9/19/13

Gale Power Search - Document

A preliminary evaluation of reinstatement of destructive behavior displayed by individuals with autism Terry S. Falcomata , Katherine J. Hoffman , Summer Gainey , Colin S. Muething and Daniel Author(s): M. Fienup Source: The Psychological Record. 63.3 (Summer 2013): p453. From General OneFile. Report Document Type: http://dx.doi.org/10.11133/j.tpr.2013.63.3.004 DOI: Full Text: COPYRIGHT 2013 The Psychological Record http://www.siuc.edu/~ThePsychologicalRecord/index.html Abstract: Title:

Reinstatement is the recovery of previously extinguished responding during response-independent delivery of previously reinforcing stimuli. In this translational study, we examined reinstatement of severe destructive behavior exhibited by individuals with autism. First, destructive behavior was reinforced on a fixed-ratio I schedule of reinforcement, and high rates of responding were observed. Next, extinction was implemented and destructive behavior ceased. In the third component, a fixed-time, 2-min schedule of reinforcement was implemented and destructive behavior was reinstated. The 3-component sequence of conditions was implemented two additional times with both participants, and destructive behavior recurred during each test for reinstatement. These results suggest that reinstatement (a) occurs across populations and topographies of behavior, including clinically relevant responses such as destructive behavior, and (b) is a mechanism that may represent a challenge to treatment and play a role in clinical relapse of destructive behavior. Key words: autism, clinical relapse, destructive behavior, reinstatement, resurgence Full Text: Reinstatement is the recovery of previously extinguished responding during response-independent delivery of previously reinforcing stimuli (Doughty, Reed, & Lattal, 2004; Franks & Lattal, 1976; Reid, 1957). Experimental analysis of reinstatement typically entails three sequential conditions: (a) reinforcement of a specific response, (b) the elimination of the previously reinforced response via extinction, and (c) the response-independent delivery of the stimuli that previously functioned as reinforcement. Researchers have suggested reinstatement occurs due to a history of reinforcement that causes the reinforcing stimuli to gain a discriminative function (Franks & Lattal, 1976; Lieving & Lattal, 2003; Reid, 1957). Thus, the reemergence of responding during response-independent delivery of reinforcing stimuli is a function of the discriminative effects of the stimulus on responding. Reinstatement of previously extinguished behavior has been demonstrated in studies across species, including rats (e.g., Campbell, Phillips, Fixsen, & Crumbaugh, 1968; Franks & Lattal, 1976; Reid, 1957), pigeons (Doughty et al., 2004; Reid, 1957), and human populations (Reid, 1957; Spradlin, Fixsen, & Girardeau, 1969; Spradlin, Girardeau, & Horn, 1966). In a seminal study of reinstatement, Reid conducted three separate experiments with rats, pigeons, and college students, respectively. During each of the three experiments, responding maintained at high levels during an initial, reinforcement component, extinguished during a subsequent extinction component, and was reinstated during a third and final component in which response-independent reinforcement was provided. Reid's results suggested that reinforcing stimuli gained discriminative control over the response, as evidenced by the reemergence of behavior when the reinforcing stimuli were delivered independent of responding. Subsequent experimental analyses of reinstatement have evaluated variables such as the density of reinforcement during the initial reinforcement condition (e.g., Franks & Lattal, 1976) and relative reinstatement of responses reinforced on concurrent schedules (e.g., Doughty et al., 2004). Reinstatement has also been demonstrated in human populations with special needs (Spradlin et al., 1969; Spradlin et al., 1966). For example, Spradlin et al. (1966) demonstrated reinstatement of arbitrary responding (i.e., button pressing) exhibited by six adolescent girls with mental retardation. Following high rates of responding during a fixedratio (FR) 50 schedule of reinforcement, the experimenters implemented extinction until responding ceased. Next, the experimenters implemented a condition in which reinforcement was provided on a fixed-time (FT) 30 s schedule of reinforcement that resulted in the reinstatement of responding. In a subsequent study, Spradlin et al. (1969) extended go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

