









	
 Home

	 Add Document
	 Sign In
	 Create An Account














[image: PDFKUL.COM]






































	
 Viewer

	
 Transcript













Image and Vision Computing 32 (2014) 363–378



Contents lists available at ScienceDirect



Image and Vision Computing journal homepage: www.elsevier.com/locate/imavis



A uniﬁed approach to the recognition of complex actions from sequences of zone-crossings☆ Gerard Sanromà a,⁎, Luis Patino c, Gertjan Burghouts b, Klamer Schutte b, James Ferryman c a b c



Department of Radiology, University of North Carolina at Chapel Hill, United States TNO, Oude Waalsdorperweg 63, Den Haag, The Netherlands School of Systems Engineering, University of Reading, RG6 6AY, United Kingdom



a r t i c l e



i n f o



Article history: Received 30 July 2013 Received in revised form 16 January 2014 Accepted 13 February 2014 Available online 20 February 2014 Keywords: Threat recognition Complex actions Temporal relations Multi-threaded parsing Stochastic parsing



a b s t r a c t We present a method for the recognition of complex actions. Our method combines automatic learning of simple actions and manual deﬁnition of complex actions in a single grammar. Contrary to the general trend in complex action recognition that consists in dividing recognition into two stages, our method performs recognition of simple and complex actions in a uniﬁed way. This is performed by encoding simple action HMMs within the stochastic grammar that models complex actions. This uniﬁed approach enables a more effective inﬂuence of the higher activity layers into the recognition of simple actions which leads to a substantial improvement in the classiﬁcation of complex actions. We consider the recognition of complex actions based on person transits between areas in the scene. As input, our method receives crossings of tracks along a set of zones which are derived using unsupervised learning of the movement patterns of the objects in the scene. We evaluate our method on a large dataset showing normal, suspicious and threat behaviour on a parking lot. Experiments show an improvement of ~30% in the recognition of both high-level scenarios and their composing simple actions with respect to a two-stage approach. Experiments with synthetic noise simulating the most common tracking failures show that our method only experiences a limited decrease in performance when moderate amounts of noise are added. © 2014 Published by Elsevier B.V.



1. Introduction Recognition of complex actions such as having a meal or checking the vulnerabilities of a truck is a challenging task with applications in ﬁelds such as surveillance and monitoring of activities of daily living (ADL). Complex actions are composed of one or more threads of simple actions with speciﬁc temporal arrangements. Simple actions such as run, walk, crouch or bend are aimed at providing an instantaneous behavioural description. There exist a number of methods in the literature for the recognition of simple actions [1]. Their relatively short temporal span and stability make them suitable to be modelled from appearance using few abstraction layers in the form of discriminant representations [2–5], state-based models [6–8] or a combination of both. Complex actions may involve a single actor for a long period of time such as having a meal or involve several actors simultaneously such as checking the vulnerabilities of a parked truck where the threatening action must be carried out after the truck driver has left the vehicle. Modelling of complex actions is usually done by breaking the complex action
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into sequences or sets of simple actions. Hierarchical approaches are very popular for this kind of problems because of their high descriptive power achieved by adding new abstraction layers on top of previously deﬁned ones. Some examples of these approaches are Hierarchical Hidden Markov Models (HHMM) [9–12] and Syntactic methods [13–18]. Many authors recognised the need to learn the simple actions, by attribute learning [19–21] or using topic models based upon Latent Dirichlet Allocation (LDA) or Hierarchical Dirichlet Process (HDP) [22–24], where Hospedales [25] also included explicit knowledge of rare event using a weakly supervised joint topic model. In this paper we address this need to learn the simple actions by matching the sensor data domain to a semantically higher level using zones, which are deﬁned by data driven clustering. In contrast to the approaches mentioned before we favour using tracks over lower level image features as we expect that tracks provide longer term information needed to recognise longer term threat models. In the present paper, we address the problem of recognition of complex actions using syntactic approaches and present an application to the recognition of threats in a parking lot. We tackle the problem of sparsity of training data by allowing manual deﬁnition of the complex actions. Manual deﬁnition of the structure of the activity in the surveillance setting has been previously highlighted by other authors [15,26,16,27–30]. We present an approach for the recognition of complex actions. Our method is inspired by the recent method by Zhang et al. [31]. They
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propose multi-threaded parsing to recognise multi-threaded complex actions. In their approach simple actions are deduced from trajectories between common start and end points. In our case we use more advanced simple action detectors based on HMMs that allow one to recognise more sophisticated behaviours such as loitering and walking around. Our approach gets as input sequences of zone-crossings learned in an unsupervised way from the trajectories of detected objects in the scene. The novelty of our method is that we integrate statistical learning of simple actions with manual speciﬁcation of complex actions in a single grammar by encoding simple action HMMs as stochastic grammar rules. Recognition is carried out in a unique parsing procedure. Similar approaches divide this problem into two stages: In the ﬁrst stage simple actions are detected which are then passed to a second stage that recognises complex actions. Our motivation for using a uniﬁed approach is that optimal detections at the simple action level are not necessarily optimal at the complex level. Therefore, our uniﬁed approach leads to a more effective top-down inﬂuence which allows to select simple action detections more relevant at the complex action layer. We provide experimental evaluation in a threat recognition dataset and show that the proposed method outperforms in terms of recognition accuracy to a similar method that divides recognition into two stages. Fig. 1 shows an overview of our method. The outline of the paper is as follows: in Section 2 we describe some related work. In Section 3 we describe the problem that we aim at solving. Section 4 describes the feature extraction process. Section 5 covers the process of learning statistical models for simple actions. In Section 6 we show how simple actions models and complex activity rules are both put together in the form of a grammar. Section 7 contains details of the parsing procedure used for recognition. Section 8 presents the experimental validation of our approach for the recognition of threats in a parking lot. Finally, Section 9 gives some concluding remarks. 2. Related work Aggarwal et al. presented a review of human activity analysis methods including both single-layered and hierarchical approaches for recognition of simple and complex actions [32]. Coupled Hidden Markov Models (CHMM) are specially designed to model concurrent activities. They have been applied in the surveillance setting to model interactions and group activities [8,7]. The main



drawback is that they need some training data in order to model the relationships between concurrent activities. Therefore, they do not allow for manual speciﬁcation of the structure of the activities in case there is not enough training data. There are also a number of related approaches for the recognition of activities of daily living (ADL). Hamid et al. used event n-grams, a type of bag-of-words representation for representing complex actions [33]. In their bag-of-words representation temporal relations are only considered among sequences of n primitive actions. Rohrbach et al. presented an approach for learning and recognition of composite cooking activities [21]. In order to alleviate the problem of sparsity of training data, they devised a method to augment the training data through the use of script annotations. Even though these methods perform well recognizing ADL they lack of the complex assessment of temporal relations essential for to threat recognition which is used in our proposed method. Hierarchical Hidden Markov Models (HHMM) have been used for modelling complex actions [9]. They use the principle of decomposition of the problem into successive abstraction layers, the more global action dynamics being captured by the higher layers. Later on, approaches have been presented aiming at introducing more efﬁciency by sharing common substructures [11]. Applications to recognition of complex indoor activities have been presented [12]. Among the advantages of HHMM is that both learning and recognition are done in a uniﬁed way facilitating the ﬂow of information among all the levels of the hierarchy. Nevertheless, they are not suited at modelling concurrent activities such as those involving more than one thread of actions. Another limitation is that some training data are required in order to set up the model parameters for the complex action models, whereas our method only requires training data for the simple actions which is usually easier to gather. Other layered approaches have been presented for the recognition of complex actions. Duong et al. presented a two-layered approach for recognition of ADL [34]. The bottom layer models atomic actions and the upper layer represents high-level activities composed of sequences of atomic actions. Khoshhal et al. presented a two-stage approach for human behaviour analysis around an ATM [35]. Bayesian Networks are used at the ﬁrst level to infer basic movement primitives which are fed to an HMM to recognise behaviours by evaluating sequences of basic movements. Recently, Kooij et al. presented an approach for unsupervised discovery of behaviours by jointly clustering sequences of actions [24]. They presented experiments in a surveillance setting. The



Fig. 1. A set of relevant activity zones is computed from the movement patterns of mobile objects in the training data as described in Section 4. The rule-set for the grammar is created by combining automatic learning of simple actions (HMM) and manual annotation of complex actions as detailed in Sections 5 and 6, respectively. Recognition of simple and complex actions is performed with the parsing procedure introduced in Section 7 that receives the sequences of zone crossings as input. Uncertainty in observations and multiple threads of actions are allowed by means of multi-threaded parsing.



