaches is defining context-triggered actions so that transparently invoke them whenever the corresponding contexts are valid. This will support an evolution of context-aware applications [2], [16], [18]. 2. Context-aware middleware should support for inferring higher-level contexts from low-level sensed contexts. This requires an implementation of two important mechanisms include reasoning (or inferring) mechanisms like rules written in different types of logic (first order logic, temporal logic, fuzzy logic, etc.) as well as training (or learning) mechanisms (like Bayesian networks, neural networks or reinforcement learning). A middleware for context- awareness must also support agents with different mechanisms for dealing with context (reasoning and learning mechanisms) [18]. 3. Context-aware middleware should provide the facilities for allowing application software to specify different behaviors in different contexts easily. This can be achieved by providing a uniform and platform-independent interface for applications to express their need for different context data [2], [18]. 4. Another important requirement of middleware in ubiquitous computing environments is that they support the interoperability between autonomous, heterogeneous agents. This includes the syntactic and semantic interoperability, and ad hoc communication among different agents. Ubiquitous computing environments feature a large number of autonomous agents. Various types of middleware (based on CORBA, Java RMI, SOAP, etc.) have been developed that enable communication between different entities. However, existing middleware have no facilities to ensure semantic interoperability between the different entities. Since agents are autonomous, it is infeasible to expect all of them to attach the same semantics to different concepts on their own. This is especially true for context information, since different agents could have a different understanding of the current context and can use different terms and concepts to describe context. A middleware for context-awareness must address this problem by ensuring that there is no semantic gap between different agents when they exchange contextual information. DAML+OIL Ontology Markup language [20] has emerged as one de facto standard of the premier languages for describing semantics in the Semantic Web [21]. OWL [22] and the Resource Description Framework (RDF/RDFS) [23] are some other popular mark-up languages for constructing web ontologies, which is built on XML encoding (eXtensible Markup Language - XML). Another benefit of using standard technologies employed in the Semantic Web for describing semantics is scalability. For readers to understand more clearly and have a practical look, we will go into analysis of three case studies in section 4. These are three prominent projects in which they provide practical approaches in building a middleware for context-awareness, and readers can clarify the above characteristics of contextaware middleware through their paradigms. We analyze and present the case studies in a continuous manner, from the transition period (in case study 1) when researchers tried to figure out the basic paradigms for context-aware middleware, to the current status (case study 2 and 3). We also introduce the related projects in section 5.

4. Middleware for Context-awareness in Ubiquitous Computing Environments 4.1 THE CONTEXT TOOLKIT [16] Seminal work has been done by Anind Dey, et al. [16] in defining context-aware computing, identifying what kind of support was required for building context-aware applications and developing a toolkit that enabled rapid prototyping of context-aware applications. They have laid out foundations for the design and development of context-aware applications by proposing a conceptual framework. The proposed conceptual framework separates concerns between context acquisition and the use of context in applications, to provide abstractions that help acquire, collect and manage context in an applicationindependent fashion and identify corresponding software components. Context Abstractions Over the past few years, there have been a number of frameworks and pieces of middleware developed to support different aspects of ubiquitous computing. Some were developed specifically to deal with

5

context-aware computing while others were more generic in their focus. In general, these systems do not address all of the issues in terms of acquiring, handling and taking action on context. To address context-specific operations, the authors introduced five categories of components in their conceptual framework: context widgets, interpreters, aggregators, services and discoverers. Context widgets acquire raw contextual information from sensors and pass them either to interpreters or to servers for aggregation. They mediate between the application and its operating environment, hide the complexity of the actual sensors used from the application, provide reusable and customizable building blocks of context sensing. They execute independently from individual applications, they can be used by multiple applications simultaneously, and they are responsible for maintaining a complete history of the context they acquire. For example, Presence Widgets determine who is present in a particular location. Widgets are either queried or use notification to inform their clients of changes. Interpreters may combine multiple pieces of context from one or more context sources to produce higherlevel context information. Interpreters and servers provide simple APIs as the registry at Discovers for the application to access. Aggregators gather context information related to an entity for easy access by applications. The need for aggregation comes in part from the distributed nature of context information. Context must often be retrieved from distributed sensors, via widgets. For example, an application may have a context-aware behavior to execute when the following conditions are met: a user is studying, located in his library, and is reading a book. Aggregators act as a bridge between widgets and applications. The infrastructure uses the HTTP protocol for communication and the XML as the language model.

Figure 2. Abstractions of a conceptual framework The Context Toolkit was built based on this conceptual framework. There were five applications that were built to assess the actual benefits of the Context Toolkit, for example, the In/Out Board which tracks the presence of people in an office, and the DUMMBO Meeting Board which is an instrumented digitizing whiteboard that supports the capture and the access of meeting minutes [see also section 5]. These applications help to validate the proposed conceptual framework and implementation. They also demonstrate that the context architecture is reusable, supports the acquisition and use of complex context beyond simple location and identity, and supports the evolution of context-aware applications. And in fact, through this article, readers can find out the influence of this seminal conceptual framework in a variety of projects presented in section 5. While the model matches the real world quite well, it forces programmers to think about and design applications in terms of these individual component abstractions. In order for an application to communicate with a sensor (or rather its software interface), it must know what kind of information the sensor can provide, where it is located (distributed sensors) and how to communicate with it (protocol, language and mechanisms to use). To overcome these drawbacks, researchers have to think of an improved middleware paradigm that allows programmers to use higher-level abstractions that sit on top of the component abstractions, new middleware model that deals with context information dynamically and lets context-sensitive application developers focus on implementing the actions without worrying about context monitoring, detection, and analysis.

6

4.2 RECONFIGURABLE CONTEXT-SENSITIVE MIDDLEWARE (RCSM)[2] In the Context Toolkit, a predefined context is acquired and processed in context widgets and then reported to the application through application-initiated queries and callback functions. In this Reconfigurable Context-Sensitive Middleware (RCSM), Stephen S. Yau et al. [2] proposed a new approach in designing their middleware to directly trigger the appropriate actions in an application rather than have the application itself decide which method (or action) to activate based on context. Their motivation was to extend existing context-sensitive applications by adding new context sources and to easily let multiple concurrent contexts trigger a specific action. They already build a Smart Classroom [see also section 5] to validate this RCSM model. Similar to mature middleware standards and prototypes such as CORBA, COM, and TAO for fixed network, RCSM provides an Object-based framework for supporting context-sensitive applications. RCSM models context-sensitive application software as context-sensitive objects, which consist of two parts: a context-sensitive interface and a context-independent implementation. The interface encapsulates the description of the application’s context-awareness. It lists the contexts the application uses, a list of actions the application provides, and a mapping between the specified contexts and these functions that clearly indicates when an action should be completed based on specific context values. The important characteristic of this structure is that the implementation is completely isolated from context specification, meaning it is context independent. Using the context-sensitive interface, RCSM determines which context to monitor and which of the applications’ actions to activate whenever a specified context is valid. Application developers simply focus on implementing the actions in their favorite language without worrying about context monitoring, detection, and analysis.