1/12

9/19/13

Gale Power Search - Document

their earlier work by comparing differential reinstatement of arbitrary responses across three distinct conditions in 12 children diagnosed with mental retardation. Specifically, after establishing high rates of responding on a FR 25 or FR 50 schedule of reinforcement and subsequently extinguishing responding, the experimenters compared reinstatement across four conditions: (a) on a time-based schedule of reinforcement, (b) when an audio stimulus was provided, and (c) during a control condition. Eight out of 12 children demonstrated reinstatement of responding most often and at a higher rate when reinforcement was provided relative to the audio stimulus and control conditions. These results suggested that the reinforcing stimuli gained discriminative control. The results of Spradlin et al. (1966) and Spradlin et al. (1969) provided further support for the hypothesis that, in addition to strengthening behaviors, reinforcement may, at times, develop discriminative properties and occasion subsequent responding. Similar to other forms of response recovery (e.g., resurgence; Lieving, Hagopian, Long, & O'Connor, 2004; Lieving & Lattal, 2003; Volkert, Lerman, Call, & Trosclair-Lasserre, 2009), it has been suggested (e.g., Doughty et al., 2004) that reinstatement may play a role in some applied circumstances when clinical relapse occurs. For example, the study of reinstatement has been a central feature of animal models of clinical relapse pertaining to substance abuse research (e.g., Shaham, Shalev, Lu, de Wit, & Stewart, 2003). For example, de Wit and Stewart (1981) showed that responseindependent exposure to cocaine reinstated lever pressing in rats following periods of reinforcement and extinction. Other studies in behavioral pharmacology have evaluated reinstatement associated with drug-related cues (see Epstein, Preston, Stewart, & Shaham, 2006, for a review) and stress (e.g., Sinha, 2001). Despite the likelihood that reinstatement is a factor in socially significant situations in addition to substance abuse relapse, the majority of studies of the phenomenon have included nonhuman participants. Furthermore, although the application of reinstatement to clinical relapse is limited primarily to behavioral pharmacology, findings from that area of research as well as other previous studies (e.g., Spradlin et al., 1969; Spradlin et al., 1966) suggested that similar experimental preparations may shed light on the role that the phenomenon may play in other forms of clinical relapse. It is possible that reinstatement may play a role in clinical relapse pertaining to the reemergence of destructive behavior. In some circumstances, certain treatments may create the conditions that often produce reinstatement effects. For example, treatments that involve response-independent reinforcement (i.e., noncontingent reinforcement [NCR]) may, at times, approximate the conditions that have been shown to produce reinstatement in basic studies. A common applied example of the use of response-independent reinforcement would involve the employment of NCR by a teacher who provides attention to a student at regular intervals for the purpose of decreasing classroom-based challenging behavior (see DeLeon, Williams, Gregory, & Hagopian, 2005, for a possible example of this effect). Failures of such treatments, when they occur, may result from reinstatement effects created via the noncontingent presentation of a previously contingent reinforcer that now evokes destructive behavior. Thus, under such circumstances, reinstatement effects would constitute a challenge to treatment. Other treatments that may, at times, produce reinstatement include extinction (e.g., escape extinction during treatments of food refusal and other escape-maintained challenging behaviors); NCR with momentary differential reinforcement (MDRO; Vollmer, Ringdahl, Roane, & Marcus, 1997); and treatments that incorporate delays to reinforcement (e.g., approximations of extinction during delays). In other circumstances, reinstatement effects may be produced during lapses in treatment integrity that involve the inadvertent delivery of response-independent reinforcement. Challenges to treatments that involve lapses in treatment integrity associated with the reemergence of destructive behavior have been discussed previously in terms of failures to reinforce appropriate behaviors, alteration of antecedent conditions, and reinforcement of destructive behavior during treatment (St. Peter Pipkin, Vollmer, & Sloman, 2010; Wacker et al., 2011). However, basic findings on the reinstatement effect suggest that the inadvertent delivery of response-independent reinforcement during treatment may also constitute a challenge to treatment that may, at times, produce clinical relapse of destructive behavior. Given that (a) some treatments may create the conditions that have been shown in basic studies to produce reinstatement and (b) reinstatement effects may explain some circumstances in which clinical relapse occurs as a result of lapses in treatment integrity (i.e., inadvertent response-independent delivery of reinforcement during treatment), translational evaluations of reinstatement of destructive behavior are warranted. The purpose of this study was to translate basic reinstatement findings (e.g., Spradlin et al., 1969; Spradlin et al., 1966) by demonstrating the reinstatement effect with destructive behavior exhibited by individuals diagnosed with autism. First, positive reinforcement was initially made contingent on destructive behavior. Next, destructive behavior was exposed to extinction and eliminated. Last, the previously reinforcing stimuli were provided independent of responding, go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

2/12

9/19/13

Gale Power Search - Document

and reinstatement of destructive behavior was examined.

Method Participants, Setting, and Materials Three individuals previously diagnosed with autism participated in the study. Joseph, a 10-year-old boy, Ward, an 8year-old boy, and Cooper, a 9-year-old boy were selected for participation in this study because of their histories and current levels of destructive behavior. Joseph, Ward, and Cooper scored 36.5, 40, and 40.5, respectively, on the Childhood Autism Rating Scale (CARS; Schopler, Reicher, & Renner, 1988), which placed all three participants in the "severely autistic" range. With Joseph, who was diagnosed with autism by a pediatric psychologist, destructive behavior emerged at the approximate age of 3.5 in the form of tantrums; self-injurious behavior (SIB; hand-biting) and aggression (biting, kicking, hair pulling, hitting) emerged at age 5.5. With Ward, who was diagnosed with autism by a pediatric psychologist, destructive behavior emerged at the approximate age of 3.5 in the form of tantrums, SIB, and aggression. With Cooper, who was diagnosed with autism by a pediatrician, destructive behavior emerged at the approximate age of 3.5 in the form of tantrums; SIB and severe aggression emerged at age 5.5. All three participants were enrolled in local day treatment programs for the assessment and treatment of multiple destructive behaviors. Parental informed consent for participation in the study was obtained for each participant. All sessions were conducted in a therapy room (4 m by 4 m) that contained a table, chair, and the reinforcement stimulus (i.e., an iPad for all three participants). Two therapists were present in the room during all sessions. One therapist delivered and removed the reinforcement stimulus; a second therapist video-recorded sessions for data collection purposes and monitored the time parameters for each condition. A free operant preference assessment as described by Roane, Vollmer, Ringdahl, and Marcus (1998) was used to identify the reinforcing stimulus to be used during sessions. The items included in the preference assessment were selected based on caregiver report and naturalistic observation, suggesting that the participants maintained destructive behavior. With all three participants, an iPad was associated with the highest level of engagement during the preference assessment and subsequently served as the reinforcing stimulus throughout the study for all three participants. Response Definitions, Interobserver Agreement, and Procedural Integrity Response frequency data were collected on destructive behavior by trained observers via video recordings using a computer-based data collection program. For Joseph, destructive behavior was defined as aggression and included hitting, hair pulling, choking, pinching, and biting. For Ward, destructive behavior was defined as aggression and go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