G. Sanromà et al. / Image and Vision Computing 32 (2014) 363–378



drawbacks of layered approaches are that they usually lack a ﬂow of information allowing one to use global knowledge in the higher layer to drive recognition in the lower layer. Nater et al. presented a hierarchical approach for unsupervised behaviour learning and abnormality detection with the distinguished property of allowing for top-down inﬂuence of behaviour models towards the tracking module [36]. Actions are deﬁned as trajectories within a hierarchy of silhouettes built by agglomerative clustering on the silhouette data. One drawback of the aforementioned approaches for threat recognition is that they do not allow for manual speciﬁcation of behaviours. This is an important capability because often many properties of complex actions are known a priori. Manual speciﬁcation of ﬁnite-state machines has been successfully used for the recognition of complex actions in the surveillance setting. Several authors used hand-crafted state machines to recognise complex behaviours [26,28,29,37]. One feature of these approaches is that transitions between states are decided based on logical rather than probabilistic measurements. This is a limitation since it forces decision based on thresholds instead of allowing more robust probabilistic reasoning. Moreover, the whole model is hand-crafted not allowing to apply statistical learning for the simple actions. In a slightly different approach Mahajan et al. presented an approach to learn activity patterns with a hierarchy of ﬁnite state machines [38]. Syntactic methods are specially suited for modelling activities with hierarchical organization, which is usually the case of complex actions. Models are represented by grammars. Ivanov and Bobick [13] presented an approach to recognise complex actions by parsing simple actions with a stochastic grammar [39]. The same authors presented a parsing approach for recognition of complex events in a parking lot [15]. Extensions to stochastic grammars have been proposed to deal with attributes [16] and multi-tasked activities [17]. Recently, it has been presented an approach for the recognition of long-term behaviours based on stochastic parsing [18]. It consists on a 2-stage model for the recognition of a limited set of indoor activities. Recognition of simple actions is based on a simple k-nearest-neighbours approach that would not allow to recognise actions such as loitering. Recognition of longterm behaviours is carried out with a single-threaded stochastic parser, which does not allow the method to recognise behaviours carried out by multiple actors or involving complex temporal relations.
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3. Problem description In this section we explain the problem that we want to solve, in order to facilitate a better understanding of our work. We aim to recognise threats in a parking lot belonging to one of the following categories: • Stop for a meal shows normal behaviour of a truck driver going to the service area for a meal and going back to the truck • Stop for a meal with check shows the same as the previous one but the truck driver performs routinary checks for the integrity of the vehicle. • In Something is wrong, the behaviour of the truck driver reveals that something is wrong, yet no evidence of threatening behaviour is observed. • Potentially criminal behaviour shows threatening activity as e.g., an attempt to break into the truck or to intercept the truck driver. • Criminal behaviour shows explicit threats such as an attack Fig. 2 shows an overview of the parking lot. There are some ﬁxed elements in the scene which are: the truck, the truck parking area, the car parking area, the smoking area and the service area (depicted zones are only indicative for the reader). These threats are examples of complex actions that can only be assessed looking at the whole clip. There are subtle threats, e.g., checking the truck and more explicit ones, e.g., aggression. Scenarios range from simple (one or two persons, empty scene) to complex (ﬁve persons, long trajectories). In the following we provide the description of an example clip. T3.2: A car enters the scene and stops at the car parking area. The truck driver steps out. He walks to the service area. Person P0 steps out the car and walks to the truck parking area. P0 walks around the truck and looks at it. P0 returns to his car. The truck driver returns to his truck. The car leaves. Fig. 3 shows two shots of typical actions in this scenario. All the complex actions in this dataset cover large temporal spans (see Table 2 for information about the duration of each clip). The simplest scenarios involve a single actor whereas the most complex ones may involve up to 2 or 3 actors simultaneously. Moreover, there may



Fig. 2. Overview of the parking lot showing the ﬁxed elements: the truck, the car parking area, the smoking area and the service area.
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a) person goes from car parking area to truck



We interpret activity zones as those important areas on the observed scene where mobiles interact with other mobiles or perform behavioural changes. Such behavioural changes include: stop walking to meet someone, speed up walking or simply stand waiting. Remark that this information can be extracted from the analysis of the mobile speed proﬁle. The ﬁrst task is thus to analyse the mobile speed proﬁle and obtain those speed changing points. The second task is to cluster speed changing points to build the ﬁnal activity zones. Finally we perform feature extraction by representing each track as a sequence of transitions through zones.



parking area



b) person loitering near by truck



4.1. Speed changing points extraction Let us consider the dataset X = {x(n)}, n = 1…N made up of N tracks. Each track x in this dataset is deﬁned as the set of points x(n) = {xni = (u, v) i }, i = 1 … |x (n)| where (u, v) i is the mobile position on the ground on the i-th frame. Moreover, we establish t(n) = {t(n) i } corresponding to the timestamps of each frame and track. In our application, u and v are time series vectors whose length is not equal for all objects as the time they spend in the scene is variable. The   2 2 instantaneous speed for that mobile at point (u, v)i is w ¼ u˙ þv˙ . The 1 2



Fig. 3. Two shots of typical actions. Green rectangles track the subjects of the actions. (For interpretation of the references to colour in this ﬁgure legend, the reader is referred to the web version of this article.)



eventually appear actors not involved in the main action of the clip. Therefore, in order to deal with this dataset, we require methods capable of recognizing actions with large temporal extents, involving multiple actors and which are robust to spurious observations. We adopt a grammar-based approach to tackle with this problem. Consider for example the threat Potential thief checks truck after truck driver has gone to service area (PTcheckTafterTDgotoSA). We decompose this complex activity with the simpler ones Potential thief checks truck (PTcheckT) and Truck driver goes to service area (TDgotoSA). In the form of a grammar rule this would be: PTcheckTafterTDgotoSA→TDgotoSAfprecedesgPTcheckT½pr



ð1Þ



where the left-hand side shows the symbol representing the threat and the right-hand side the composite sequence of simpler actions along with the temporal relations. At the end of the rule, between square brackets, we denote its prior probability. Symbols in the right-hand side can be in turn further decomposed. For example, PTcheckT can be decomposed in Person goes to truck (PgotoT) and Person loiters nearby truck (PloitersnearT). Similarly, TDgotoSA can be decomposed in truck driver steps out from truck (TDstepoutT), truck driver goes from truck to service area (TDfromTtoSA) and truck driver enters service area (TDenterSA). PTcheckT→PgotoTfmeetsgPloitersnearT½pr TDgotoSA→TDstepoutTfmeetsgTDfromTtoSAfmeetsgTDenterSA½pr ð2Þ Further decomposing the activities might introduce too much perception bias with the risk of not ﬁtting the actual observation processes. That is why we leverage on statistical learning to derive rules of the lower levels. 4. Feature extraction We achieve complex activity recognition by ﬁrst learning activity zones where mobiles evolve in the scene. In a second step, the simple action is characterised as a pattern of visited activity zones modelled through a Hidden Markov Model.