Figure 3. RCSM’s integrated components RCSM is designed to facilitate applications that require context-awareness or spontaneous and ad hoc communication. Thus there are two core components integrated in RCSM to support for these two requirements. 1.

2.

Application-specific adaptive object containers (ADC) for runtime context data acquisition, monitoring, and detection. The ADC communicates with the underlying system to acquire context data during runtime and then performs periodic context analysis as specified in the contextsensitive interface. Whenever the ADC detects suitable contexts as a result of the context analysis, it will communicate with the object implementation to activate appropriate actions. Context-sensitive object request broker (R-ORB) hides the intricacies of ad hoc networking and also performs device and service discovery on the behalf of the context-sensitive objects. This mechanism provides communication transparency for context-sensitive application software. During application execution, the R-ORB performs proactive device discovery and establish and maintain context-triggered communication channels with remote R-ORBs.

7

Application developers can uniformly specify the context-sensitive object interface using Contextaware interface definition language (CA-IDL), and for different requirement, they just need to specify a different interface in the CA-IDL file and compile it to generate a new ADC. The R-ORB collects the data from sensors and the operating system, and then ADCs periodically collect the necessary “raw context data” through R-ORB. Initially, each ADC registers with the R-ORB to express its needs for contexts and to publish the corresponding context-sensitive interface. The middleware allows to add or delete individual ADCs during runtime to manage new or existing context-sensitive application objects without affecting other runtime operations inside RCSM, there for RCSM is called reconfigurable.

Figure 4. RCSM’s context-aware interface description language (CA-IDL) compilers build applicationspecific adaptive object containers (ADCs) based on a context-sensitive interface description. Compared with Context Toolkit Middleware infrastructure and other related projects of context sensitive application, we can realize that RCSM has laid a further step towards middleware fully support for contextawareness. RCSM deals with context information dynamically and let context-sensitive application developers focus on implementing the actions in their favorite language without worrying about details of getting contextual information from different sources. All of the former projects convert context information and the analysis of context to permanent data (a record or an output file) for later use—neither uses context dynamically. 4. 3 MIDDLEWARE FOR CONTEXT-AWARE AGENTS, GAIA PROJECT[18] Anand Ranganathan et al. [18] have built a middleware for developing context-aware applications. This middleware is integrated into their infrastructure for Smart Spaces named GAIA (see also section 5). The middleware is based on a predicate model of context. This model enables agents to be developed that either use rules-based or machine learning approaches to decide their behavior in different contexts. The middleware uses ontologies [24] to ensure that different agents in the environment have the same semantic understanding of different context information. This allows better semantic interoperability between different agents, as well as between different ubiquitous computing environments. Using this middleware allows rapid prototyping of context-sensitive applications. Middleware for context-aware agents A key feature of this context-aware middleware is that it provides agents with a variety of reasoning and/or learning mechanisms to help them reason about context appropriately. Agents here include both

8

the middleware components and the applications (context consumers) due to their distributed ability. Using these reasoning or learning mechanisms, agents can infer various properties about the current context, answer logic queries about context or adapt the way they behave in different contexts. Agents can reason about context using rules written in different types of logic like first order logic, temporal logic, description logic, higher order logic, fuzzy logic, etc. Instead of using rules written in some form of logic to reason about context, agents can also use various machine learning techniques to deal with context. Learning techniques that can be used include Bayesian learning, neural networks, reinforcement learning, etc. It is useful to consider the operating scenarios and understand how these mechanisms are used.

Figure 5. Gaia Context Infrastructure Context Providers are sensors or other data sources of context information. Other agents can either query a Provider or listen on the event channel to get context information. Context Providers advertise the context they provide with the Context Provider Lookup Service. The Context History Service allows other agents to query for past contexts. Different Context Providers use different reasoning or learning mechanisms for reasoning about the contexts they sense and for answering queries. For example, Weather Forecast Context Provider uses a form of fuzzy logic to attach probabilities with different contexts, e.g. it says that precipitation could occur with a certain probability the next day. The other Context Providers that require the ability to quantify over variables could use first order logic. Context Synthesizers get sensed contexts from various Context Providers, infer higher-level or abstract contexts from these simple sensed contexts and then provide these inferred contexts to other agents (so context synthesizers act as both consumers and providers). For example, Context Synthesizer infers the activity going in a room based on the number of people in the room and the applications that are running. That Room Activity Context Provider can use Rule based synthesizers, pre-defined rules written in some form of logic (most of them are first order logic), to infer different contexts, e.g.: #People (Room 2401, “>=“, 3) AND Application (PowerPoint, Running) => RoomActivity(2401, Presentation). Whenever the Room Activity Context Provider infers a change in the activity in the room, it sends an event with the new activity to agents that registered for this event. Rule based synthesizers have the disadvantage that they require explicit definition of rules by humans. They are also not flexible and can’t adapt to changing circumstances, for example it’s very difficult to write rules for predicting user mood because each user is different and there are many factors that can influence a user’s mood. So the authors implement machine-learning mechanisms to deduce the higher-level context. In this infrastructure, the User Mood Context Provider uses the Naïve Bayes algorithm for predicting user mood. They make use of past context to train the learner. Context Consumers (or Context-Aware Applications) are agents that get different types of contexts from Context Providers or Context Synthesizers, then reason about the current context and adapt the way they behave according to the current context. One common way in which applications can be made context sensitive is to specify actions to be performed whenever the context of the environment changes. For example, a jukebox application in a smart room may reconfigure itself whenever a person enters or leaves the room by changing the song it is playing, the volume of the song or the speakers it uses to play the music. This middleware system also supports two broad ways in which specific context sensitive behaviors

