Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Advances in the synthesis and application of isoindigo derivatives Andrei V. Bogdanov,* Lenar I. Musin, and Vladimir F. Mironov A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Ac. Arbuzov str. 8, Kazan 420088, Russian Federation E-mail: [email protected]

Dedicated to the memory of Professor Boris I. Buzykin late Professor of Chemistry, A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.090 Abstract Synthetic approaches towards isoindigo derivatives and their application in medicinal chemistry as well as in the chemistry of materials are reviewed. The literature data up to 2014 are covered. Keywords: Isatin, oxindole, isoindigo, photovoltaics, anti-cancer agents, low-band-gap polymers

Table of Contents 1. Introduction 2. Synthetic Pathways for Isoindigo Scaffold Creation 2.1 Isoindigo from oxindoles 2.2 Phosphorus compounds in the synthesis of isoindigo 2.3 Miscellaneous methods 3. Properties of Isoindigo Derivatives 3.1 The biological activity of isoindigos 3.2 Isoindigo in organic electronics 3.2.1 Isoindigo in organic solar cell production

Page 362

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

3.2.2 Organic field-effect transistors with isoindigo unit 4. Conclusions

1. Introduction Isoindigo along with indigo and indirubin is a representative of indigoid bis-indoles which in the last decade have attracted great attention as pharmaceuticals and as the components of functional materials. The isoindigo core was recently introduced as an acceptor unit for designing molecular and polymeric semiconductors for applications in organic electronics. Recent data show that numerous substances bearing the indolin-3-yliden-2-one motif possess strong potency in anticancer drug design1 as well as in the search of effective antimicrobial agents. As regards this aspect, the most interesting compounds are indirubin2-7 and isoindigo derivatives such as Meisoindigo and Natura which are already used in leukemia treatment8-11 (Figure1).

Figure 1. Representatives of isoindigo derivatives. The goal of this review is to describe the chemistry of isoindigo, synthetic approaches to the 3,3′-biindolinylidene framework, and their application as biologically active compounds and the chemistry of functional materials. In this review we cover the available literature data from the beginning of the 20th century to the present time.

2. Synthetic Pathways for Isoindigo Scaffold Creation The chemistry of isoindigo is inseparably connected with the fascinating synthetic potency of the nitrogen heterocycles indole, oxindole (indolin-2-one), and isatin (indoline-2,3-dione). In this

Page 363

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

regard the vast majority of approaches to 3,3′-biindolinylidene fragment creation are based on the high reactivity of the ketone carbonyl of isatin and the methylene group of oxindole. 2.1 Isoindigo from oxindoles A general approach to the synthesis of isoindigo derivatives (3) is bases by the acid-catalysed condensation of isatins (1) with oxindole (2) (Scheme 1). Generally, the reaction proceeds under reflux in an appropriate solvent for some hours in the presence of HCl/acetic acid or ptoluenesulfonic acid (Table 1).12-24

Scheme 1 Table 1. Syntheses of substituted isoindigos from isatins and oxindoles Entry 12

1 213 314 415 516,17,21 618,24 719 820 922 1023 1125-27 a

Not reported.

R/X

R′

Acid catalyst

Time (h)

Yield (%)

H/H H/H H/H H/H Bn/H H/H R = H, Me, Bn, Ph, (CH2)2Ar; X=H H/5-NO2, H/5NH2 R = Me, Bn, SEMc, X = H Ph/H 2,3,4,6-tetra-Oacetyl-β-Dglucopyranosyl/H

H H Ph Me H H

AcOH/HCl AcOH/HCl AcOH/HCl AcOH/HCl AcOH/HCl AcOH/HCl

12 8 4 a a 16

87 quantitative a a 75 a

H

AcOH/HClb

0.5

34-91

H

AcOH/PTSAb

a

61-85

b

Me, Bn, SEM Ph

HCl

a

52-87

AcOH/HCl

a

a

H

PTSA

24-48

23-61

µW, sealed vessel, 200 °C.

c

SEM = 2-(trimethylsilyl)ethoxymethyl

Page 364

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

This procedure can be extended to isatins bearing a carbohydrate substituent (4).25-27 Furthermore, use of iodo-derivatives (5) allowed to introduce of an alkyne function into the isoindigo scaffold (6) by Sonogashira coupling (Scheme 2).28 Under similar conditions, using benzofuran-2(3H)-one or benzothiophen-2(3H)-one instead of oxindole, and the pyrrolo[2,3-b]pyridine-2,3(1H)-dione (7-azaisatin) derivative 7 instead of the glycosylisatin yielded oxa- and aza-analogues (8) of isoindigo-N-glycosides (Scheme 3).29-31 H N