3/12

9/19/13

Gale Power Search - Document

included hitting and kicking. For Cooper, destructive behavior was defined as aggression and included hitting and pinching. Table 1 provides specific operational definitions for each topography of destructive behavior for each participant. Table 1 Specific Topographies and Operational Definitions of Destructive Behavior for Joseph, Ward, and Cooper Child Response Definition Joseph Biting

Actual or attempted closure of the upper and lower teeth on any part of the experimenter's body

Choking

Contact between the hands and the experimenter's neck area

Hitting

Forceful contact of a hand or hands against the experimenter's body

Hair pulling Closure of the fingers on the experimenter's hair with a pulling motion Pinching

Forceful closure of fingers on any part of the experimenter's body

Hitting

Forceful contact of a hand or hands against the experimenter's body

Kicking

Forceful contact of a foot against the experimenter's body

Hitting

Forceful contact of a hand or hands against the experimenter's body

Pinching

Forceful closure of fingers on any part of the experimenter's body

Ward

Cooper

A second observer collected data during one of three sessions for all three participants. Agreement data for the dependent variable were calculated by dividing each session into successive 10-s intervals and then dividing the number of intervals with exact agreements (i.e., two observers recording the same number of occurrences of destructive behavior in a given 10-s interval) by the number of intervals with agreements plus disagreements, multiplied by 100. Agreement was 95% for destructive behavior for Joseph, 96% for Ward, and 90% for Cooper. To ensure the procedures were implemented as intended, an independent observer collected data on the integrity of the independent variable (IV) for 33% of sessions for all participants. The delivery of reinforcement was scored as correct if it was provided within 5 s of the participant engaging in destructive behavior during the FR 1 condition, and within 5 s of the scheduled delivery of reinforcement during the FT 2-min condition. During the extinction condition, the withholding of reinforcement following occurrences of destructive behavior was scored as correct application of the IV. Independent variable integrity was 95% for Jack, 96% for Ward, and 98% for Cooper, respectively. Experimental Design and Procedure A repeated, three-component sequential schedule design was used to evaluate reinstatement of destructive behavior. The three-component design was similar to that used in previous investigations of reinstatement (e.g., Doughty et al., go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

4/12

9/19/13

Gale Power Search - Document

2004; Franks & Lattal, 1976) and resurgence (e.g., Bruzek, Thompson, & Peters, 2009; Lieving et al., 2004) and was implemented and repeated on three separate occasions with each participant. The individual components consisted of (a) an FR 1 schedule of reinforcement, (b) extinction, and (c) an FT 2-min schedule of reinforcement with a 10-s MDRO component (Campbell et al., 1968; Vollmer et al., 1997). During each of the three sessions conducted with the participants, all three conditions were implemented (i.e., one complete sequence of each of the three conditions was implemented during each session). No more than one session was conducted during a single day. The following experimental conditions were implemented within the three-component sequence:

FR 1. Prior to the initiation of each session, the participant was provided with 1 min of access to the iPad. To initiate the FR 1 condition, the experimenter removed and restricted the participant's access to the stimulus. The iPad remained in the room and visible throughout the condition. The experimenter provided access to the iPad on a FR 1 schedule of reinforcement contingent on destructive behavior. Destructive behavior resulted in 30 s of access to the iPad. The FR 1 condition remained in place until 5 consecutive minutes of efficient responding (e.g., Bruzek et al., 2008) were observed (i.e., destructive behavior occurred within 10 s of the removal of the iPad). Joseph met the efficiency criterion in an average of 467 s (range = 303 s-791 s; it should be noted that the first FR 1 condition was ended in error following 4 min of efficient responding rather than the intended 5 min). Ward met the efficiency criterion in an average of 306 s (range = 204 s-380 s). Cooper met the efficiency criterion in an average of 530 s (range = 300 s-871 go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