9

can be described. The first is to allow application developers to write rules that indicate what actions are to be performed in different contexts (rule-based approaches). The second is to use machine-learning approaches that learn what actions to perform in different contexts. Another noticeable improvement that is the middleware uses ontologies [24] to define the semantics of various contexts. The ontologies define the structure and the properties of different types of contextual information. They allow different agents in the environment to have a common semantic understanding of different contexts. Ontologies have been used extensively in the Semantic Web [21] to allow semantic interoperability among different web-based agents. DAML+OIL Ontology Markup Language [20] has emerged as one of the premier languages for describing ontologies in the Semantic Web. In this middleware ontologies are also written in DAML+OIL. The use of standard technologies for semantics allows semantic interoperability between agents in this environment and other external agents (in other environments or on the web). The use of ontologies, thus, dramatically increases the scalability of the environment. To support such an inter-operation, mappings need to be developed between concepts defined in the ontologies of the two environments. The Ontology Server maintains ontologies and also provides an interface for adding new concepts to existing ontologies. This allows new types of contexts to be introduced and used in the environment at any time. 4.4 COMPARISON With the proposed conceptual framework for building context sensitive applications and the Context Tookit, Anind Dey, et al. [16] laid a foundation for context-aware middleware to develop. However, while the Context Toolkit does provide a starting point for applications to make use of contexts, its middleware paradigm still forces programmers to think about how to deal with the context widgets for the appropriate contextual information. Affected by this approach, the middleware paradigms in later projects still deal with context passively through application-initiated queries and callback functions. Readers can recognize this point when study the projects we surveyed (in section 5). In general, these projects do not provide much help on how to reason about contexts. They provide reusable sensing mechanisms but lack of reusable reasoning mechanisms. They do not provide any generic mechanism for writing rules about contexts, inferring higher-level contexts or organizing the wide range of possible contexts in a structured format. In RCSM, Stephen S. Yau et al. [2] proposed a new approach in designing their middleware to directly trigger the appropriate actions in an application rather than have the application itself decide which method (or action) to activate based on context. RCSM has laid a further step towards middleware models that fully support for context-awareness. RCSM deals with contexts dynamically and let context-sensitive application developers focus on implementing the actions in their favorite language without worrying about details of getting contextual information from different sources. While RCSM uses contextual information dynamically, it does not provide reasoning and/or learning mechanisms to help agents reason about context appropriately. The middleware paradigm for context-aware agents implemented in GAIA infrastructure provides a more generic way of specifying the behavior of context-aware applications using different reasoning and learning mechanisms. Since all the terms used in the environment are defined in the ontology, it is easy to frame rules for inferring contexts based on these terms. The developers do not have to worry about not using inappropriate terms or concepts, since they can refer to the definitions in the ontology when in doubt [18]. Another aspect is the syntactic and semantic interoperability between heterogeneous agents in different environments. In RCSM and other former projects, syntactic and semantic interoperability is not supported or not standard; therefore scalability is an issue when the number of heterogeneous agents in different environments increases. In GAIA project, we again study that middleware use standard technologies for semantics allows semantic interoperability between agents, thus, dramatically increases the scalability of the environment (use ontologies written in DAML+OIL). Now we can figure out the common characteristics, or the requirements of a middleware paradigm for context-awareness in the ubiquitous computing environments, based on the projects we surveyed. These characteristics already stated in section 3. Especially the three case studies above give us a lot of benefits on the way to build a middleware paradigm that fully support for context-awareness, a seminal paradigm that can have great effects as the conceptual framework in Context Toolkit did before.

10

5. Related Projects In this section we introduce the related projects we surveyed. These are the prominent and current projects that build context-aware applications such as smart classroom, smart kindergarten, smart seminar room, etc. They can be built based on centralized or distributed paradigms, and most of them not fully support for context-awareness as the characteristics of context-aware middleware we stated in section 3. Readers can find that these projects contribute into the transitional period towards a middleware paradigm that fully supports context-awareness in ubiquitous computing. 5.1 SMART CLASSROOM [25] Homepage: http://www.eas.asu.edu/~rcsm/smartclassroom.html Research group: Department of computer science and engineering, Arizona State Univ., USA To evaluate RCSM, they are currently implementing a smart classroom testbed to facilitate teaching and collaborative learning among college level students. The test bed will facilitate different activities leading to efficient teaching and collaboration in a classroom. Some examples of these activities are automated synchronization; automated selection of lectures slides; easy to exchange ideas among students or between student and instructor due to using ad hoc network; automatically detect laptop for projector etc. Each PDA will be equipped with RCSM, a context-aware and situation-aware middleware, which is co-designed in software and reconfigurable hardware (FPGA). In this current design, each node in the testbed is expected to have the following configuration: Xilinx Spartan II Board Pocket PC (Window CE)

Radiometrix RPC

Smart ClassRoom Application Software

Radio Interface

S-ADC/ADC

Transport

R-ORB (SW)

Location Detection Module Data Acquisition Component from Sensors Sensors (Accelerometer, Noise, Light)

USB Device Driver for FPGA board

R-ORB (HW)

Generic USB Driver (Include in Win CE) USB Host (A Connector)

ADC Interface USB Transceiver Parallel Port

USB

USB Hub

PC Design and Development Environments

Figure 6. Configuration of each node testbed In this model, they implement middleware for context-awareness by two components, ADC and R-ORB. During the runtime, the ADC communicates with the underlying system to acquire context data and then performs periodic context analysis as specified in the context-aware interface. It also communicates with the object implementation to activate different actions whenever the ADC detects suitable context analysis. For Situation-Aware Communication Management: R-ORB provides a lightweight framework for transparently connecting distributed and mobile situation-aware application objects over ad hoc networks. The R-ORB protocol spontaneously senses the peer devices in the vicinity and establishes short-duration connection by efficiently analyzing the situation-readiness and the desired communication partners of

11

specific application objects. In addition, R-ORB provides a lightweight client-server communication primitive for letting the application objects communicate with stationary or enterprise computing resources. However, context information in this project is analyzed and converted into permanent data (a record or an output file) for later use. Thus context is not used dynamically. 5.2 SMART KINDERGARTEN [26], [27] Homepage: http://mmsl.cs.ucla.edu/ Research group: university of California, Los Angeles, USA. “Smart Kindergarten” is developed to target developmental problem-solving environments for early childhood education. This is a natural application as young children learn by exploring and interacting with objects such as toys in their environment. Their envisioned system would enhance the education process by providing a childhood learning environment that is individualized to each child, adapts to the context, coordinates activities of multiple children, and allows continual unobtrusive evaluation of the learning process by the teacher. This would be done by wirelessly networked sensor-enhanced toys and other classroom objects with back-end middleware services and database techniques. In this project, they implemented a middleware infrastructure, Sylph middleware. Sylph was originally conceived as a middleware system to introduce new sensors into MUSE without repeating Jini code for each different sensor. Sylph's goal is to create a system that allows queries on sensors (and higher level processing filters) that takes into account QoS, optimization of where signal processing is done, conflict resolution between clients on how sensors are used, and sensor roaming. Smart Kindergarten analyzes and stores context data in a wired infrastructure and converts context information and analysis results to permanent data for later use.