O R

O

I O OAc

O I

O R

N O

N H

O

OAc OAc

AcO

4

OAc

R O

CH2R'

N

PTSA, toluene O

AcO

H N

CH2R'

N

Pd(PPh3)4, CuI, Et3N, CH3CN

O

OAc

AcO

OAc OAc 5

OAc 6 OAc R = H, R' = NHCO2Bn (24%), R = Br, R' = NHCO2Bn (33%), R = H, R' = CH2OH (14%), R = Br, R' = CH2OH (41%)

R = H (61%), Br (68%)

Scheme 2 Y O

O

O O

N

X

O

7

Y O

AcOH, Ac2O, NaOAc, 90 oC, 6 h OAc X = CH, Y = O X = N, Y = NH OAc OAc

N

X

O

OAc

44% OAc 8

OAc

Scheme 3 Some synthetic pathways to isoindigo derivatives are based on oxidative C-C coupling of oxindoles. Thus, several alkyl or alkoxy-substituted isoindigo (9) have been obtained by the action of 4-nitrosodiphenylamine15 or lead dioxide32 on the corresponding alkyl- or alkoxyindolin-2-ones (2) (Scheme 4).

Page 365

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392 R N

R'

O

PbO2 O C6H6, reflux, 30 min

N R

R'

2 R = Me R' = 4-OMe, 5-OMe, 6-OMe, 7-OMe

PhNH

NO R'

R'

O N R

AcOH, reflux

O N R 50-60% 9

R = Me, Et, Ph R' = H

2

Scheme 4 The reaction of the single-electron transfer reagent sodium naphthalenide (10) with N-methyloxindole furnishes 1,1′-dimethylisoindigo in 19% yield along with the trimeric structure 11 (Scheme 5).33

O N

10

N

N

Na

O

O +

DME, 0 oC, 3 h

O N

N

O

O

N

11

Scheme 5 Recently, Bergman and Romero have described the synthesis of isoindigo and its dimethyl derivative using readily available starting compounds (oxindole and thionyl chloride).34 It was shown that the first stage of the reaction results in the formation of the corresponding α-oxosulfine (12) which further produces isoindigo in almost quantitative yield (Scheme 6). But this approach was limited and can’t be applied on SOCl2 sensitive groups such as hydroxyl, acid and amine scaffolds. R N

O S

O

SOCl2 O N R R = H, Me

O CH3CN, 30 oC, 10 min 78-95%

N R 12

CH3CN, reflux, 15 min

O N R 3

100%

2

Scheme 6

Page 366

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Shermolovich and co-workers studied an interaction of 6-chlorooxindole with N(chlorosulfenyl)succinimide (13) and found that the intermediate sulfenylimide (14) readily decomposes in pyridine in the presence of 2,3-dimethylbutadiene to form the six-membered spirocycle (15) along with 6,6′-dichloroisoindigo (Scheme 7).35 SCl O

O

Et3N, -80 oC

N H

S

N S

13

O Cl

N

O

O OH

Py, 20 oC

O N H

Cl

N H

Cl

14 H N O

S

+

O Cl

15

Cl

N H

O N H

Cl

47%

35%

Scheme 7 Recent report showed that in the presence of alkylating agent, thiophene-fused oxindole (16) can be air-oxidized to alkylated thiophene-fused isoindigo (17) in 70% yield (Scheme 8).36 C8H17 N O

K2CO3, C8H17Br

S O Cl

N H

DMF, air, rt

S S

70% Cl

16

Cl

O N C8H17 17

Scheme 8 2.2 Phosphorus compounds in the synthesis of isoindigo The first example of the use of organophosphorus compounds in the synthesis of isoindigo derivatives was described in Minami’s work.37,38 It was found that 1-methylisatin or 1methylisatoic anhydride (18) by the action of sodium diethylphosphite under harsh conditions

Page 367

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

(15 h, 140 ºC, C6H6, sealed tube) afford 1,1′-dimethylisoindigo in 37 and 79% yields respectively (Scheme 9). O O N or

N (EtO)2PONa

1 O

O

C6H6, 140 oC, 15 h

O

O N

N O

3

18

Scheme 9 Later, 1,1′-dimethylisoindigo was obtained by the reaction of 1-methylisatin with triphenylphosphine.39 The reaction pathway was assumed to proceed through the intermediate carbene. Phosphorus ylid (19) formation may be evidence for such a reaction mechanism. At the same time, Islam and coworkers found that this reaction affords the diol 20 and epoxide 21 along with the other products reported (Scheme 10).40