objective is then to detect those points of changing speed allowing to detect those important areas of the scene where behavioural interactions or changes occur. The mobile object time series speed vector, w(t), is analysed in the sð Þ frame  s  of a multi-resolution analysis with a smoothing function, ρ2 t ¼ ρ 2 t , to be dilated at different scales s. We have employed in our Application a Haar wavelet, which is one of the most widespread in the literature. Without any dilation (s = 0). The Haar wavelet is deﬁned as:  ρðt Þ ¼



1 0



0⩽tb1 otherwise



In this frame, the approximation A of w(t) by ρ is such that As − 1(w) = ∫ w(t)ρ(2s − 1(t − b))dt is a broader approximation of Asw; where b is a translation parameter spanning the time domain of w(t). By analyzing the time series w at different resolutions, it is possible to smooth out small details at coarse resolutions; but track points associated with important speed changes are seen as sharp discontinuities present at several successive scales. We select those points where the discontinuities remain at the different analysed scales. 4.2. Zone computation Activity zones are thus computed having as input the track speed changing points calculated as explained in last section. These points are ﬁrst clustered by a fast partitioning algorithm such as the wellknown Leader algorithm [40], allowing us to quickly create an initial set of zones Zn. In a second step the partition is corrected leading to the ﬁnal activity zones. To correct the initial partition, different relationships between initial zones Zn are taken into account. Such relationships are set in a Soft Computing framework. We employ then fuzzy operators to combine these relationships. 4.2.1. Computing initial activity zones For the ﬁrst step, we employ thus the clustering Leader algorithm. It has the advantage to work on-line without needing to specify the number of clusters in advance. In this method, it is assumed that a threshold T is given. The algorithm constructs a partition of the input space (deﬁning a set of clusters) and a leading representative for each cluster, so that every point in a cluster is within a distance T of the leading representative. The ﬁrst point is assigned to a cluster. Then the next point is assigned to an existing cluster or deﬁnes a new cluster depending on
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the distance between the point and the cluster leading representative. The process is repeated until all input points are assigned to clusters. In our application, when a point is designed as cluster leader (or leading representative), L, the cluster inﬂuential zone, Zn, is deﬁned by a radial basis function (RBF) centred at the position L; and the belongingness of a new point p(u,v) to that zone is given by: Z n ðL; pÞ ¼ ϕðL; pÞ ¼ exp −



2 kp−Lk 2 T



! ð3Þ



The RBF function has a maximum of 1 when its input is p = L and thus acts as a similarity detector with decreasing values outputted whenever p strides away from L. An object element will be included into a cluster Zn if Zn (L, p) ≥ 0.5; the cluster receptive ﬁeld (hypersphere) is controlled by the learnt parameter T. We have set this parameter to the value T = 1.26 using the method suggested by [41], which we describe in the following section for completeness.



R5ij : zone Z ni and zone Z n j have about the same mobile interaction time. The mobile interaction time is the mean time a mobile spends in that zone. All relations can be aggregated employing a soft computing aggregation operator R ¼ R1 ∩R2 ∩R3 ∩R4 ∩R5



E¼



N 1X E N j¼1 j



ð4Þ



where     E j ¼ ϕ L; p j −ϕ M; p j



ð5Þ



An iterative gradient-descent method is employed to adjust T and minimise the error. T ðt þ 1Þ ¼ T ðt Þ−η



δEðt Þ δT



ð6Þ



The threshold T is originally set to a large value (inducing a large partition error) and diminishes until convergence. 4.2.3. Reﬁning activity zones We ﬁnd the ﬁnal activity areas by merging similar initial zones Zn. We look to establish fuzzy similarity relations between these different zones. On the end, new zones are given by the fulﬁlment of different relations. The ﬁrst relation indicates if zone Z ni overlaps zone Z n j . This relation is deﬁned as follows: R1ij : Zone Z ni overlaps Zone Z n j 3



2 R1ij ¼



3 6 X 6 6 4 k¼1



X  



 7 7 Z n j L j ; pðu; vÞ 7 5



ð7Þ



ð8Þ



In our application we employ a typical bounded product T-norm operator. Eq. (8) thus translates as: R ¼ maxð0; R1 þ R2 þ R3 þ R4 þ R5 −4Þ



ð9Þ



R is made transitive with: h    i RT ¼ max min R Z ni ; Z nk ; R Z nk ; Z n j k



4.2.2. Tuning zone width parameter (T) For a set of N points whose partition is known, an error function is established to calculate the divergence between the clustering induced partition and the ‘true’ partition. For a point pj let L be the leader associated to this point in the calculated clustering structure; and M be the leader associated to the same point in the ‘true’ partition. The error function is deﬁned as:
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ð10Þ



RT then indicates the strength of the similarity between Z ni and Z n j . If we deﬁne a discrimination level α in the closed interval [0,1], an α − cut can be deﬁned such that     RT Z ni ; Z n j ¼ 1⇔RT Z ni ; Z n j ⩾α



ð11Þ



From the classiﬁcation point of view, RαT induces a new partition with a new set of clusters {ωj} such that cluster ωj is made of all initial zones Z n j which up to the alpha level fulﬁl the relations set above and can thus be merged to form a ﬁnal activity zone. Practically, the central point in ωj clusters is calculated, and the ﬁnal zones correspond to the Voronoi tessellations on those points (see Fig. 4). 4.3. Feature extraction From each track x(r) we extract the set of zone crossings as the features of that track. Speciﬁcally, features for track x(r) are the set of zones crossed by the track along with the entering and exiting times. This is, Z



ðr Þ



¼



nh



0



1



zt ; τ t ; τ t



io ; t ¼ 1…T;



ð12Þ



where zt = ωj is the zone crossed by track r at time t, and τ0t and τ1t are the entering time and the exiting time, respectively. When an object is moving along the boundary of a zone many spurious zone-crossings may be triggered in short time. In order to cut irrelevant information and speed-up the processing, we ﬁlter out zone crossings below a certain time threshold ρ. Therefore, the ﬁnal list of zone crossings is deﬁned as, Z



ðr Þ



¼



nh



0



1



zt ; τ t ; τ t



o io nh i 0 1  1 0 − zt ; τt ; τ t τt −τ t ≤ρ



ð13Þ



pðu;vÞ∈ Z n



i



That is, points (u, v) belonging to Z ni centred at Li are tested to verify the overlap/similarity with Z n j . Similar relations that we have introduced are the following R2ij : zoneZ ni and zone Z n j are destination zones for mobiles departing from any same activity zone Z nk R3ij : zone Z ni and zone Z n j are origin zones for mobiles arriving to the same activity zone Z nk R4ij : zone Z ni and zone Z n j have about the same number of detected mobiles stopping at the zone



The use of the entering and exiting times will not be explicit until we deal with temporal relations in the parsing section. Meanwhile, in order to train the simple and complex action models, we focus on the sequences of zone crossings for each track z(r) = z1…zT. Note that, during training of simple actions our method uses the information of which portion of track is responsible for each simple action (as discussed in next section). However, during testing our method can recognise simple and complex actions using unsegmented tracks as input. That is, one track may cover multiple simple actions (subsegmentation) or one simple action may be covered by multiple tracks (over-segmentation due to track breaks).
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a



b



Person goes from truck to service area



c



Person goes car park area to truck park area



30



30



30



20



20



20



10



10



10



0



0



0



−10



−10



−10



−20



−20



−20



−30 −30



−30 −30



−20



−10



0



10



20



30



−20



−10



0



10



20



30



−30 −30



Person loiters nearby truck park area



−20



−10



0



10



20



30



Fig. 4. Blue lines denote Voronoi tessellations deﬁning the zones. Red dots denote training samples from following simple actions: (a) person goes from truck parking area to service area, (b) person goes from car parking area to truck parking area and (c) person loiters nearby truck parking area. (For interpretation of the references to colour in this ﬁgure legend, the reader is referred to the web version of this article.)