Figure 7. The Smart Kindergarten System Architecture 5.3 GAIA PROJECT [28], [29] Homepage: http://choices.cs.uiuc.edu/gaia Research group: Department of Computer Science, University of Illinois at Urbana-Champaign Gaia is a middleware for context-awareness and semantic interoperability. Gaia is an infrastructure for Smart Spaces, which are ubiquitous computing environments that encompass physical spaces. The main aim of Gaia is to make physical spaces like rooms, homes, buildings and airports become intelligent, and aid humans in these spaces. Gaia converts physical spaces and the ubiquitous computing devices they contain into a programmable computing system. It offers services to manage and program a space and its associated state. Gaia is similar to traditional operating systems in that it manages the tasks common to all applications built for physical spaces. Each space is self-contained, but may interact with other spaces. Gaia provides core services, including events, entity presence (devices, users and services), discovering and

12

naming. By specifying well-defined interfaces to services, applications may be built in a generic way so that they are able to run in arbitrary active spaces. The core services are started through a bootstrap protocol that starts the Gaia infrastructure. Gaia uses CORBA to enable distributed computing. Gaia consists of a number of different types of agents performing different tasks. There are agents that perform various core services required for the functioning of the environment like discovery, context sensing, event distribution, etc. There are agents associated with devices that enable them be a part of the environment. Each user also has an agent that keeps personal information and acts as his proxy in a variety of settings. Finally there are application agents that help users perform various kinds of tasks in the environment. Examples of application agents include PowerPoint applications, music playing applications and drawing applications. As part of the future work they plan to develop new applications to validate different aspects of Gaia. They also plan to extend the infrastructure with a security service that is currently under development, and expand current implementation of the services that support the user virtual space abstraction. Finally, they are also trying to federate Gaia services in order to aggregate different active spaces.

Figure 8. Gaia Architecture 5.4 CONTEXT TOOLKIT [30], [31] Homepage: http://www.cc.gatech.edu/fce/contexttoolkit Research group: GVU Center, College of Computing Georgia Institute of Technology Atlanta In this part, we describe some projects that have been built to assess the actual benefits of context toolkit. To reiterate, the expected advantages of the toolkit are to hide complexity, provide appropriate interpretation of context information and ease overall construction through reusable widgets. 1-In/Out Board This application is electronic equipment of a simple in/out that is commonly found in offices. It not only displays the in/out status (green/red dot) of building occupants, but also displays the day and time when the occupants last entered/left the building. The board is used to indicate which members of the office are currently in the building and which are not. This application is an example of a context viewing application. It gathers information about the participants who enter and leave the building and display the information to interest users. The context information is a participants identify and the time at which they arrived or departed. 2-Context-Aware Mailing List Using e-mail mailing lists is a useful way of broadcasting information to a group of people interested in a particular topic. However, mailing lists can also be a source of annoyance when an e-mail sent to the list is only relevant to a sub-group on the list. The problem is compounded when the sub-group’s constituents are dynamic. The Context-Aware Mailing List is an application that delivers e-mail messages to members of a research group. It differs from standard mailing lists by delivering messages only to members of the research group who are currently in the building. This application supports the context-aware feature of automatically executing a service.

13

3-DUMMBO Meeting Board: evolution of non-context-aware applications DUMMBO (Dynamic Ubiquitous Mobile Meeting Board) was an already existing system (Brotherton, bowd & Truong, 1999) that was chosen to augment. DUMMBO is an instrumented digitizing whiteboard that supports the capture and access of informal and spontaneous meetings. Captured meetings consist of the ink written to and erased from the whiteboard as well as the recorded audio discussion. After the meeting, a participant can access the captured notes and audio by indicating the time and date of the meeting. It uses context to modify its own behavior (e.g., automatically starting the recording when enough people are standing around the whiteboard). The context information used is the participants’ identities, the time when they arrived at or left the mobile whiteboalrd, and the location of the mobile whiteboard. The application uses multiple NamePresence widgets, one for each location where DUMMBO could be moved to in our research lab, and one on DUMMBO itself to detect the presence of users. 4- Intercom: use of complex context and services Intercoms in homes are intended to facilitate conversations between occupants distributed throughout the home. An occupant of the home can use the Intercom application simply by talking to the home. For example, to broadcast a message to all other occupants, the initiator can say, “House, I would like to announce …” The house responds with “Go ahead” to indicate that it has understood the request, and the user continues with “Dinner is ready so everyone should come to the kitchen.” This audio announcement is delivered to every occupied room in the house. To indicate the announcement is over, the user says, “Stop the intercom.” If a parent wants to use the intercom to facilitate baby monitoring, she can say, “House, how is the baby doing?” The intercom delivers the audio from the room the baby is in to the room that the mother is in. As the mother moves throughout the house, the audio from the baby’s room follows her. She can stop monitoring by saying, “Stop the intercom”. 5- Conference assistant: use of complex context and systematic design of a context-aware application The assistant uses a variety of context information to help conference attendees. The assistant examines the conference schedule, topics of presentations, user’s location, and user’s research interests to suggest the presentations to attend. Whenever the user enters a presentation room, the Conference Assistant automatically displays the name of the presenter, the title of the presentation, and other related information. Available audio and video equipment automatically record the slides of current presentation, comments, and questions for later retrieval. 5.5 SITUATED COMPUTING [32] Homepage: http://www.hpl.hp.com/techreports/97/index.html Research group: Hewlett-Packard Laboratories Situated computing concerns the ability of computing devices to detect, interpret and respond to aspects of the user’s local environment. This capability promises both to add value to existing uses of computers and to create new types of application. For example, imagine a handheld tourist guide that can use its knowledge of the user’s current location to present information about local sights, restaurant or other places of interest. Or an eyeglass display that overlays peoples’ faces with their names.