Scheme 10 Variously-substituted isoindigo derivatives can be obtained as the sole reaction products by changing triphenylphosphine to the more nucleophilic tris(diethylamino)phosphine.41-52 In this type of 3,3′-bis-indole fragment formation a wide range of isatin derivatives including benzothiphene- or benzofuran-fused ones53 can be used. Using this procedure the target compounds were obtained in high yields under mild reaction conditions (Scheme 11). The assumption that the reaction proceeds via carbene (22) generation was experimentally confirmed by trapping with fullerene С60 to form the corresponding methanofullerenes (23) (Scheme 12).54-57

Page 368

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Scheme 11

Scheme 12 Lawesson’s reagent (24) was also successfully used in the synthesis of symmetrically substituted isoindigo.58 The authors proposed that the thiation of isatin at position 3 takes place to form 3-thioisatin which undergoes sulfur elimination to form isoindigo (Scheme 13). MeO R O O N R

+

S P S S P S 24

N

S C6H6, reflux

O O N

- [S] O

R

N R

OMe R = H (65%), Me (70%)

Scheme 13 2.3 Miscellaneous methods Several additional procedures which give rise to isoindigo derivatives have been reported in the literature. For example, a high-yield synthesis of 1,1′-dimethylisoindigo was developed starting

Page 369

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

from 3-formyloxindole (25) using a bromination - basic decomposition sequence.59 This approach to the synthesis of isoindigo derivatives seems to be favorable but the use of the relatively inaccessible 3-formyloxindole limits its possibilities (Scheme 14).

Scheme 14 Using the high reactivity of the ketone carbonyl of isatin toward different aminocompounds, 1-methylisatin anti-β-guanylhydrazone (26) and the spirocyclic tetrazinethione (27) were obtained.60,61 It was found that on prolonged heating (8-30 hours) in acidic medium these compounds give rise to 1,1′-dimethylisoindigo (37% yield) and 6,6′-difluoroisoindigo (40% yield) respectively (Scheme 15).

Scheme 15 One approach leading to isoindigo formation is based on the decomposition of 3-diazooxindole, which proceeds under various reaction conditions.62-65 However, such methods do not afford isoindigos as the sole products. Thus, 1,1′-dimethylisoindigo can be obtained by the thermolysis of 1-methyl-3-diazooxindole (28), but the corresponding azine (29) is formed as a by-product (Scheme 16). At the same time, the desired compound was obtained in 86% yield by decomposition of isatin 3-tosylhydrazone in the presence of sodium metal.59 Other approaches to isoindigo formation can be noted here. They include, for example, the treatment of 3-aminooxindole (30) with potassium thiocyanate and the enzymatic oxidation of indole (Scheme 17).66,67

Page 370

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

N

N

N2

O

O O

+

N 28

N

N2 N

N

O N

1000 bar

O N

(CF3)2CHOH

28

O 29

Scheme 16

Scheme 17

3. Properties of Isoindigo Derivatives Since it is well known that 1-methylisoindigo possesses significant anti-cancer activity, a number of studies involve the functionalization of this heterocycle to find novel effective pharmaceutical agents. On the other hand, a presence of two lactam rings joined by double carbon-carbon bond implies high electron deficiency in the isoindigo molecule. These features have led to two main trends of the studies of these bis-indoles. 3.1 The biological activity of isoindigos 1-Methylisoindigo is the most studied isoindigo derivative and is used in the treatment of chronic myeloid leukemia (CML).68-73 The poor solubility of this compound encouraged researchers to design analogs with improved physico-chemical characteristics. Indeed, it was found that appending a basic heterocycle side chain onto the lactam nitrogen resulted in significantly better solubility than Meisoindigo while retaining good activity against leukemia K562.74 As can be seen from the data obtained, the most active are the N-methylpiperazino- and 6′-methoxy-1-(2morpholinoethyl) derivatives (Scheme 18). Assuming that the activity of an isoindigo depends on the presence of at least one lactam NH-moiety and a conjugated C=C bond, the methyl group of Meisoindigo was replaced with a phenyl, benzyl, phenethyl or phenpropyl side chain (compounds 31-34 respectively). However, these changes led to small increases in activity except for (32) (inactive against leukemic cell

Page 371

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

lines) and (34) (2–3 times more potent than Meisoindigo). Introducing substituents of different polarities and electronic effects to the phenyl ring of the phenethyl analogue (33) did not yield compounds with improved activities. A notable exception was the p-methoxy analogue (35) which was more active on the leukemic K562 cells (IC50 K562 1.4 μM) and hepatoma HuH7 cells (IC50 K562 7.5 μM) (Scheme 19).75 H N