5. Statistical learning of simple action models



5.1. Initialization



Simple actions are single-threaded activities showing certain invariability in the feature observations. Actions shown in the right-hand side of rule (Eq. (2)) ﬁt into this deﬁnition. Fig. 4 shows examples from three simple actions in our dataset. We use Hidden Markov Models (HMM) [42] in order to model such simple actions using sequences of crossed zones as feature observations. We are interested in learning the parameters Ψm, m = 1…M that best explain each of the simple actions, where M is the number of simple actions. Consider the training set for the m-th simple action Z(m), which ðr;iÞ is composed by all the portions e z of tracks performing that action (we use the pair (r, i) to denote the i-th portion of the r-th track, considering a portion as a contiguous subsequence of the track). We seek the parameters that maximize the following likelihood:



Parameter learning in HMM is an iterative procedure which requires initial estimates of the parameters B, A and π. While the ﬁnal result has shown not to be affected by the initialization of A and π this is not the case for the parameter B [42]. Our motivation is that states have a geometrical interpretation so that they are related to speciﬁc regions in the scene. In order to assign the states a geometric interpretation we compute initial emission probabilities B according to spatial clustering of action data. This is, consider the collection points involved in the m-th action



X



⋆



Ψm ¼ arg max Ψm



 ðr;iÞ ðmÞ ðr;iÞ e z ∈Z P e z jΨm Þ



ð14Þ



This is usually done with the Expectation–Maximization algorithm. In HMM, the system is assumed to be in a certain discrete state qt = Sa, a = 1…Q at each time t. Each state Sa is able to generate observations (in our case, zone-crossings) according to some the emission probabilities    Ba zt ¼ ω j ¼ P zt ¼ ω j jqt ¼ Sa Þ:



ð15Þ



The system behaves as a ﬁnite-state machine as it changes the state at each time step according to the transition probabilities  Aa;b ¼ P qtþ1 ¼ Sb jqt ¼ Sa Þ:



ð16Þ



The probability of starting at each state is denoted by πa ¼ P ðq1 ¼ Sa Þ:



ð17Þ



The parameters of an HMM are thus, Ψm = {B, A, π}. There are three important issues involved in the learning the parameters of our simple action models. • Initialization of the parameters so that the states have a geometric interpretation. • Selection of the appropriate number of states, i.e., model selection. • Ending probabilities We deal with these issues in the next Sections.



X



ðmÞ



r  r ¼ xi t start ≤t i ≤t end ; r ¼ 1…N m



ð18Þ



where Nm is the number of training tracks of the m-th action and trstart, trend are the starting and ending times of the m-th action within the r-th track. Such collection of points is spatially partitioned into Q clusters X ðm;aÞ, a = 1…Q using k-means, each cluster corresponding to a state of the HMM. Selection of the number of clusters will be addressed in the next subsection. Initial emission probabilities B(0) a (zt = ωj) input to the model learning algorithm are deﬁned as the number of points of the a-th cluster falling within zone ωj. This is, ð0Þ Ba



    ðm;aÞ     I j X zt ¼ ω j ¼ X   ðm;aÞ   I j′ X



ð19Þ



j′



where Ij(.) denotes the set of points within zone ωj and |. | denotes the number of points in the set. The rationale behind Eq. (19) is to associate state Sa with observations nearby cluster X ðm;aÞ . 5.2. Model selection Selecting an appropriate number of states Q for an HMM is an important issue. An HMM with too few states may lead to too simple models that do not ﬁt the actual observation process. On the other hand, an HMM with too many states may overﬁt the data thus lacking generalization ability. Approaches such as the Bayesian Information Criterion are used to balance both extrema by favouring good ﬁts whereas complex models are penalized. We have opted for the simpler approach of choosing the minimum number of states so that the model ﬁts the data in a certain proportion. Even though this method does not provide a principled justiﬁcation for the chosen number of states, it provides the ﬂexibility of adjusting the complexity of the model with a single parameter. We select a maximum number of states large enough to overﬁt any of our models. In our case we set this value to Qmax = 25. We compute
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the ML parameters Ψkm according Eq. (14) for all the action models m = 1…M and all the state-set sizes Q = 1…Qmax. We denote such likelihood values as pQ m. For the m-th action model, we select the number Q of states such that Q −1



pm



Q



Q



≤λpmmax ≤pm



ð20Þ



where 0 ≤ λ ≤ 1 is a threshold indicating the proportion of ﬁt of the model to the data. 5.3. Ending probabilities Standard deﬁnition of HMM allow only for initial probabilities. This means that given a valid sequence, any of its sub-sequences starting at a feasible initial state may obtain a high likelihood regardless its end. In our case this means that an instance of the simple action Person goes from A to B will be considered as highly likely as long as it starts in A and develops correctly towards B, regardless it ﬁnally ends in B or not. In order to avoid this problem we explicitly compute the ending probabilities, which can be denoted as



θa ¼



  R P q ¼S X Ti a i



R



XR



α T ðaÞβT ðaÞ ¼ X XiR i  ′ i  ′  α a βT ′ a a′ i′ T ′ i
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where Ti refers to the last observation of the i-th training sample, R are the total number of training samples, and αt(.), βt(.) are the forward and backward variables at time t estimated during the learning procedure with the EM algorithm [42]. Therefore, we will also include the probability of a sequence ending at a certain state into our model of simple actions detections. In this way, our method effectively avoids considering partial observations as highly likely detections. 6. Syntactic models for recognition of complex actions Syntactic approaches have been used for recognizing complex actions [13,15–18,31]. One of their appealing features is their ability to represent highly structured behaviours that otherwise would be difﬁcult to model with statistical approaches. Behaviours are represented following a hierarchical organization in the form of grammar rules. This allows one to easily represent increasingly complex structures by re-utilizing components. In production rules there are two types of symbols: terminals and non-terminals. Terminals are atomic observations that cannot be further decomposed. Non-terminals can be decomposed into sequences of terminals and non-terminals. Consider the following rules: S→AB A→aAja B→bBjb



ð22Þ



where non-terminals and terminals are in uppercase and lowercase, respectively. S is the starting symbol corresponding to the ﬁrst production which can be substituted by the sequence AB. Non-terminals A, B are responsibles of generating sequences of a, b respectively. A pipe (|) is used to deﬁne multiple productions associated to the same non-terminal. It is easy to see that this grammar constitutes a model for the generation of sequences of a's followed by sequences of b's. The speciﬁcation of models for complex actions follows the same idea: terminals are primitive observations and non-terminals are intermediate constructions representing activities in a range of complexity. All valid activities are generable from the starting symbol S. Extensions have been proposed to this simple case better adapted to deal with complex scenarios sensed from visual inputs. Stochastic grammars [39,13] allow for probabilities both in the production rules and the terminal observations. Zhang et al. [31] relax the sequentiality
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constraint allowing for complex temporal relations such as meet, overlap, during, after … Consider an input sequence of feature observations z1,…,zn and the conditional probabilities P ¼ fpðzjaÞ; pðzjbÞg that the observations have been given by the terminals. Consider the following grammar G deﬁning the generation of either sequences of a's overlapping with b's or sequences of a's during b's: S→AfoverlapsgB½0:5jAfduringgB½0:5 A→afmeetsgA½0:75A½0:75ja½0:25 B→bfmeetsgB½0:75jb½0:25