5/12

9/19/13

Gale Power Search - Document

s). Extinction. Following 5 minutes of efficient responding during the first condition (FR 1), the second condition was immediately initiated in which destructive behavior was placed on extinction (i.e., all destructive behavior as well as other responses were ignored). Similar to the FR 1 condition, the iPad was present and visible to the participant in the room, but the participant's access to the stimulus was restricted throughout the condition (i.e., experimenters blocked participant attempts to access the iPad). The extinction condition remained in place until 5 consecutive minutes were observed in which no destructive behavior occurred (e.g., Bruzek et al., 2008). Joseph met the extinction criterion in an average of 545 s (range = 465 s-594 s). Ward met the extinction criterion in an average of 414 s (range = 371 s-446 s). Cooper met the extinction criterion in an average of 570 s (range = 417 s-776 s). FT 2-min (test for reinstatement). Following 5 consecutive minutes in which destructive behavior did not occur during extinction, the third condition (FT 2-min) was immediately implemented. The iPad remained in the room and visible to the participant throughout the condition. The iPad was delivered every 2 minutes, and the participant was provided with 30 s of access to the stimulus. Destructive behavior was ignored throughout the condition. An MDRO (Vollmer et al., 1997) procedure was incorporated to prevent the potential effects of adventitious reinforcement on response recovery (e.g., Campbell et al., 1968; Franks & Lattal, 1976; Spradlin et al., 1966). The MDRO procedure consisted of withholding reinforcement in the case that destructive behavior occurred within 10 s prior to the scheduled delivery of reinforcement; the therapist delayed delivery of reinforcement until 10 s elapsed in the absence of destructive behavior. The MDRO procedure was implemented once with Joseph and was not exercised with Ward or Cooper. The FT 2-min condition remained in place for 10 minutes. The FT interval was paused during the reinforcement interval (i.e., 2-min intervals occurred between the removal of the iPad and the subsequent delivery of the iPad). Results Figure 1 displays the frequency of destructive behavior across conditions for each session for Joseph (top panel), Ward (middle panel), and Cooper (bottom panel), respectively. All three participants engaged in consistent and high levels of destructive behavior during the FR 1 conditions. For Joseph, the frequencies of destructive behavior during the FR 1 condition(s) averaged 1.2, 1, and 1.8 responses (total M = 1.2), respectively. For Ward, the frequencies of destructive behavior during the FR 1 condition(s) averaged 2.2, 2, and 2 responses per minute (total M = 2.1), respectively. For Cooper, the frequencies of destructive behavior during the FR 1 condition(s) averaged 2, 3.9, and 2.8 responses per minute (total M = 2.9), respectively.

go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

6/12

9/19/13

Gale Power Search - Document

For all three participants, destructive behavior eventually extinguished during each extinction condition. For Joseph, the frequencies of destructive behavior during the extinction condition(s) averaged 1.1, 1, and 1.3 responses per minute (total M = 1.2), respectively. For Ward, the frequencies of destructive behavior during the extinction condition(s) were 10.8, 1.9, and 1 responses per minute (total M = 4.7), respectively. For Cooper, the frequencies of destructive behavior during the extinction condition(s) averaged 2.2, 7.7, and 3 responses per minute (total M = 4.3), respectively. It should be noted that extinction bursts occurred for all three participants during each implementation of the extinction condition. During each FT 2-min condition (i.e., the tests for reinstatement), destructive behavior reemerged with all three participants. Thus, reinstatement of destructive behavior occurred with each participant during all test conditions. We also examined the within-condition data across bins for the FT analyses for each session (see Figures 2, 3, and 4). We did this for the purpose of a more systematic analysis of temporal relations between challenging behavior, the presentation of the reinforcement stimulus, and the removal of the reinforcement stimulus during the FT 2-min conditions for each participant. Figures 2, 3, and 4 (in addition to Figure 1) display the results of the three FT 2-min conditions for Joseph, Ward, and Cooper, respectively. The top, middle, and bottom panels of each figure show the results of the first, second, and third implementation of the FT 2-min condition, respectively. For Joseph, the frequencies of destructive behavior during the reinstatement test condition(s) were 1.3, 1.6, and 0.7 responses per go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