Figure 9. Overview of Situated Computing

14

To become useful to applications, sensor data must be interpreted to provide a stable, reliable and abstract view of the status of the current situation, and changes in that status. So there is the function of the Situated Computing (SitComp) Service – a piece of middleware utilizing local sensors to provide situational information to applications via a standard API. The main responsibilities of the Situated Computing Service are: • To combine and interpret incoming “raw data” from sensors so as to provide situation information at an appropriate level of abstraction for situated applications. • To post events to interested applications whenever some aspect of the current situation changes. • To provide a query interface to allow applications to interrogate the current situation. 5.6 Aura – CMU Homepage: http://www-2.cs.cmu.edu/~aura/ Research group: Carnegie Mellon University Aura [33], [34], aims to provide user distraction-free computing environment where people can get services or perform their jobs without interventions by system or environments. It views human attention is one of scare resource in pervasive environments. So, it challenges to minimize distraction to users or intrusion of systems. Aura applies two broad concepts, proactivity and self-tuning to accomplish its goal. Proactivity is a system layer’s ability to anticipate requests from a higher layer. Self-tuning implies that layers adapt by observing the demands made on them and adjusting their performance and resource usage characteristics accordingly. Aura reuses legacy technologies to create new system for pervasive environment. Prism Task support, user intent, high-level proactivity

Application 1

Application 2

Other Aura runtime support Coda Nomadic file access

Application 3 Spectra Remote Execution

Odyssey Resource monitoring, adaptation Linux Kernel

Intelligent Networking

Figure 10. Aura System Architecture 5.7 TOTA [35], [36] Homepage: http://polaris.ing.unimo.it/didattica/curriculum/marco/Web-Tota/tota.html Research group: University of Modena and Reggio Emilia TOTA (“Tuples On The Air”) is a novel middleware for supporting adaptive context-aware application in dynamic network. The key objectives of TOTA are: (i) to promote uncoupled and adaptive interactions by locally providing application components with simple, yet highly expressive, contextual information; and (ii) to actively support adaptively by discharging application components from the duty of dealing with network and application dynamics. To this end, TOTA relies on spatially distributed tuples, to be injected in the network and propagated accordingly to application-specific patterns. On the one hand, tuple propagation patterns are dynamically re-shaped by the TOTA middleware to implicitly reflect network and applications dynamics, as well as to reflect the evolution of coordination activities. On the other hand, application components have simply to locally “sense” tuples to acquire contextual information, to exchange information with each other, and to implicitly and adaptively orchestrate their coordination activities. To take a metaphor, we can imagine that TOTA propagates tuples the same as the laws of nature provides propagating fields in the physical space: although particles do not directly with each other and can only locally perceive such fields, they exhibit globally orchestrated and adaptive motion patterns.

15

TOTA suits the needs of pervasive computing environments (spontaneous interoperation, effective context-awareness, lightness of supporting environment) and facilitates both the access to distributed information and the expression of distributed coordination patterns. Several issues are still to be investigated to make TOTA a practically useful framework for the development of pervasive applications. First, proper access control models must be defined to rule accesses to distributed tuples and their updates (and this is indeed a challenging issue for the whole area of pervasive and mobile computing). Second, we think it would be necessary to enrich TOTA with mechanisms to compose tuples with each other, so as to enable the expression of unified distributed data structures from the emanation of multiple sources, as it may be needed for scalability purposes. Finally, deployment of TOTA applications in real-world scenarios will definitely help identify current shortcomings and directions of improvement. Figure 11. The general scenario of TOTA: active software agent injects tuples in the system that is autonomous propagated in their area.

Figure 12. The TOTA network, in which tuples is propagated by means of hop-by-hop mechanism.

5.8 Oxygen – MIT Homepage: http://oxygen.lcs.mit.edu/ Research group: MIT Oxygen aims to provide human-centered computing environments which help people automate repetitive human tasks, control a wealth of physical devices in the environment, find the information people need, and enable us to work together with other people through space and time.

Figure 13. Big Picture of Oxygen

16

To support high dynamic and varied human activities, the Oxygen system focuses on pervasion of the system or devices, supporting nomadic users, and adaptability of the system. Oxygen enables pervasive, human-centered computing through a combination of specific user and system technologies. Oxygen's device, network, and software technologies dramatically extend our range by delivering user technologies to us at home, at work or on the go. Computational devices, called Enviro21s (E21s), embedded in homes, offices, and cars sense and affect immediate environment. Handheld devices, called Handy21s (H21s), empower us to communicate and compute no matter where we are. Dynamic, self-configuring networks (N21s) help machines locate each other as well as the people, services, and resources, which people want to reach. Software that adapts to changes in the environment or in user requirements (O2S) help people do what they want when they want to do it. 5.9 m3 System – University of Queensland Homepage: http://www.uq.edu.au/ Research group: University of Queensland The m3 system [37] is a component-based architecture for pervasive environments. It uses a componentbased modeling paradigm, and is held together by an event-based mechanism that provides significant flexibility in dynamic system configuration and adaptation. The approach used to describe and manage context information captures descriptions of complex user, device and application context including enterprise roles and role policies. The coordination language is used to coordinate components of the architecture that manage context, adaptation and policy provides the flexibility needed in pervasive computing applications supporting dynamic reconfiguration and a variety of communication paradigms. Figure 14 shows that overall m3 system architecture. The architecture is organized into three layers, Coordination layer, Dedicated Managers layer, and Distributed Service layer. The Coordination layer focuses on concepts necessary to manage the implications of mobility and reactivity for enterprise-wide activities. It uses MEADL to specify the coordination of events. It is a coordination script that separates the behavior specification of components from the communication needed to coordinate such behaviors. The Dedicated Managers layer is composed of three managers. The three managers are context, adaptation and policy managers. The Context Manager provides awareness of the environment. The Adaptation Manager enables selection of an appropriate adaptation method. The Policy Manager ensures that the overall goals of the roles involved are maintained despite adaptation and that a change of roles is followed by appropriate adaptation. The Service layer wraps services and network protocols to fit into m3 modeling requirements. The wrapping allows upper layers to interact with the service layer using the event-based paradigm. Application User

System Programmer

Applications

Parse, exec

Coordination M anager

Coordination

Dedicated Manager

Distribted Service and Network Protocol

ERP Server

Context Manager

Location Service

Jini

Policy Manager

Discovery Service

Bluetooth

Update

Adaptation Manager

Notification Service

GSM

W AP

Security Service

TCP/IP

QoS Monitoring

Role Transaction Service

Component

Coordination Specification MEAD

Replication Service

Event-Based Interaction

Figure 14. M3 Architecture

17

6. Challenges There are still a number of challenges ahead to make possible enhancements to the context-aware middleware we surveyed. In those middleware they have not yet tackled the issues of privacy and security. Some context information may be private and hence, all applications may not have access to them. We also have to ensure that the actions developed for applications do not violate security restrictions. Security services, like authentication and access control, have to be non-intrusive, intelligent, and able to adapt to the rapidly changing context. The security has also to be multilevel, i.e. able to provide difference levels of security services depending on security policies, environmental situation and available resources, and has to support a security policy language that is descriptive, well-defined and flexible [38], [39]. For the scalability, should we think of a Context Request Broker model to maintain the context knowledge, ontologies, and implemented an inference Engine? One aspect that we haven’t studied as yet is the usability of context-aware applications. How will ordinary users deal with applications that try to learn their behaviors and their preferences? Will users take the time to write rules for specifying context-sensitive behavior of applications? Will users respond positively to the fact that the behavior of applications can change according to the context, and is hence not as predictable as current applications? [18].