ð23Þ



where the prior probability of each rule is denoted in square brackets. Stochastic grammars deﬁne a probability measure P ðzjG; P Þ of a sequence of observations z = z1,…zn given the grammar G and the conditional observation probabilities P. The procedure to compute this probability is known as parsing and will be detailed in Section 7. 6.1. Simple action rules Most syntactic approaches adopt a bottom-up approach to the recognition of high level activities. At the bottom, simple actions are detected by some standalone method and next such detections are fed up to the syntactic parser which recognises the complex actions [13,31]. The novelty of our work is that we propose a method that uniﬁes the two levels. Our approach uses zone crossings as primitive observations for the uniﬁed recognition of both simple and complex actions. Therefore, recognition of simple and complex actions is performed in the same parsing procedure. This allows for an effective top-down inﬂuence of the expectations of the complex actions regarding the detection of simple actions. Our uniﬁed approach requires that simple action models from Section 5 (i.e., HMMs) are represented in the form of grammar rules to be integrated in the same parsing procedure. The starting symbol corresponding to the m-th simple action is denoted as S ðmÞ . Each state S(m) a in the HMM can be reached from the starting symbol with probability as denoted in Eq. (17). This can be represented by the following π(m) a grammar rule: S



ðmÞ
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The behaviour of an HMM consists of a sequence of observation emission and state transitions. At each time step, an emission zt and a transition to a different (or the same) state is produced. This is represented by the following rule: ðmÞ



ðmÞ



ðmÞ



Sa →ba fmgS1



h



i h i ðmÞ ðmÞ ðmÞ ðmÞ Aa1 j…jba fmgSn Aan



ð25Þ



where {m} indicates the meet relation, A(m) ab are the transition probabiliis a terminal that is related to the obties introduced in Eq. (16) and b(m) a (m) servations by the likelihood P(zt|b(m) a ) = Ba (zt) introduced in Eq. (15). Therefore, each observation zt in the sequence is considered to be a terwith probability B(m) minal b(m) a a (zt), for all simple actions (m) and states (a). In order to avoid unnecessary overhead we discard unlikely observations ðmÞ



Ba ðzt Þbϵ



ð26Þ



where ϵ is a parameter subject to optimization in the experiments section. The completion of a simple action S ðmÞ (i.e., its detection) can only be accomplished by the activation of a terminal rule (i.e., a rule without non-terminals). We take into account the ending probabilities of a simple action by adding a terminal rule at each state allowing one to trigger
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its detection according to the probability of that state being an ending state (i.e., the probability that the simple action ends in a speciﬁc region). This can be denoted as,  h i  ðmÞ ðmÞ ðmÞ Sa →…ba θa



ð27Þ



where θ(m) are the ending probabilities of Eq. (21). In this way, we explica itly take into account the probability of a simple action ending at each of its states. This is equivalent to say that a highly likely detection needs not only to start and to develop according to the model, but also to end accordingly. Conventional HMMs only consider where the sequence of observations starts and how it develops, but not where it ends.



Table 1 Rules for two types of scenarios. Non-terminal S denotes the starting symbol of the grammar. Non-terminals in capital letters denote the complex scenarios that we want to recognise. Underlined symbols correspond to starting symbols of simple actions (i.e., S(m)). We use the shortcuts m, p, o for the meet, precede and overlap temporal relations. Prior probabilities for the complex activity rules have been omitted since they have been set to equal values. The following abbreviations have been used: TD for truck driver, T for truck, SA for service area, PT for potential thief, X for undetermined person, CP for car parking area, TP for truck parking area and C for car.



6.2. Complex activity rules The coupling of simple and complex action layers into a uniﬁed approach is performed by using the simple actions symbols developed in the previous section to construct the complex action rules, as described in the following. The starting symbol of a simple action S(m) encodes a valid instance of the m-th simple action. Arbitrarily complex representations can be reached by re-using existing symbols to form new symbols. Several approaches have been presented to learn grammar rules from a corpus of data. In [43] the authors use a bi-clustering algorithm to iteratively identify pairs of symbols co-occurring in the training corpus. Each identiﬁed pair is associated to a new rule and the training set is reduced by replacing the appearances of that pair for the new rule. In [44] the authors learn rules for event detection from video. They use the minimum description length (MDL) principle in order to iteratively reduce the length of the training data by ﬁnding primitive co-occurrences and replacing them by rules. Similarly in [45], the authors used the MDL principle to infer the rules from primitive series of events. The method was used in a visual surveillance application. Zhang et al. [31] also use the MDL approach to infer the rules of a context-free grammar. These approaches require that the training set is composed only by the activities that we want to model. However in some real situations, such as the recognition of threats in a parking lot, activities of interest often happen in parallel to other unrelated activities. Using the above methods for rule induction would lead to undesired learning of correlations between unrelated activities. In order to overcome this limitation, authors in [46] introduce deictic supervision consisting on providing, along with the training data, a spatial and temporal bounding of the activities of interest. In the proposed approach, we have opted for manual speciﬁcation of the rules of complex actions because manual speciﬁcation of complex actions has been previously used by other authors in the surveillance setting [15,26,16,27–30]. Table 1 shows a snippet of the rules used in the experiments for illustrative purposes (the complete set is shown in the appendix in Table 3). We illustrate two types of scenarios, namely, stop for a meal with check and potentially criminal behaviour described below and speciﬁed in Table 1. 6.2.1. Stop for a meal with check This scenario encodes the routine behaviour of stopping for a meal plus a check before entering the truck. It is composed of two parts. In the ﬁrst part the truck driver goes from the truck to the service area (TDfromTtoSA). This action is composed mainly by three sub-actions, namely, exiting the truck, going from truck parking area to service area and entering the service area. Alternatively, truck driver loitering around the truck may either be observed before going to the service area, or not. The second part (TDfromSAtoT_2) consists of the truck driver returning to the truck plus a check consisting of either loitering or walking around the truck before entering it. Additional constraints are expressed in the form of temporal relations allowed between the observations. For



example, the precede relation (denoted by {p}) indicates that there must be a delay between TDfromTtoSA and TDfromSAtoT_2. Actions related by the meet relation (denoted by {m}) must be observed without significant delay between them. 6.2.2. Potentially criminal behaviour The second scenario in the table encodes the suspicious action of someone checking of the truck while the truck driver is in the service area. The ﬁrst part consists of routine behaviour of the truck driver stopping for a meal. In the second part, someone from the car parking area approaches the truck and loiters and / or walks around it. These two parts may be either temporally overlapped or there may be a delay between them as indicated by the temporal relations overlap and precede ({o,p}). Actions like someone loiters nearby Truck Parking area (XloiterTP) are either considered harmless when they are related to the truck driver in e.g., rule Truck Driver from Truck to Service Area (TDfromTtoSA) or they can be part of potentially criminal behaviours when they are related to a car driver in e.g., someone from Car Parking area checks Truck (XfromCPcheckT). It is interesting to note how increasingly complex behaviours are built by a recursive combination of simpler ones. The proposed method for the recognition of complex actions is purely based on positional information. Identities of the persons involved in the complex actions are determined based on the expectations of the complex activity layer. For example, the truck driver is considered to be a person that steps off the truck and its identity can be subsequently propagated to someone going from Truck Parking area to Service Area (XfromTPtoSA) and someone entering Service Area (XenterSA) in the case they satisfy the temporal constraints of the higher-level rule Truck Driver from Truck to Service Area (TDfromTtoSA). In the case of having speciﬁc detectors for the truck driver (e.g., through face recognition or recognition by the clothing), we could improve the recognition by substituting either (or both) rules XfromTPtoSA and XenterSA by TDfromTPtoSA and TDenterSA. Which rules would incorporate explicit identiﬁcation
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mechanisms would depend on the location of the detectors (nearby the truck or at the service area entrance).