7/12

9/19/13

Gale Power Search - Document

minute (total M = 1.2) for total frequencies of 13, 20, and 7, respectively. For Ward, the frequencies of destructive behavior during the reinstatement test condition(s) averaged 4.6, 2.3, and 0.8 responses per minute (total M = 2.6) for total frequencies of 46, 21, and 8, respectively. For Cooper, frequencies of destructive behavior during the reinstatement test condition(s) averaged 1.2, 2.1, and 2.5 responses per minute (total M = 1.9) for total frequencies of 12, 14, and 25, respectively. Destructive behavior occurred following the removal of the iPad during a total of 92%, 75%, and 92% of all interreinforcement intervals for Joseph, Ward, and Cooper, respectively. [FIGURE 2 OMITTED] [FIGURE 3 OMITTED] [FIGURE 4 OMITTED] To further analyze temporal relationships between the removal of the iPad and the occurrence of destructive behavior, latencies were calculated for the first instance of destructive behavior (when it occurred) following the removal of the stimulus. The percentage of first instances of destructive behavior that occurred within 10 s of the removal of the iPad was calculated for each participant. This calculation was similar to the procedure used by Borrero and Borrero (2008) to evaluate temporal relationships between precursors, other events, and destructive behavior. Destructive behavior occurred within 10 s of the removal of the iPad during a total of 38%, 67%, and 92% of reinforcement removals for Joseph, Ward, and Cooper, respectively. The mean latency from the removal of the iPad to the occurrence of destructive behavior (when it occurred during the interreinforcement interval) was 21.7 s, 9.4 s, and 3.2 s for Joseph, Ward, and Cooper, respectively. With all three participants, no destructive behavior occurred during any 30 s reinforcement interval. Discussion The results demonstrated the reinstatement effect with destructive behavior exhibited by three individuals with autism diagnoses. This included steady rates of destructive behavior during the FR 1 condition, cessation of destructive behavior during extinction, and the reemergence of destructive behavior during the FT 2-min condition. For all participants, the response-independent presentation of reinforcement that previously maintained destructive behavior, and was subsequently extinguished, reinstated responding. These results replicate previous demonstrations of reinstatement (e.g., Campbell et al., 1968; Doughty et al., 2004; Reid, 1957; Spradlin et al., 1969; Spradlin et al., 1966,) and extend previous findings to a human population with special needs with clinically significant behaviors. Our results suggest that reinstatement should be considered within the context of clinical relapse pertaining to destructive behavior. Wacker et al. (2011) described several conditions that represent challenges to treatments that focus on destructive behavior. Specifically, Wacker et al. included brief and prolonged periods of extinction, alterations of antecedent stimulus conditions, and reinforcement of destructive behavior following treatment as conditions that represent challenges to treatment. The current results suggest that the conditions that produce reinstatement and the effects of remote reinforcement contingencies (i.e., behavioral history; Doughty et al., 2004) may represent a challenge to treatments that target destructive behavior, and clinical relapse may, at times, occur in the form of reinstatement. For example, our results suggest that reinstatement may play a role in the failure of treatments that include the delivery of response-independent reinforcement (i.e, NCR; DeLeon et al., 2005). Although the occurrence of adventitious reinforcement has been demonstrated as a potential challenge to the effectiveness of NCR (e.g., Vollmer et al., 2007), it is also possible that reinstatement may play a role when NCR or NCR with MDRO fails to produce positive clinical effects if reinforcement stimuli acquire discriminative properties. Reinstatement may be an example of "behavioral persistence" (Wacker et al., 2011, p. 262) pertaining to destructive behavior. In other words, the reemergence of destructive behavior following extinction when response-independent reinforcement is provided may be affected by behavioral histories that produce short- and long-term resistance to changes in schedules of reinforcement. Determining the mechanisms, or the environmental conditions that contribute to behaviors being resistant to extinction or prone to reemergence following extinction, will likely assist in the generation of treatments that are effective at decreasing the persistence of challenging behavior while increasing the persistence of appropriate behavior. This experimental model provides a method to assess one type of potential persistence (i.e., reinstatement) within a short time and may help in the development of treatments that match the behavioral history of go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

8/12

9/19/13

Gale Power Search - Document

the individual being treated. Future studies should evaluate factors that may contribute to persistence in the form of reinstatement, including reinforcement schedules, response rates during reinforcement, and latency to elimination of behavior during extinction. The risk of reinstatement of destructive behavior may be enhanced, given that extinction often plays a role in treatments for destructive behavior. Specifically, in addition to clinical situations in which extinction may be used in lieu of reinforcement-based components, extinction-in-isolation conditions often occur during multicomponent treatments that emphasize reinforcement-based procedures (e.g., delays to reinforcement with differential reinforcement). For example, the conditions that have been shown to produce reinstatement may, at times, be present during programmed and nonprogrammed delays to reinforcement as well as clinical situations in which reinforcement is not available. Although the current experiment involved extinction in isolation and has direct implications for treatments that consist primarily of extinction procedures, these results may also have implications regarding multicomponent interventions that include an extinction component when clinical relapse occurs. For example, it is possible that reinstatement of destructive behavior may occur when failures of treatment integrity occur in the form of the inadvertent, intermittent delivery of noncontingent reinforcers during extinction-based treatments. Future studies should evaluate methods that focus on the strengthening of treatments in ways that specifically address challenges to treatment, such as conditions that produce reinstatement. For example, Doughty et al. (2004) demonstrated differential reinstatement resulting from discrepancies in response rate during response-dependent reinforcement (prior to extinction and response-independent reinforcement delivery). Specifically, when different schedules of reinforcement were implemented with respective responses during concurrent schedule arrangements during the first component, reinstatement occurred at higher levels with the response for which higher response rates were previously observed. Thus, future studies should evaluate conditions that produce differential reinstatement of alternative behaviors (e.g., appropriate communication) relative to destructive behavior during analogues to treatment lapses (i.e., experimental preparations typically used to study reinstatement) using concurrent schedule arrangements. Last, future studies should evaluate the extent to which the rapidity of extinction might affect the likelihood and intensity of reinstatement effects. With regard to the concept that reinforcement stimuli may, at times, acquire discriminative properties, the results obtained during the response-independent reinforcement components were inconclusive. Specifically, destructive behavior did not follow 100% of the instances in which reinforcement was removed; and when destructive behavior did occur subsequent to instances of reinforcement removal, temporal relations between destructive behavior and the removal of reinforcement varied. Thus, although a discriminative effect component in terms of the reinforcement stimuli likely affected reinstatement, it is possible that other mechanisms (e.g., establishing operations, discriminative properties of other stimuli in the environment) may have impacted the reinstatement effects observed. Future studies should evaluate potential mechanisms responsible for the reemergence of destructive behavior during responseindependent delivery of reinforcement. Our results should be viewed in light of several limitations. First, within the context of the current design, it is not possible to determine whether the reinforcement stimulus itself, the process of removing the stimulus obtained discriminative properties, or other mechanisms may have produced reinstatement. Given the variability that was observed within sessions during the FT 2-min condition within and across participants in terms of the occurrence and latency to occurrence of destructive behavior following the removal of the reinforcement stimuli, future studies should systematically evaluate the specific discriminative properties that control the reinstatement of destructive behavior during the reinforcement process. Second, the time parameters associated with the FR and extinction conditions were adapted from similar translational studies of resurgence (e.g., Bruzek et al., 2009); and the time parameter for the length of the FT condition was arbitrarily chosen. Given the clinical population in the current study, we elected to minimize to the extent possible the duration of sessions while following precisely the sequence of conditions used in basic studies of reinstatement. Thus, we combined the sequence of conditions used in basic studies of reinstatement with time parameters (e.g., condition durations; FR stability criterion; extinction criterion) used in similar translational studies of resurgence (Bruzek et al., 2009). Future studies should evaluate reinstatement of destructive behavior when various aspects of the time parameters are systematically manipulated. Such manipulations might include varying the duration of the reinforcement go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId=…