H N

R

R

O

O HN

+

O

O X

N

Et3N, DMF, 80 oC

N

R = H, OMe N

Br

X

N

N X

N O

IC50 [ M]

N

N

S

6.81

7.91

N

N

NMe

7.70

O R = OMe

3.97

3.78

MeisoNMe indigo R = OMe 5.89

7.75

Scheme 18

O + N H

H N

H N

O O N H

AcOH, HCl

O

O

RBr

MW, 200 C

O N H

K2CO3, DMF

34-62 %

R = Ph (31), PhCH2 (32), PhCH2CH2 (33), PhCH2CH2CH2 (34), p-CH3OC6H4CH2CH2 (35)

O N R 31-35

Scheme 19 The glycosyl-substituted isoindigo (37), containing additional carboxylic group to increase water solubility, showed high anti-cancer properties.76 Moderate activity of 6-trifluoromethyl-5′chloroisoindigo77 (36), 7-aza-1-butylisoindigo78 (38) and 1-(4-methoxyphenyl)isoindigo79 (39) against different cancer cell lines (PC3, DLD-1, MCF-7, M4Beu, A549, K562) was also found; 5-nitro- and 5-amino-derivatives (40) were inactive (Scheme 20).20

Page 372

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Scheme 20 Recently, radiolabelled 1-methylisoindigo (41) was synthesized for use in positron emission tomography to obtain understanding of the physiological action of Meisoindigo (Scheme 21).80

Scheme 21

Scheme 22 The biological activity of substituted glycosyl-isoindigo derivatives against the causative agents of tropical diseases (malaria, Chagas disease, leishmaniasis and human African

Page 373

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

trypanosomiasis) was reported. Various authors have found a selective activity toward those or other pathogens. Thus, compound (42) possessed high activity against L. donovani (leishmaniasis), whereas structures (43, 44) and (45, 46) were effective against P. falciparum (malaria) and T. cruzi (trypanosomiasis) respectively (Scheme 22).81 3.2 Isoindigo in organic electronics Being a bis-heterocycle incorporating two lactams moieties connected by a double carboncarbon bond, isoindigo represents highly reactive conjugated system. Such a structure gives rise to the application of these molecules as electron-acceptor materials in organic electronics, focusing on organic photovoltaics (OPVs) and organic field effect transistors (OFETs).82-84 In these studies the high reactivity of bromine atoms in the 6- and 6′-positions of the arene moiety has been widely applied. 3.2.1 Isoindigo in organic solar cell production. In recent years, organic solar cells (OSC) have attracted much attention as one of the more promising solutions for generation of renewable clean energy.85 Reynolds’s group was the first to report the use of isoindigo in OSC.86,87 High photophysical data (short current Jsc, open-circuit voltage Voc, fill-factor FF and power conversion efficiency PCE) show that isoindigo is perspective acceptor group for photovoltaics application. Some aspects of these isoindigo properties were briefly discussed in some reviews.88-92 Synthetic applications of isoindigo are mainly based on the creation of polymeric structures. Variation of substituents both at the nitrogen atom and the side chain is directed towards improving the physical and chemical characteristics of the target compounds: solubility, UVvisible absorption, electron affinity and others. These factors, in turn, directly influence the PCE value. Reynolds et al. were the first to use Suzuki or Stille cross-coupling reactions to create polymers (47, 48) with the isoindigo subunit (Scheme 23).86,87

Scheme 23

Page 374

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

The first studies of isoindigo-based polymers (IBP) were devoted to increasing their solubility in organic solvents. It was achieved by introduction of branched alkyl substituents (2ethylhexyl, 2-hexyldecyl or 2-octyldodecyl) at a nitrogen atom. At present, the vast majority of the reports relate to the preparation of thiophene-containing polymers. In these, the structure of the monomer unit can contain from one to several thienyl,93-99 isomeric benzodifuran100 or naphthodifuran101 substituents. A general approach to the synthesis of thienyl-isoindigo copolymers (49) is presented here (Scheme 24).