7. Conclusion The design of systems and applications in ubiquitous computing environments needs to take account of heterogeneous devices, mobile users and rapidly changing contexts. Therefore, applications and devices in ubiquitous computing environments need to be context-aware so that they can adapt themselves to different situations. By using middleware for context-awareness, we will gain huge benefits including reduced development times of context-aware applications and great ease in specifying complex behaviors of these applications. Context-aware middleware provides an easy way for developers to specify how an environment should automatically respond to different contexts. Developers do not have to worry about the details of getting contextual information from different sources or the mechanics of triggering different actions in different situations. This helps in rapid development and prototyping of applications. Middleware for context-awareness would also allow autonomous, heterogeneous agents to seamlessly interact with one another. Context-aware middleware also makes it quite simple to insert new sensors and deploy new devices. This article tackles this emerging thrust towards the reality of ubiquitous computing era. We survey current projects about context-sensitive applications and analyze some seminal paradigms to figure out the important characteristics of middleware for context-awareness.

References [1] [2]

Marc Weiser. “The computer for the 21st century”. Scientific American, 265(30): 94–104, 1991. Yau, S., et al, “Reconfigurable Context-Sensitive Middleware for Pervasive Computing”. In IEEE Pervasive Computing, pp. 33-40, July-Sept 2002 [3] Bill Schilit, Norman Adams, and Roy Want. “Context-aware computing applications”. In IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994 [4] Anind K. Dey and Gregory D. Abowd. “Towards a Better Understanding of context and context-awareness”. Technical Report GIT-GVU-99-22, Georgia Institute of Technology, College of Computing, June 1999. [5] A. Schmidt and M. Beigl. “There is more to context than location: Environment sensing technologies for adaptive mobile user interfaces”, 1998. [6] Guanling Chen and David Kotz. “A survey of context-aware mobile computing research”. Technical Report TR2000-381, Dartmouth College, Computer Science, Hanover, NH, Nov 2000. [7] Pasi Eronen et al, “Extending Jini with Decentralized Trust Management”, Helsinki University of Technology, Finland, http://www.tcm.hut.fi/Research, 1999 [8] Riku Mettala, “Bluetooth Protocol Architecture Version 1.0”, http://www.bluetooth.com/developer/whitepaper/whitepaper.asp, 25 Aug 1999 [9] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. In Proceedings of IEEE Workshop on Mobile Computing Systems and Applications, pages 85-90, Santa Cruz, California, December 1994. IEEE Computer Society Press. [10] Jason Pascoe. “Adding generic contextual capabilities to wearable computers.” In Proceedings of the Second International Symposium on Wearable Computers, Pittsburgh, Pennsylvania, October 1998. IEEE Computer Society Press.

18

[11] Satyanarayanan, M.; “Pervasive computing: vision and challenges”. Personal Communications, IEEE [see also IEEE Wireless Communications], Volume: 8 Issue: 4 , Aug. 2001 Page(s): 10 -17 [12] Saha, D.; Mukherjee, A. “Pervasive computing: a paradigm for the 21st century” IEEE Computer, Volume: 36 Issue: 3, March 2003 Page(s): 25 -31 [13] Capra, L.; Emmerich, W.; Mascolo, C.; Position summary. “Middleware for mobile computing: awareness vs. transparency”. Hot Topics in Operating Systems, 2001. IEEE Proceedings of the Eighth Workshop on, 20-22 May 2001 Page(s): 164 -164 [14] Douglas C. Schmidt et al., “Toward Adaptive and Reflective Middleware for Network-Centric Combat Systems”, Crosstalk The Journal of Defence Software Engineering, 2001 [15] Cecilia Mascolo et al., “An XML based Middleware for Peer-to-Peer Computing”, University College London, IEEE 2001 [16] Dey, A.K., et al. "A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications", anchor article of a special issue on Context-Aware Computing, Human-Computer Interaction (HCI) Journal, Vol. 16, 2001. http://www.cc.gatech.edu/fce/contexttoolkit [17] Hong, J. I., et al. “An Infrastructure Approach to Context-Aware Computing”. HCI Journal, ‘01, Vol. 16 [18] Anand Ranganathan, et al. “A Middleware for Context-Aware agents in Ubiquitous Computing Environments”. GAIA Project 2003. http://choices.cs.uiuc.edu/gaia/papers/ [19] Geihs, K. “Middleware challenges ahead” IEEE Computer, Volume: 34 Issue: 6, June 2001 Page(s): 24 -31 [20] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web”. Scientific American, may 2001. http://www.daml.org/ [21] Berners-Lee T., et al. "A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities”. http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html [22] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F. PatelSchneider, and Lynn Andrea Stein. “Web ontology language (owl) reference version 1.0.” W3C Working Draft – www.w3c.org, nov 2002. [23] Dan Brickley and R.V. “Guha. Rdf vocabulary description language 1.0: Rdf schema”. www.w3c.org, nov 2002. [24] Guarino N. "Formal Ontology in Information Systems" Proc. of FOIS'98, Trento, Italy [25] S. S. Yau, S. Gupta, F. Karim, S. Ahamed, Y. Wang, and B. Wang, “A Smart Classroom for Enhancing Collaborative Learning Using Pervasive Computing Technology”, to appear in Proc. 6th WFEO World Congress on Engineering Education & 2nd ASEE International Colloquium on Engineering Education (ASEE2003), June 2003, Nashville, Tennessee, USA [26] M. Srivastava, R. Muntz, and M. Potkonjak, “Smart Kindergarten: Sensor-Based Wireless Networks for Smart Developmental Problem-Solving Environments,” Proc. 7th Int’l Conf. Mobile Computing and Networking (MobiCom 2001), ACM Press, New York, 2001, pp. 132–138. [27] A. Chen et al., “A Support Infrastructure for Smart Kindergarten,” IEEE Pervasive Computing, vol. 1, no. 2, Apr.–June 2002, pp. 49–57. [28] Manuel Román, Christopher Hess, Renato Cerqueiram Anand Ranganathan, Roy H. Cambell, and Klara Nahrstedt, “A middleware Infrastructure for Active Space”. [29] Anand Ranganathan, Roy H. cambell, Department of Computer Science University of Illinois at Urbana-champaign USA, “A middleware for Context-Aware Agent in Ubiquitous Computing Environments”. [30] Daniel Salber, Anind K. Dey and Gregory D. Abowd , “The Context Toolkit: Aiding the Development of Context-Enabled Applications”, Proceedings of the 1999 Conference on Human Factors in Computing Systems (CHI '99), Pittsburgh, PA, May 15-20, 1999. pp. 434-441 [31] Anind K. Dey and Gregory D. Abowd, “The Context Toolkit: Aiding the Development of Context-Aware Applications”, Workshop on Software Engineering for Wearable and Pervasive Computing, Limerick, Ireland, June 6, 2000. [32] Richard Hull, Philip Neaves, and James Bedford-Roberts. ”Towards situated computing”. In Proceedings of the First International Symposium on Wearable Computers, Cambridge, Massachusetts, October 1997. IEEE Computer Society Press. [33] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste, “Project Aura: Towards Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, special issue on Integrated Pervasive Computing Environments, Volume 1, Number 2, April-June 2002, pages 22-31. [34] Sousa, J.P., Garlan, D., “Aura: an Architectural Framework for User Mobility in Ubiquitous Computing Environments”, Proceedings of the 3rd Working IEEE/IFIP Conference on Software Architecture 2002, Montreal, August 25-31. [35] M.Mamei, F.Zambonelli, L.Leopaedi, “Tuples On The Air: a middleware for Context-Aware Pervasive Computing”, Technical Repost No.DISM-2002-23, University of Modena and Reggio Emilia, August 2002 [36] M. Mamei, F. Zambonelli, L. Leonardi, “Programming Context-Aware Pervasive Computing Applications with TOTA”, Technical Report No. DISMI-2002-23, August 2002. [37] Andry Rakotonirainy, Jaga Indulska, Seng Wai Loke, and Arkady Zaslavsky, Middleware for Reactive Components: An Integrated Use of Context, Roles, and Event Based Coordination, Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms, pp. 77-98, Heidelberg, Germany, November 12-16, 2001. [38] Alastair R. Beresford, Frank Stajano, University of Cambridge, “Location Privacy in Pervasive Computing”, Pervasive Computing, IEEE, Volume: 2 Issue: 1, Jan.-March 2003 [39] Sharath Pankanti, Andrew Senior, Lisa Brown, Arun Hampapur, Ying-Li Tian, and Ruud Bolle • IBM T.J.Watson Research Center, “Security, privacy, and health”, IEEE Pervasive Computing January 2003, Volume 2 Issue 1