7.2. Scanning During scanning we update the states which expect any of the genas next symbol. This is, erated terminals b(m) a



7. Multi-threaded parsing Given a sequence of primitive observations, the parsing procedure allows to compute the most likely set of rule activations leading to the observations. Zhang et al. [31] proposed a parsing method allowing to deal with multiple threads of actions related by complex temporal relations such as precede, overlap, etc. Consider a sequence of primitive observations (in our case, zonecrossings). The sequence is ordered by ending times and each observation is associated with an ID according to this ordering. Multi-threaded parsing uses relaxed ID sets, thus allowing states to contain noncontiguous ID-sets as opposed to stochastic parsing that requires consecutive IDs [13,39]. With such relaxed ID-sets the primitives corresponding to parallel complex events can be represented by the same state. Fig. 5 shows an example of the advantage of multi-thread parsing. A set of states is maintained by the parsing procedure. Each state encodes the observed portion of a rule and is denoted as I : X→λ  Yμ ½v



ð28Þ



where I is the ID set that indicates the IDs of the primitives currently consumed by the state, the dot indicates the already observed part of the state, λ is the string of symbols already observed, Y is the next expected symbol, μ is the unobserved string and v is the Viterbi probability indicating the maximum possible derivation of the state. Initially all the rules are converted to states with the dot at the initial position. Parsing iterates by processing the sequence of ordered primitives [zt, τ0t , τ1t ] (Eq. (38)), one at each time step t. At each iteration we perform the following operations: terminal generation, scanning, completion and prediction.







For a given zone-crossing zt we generate the set of terminals b(m) a related to the simple actions m intersecting with that zone-crossing. This is, ðmÞ



ðmÞ
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ðmÞ
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I : Sa →  ba μ ½1 ⇒I′ : SðmÞ →bðmÞ  μ ½P ðz jbÞ a a t t : zt ½P ðzt jbÞ



ð30Þ



where I is the null set (since the state has not consumed any primitive yet), I′ = {t} and t is the ID of the primitive in the input stream. In the case of our grammar μ can either be empty (Eq. (27)) or μ = S(m) i (Eq. (25)). Initially, states with no observation have a Viterbi probability of 1. 7.3. Completion When a state is fully observed (the dot is at the end) we say the state is completed. During completion we propagate the completed state up to the higher levels by updating those states that expect it as the next symbol (similarly as it is done in scanning). For each completed state I : Y → λ ⋅ [v], we seek the state X fulﬁlling the following conditions. • Y is the next unobserved symbol of X (the symbol next to the dot). • I ∩ I′ = ∅, the ID set of the completed state I does not share any primitive with the ID set of X, I′. • The temporal relation between Y and the observed sub-events of X are consistent with the rule deﬁnition. Temporal relations are checked with a similar fuzzy method than [47]. This method is governed by a parameter κ controlling the allowed temporal overlap between the observations. In case these conditions hold, X can be assumed as I′ : X → ω ⋅ Yμ[v′] and the following state is created: (



7.1. Terminal generation



ba
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h i h i ′ ′ ″ ″ I : X→ω  Yμ v ⇒I : X→ωY  μ v I : Y→λ  ½v



ð31Þ



where I″ = I′ ∪ I and v″ = v′v. New completed states may be created as result of this operation. We repeat this process until all newly created completed states have been processed. Consider as an example the completed state



ð29Þ I : TDfromTtoSA→λ  ½v



ð32Þ



as noted in Eq. (26). resulting from the observation of the simple action truck driver goes from truck to service area. Note that I is the null set since this state has not consumed any observation yet. During completion, higher-level states expecting this simple action as next observation such as ′



I : stopformeal→  TDfromTtoSA



a



Fig. 5. Top: rule-set for the pattern of sequences of 2 a's during sequences of 3 b's. Bottom: one example of observations meeting this structure. In the correct parsing, the ID set for rule A would be (2, 4) and the ID set for rule B would be (1, 3, 5).



ð33Þ



will be updated producing the new state ′



b



TDfromSAtoT½1;



I∪I : stopformeal→TDfromTtoSA  TDfromSAtoT½v



ð34Þ



Original (non-updated) state is also kept in the state-set. This is because due to the relaxed ID-set, we need to contemplate the possibility that new observations still to arrive may match the current state with higher probability. Using this approach a simple action is considered to be detected each time a simple action non-terminal is completed.
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7.4. Prediction During prediction we remove the set of completed states from the pool of active states for the next iteration and keep them apart for further checking at the end of parsing. At the end of parsing, we check all the completed root states If : S → λ ⋅ [vf]. We classify the clip as the category of the state with the highest Viterbi probability. According to our grammar, the symbol λ corresponds to one of the 5 categories (Table 3). In the case there are not completed root states, the clip is classiﬁed as the null category (i.e., it does not follow the rules of the grammar). Because of the relaxed ID-set some symbols may be left out of the ﬁnal derivation. In order to favour derivations containing as much observations as possible, we apply a penalty according to the left-outs. For each completed starting symbol If : S → λ ⋅ [vf], we modify the ﬁnal Viterbi probability as follows: v ¼ vf ∏ σ



ð35Þ



i∉I f



where σ is a small probability value penalizing each observation not included in the ﬁnal derivation. 7.5. Constraints 7.5.1. Maximum-beam width constraint Because of the relaxed ID set and the fuzzy temporal relations many redundant hypothesis can be generated for the same input stream. In order to avoid this overhead, authors in [31] introduce the maximum beam-width constraint. They consider as isomorphic those states sharing the same rule, same dot position but with different ID set. Between two isomorphic states the one with more consumed primitives and higher Viterbi probability is preferred. Considering {S1,…,Sn} an isomorphic state-set, a state Si is ranked according to the following measure,   



 n   r ðSi Þ ¼ vðSi Þ þ σ  ∪ IS j j−I Si  j¼1



ð36Þ



where v(Si) is the Viterbi probability of state Si, σ is the penalty of insertion error presented in previous section, | ∪ ni = 1| denotes the number of primitives consumed by the union of all ID sets of the isomorphic states, and |Si| denotes the number of primitives consumed by state Si. The beam-width constraint selects the top ω states in the isomorphic state set and discards the rest. Authors in [31] ﬁnd the value ω = 3 a suitable one which we have adopted in the present work too. 7.5.2. Track continuity constraint Considering each zone-crossing independently leads to a combinatoric growth in the number of parsing states at the level of simple actions. This is due to the fuzzy temporal relations that usually allow to connect many non-consecutive observations making sense in terms of simple action models. The maximum beam-width constraint partially limits this growth but it does not explicitly address this issue. We leverage track continuity information in order to limit the number of states and therefore avoid the computational burden. The track continuity constraint is applied at the completion step and imposes further conditions to the update of a state additionally to the ones already deﬁned in Section 7.3. A new primitive belonging to a certain track a is accepted into a parsing state when either of the following conditions is fulﬁlled: • the previous observed primitive is from the same track a, or • the track of the previous primitive is already ﬁnished (i.e., track discontinuity). As result, only consecutive observations from a track are considered if there is tracking information. This constraint is only applied at the simple action level and therefore does not prevent the recognition of



multi-threaded complex actions. In the case of track breaks due to occlusion or errors, this constraint has no effect and the algorithm considers all the sensible connections of zone-crossings and temporal relations in terms of simple action models. This constraint is formalized as follows: 8 h i < I′ : SðmÞ →bðmÞ  SðmÞ v′ h i ″ ðmÞ ðmÞ ðmÞ ″ i i j ⇒I : Si →bi S j  v ðmÞ : I : S →λ  ½v