9/12

9/19/13

Gale Power Search - Document

component, the duration of extinction, and the relative density of the FT component. The FT schedule of reinforcement was arbitrarily chosen but was consistent with basic studies of reinstatement (e.g., Doughty et al., 2004, delivered response independent reinforcement on an average of once every 2 min). Third, it is difficult to determine within the context of our design and results the extent to which the different reinforcement rates associated with the FR 1 and FT 2-min conditions may have interacted with each other and in combination with previous histories of reinforcement to produce the reinstatement effects observed. Future studies should investigate how various reinforcement rates associated with respective schedules might interact in terms of their effects on reinstatement. Fourth, it is possible that the MDRO procedure could affect reinstatement. Although the number of times the procedure was implemented was limited to one time across participants, its potential effects on reinstatement should be considered and its use weighed in future studies. Consistent with several previous basic studies of reinstatement (e.g., Campbell et al., 1968; Franks & Lattal, 1976; Spradlin, 1966), we elected to incorporate the procedure for the purpose of minimizing the possibility of an adventitious reinforcement effect. It should be noted that a variety of specific procedures to prevent adventitious reinforcement have been reported in the basic literature on reinstatement. For example, Campbell et al. and Spradlin et al. both incorporated a procedure that entailed a pause criterion to prevent adventitious reinforcement during tests for reinstatement; Franks & Lattal used a pause criterion, but only during the initial test of reinstatement; and Doughty et al. (2004) did not report the use of procedures to prevent adventitious reinforcement. Thus, it is difficult to determine the extent to which the use of the MDRO procedure may have influenced our results relative to previous reinstatement experiments. Future studies should evaluate the possible impact of various procedures intended to prevent adventitious reinforcement during evaluations of reinstatement. Last, from a design standpoint, the results of the tests for reinstatement during the FT conditions may have been strengthened by the inclusion of a control condition comparing within-session responding. For example, Spradlin et al. (1966) incorporated a control condition that entailed the nondelivery of reinforcement following pauses in responding with which they compared the results of tests for reinstatement (i.e., response independent deliveries of reinforcement) to evaluate reemergence of responding. It should also be noted that the use of a control condition, as described by Spradlin et at, has not been consistently reported in basic studies of reinstatement (e.g., Franks & Lattal, 1976; Doughty et al., 2004). In summary, our results demonstrated the reinstatement of destructive behavior resulting from the noncontingent delivery of a previously contingent reinforcement. Although our results did not conflict outright with previous accounts of reinstatement (i.e., discriminative effects of reinforcing stimuli), they were not fully consistent with previous accounts. Within-condition (tests for reinstatement) variances observed across instances of reinforcement removal and the occurrence of destructive behavior suggest that other mechanisms or effects may have affected the results. Thus, future research should explore the role of behavior mechanisms in addition to and/or in combination with discriminative effects of reinforcement with the reinstatement of destructive behavior. We extend our appreciation to Shape of Behavior in Austin, Texas, for allowing us to conduct this research project. Specifically, Dominique Randall's assistance was invaluable. Correspondence concerning this article should be addressed to Terry S. Falcomata, Department of Special Education, The University of Texas at Austin, 1 University Station/D5300, Austin, TX 78712; E-mail: [email protected] DOI:10.11133/j.tpr.2013.63.3.004 References BORRERO, C. S., & BORERRO, J. C. (2008). Descriptive and experimental analyses of potential precursors to problem behavior. Journal of Applied Behavior Analysis, 41, 83-96. BRUZEK, J. L., THOMPSON, R. H., & PETERS, L. C. (2009). Resurgence of infant caregiving responses. Journal of the Experimental Analysis of Behavior, 92, 327-343. go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId…