19

The Authors Ngo Quoc Hung is a Master student in the Computer Engineering Department at Kyung Hee University. His research interests include Real-time Embedded Systems, Middleware for Context-awareness, Middleware for Sensor Network, and Ubiquitous Computing. He received a BS in Electrical and Electronic Engineering from HoChiMinh City University of Technology (HUT), Vietnam, with honors. Contact him at Nguyen Chi Ngoc is a Master student in the Computer Engineering Department at Kyung Hee University. His research interests include Middleware, Mobile Computing, Ubiquitous Computing and Synchronization in Mobile Computing. He received a BS in Electrical and Electronic Engineering from HoChiMinh City University of Technology (HUT), Vietnam. Contact him at . Le Xuan Hung is a Master student in the Computer Engineering Department at Kyung Hee University. His research interests include Embedded System, Ubiquitous Computing and Sensor Network. He received a BS in Faculty of Informatics Technology from Hanoi University of Technology, Vietnam. Contact him at . Shu Lei is a Master student in the Computer Engineering Department at Kyung Hee University. His research interests include Middleware, Ubiquitous and Pervasive Computing, Embedded System and Sensor Network. He received a BS in Computer Science Department from South-Central University of Nationalities, China. Contact him at .

Sungyoung Lee Sungyoung Lee is a Professor in the Department of Computer Engineering, Kyung Hee University, Korea. His research interests include Ubiquitous Computing, Middleware, Embedded System, and Mobile Computing. He received a PhD in Computer Science from Illinois Institute of Technology, Illinois, USA. He is a member of the IEEE, the ACM, the KISS and the KIPS. Contact him at . Acknowledgements This work is supported in part by the Ministry of Commerce, Industry & Energy, and the Korea Science and Engineering Foundation.

20

[image: Middleware Technologies for Ubiquitous Computing ...]
Middleware Technologies for Ubiquitous Computing ...

[image: A contract-oriented middleware - UniCa]
A contract-oriented middleware - UniCa

[image: A Computational Framework for Social Agents in Agent ...]
A Computational Framework for Social Agents in Agent ...

[image: Modelware for Middleware]
Modelware for Middleware

[image: A Survey on Service Composition Middleware in ...]
A Survey on Service Composition Middleware in ...

[image: A contract-oriented middleware - UniCa]
A contract-oriented middleware - UniCa

[image: Custom execution environments in the BOINC middleware]
Custom execution environments in the BOINC middleware

[image: A Middleware Service for Pervasive Social Networking]
A Middleware Service for Pervasive Social Networking

[image: Custom execution environments in the BOINC middleware]
Custom execution environments in the BOINC middleware

[image: Power Awareness In Context Aware Middleware for ...]
Power Awareness In Context Aware Middleware for ...

[image: iCard â€“ Foundation for A New Ubiquitous Computing ...]
iCard â€“ Foundation for A New Ubiquitous Computing ...

[image: monitoring middleware for service level agreements in ...]
monitoring middleware for service level agreements in ...

[image: Contex Aware Computing for Ubiquitous Computing Applications.pdf ...]
Contex Aware Computing for Ubiquitous Computing Applications.pdf ...

[image: Design Patterns for Ubiquitous Computing]
Design Patterns for Ubiquitous Computing

[image: Ubiquitous Robot: A New Paradigm for Integrated Services - IEEE Xplore]
Ubiquitous Robot: A New Paradigm for Integrated Services - IEEE Xplore

[image: A Client/Server Message Oriented Middleware for ...]
A Client/Server Message Oriented Middleware for ...

[image: A Middleware-Independent Model and Language for Component ...]
A Middleware-Independent Model and Language for Component ...

[image: Custom execution environments in the BOINC middleware]
Custom execution environments in the BOINC middleware

[image: Contex Aware Computing for Ubiquitous Computing Applications.pdf]
Contex Aware Computing for Ubiquitous Computing Applications.pdf

[image: Towards Middleware Components for Distributed ...]
Towards Middleware Components for Distributed ...