Scheme 24 A solar cell composed of this polymer as electron rich donor and PC71BM as electron acceptor shows 2.0-3.0% PCE values. A low-band-gap alternating copolymer (52) consisting of di- or terthiophene and isoindigo has been synthesized via Stille cross-coupling (Scheme 25). Solar cells based on this polymer and PC71BM show a power conversion efficiency of 6.3%.94,102-104 R N

Br

C8H17

O S

Pd2dba3, P(o-tolyl)3 THF

O Br

SnMe3

N R

O

X

51 + Me Sn 3

S

SnMe3

toluene

C8H17

S

X

S

C8H17

N O R 50, X = H

R = 2-hexyldecyl Pd2dba3, P(o-tolyl)3

R N

82%

51, X = Br

C8H17

O

NBS THF R N

S S

85%

S

n C8H17

52

N R

O

Scheme 25

Page 375

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

One way to increase the PCE of the solar cells on the base of IBP involves the introduction of a benzodithiophene moiety into the polymer structure (Scheme 26).105,106 The best PCE value of solar cells made from IBP/PCBM blend was 4.22%. Catalyst variation showed that the use of Pd(PPh3)4 provides a better yield of desired polymer (53).107 R N

Br

OR'

O

S

+ O Br

Me3Sn

SnMe3

catalyst toluene

S

N R

OR'

55 - 86%

R = 2-hexyldecyl, 2-ethylhexyl R' = 2-ethylhexyl, octyl

OR'

R N

O S

catalyst = Pd2dba3/P(o-tolyl)3 or Pd2dba3/Ph3As or Pd(PPh3)4

S OR'

53

N R

O

n

Scheme 26 Very recently a series of 6,6′- and 5,5′-substituted isoindigo (54-57) bearing the benzothiophene or benzothiazole moieties as model compounds were synthesized to elucidate the effects of the electronic nature of the substituent and its position on the physical properties and solid-state organization.107 These studies show that both the placement and the electronic nature of the substituent affect on the molecular properties and corresponding device performance of solar cells containing these materials (Scheme 27). Using monobrominated derivatives allows polymers bearing the isoindigo moiety in the side chain to be prepared (Scheme 28). Thus, the isoindigo core was modified with a thiophenecarbaldehyde fragment using Stille coupling followed by Horner-Wadsworth-Emmons reaction to give corresponding monomer (58).109 Then repeated Stille polycondensation afforded the desired polymeric compound (59) in 85% yield. BHJ solar cells based on these polymers show an enhanced PCE of 5.3%.

Page 376

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392 EH N

O ArB(OH)2, Pd2(dba)3

HE N

Br

S

K3PO4, tBu3PHBF4

O

S N HE

O ArSnBu3, Pd(PPh3)4

54

EH N

O

N EH

Br

O

S

N

N

S N HE

O 55

HE N

K3PO4, tBu3PHBF4

O

S

O

ArB(OH)2, Pd2(dba)3

HE N

O

S N EH

Br

Br

56

HE N

O N EH

ArSnBu3, Pd(PPh3)4

S

O N

N O

S N EH

57

Scheme 27

R N

R N

Br

O

+ O N R

Bu3Sn

1. Pd(PPh3)4

O S

O

2. HCl, H2O

O

CH2P(O)(OEt)2 S

CHO

59%

S

Br

THF, t-BuOK, r.t.

O N R

R = 2-ethylhexyl

Br

OR R N

Br Me3Sn S

O O N R

S Br

58

S S

SnMe3

OR

85%

S

O

S

OR Pd(PPh3)4, toluene

R N

S

S OR

n

O N R

59

38%

Scheme 28

Page 377

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

The electron acceptor isoindigo was used to synthesize conjugated polymer with backbones composed exclusively of electron-deficient units (Scheme 29). Suzuki-Miyaura polycondensation afforded the homopolymer of isoindigo (60) which is thermally stable up to 380 °C, has a good solubility in organic solvents, and absorbs light over a wide range of the visible spectrum.110 R N

Br

O

O N R

Br 3

R N

O O B B O O Pd(dppf)Cl2, AcOK dioxane, 80 C

R = 2-hexyldecyl

O B O

O

3 n

Pd2dba3, P(o-tolyl) 3 O B O

O N R

R N

O

N R

toluene 74%

O 60

75%

Scheme 29 However, despite the variety of the obtained isoindigo-based polymers, it was shown that small molecule analogues may compete with them, particularly in terms of PCE. Thus, isoindigo (3) was transformed to the corresponding triarylamino derivatives (61) with retention of one bromine atom that in the next step was used in the synthesis of corresponding carbaldehydes. The last were finally converted to the target dyes (62) with α-cyanoacrylate fragment as anchoring group.111 The best PCE of 5.98% was obtained for solar cells based on these isoindigo derivatives as acceptor material in active layers (Scheme 30).