10/12

9/19/13

Gale Power Search - Document

CAMPBELL, P., PHILLIPS, E., FIXSEN, D., & CRUMBAUGH, C. (1968). Free operant response reinstatement during extinction and time-contingent (DRO) reward. Psychological Reports, 22, 563-569. DE WIT, H., & STEWART, J. (1981). Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology, 75, 134-143. DELEON, I. G., WILLIAMS, D., GREGORY, M. K., & HAGOPIAN, L. P. (2005). Unexamined potential effects of the noncontingent delivery of reinforcers. European Journal of Behavior Analysis, 6, 57-69. DOUGHTY, A. H., REED, P., & LATTAL, K. A. (2004). Differential reinstatement predicted by preextinction response rate. Psychonomic Bulletin & Review, 11, 1118-1123. EPSTEIN, D. H., PRESTON, K. L., STEWART, J., & SHAHAM, Y. (2006). Toward a model of drug relapse: An assessment of the validity of the reinstatement procedure. Psychopharmacology, 189, 1-16. FRANKS, G. J., & LATTAL, K. A. (1976). Antedecent reinforcement schedule training and operant response reinstatement in rats. Animal Learning & Behavior, 4, 374-378. LIEVING, G. A., HAGOPIAN, L. P., LONG, E. S., & O'CONNOR, J. (2004). Response-class hierarchies and resurgence of severe problem behavior. The Psychological Record, 54, 621-634. LIEVING, G. A., & LATTAL, K. A. (2003). Recency, repeatability, and reinforcer retrenchment: An experimental analysis of resurgence. Journal of the Experimental Analysis of Behavior, 80, 217-233. REID, R. L. (1957). The role of the reinforcer as a stimulus. British Journal of Psychology, 49, 202-209. ROANE, H. S., VOLLMER, T. R., RINGDAHL, J. E., & MARCUS, B. A. (1998). Evaluation of a brief stimulus preference assessment. Journal of Applied Behavior Analysis, 31, 605-620. SCHOPLER, E., REICHLER, R. J., & RENNER, B. R. (1988). The childhood autism rating scale. Los Angeles, CA: Western Psychological Services. SHAHAM, Y., SHALEV, U., LU, L., DE WIT, H., & STEWART, J. (2003). The reinstatement model of drug relapse: History, methodology and major findings. Psychopharmacology, 168, 3-20. SINAH, R. (2001). How does stress increase risk of drug abuse and relapse? Psychopharmacology, 158, 343-359. SPRADLIN, J. E., FIXSEN, D. L., & GIRARDEAU, F. L. (1969). Reinstatement of an operant response by the delivery of reinforcement during extinction. Journal of Experimental Child Psychology, 7, 96-100. SPRADLIN, J. E., GIRARDEAU, F. L., & HUM, G. L. (1966). Stimulus properties of reinforcement during extinction of an operant response. Journal of Experimental Child Psychology, 4, 369-380. ST. PETER PIPKIN, C., VOLLMER, T. R., & SLOM AN, K. N. (2010). Effects of treatment integrity failures during differential reinforcement of alternative behavior: A translational model. Journal of Applied Behavior Analysis, 43,47-70. VOLKERT, V. M., LERMAN, D. C., CALL, N. A., & TROSCLAIR-LASSERRE, N. (2009). An evaluation of resurgence during treatment with functional communication training. Journal of Applied Behavior Analysis, 42, 145160. VOLLMER, T. R., RINGDAHL, J. E., ROANE, H. S., & MARCUS, B. A. (1997). Negative side effects of noncontingent reinforcement. Journal of Applied Behavior Analysis, 30, 161-164. WACKER, D. P., HARDING, J. W., BERG, W. K., LEE, J. F., SCHIELTZ, K. M., PADILLA, Y. C., ... SHAHAN, T. A. (2011). An evaluation of persistence of treatment effects during long-term treatment of destructive behavior. Journal of the Experimental Analysis of Behavior, 96,261-282. go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId…

11/12

9/19/13

Gale Power Search - Document

Terry S. Falcomata The University of Texas at Austin and the Meadows Center for Preventing Educational Risk Katherine J. Hoffman, Summer Gainey, and Colin S. Muething The University of Texas at Austin Daniel M. Fienup Queens College and the Graduate Center, CUNY Falcomata, Terry S.^Hoffman, Katherine J.^Gainey, Summer^Muething, Colin S.^Fienup, Daniel M. Source Citation (MLA 7th Edition) Falcomata, Terry S., et al. "A preliminary evaluation of reinstatement of destructive behavior displayed by individuals with autism." The Psychological Record 63.3 (2013): 453+. General OneFile. Web. 19 Sept. 2013. Document URL http://go.galegroup.com/ps/i.do?id=GALE%7CA338912842&v=2.1&u=lom_grossep&it=r&p=GPS&sw=w Gale Document Number: GALE|A338912842

Top of page

go.galegroup.com/ps/retrieve.do?sgHitCountType=None&sort=DA-SORT&inPS=true&prodId=GPS&userGroupName=lom_grossep&tabID=T002&searchId…

12/12

A preliminary evaluation of reinstatement of ...

Preston, Stewart, & Shaham, 2006, for a review) and stress (e.g., Sinha, 2001). Despite ..... We extend our appreciation to Shape of Behavior in Austin, Texas, ...