[image: MONITORING MIDDLEWARE FOR SERVICE LEVEL AGREEMENTS ...]
MONITORING MIDDLEWARE FOR SERVICE LEVEL AGREEMENTS ...

[image: A contract-oriented middleware]
A contract-oriented middleware

[image: Evolution of Cooperation in a Population of Selfish Adaptive Agents]
Evolution of Cooperation in a Population of Selfish Adaptive Agents

[image: serologic survey for selected disease agents in wolves ...]
serologic survey for selected disease agents in wolves ...

A Middleware for Context-Aware Agents in Ubiquitous

computing is essentially a reactive approach to information access, and it Context-sensitive object request broker (R-ORB) hides the intricacies of ad hoc ...

 Download PDF

 740KB Sizes
 4 Downloads
 266 Views

 Report

Recommend Documents

[image: alt]

Middleware Technologies for Ubiquitous Computing ...

Fax : (+33|0)4 72 43 62 27 ... challenges raised by ubiquitous computing â€“ effective use of smart spaces, invisibility, and localized scalability computer and network resources, enforcing policies, auditing network/user usage, etc. Another ...

[image: alt]

A contract-oriented middleware - UniCa

A contract-oriented middleware. Massimo Bartoletti. University of Cagliari (Italy) â€” BETTY COST Action. London, Apr 17th, 2015 ...

[image: alt]

A Computational Framework for Social Agents in Agent ...

best represented as a cubic polynomial, the coefficients of which are simulation environment, to provide tools facilitating the specification of agents, control of the specified market economic factors, data logging, results analysis,. Page 15.

[image: alt]

Modelware for Middleware

CRC for Enterprise Distributed Systems (DSTC)âˆ—. April 16, 2003. Abstract ... ering the design of an enterprise application creating a. Platform Independent ... concepts, allowing the annotation of the PIM to indicate which application artifacts ...

[image: alt]

A Survey on Service Composition Middleware in ...

context awareness, QoS management, security, spontaneous management, and [35] UPnP Forum, "Understanding UPnP: A White Paper",. Technical Report ...

[image: alt]

A contract-oriented middleware - UniCa

Apr 17, 2015 - runtime monitoring (send(), receive()). â–» subtyping. M. Bartoletti, T. Cimoli, M. Murgia, A.S. Podda, L. Pompianu. Compliance and subtyping in ...

[image: alt]

Custom execution environments in the BOINC middleware

where applications are confined to a closed environment, to prevent them from causing any harm to the hosting system. To provide the security that volunteers expect, supports the platform and operating system where it is executed. By using Libbo

[image: alt]

A Middleware Service for Pervasive Social Networking

Social Networks, Pervasive Computing, Middleware. 1. INTRODUCTION. Pervasive Social Networking (PSN) [1] (also called Mo- bile Social Networking) is a ...

[image: alt]

Custom execution environments in the BOINC middleware

such as VMWare[6] and Xen[2], or application level sandboxes such as Native B. Customizable execution environments with virtual desktop grid computing.

[image: alt]

Power Awareness In Context Aware Middleware for ...

context aware middleware for ubiquitous Computing Systems. The principal ... thousands small sensor nodes is the key to achieve the designing of ubiquitous the wired [17] and wireless [8] network architecture for a Context-aware Home. ... build

[image: alt]

iCard â€“ Foundation for A New Ubiquitous Computing ...

the cellular service provided by wireless ISP, or may choose to do some serious work more seriously, the enterprise networks to the attackers. With VPN and ...

[image: alt]

monitoring middleware for service level agreements in ...

Measurement service â€“ Measures a given list of metrics at specified intervals. â€¢ Evaluation ... production of client/server stubs for easing the implementation of remote procedure call (RPC) media (e.g., online games). Acknowledgements.

[image: alt]

Contex Aware Computing for Ubiquitous Computing Applications.pdf ...

Contex Aware Computing for Ubiquitous Computing Applications.pdf. Contex Aware Computing for Ubiquitous Computing Applications.pdf. Open. Extract.

[image: alt]

Design Patterns for Ubiquitous Computing

and shout and drink, and let go of their sorrows? the user is participating in a meeting, attending a ... owner is in a meeting and switch auto- matically to a ...

[image: alt]

Ubiquitous Robot: A New Paradigm for Integrated Services - IEEE Xplore

virtual pet modeled as an artificial creature, and finally the. Middleware which seamlessly enables interconnection between other components. Three kinds of ...

[image: alt]

A Client/Server Message Oriented Middleware for ...

Device software drivers installation and configuration are performed on the server PC computer host sees base communication board as a virtual serial port.

[image: alt]

A Middleware-Independent Model and Language for Component ...

A component implements a component type Ï„, same as a class implements an interface. A component (Ï„, D, C) is characterized by its type Ï„, by the distribution D of Boolean type which indicates whether the implementation is distributed, and by its c

[image: alt]

Custom execution environments in the BOINC middleware

large user base, it suffers from two fundamental limitations: first, it can only ... pend on external software, having the same dependencies as BOINC itself. This ... advantage of not requiring any modifications to the BOINC client but is tied to ...

[image: alt]

Contex Aware Computing for Ubiquitous Computing Applications.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Contex Aware ...

[image: alt]

Towards Middleware Components for Distributed ...

May 31, 2006 - bases, web services, and messaging systems may also be included as 1 Underlying actuators may be realized as hardware or software- based entities. ... constraints while also accounting for variation due to network ...

[image: alt]

MONITORING MIDDLEWARE FOR SERVICE LEVEL AGREEMENTS ...

1. INTRODUCTION. Service Level Agreements (SLAs) specify the Quality of Service As demonstrated by [7] (QoS monitoring associated with network traffic.

[image: alt]

A contract-oriented middleware

Rule [Fuse] searches the system for compliant pairs of latent a data storage layer. ... a dedicated cloud server, equipped with a quad-core Intel Xeon CPU ...

[image: alt]

Evolution of Cooperation in a Population of Selfish Adaptive Agents

Conventional evolutionary game theory predicts that natural selection favors the ... In both studies the authors concluded that games on graphs open a window.

[image: alt]

serologic survey for selected disease agents in wolves ...

1 Alaska Department of Fish and Game, 1300 College Road, Fairbanks, Alaska 99701-1599, USA ... and Wildlife Service, National Park Service, and the Yukon ...

×
Report A Middleware for Context-Aware Agents in Ubiquitous

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