Scheme 30 A symmetrically substituted isoindigo with two electron donating groups either bonded directly to an arene fragment (63) or through a thienylene spacer (64) were synthesized and used in OSC creation. However, in both cases a PCE of these samples was less than 1% (Scheme 31).112,113 Utilization of monofunctional organotin or organoboron compounds in Stille or Suzuki reactions conditions allowed the preparation of the corresponding isoindigos (65, 66) with dithiophene groups in moderate yields (Scheme 32).114,115

Page 378

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Scheme 31 R N

O R N

B

Br

S S

O 1.75 mol

+ O N R

Br

3

C6H13

B R = 2-ethylhexyl

Pd2dba3, P(o-tol)3

C6H13

S S

S

O

C6H13

65

S

C6H13

S

S S

40% + R N

Si(i-Bu)3

0.75 mol

Si(i-Bu)3

O

N R

Et4NOH toluene

S

S S

N R

O 29%

66

Scheme 32 PCE of the solar cells based on these compounds varied in the range 1.3-2.2%. Recently, the 7-azaisoindigo (67) was for the first time utilized in the synthesis of the highly conjugated chromophore (68) the structure of which contains two 7-azaisoindigo moieties separated by a dithiophene bridge. Then these electron acceptor compounds were used in OSC creation but last performed with very low PCE values (Scheme 33).116 R

R' R'

R N

Br

Bu3Sn

S S

O

SnBu3

N R

N

O

R O

Pd(PPh3)4, toluene

N S

R'

2

O N

S

N N O

67

O

R

R'

N

reflux, 24-48 h

N

R = 2-ethylhexyl R' = H (71%), OC12H25 (87%)

R 68

Scheme 33

Page 379

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Detailed investigations of diversely substituted isoindigos revealed a strong dependence of their optical properties on the structures of substituents distanced from the heterocyclic core. A series of highly soluble N,N′-dialkylated isoindigo derivatives (69a-f) bearing different electron donating thiophene units at the 6,6′-positions were synthesized by Stille cross-coupling reactions. The optical and electrochemical properties of these dyes were studied by UV-vis spectroscopy and cyclic voltammetry, revealing a dependence of their electronic properties on the peripheral substituents, leading to strong absorption as far as the near infra-red region (Scheme 34).117 These findings can be significant in the further use of these compounds in the creation of OSC. R' EH N O

R' O

Br

O

SnBu3

S

Pd(dba)2, AsPh3 toluene, reflux

N EH

O S

3

R' 69

a

b

c

d

e

f

R' yield, %

H Me SMe OMe NMe2 N 95 41 45 31 16 16

max,

544 559 565 575 668 696

nm

S

EH N

Br

N EH 69a-f

Scheme 34 3.2.2 Organic field-effect transistors with isoindigo unit. Design strategies to improve charge carrier mobility of polythiophenes include the incorporation of electron deficient aromatic rings into the backbone. Attaching electron-withdrawing moieties lowers the HOMO level, which improves the air stability of these polymers (an important drawback of polythiophenes). It has also been reasoned that donor-acceptor interactions may help to close-pack the polymer chains, resulting in enhanced mobilities. Some aspects of the utilization of isoindigo derivatives in OFETs creation have been highlighted in some brief reviews.118-123 Mei124 and Lei125 were the first who offered IBP in this field of organic electronics. The synthesis of the target compounds (70) is also based on a sequence of Knoevenagel and Stille reactions. As reported, in the hydrosilylation reaction the central bis-indole C=C bond is not affected (Scheme 35).125

Page 380

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Scheme 35 The introduction of a siloxane fragment into the side chain of a polymer allowed increasing hole mobility, up to 2.00 cm2V-1s-1. This was attributed to a tighter packing of the polymer in thin film that improves conductivity and ambient stability. Using the highly reactive 6,6′-dibromoisoindigo in Stille couplings, a series of polymeric structures (71) with thiophene, selenophene or dithienocarbazole units were obtained (Scheme 36).126,127 R N

R N

Br

O

Me3Sn

Ar

O

SnMe3

Ar Pd2dba3, P(o-tol)3

O N R

Br

R = 2-octyldodecyl

Ar

O 71

72 - 95% Me

S

Se Se

N R

n

S

S S

S

S

S

S Me

=

S S S

S

S

S

S N C12H25

Scheme 36 The hole mobilities of these polymers exceeded 0.3 cm2V−1s−1, and the maximum reached 1.06 cm2V−1s−1. A good stability of these copolymers upon moisture authors attribute with their low-lying HOMO levels. The influence of the alkyl chain branching position on the hole mobilities of isoindigo-based polymer (72) thin-film transistors has been studied (Scheme 37).128 A sample with n = 3 showed the best hole mobility value (3.62 cm2V−1s−1).