1009KB Sizes 0 Downloads 191 Views

Recommend Documents

Preliminary tribological evaluation of nanostructured ...
Sep 12, 2007 - Copyright © 2007 Wiley Periodicals, Inc., A Wiley Company. Advanced Search ..... [34][35] The broadband centered at 1530 cm-1 is primarily.

A preliminary evaluation of cognitive-behaviour therapy for clinical ...
Oxford University Department of Psychiatry, Oxford, UK. Objective. ..... for clinical perfectionism is relatively brief, consisting of app roximately 10 50- ..... found to be difficult to develop a good therapeutic alliance (Zuroff et al., 2000). Ba

A preliminary evaluation of cognitive-behaviour therapy ...
Shafran, 2005, for some preliminary qualitative data), but it is proposed that .... Nine patients (seven female, two male) drawn from two National Health Service ... found to be difficult to develop a good therapeutic alliance (Zuroff et al., 2000).

Preliminary Study for Evaluation of Earthquake Risk to ...
19th century viz. in 1810, 1833, and 1866 AD. ... comprised of three districts viz. .... Therefore, the available borehole data in five sites of Kathmandu city viz. near ...

Preliminary evaluation of speech/sound recognition for ...
application in a real environment. Michel Vacher1, Anthony Fleury2, Jean-François Serignat1, Norbert Noury2, Hubert Glasson1. 1Laboratory LIG, UMR ...

A Review of Randomized Evaluation
Mar 2, 2007 - Miguel and Kremer [2004] investigated a biannual mass-treatment de-worming. [Research, 2000], a conditional cash transfer program in Nicaragua [Maluccio and Flores, 2005] and a conditional cash transfer program in Ecuador [Schady and Ar

Experimental Performance Evaluation of a ...
packets among SW MAC, HW MAC, and Host-PC. The HW. MAC writes the packets received from the PHY into the shared-memory using Direct Memory Access ...

Preliminary Study of a Self-Administered Treatment for ... - Springer Link
Published online: 13 June 2007. © Springer ... treatment in comparison to a wait list control. Twenty-eight ..... of data analysis: an initial comparison of wait list to.

A preliminary study of acoustic propagation in thick ...
cylindrical), and the frame/polymer density to be as per the manufacturers specification of ρframe=1250 kg m-3, we determine the ... This signal is then entered into a digital oscilloscope (Lecroy. Waverunner Xi-64) ... analogue-to-digital conversio

A Preliminary Paleoecological Investigation of Late ...
America was compressed, buckled, and uplifted, producing a mountain range that ...... the layer was deposited the sea may have already advanced past those ...

PRELIMINARY
Type. 9v Transistor Radio Battery. Radial Ceramic Capacitor. Radial Ceramic Capacitor. Radial Ceramic Capacitor. Carbon Film Resistor. Momentary ...

A Quantitative Evaluation of the Target Selection of ... - Semantic Scholar
ment, and forensics at large, is lesser explored. In this pa- per we perform ... of ICS software providers, and thus replaced legitimate ICS software packages with trojanized versions. ... project infection and WinCC database infection. The attack.

Preliminary submission of 7th CPC.pdf
It was stressed by the AIRF that, out of 7,000 railway stations, over 6,000 are road side stations where staff are. bereft of all civic facilities like housing, electricity, ...

numerical evaluation of the vibroacoustic behavior of a ...
Oct 24, 2011 - The analytical solution of rectangular cavity (Blevins, 1979; Kinsler et al., .... The speaker box was placed in contact with the side of the cavity ...

Preliminary Study of a Self-Administered Treatment for ... - Springer Link
Jun 13, 2007 - Bowel Syndrome: Comparison to a Wait List Control Group. Kathryn Amelia Sanders Æ ... Springer Science+Business Media, LLC 2007. Abstract Despite the .... Recruitment occurred at two sites: the. Center for Stress and ...

A Preliminary Experience in Optimizing the Layout of ...
content adapted to needs and constraints of mobile devices. So, it is becoming ..... Average fitness behavior for Service Page by varying the population size.

Preliminary evidence for a processing error in the biosynthesis of ...
Our data provide evidence for the existence of AP in cultured skin fibroblasts and ..... with a greater than 75% recovery ofAPA. AP bound less ... E. Ranieri, B. Paton and A. Poulos. 15.0-. E 10.0. 0. E°. CD. 0. CL. E. -S. 0._. Ca c 5.0-. 0. c, cn.

A Quantitative Evaluation of the Target Selection of ... - Semantic Scholar
ACSAC Industrial Control System Security (ICSS) Workshop, 8 December 2015, Los. Angeles .... code also monitors the PLC blocks that are being written to.

Evaluation of the Effectiveness of a Silver-Impregnated Medical Cap ...
Page 3 of 7. Evaluation of the Effectiveness of a Silver-Impregnate ... eatment of Nipple Fissure of Breastfeeding Mothers.pdf. Evaluation of the Effectiveness of a ...

Evaluation of the Effectiveness of a Silver-Impregnated Medical Cap ...
Page 1 of 7. Clinical Research. Evaluation of the Effectiveness of a Silver-Impregnated. Medical Cap for Topical Treatment of Nipple. Fissure of Breastfeeding Mothers. Adriano Marrazzu,1 Maria Grazia Sanna,2 Francesco Dessole,1 Giampiero Capobianco,1