ð37Þ



j



subject to either • b(m) and the ﬁrst observed primitive of λ are consecutive observations i from the same track, or is the last observation from a track • b(m) i 8. Experiments We perform threat recognition experiments on a dataset recorded for EU project ARENA. The ARENA project aims to detect threats to mobile assets from multiple affordable sensors. This dataset is focussed at the detection of threats in a parking lot and contains 26 clips with acted scenarios corresponding to ﬁve categories ranging from normal criminal behaviour. There are a total of 26 clips that are classiﬁed into the 5 categories: Stop for a meal, Stop for a meal with check, Something is wrong, Potentially criminal behaviour and Criminal behaviour. Table 2 shows the groundtruth category of each clip along with their durations. Figs. 2 and 3 show an overview of the parking lot and two shots of typical actions, respectively. In Section 3 we provide the description of an example clip. 8.1. Input Our method processes the sequence of zone-crossings in the same order as they are observed. This means that observations from multiple tracks appearing simultaneously are processed in an interleaved way. We also keep the information about the track identity of the track performing each zone crossing. This information is used by the track continuity constraint to limit the number of rule activations and thus, avoid unnecessary computational burden, as explained in Section 7.5.2. Note that our method can naturally deal with track over-segmentation (i.e., track breaks) at the cost of a higher number of computations because the track continuity constraint cannot be used. In Section 8.7 we evaluate the performance of our method in such case. Track under-segmentation does not represent a problem because simple actions can be triggered by our method at any point of an existing track. Mathematically, the sequence of observations processed by our method can be deﬁned as Z¼
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ð38Þ



where zt is the crossed zone, (τ0t , τ1t ) are, respectively, the entering and exiting times to the zone (ordered ascendingly in time), and r is the track id (to be used by the track continuity constraint). 8.2. Setup In order to classify each clip into one of the 5 categories we deﬁne the grammar of the behaviour in a parking lot shown in the Appendix A. These rules have been deﬁned based on the expert knowledge about the complex actions. According to the organization of our grammar (see Appendix A), classiﬁcation of each clip into one of the categories is done according to the starting rule recovered by the parser (i.e., the one of the form S → …). Since recognition is based on trajectories, an aggressive act like ﬁght is modelled as a potential thief and the truck driver loitering at the same time nearby the truck. For training of simple actions we use the leave-one-out strategy, thus, we discard all the data from the
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Table 2 Scenario classiﬁcation according to ground truth and durations for each clip. There are a total of 26 clips. The average duration of the clips is 197 s. Stop for meal



Stop for meal with check



Something wrong



Potentially criminal



Criminal



T1.1 (100 s) T1.2 (141 s) T3.1 (287 s) G1 (150 s)
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T4.2A (140 T4.2B (166 G6 (175 B1 (140 B2 (166 M2 (120 Dark (183



testing clip in order to train the models. We have used manually annotated bounding boxes as tracking input to our method. This is mainly for two reasons: One is to limit the effects of track discontinuities on the computational time. The other is to allow fair comparison with the competing method which needs simple actions to be contained within continuous tracks, otherwise they could not be detected (more details about the competing method in the next subsection). 8.3. Comparison to prior work As competing method we use an adaptation of the two-stage approach in [13] in order to deal with complex temporal relations. This adaptation consists of substituting the sequential parsing originally proposed by the authors by the multi-threaded parsing of [31] also used in our method. The competing method performs simple and complex action detection in two separate steps. In the ﬁrst stage, simple actions are detected using regular HMM inference (we use the same HMM models as described in Section 5). Detected actions are fed into the parser which, in the second stage, classiﬁes the input into one of the scenarios. We use the same complex actions rules as in our method. In their work [13], authors also used manual speciﬁcation of the grammar rules. According to [13] simple action detections are evaluated using a sliding window along each track and select the local maxima as detection candidates [13]. 8.4. Parameters We use the same parameters for both methods unless otherwise noted. Zone ﬁltering parameter ρ (Eq. (13)) is experimentally set to 0.3 s. Margin for the temporal relations in our method is set to κ = 3 s (refer to [47] for more details). In the competing method this parameter



a



# Hits (out of26)



has been subject to optimization. For the model selection threshold λ (Eq. (20)) we have tried various values and have kept the one with best results. We have done likewise for the emission cutoff parameter ϵ (Eq. (26)) in the case of our method (we have not found necessary to use an emission cutoff for the competing method). As pointed out in Fig. 6 we have found that the best performing parameters for our method are ϵ = 10− 12, λ = 0.5 and for the competing method: λ = 0.5 and κ = 9 s. The large temporal margin found when optimizing the competing method suggests that simple action detection based on local maxima of HMM results in a poor localization and the complex action layer needs a larger margin in order to link the simple actions into the complex action rules. The main reason is that local optimal detections for the simple action models are not necessarily the more suitable in terms of complex actions. 8.5. Results for complex actions For a more detailed assessment of the results, in Fig. 7 we show the confusion matrices corresponding to the best conﬁgurations. The last column “null” allocates the clips not recognised as any of the scenarios by the parser. Our method obtains an increase in accuracy of around 33% with respect to the competing one. All the clips except two are correctly classiﬁed by our method. The two failures are due to the lack of training data of the simple actions involving the smoking area. There are so few examples of these simple actions (2 or 3 from each) that even using the leave-one-out scheme it is not possible to detect the left-out samples. Comparative results show a signiﬁcant improvement of the proposed method with respect to the competing one. An interesting case is seen in categories stop for a meal and stop for a meal with check, in order to distinguish them, it is necessary to notice the subtle difference of truck driver loitering before entering the truck or not. Loiter is a quite



b



# Hits (out of26)



25



Number of hits



Number of hits



25



20



15



20 15 10 5



10



0 5



15 1e−14 1e−12 1e−10 1e−8 1e−6 1e−4 1e−2



Emission Cutoff



0.7 0.6 0.5 0.4 0.3 0.2 0.1



Model Select. Threshold



s) s) s) s) s) s) s)



13



11



9



7



5



3



Margin (seconds)



Fig. 6. Performance of each method for different values of the parameters.
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(a) Ours (thispaper)



8.6. Results for simple actions In order to give a more detailed assessment in Fig. 8 we show the detection accuracy for individual simple actions by both methods. Accuracy is measured with the F1-score with the precision and recall of the detections F1 ¼



precision  recall precision þ recall



ð39Þ



Precision represents the detection accuracy by the delivered events normalized by the delivered events, whereas recall represents the same accuracy but normalized by the ground truth events. We measure the detection accuracy by the Dice Ratio of their intervals deﬁned by the starting and ending times. Given two intervals A and B their Dice Ratio is computed as Q¼



(b) Competing ([13] + multi-threaded parsing)



Fig. 7. Confusion matrices.



challenging action to detect based on object trajectories. It has ambiguous initial and ending points and therefore is triggered many times when someone is in the truck parking area. In the case of stop for a meal, trimming too short the action truck driver goes from service are to truck causes phantom loitering actions to be detected before the truck driver enters the truck thus misleading the classiﬁcation of the scenario in the case of the competing method. On the other hand, our method is able to correctly segment the actions in the scenario stop for a meal. Our method correctly detects the loiter actions when they occur in the category stop for a meal with check. The competing method reports the same failures as our method regarding clips involving the smoking area. Moreover, it assigns 3 clips to the null category meaning that the actions detected do not match any of the speciﬁed scenarios. The proposed method spends an average of ~30 min. to process each clip. Computational time is the main burden of the proposed method compared to the competing one which processes each clip in the order of seconds.1



1 We have produced a non-optimized Matlab implementation of the parser in order to detect both simple and complex actions. The competing method uses the HMM toolbox in http://www.cs.ubc.ca/murphyk/Software/HMM/hmm.html in order to detect simple actions.