Page 381

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Scheme 37 An isoindigo-based polymer structures with halogen atoms either in heterocyclic core129,130 or in arylene units131 also found their application in OFETs creation. A straightforward synthesis of cyanated isoindigo derivatives (73, 74) with moderate yields and significant impact of cyano groups on the electronic properties, i.e. LUMO levels, is also reported (Scheme 38).132 C8H17 N

C8H17 N

Br

O

C8H17 N

CN

O

Pd2dba3, dppf

CN

O +

O Br

N C8H17

CuCN, dioxane

O N C8H17

Br 73

36%

O N C8H17

NC 74

32%

Scheme 38

4. Conclusions A wide range of practically useful properties that are inherent to isoindigos indicate the urgency and the need for further development of effective and tolerant synthetic pathways toward this class of heterocycles. As can be seen from published data, some syntheses are either nonselective or proceed in strict conditions with very low yields. The most popular approach to the synthesis of isoindigo-based polymers utilizes only 6,6′-dibromoisoindigo whereas its 5,5′- or 7,7′-analogues seem to be more available and cheaper. Thus, despite its century of history, the chemistry of isoindigo still remains a fertile field for structural, biological and synthetic studies.

Page 382

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Acknowledgements We thank the Russian Scientific Foundation (grant No. 14-50-00014) for financial support.

References 1. 2.

3.

4.

5.

6. 7.

8. 9.

10. 11.

12. 13.

Prakash, C. R.; Raja, S. Mini-Rev. Med. Chem. 2012, 12, 98. http://dx.doi:10.2174/138955712798995039 Hoessel, R.; Leclerc, S.; Endicott, J. A.; Nobel, M. E. M.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.; Niederberger, E.; Tang, W. C.; Eisenbrand, G.; Meijer, L. Nat. Cell Biol. 1999, 1, 60. http://dx.doi:10.1038/9035 Marko, D.; Schatzle, S.; Friedel, A.; Genzlinger, A.; Zankl, H.; Meijer, L.; Eisenbrand, G. Br. J. Cancer 2001, 84, 283. http://dx.doi:10.1054/bjoc.2000.1546 Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J. A.; Snyder, G. L.; Greengard, P.; Biernat, J.; Wu,Y. Z.; Mandelkow, E.-M.; Eisenbrand, G.; Meijer, L. J. Biol. Chem. 2001, 276, 251. http://dx.doi:10.1074/jbc.M002466200 Moon, M. J.; Lee, S. K.; Lee, J. W.; Song, W. K.; Kim, S. W.; Kim, J. I.; Cho, C.; Choi, S. J.; Kim, Y. C. Bioorg. Med. Chem. 2006, 14, 237. http://dx.doi:10.1016/j.bmc.2005.08.008 Damiens, E.; Baratte, B.; Marie, D.; Eisenbrand, G.; Meijer, L. Oncogene 2001, 20, 3786. Myrianthopoulos, V.; Magiatis, P.; Ferandin, Y.; Skaltsounis, A. L.; Meijer, L.; Mikros, E. J. Med. Chem. 2007, 50, 4027. http://dx.doi:10.1021/jm070077z Xiao, Z. J.; Hao, Y. S.; Liu, B. C.; Qian, L. S. Leuk. Lymphoma 2002, 43, 1763. http://dx.doi: 10.1080/1042819021000006295 Xiao, Z. J.; Hao, Y. S. In Indirubin, the Red Shade of Indigo, Life in Progress Edition; Meijer, L.; Guyard, N.; Skaltsounis, L. A.; Eisenbrand, G. Eds.; Roscoff: France, 2006; p. 203. Xiao, Z. J.; Qian, L. S.; Liu, B. C.; Hao, Y. S. Br. J. Haematol. 2000, 111, 711. http://dx.doi: 10.1111/j.1365-2141.2000.02357.x Chen, F.; Li, L. Z.; Ma, D. X.; Yan, S. X.; Sun, J. Z.; Zhang, M. H.; Ji, C. Y.; Hou, M. Leukemia Res. 2010, 34, e75. http://dx.doi.org/10.1016/j.leukres.2009.09.001 Menozzi, C.; Dalko, P. I.; Cossy, J. Heterocycles 2007, 72, 199. http://dx.doi: 10.3987/COM-07-S(K)59 Papageorgiou, C.; Borer, X. Helv. Chim. Acta 1988, 71, 1079.

Page 383

©

ARKAT-USA, Inc.

Reviews and Accounts

14. 15. 16. 17.

18. 19.

20.

21. 22. 23. 24. 25. 26. 27.

28. 29. 30.