2  A∩B A∪B



ð40Þ



For each simple action we measure precision by accumulating the best dice ratios between each detection and all ground truth candidates. The recall is computed in the inverse way, this is, we accumulate the best dice ratios between each ground truth action and all detected candidates. This agrees with the intuition that optimistic detections covering large intervals will have high precision and low recall, and viceversa. Our method outperforms the competing one in detection accuracy of individual actions. It obtains an improvement of 33% in recognition accuracy in the present dataset. This is also the case for the loitering action, as noticed earlier. The least represented simple actions in the training set are those involving the smoking area, which are the ones affected by total failures in some cases. In general, the easiest actions to detect based on object trajectories are those involving large displacements across the scene. This is because they have a well-deﬁned sequence of transitions between initial and ending areas which moreover are far apart from each other thus helping to reduce ambiguity. Fig. 9 shows some example detections of our method in a scenario of the type stop for a meal with check. We can appreciate that the trace of bounding boxes of each detection corresponds fairly well to the underlying simple actions. 8.7. Results with synthetic noise In order to evaluate the robustness of our method to tracking errors we have synthetically added two types of noise, namely, track breaks and ghost tracks. Track breaks consist in dividing a single track into portions at multiple breaking points. Each one of the portions will be considered as a different track. This type of noise simulates failure of the tracking module in correctly following an object along its trajectory. This can be caused by lost detections (i.e., false negatives). Ghost tracks added to each clip are randomly chosen from the rest of the clips. This type of noise simulate either false positive detections of the tracking module due to imaging artefacts or the presence of spurious objects unrelated with the main activity to be recognised. Ghost tracks are already present in those original clips displaying people not involved in the main action. By adding this type of noise we want to evaluate, under controlled conditions, the robustness of our method systematically against the two most common tracking errors in practice. In the track break experiments we have added breaking points at random locations of each track. We consider that each track can be broken independently at each frame with a certain probability p according to a uniform distribution. We choose the values of p ranging from p = 0 (no breaks) to p = 0.05 (one break every 20 frames, in average). Since we are using a frame-rate of ~7 frames per second, a value of p = 0.05
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Fig. 8. Accuracy of individual simple action detections by our method (Uniﬁed) and the competing approach (2-stage). The following acronyms have been used: CD (car driver), C (car), TD (truck driver), T (truck), SA (service area), X (undetermined person), TP (truck parking area), CP (car parking area) and SM (smoking area).
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e) Truck Driver enters Truck



Fig. 9. Some examples of simple actions detected by our method.
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represents one break at, approximately, every 3 s. Our method uses the track identity information to reduce the number of candidate productions by means of the track continuity constraint. Track breaks will augment the number of hypothesis to be considered and therefore, the computational time will be affected. We have not added results for the competing method since it does not implement the ability of recovering from track breaks. Fig. 10 shows the recognition accuracy of complex actions achieved by our method as well as the computational time required. Due to the randomness of the noise, each result is the average of 5 different runs for each one of the 26 clips. Results show that recognition accuracy decreases up to ~30% as we increase the track breaks until the point of approximately adding one break every 3 s. On the other hand, the required computational time increases up to ~300%. This highlights the usefulness of using tracking information in our method for reducing the number of hypothesis. It is worth mentioning that until p = 0.01 there is almost no loss in accuracy and no increase in computational time. Fig. 11 shows the recognition accuracy of both our method and the competing method in the presence of ghost tracks. We display the threat recognition results of adding from 1 to 5 ghost tracks to each clip chosen randomly from the rest of available clips. Ghost tracks are inserted at the same time points as they are shown in their original clips. Results are the average of 5 runs. Results show that our method is more robust to the presence of ghost tracks than the 2-stage competing method. Speciﬁcally, in the case of 5 ghost tracks, our method obtains an improvement of ~ 90%. The performance of our method is shown to be slightly worse for 2 than for 3 ghost tracks. These slight variations may be due to the fact that the 2-track random draws contain more harmful ghost tracks than the 3-track draws. Harmful ghost tracks are those that can potentially change the meaning of a clip such as a a person going from car park area to truck park area can change the meaning of a clip from normal behaviour to potentially criminal behaviour. Despite this slight variation, both methods show a decreasing-performance trend as the number of ghost tracks is increased. 9. Conclusions We have presented an approach for the recognition of threats in a parking lot, or more generally, for the recognition of complex actions. Our method integrates statistical learning of simple actions and manual speciﬁcation of complex actions into a single grammar. It implements a multi-threaded parsing procedure that allows the modelling and recognition of actions involving multiple objects which are related by complex temporal relations such as precede, during, overlap, … Our main
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contribution is a uniﬁed parsing mechanism allowing for effective inﬂuence of the higher layers into the recognition of primitive actions. As input to our method we use the crossings along a set of zones learned in an unsupervised way from the trajectories of detected objects in the scene. Learned zones create a partitioning of the scene in correspondence to the activities carried out on the scene (entering/exiting areas, loitering/standing areas) and are thus well suited for our action deﬁnition. Our uniﬁed approach achieves improvements in the recognition of both simple and complex actions of ~30% with respect to a two-stage approach. Optimal detections regarding the simple action layer are not necessarily optimal for the complex action layer. We argue that such division limits the inﬂuence of the higher layer towards the lower one thus leading to a loss in accuracy. This is demonstrated in the experiments in a realistic dataset where we show higher recognition rates, both of simple and complex actions, of our uniﬁed approach with respect to a similar two-stage approach. Perhaps the clearest example is the ability to distinguish the subtle differences between the scenarios stop for a meal and stop for a meal with check which only differ on the occurrence of the loiter action in the latter case. This is particularly challenging since the loiter action is quite ambiguous in terms of trajectory and therefore triggers many phantom detections when someone is nearby the truck. Experiments with synthetic noise show the robustness of our method to the dominant failures in the tracking module causing track breaks and ghost tracks. Speciﬁcally, for moderate amounts of noise the proposed method only experiences a limited decrease in performance. The improvements in our method come at the
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Fig. 11. Average recognition accuracy in the presence of ghost tracks.
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Fig. 10. Average recognition accuracy and computational time required by our method in the presence of track breaks.



G. Sanromà et al. / Image and Vision Computing 32 (2014) 363–378



expenses of higher computational costs. This is specially the case in the presence of track breaks where the track continuity constraint cannot be applied to reduce the number of candidate hypothesis. Directions of further research will explore ways of reducing computational complexity while preserving the discriminative and beneﬁcial properties of our method. Acknowledgements The present work has been carried out in the framework of the EU project ARENA (grant ref. 261658). The authors want to thank the project partners for their contributions. Any opinions expressed in this paper do not necessarily reﬂect the views of the European Community. The Community is not liable for any use that may be made of the information contained herein. Appendix A. Complete rule-Set



Table 3 Complete rule-set used in the experiments. Non-terminal S denotes the starting symbol of the grammar. Non-terminals in capital letters denote the complex scenarios that we want to recognise. Underlined symbols correspond to starting symbols of simple actions (i.e., S(m) in Section 6.1). We use the shortcuts m, p, o, d, f, s, and e to denote the temporal relations meet, precede, overlap, during, ﬁnish, start and equal, respectively. Prior probabilities for the complex activity rules have been omitted since they have been set to equal values. Aggression is detected as a potential thief and the truck driver loitering at the same time nearby truck. The following acronyms have been used: CD (car driver), C (car), TD (truck driver), T (truck), SA (service area), X (undetermined person), TP (truck parking area), CP (car parking area) and SM (smoking area).
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