ARKIVOC 2015 (vi) 362-392

http://dx.doi: 10.1002/hlca.19880710521 de Diesbach, H.; Heppner, E. Helv. Chim. Acta 1949, 32, 687. http://dx.doi: 10.1002/hlca.19490320310 Stolle, R. J. Prakt. Chem. 1930, 1. http://dx.doi: 10.1002/prac.19301280101 Overman, L. E.; Peterson, E. A. Angew. Chem. Int. Ed. 2003, 42, 2525. http://dx.doi: 10.1002/anie.200351260 Lebsack, A. D.; Link, J. T.; Overman,L. E.; Stearns, B. A. J. Am. Chem. Soc. 2002, 124, 9008. http://dx.doi: 10.1021/ja0267425 Zhang, W.; Go, M.-L. Bioorg. Med. Chem. 2009, 17, 2077. http://dx.doi:10.1016/j.bmc.2008.12.052 Wee, X. K.; Yeo, W. K.; Zhang, B.; Tan, V. B. C.; Lim, K. M.; Tay, T. E.; Go, M.-L. Bioorg. Med. Chem. 2009, 17, 7562. http://dx.doi:10.1016/j.bmc.2009.09.008 Beauchard, A.; Laborie, H.; Rouillard, H.; Lozach, O.; Ferandin, Y.; Le Guével, R.; Guguen-Guillouzo, C.; Meijer, L.; Besson, T.; Thiery, V. Bioorg. Med. Chem. 2009, 17, 6257. http://dx.doi:10.1016/j.bmc.2009.07.051 Overman, L. E.; Peterson, E. A. Tetrahedron 2003, 59, 6905. http://dx.doi:10.1016/S0040-4020(03)00855-X Ellis, J. M.; Overman, L. E.; Tanner, H. R.; Wang, J. J. Org. Chem. 2008, 73, 9151. http://dx.doi:10.1021/jo801867w Stolle, R. Chem. Ber. 1914, 47, 2120. http://dx.doi: 10.1002/cber.191404702112 Teuber, H.-J.; Hohn, J. Chem. Ber. 1982, 115, 90. http://dx.doi: 10.1002/cber.19821150111 Bouchikhi, F.; Anizon, F.; Brun, R.; Moreau, P. Bioorg. Med. Chem. Lett. 2011, 21, 6319. http://dx.doi:10.1016/j.bmcl.2011.08.116 Bouchikhi, F.; Anizon, F.; Moreau, P. Eur. J. Med. Chem. 2008, 43, 755. http://dx.doi:10.1016/j.ejmech.2007.05.012 Sassatelli, M.; Saab, E.; Anizon, F.; Prudhomme, M.; Moreau, P. Tetrahedron Lett. 2004, 45, 4827. http://dx.doi:10.1016/j.tetlet.2004.04.167 Bouchikhi, F.; Anizon, F.; Moreau, P. Eur. J. Med. Chem. 2009, 44, 2705. http://dx.doi:10.1016/j.ejmech.2009.01.027 Karapetyan, G.; Chakrabarty, K.; Hein, M.; Langer, P. ChemMedChem 2011, 6, 25. http://dx.doi: 10.1002/cmdc.201000374 Libnow, S.; Hein, M.; Langer, P. Tetrahedron Lett. 2008, 49, 289. http://dx.doi:10.1016/j.tetlet.2007.11.057

Page 384

©

ARKAT-USA, Inc.

Reviews and Accounts

31.

32. 33. 34. 35. 36. 37. 38.

39. 40. 41.

42. 43.

44. 45.

46.

47.

ARKIVOC 2015 (vi) 362-392

Kunz, M.; Driller, K. M.; Hein, M.; Libnow, S.; Hohensee, I.; Ramer, R.; Hinz, B.; Berger, A.; Eberle, J.; Langer, P. ChemMedChem 2010, 5, 534. http://dx.doi: 10.1002/cmdc.200900506 Bruni, P.; Cardellini, L.; Cardillo, B.; Tosi, G. J. Heterocyclic Chem. 1982, 19, 211. http://dx.doi: 10.1002/jhet.5570190140 Banerjee, A.; Maiti, S. Indian J. Chem. B. 1994, 33, 532. Bergman, J.; Romero, I. J. Heterocyclic Chem. 2010, 47, 1215. http://dx.doi: 10.1002/jhet.453 Shermolovich, Yu. G.; Emets, S. V.; Tolmachev, A. A. Chem. Het. Comp. 2003, 39, 1076. http://dx.doi: 10.1023/B:COHC.0000003527.43940.ce Zhao, N.; Qiu, L.; Wang, X.; An, Z.; Wan, X. Tetrahedron Lett. 2014, 55, 1040. http://dx.doi:10.1016/j.tetlet.2013.12.076 Minami, T.; Matsumoto, M.; Agawa, T. J. Chem. Soc., Chem. Commun. 1976, 1053. http://dx.doi: 10.1039/C3976001053B Minami, T.; Matsuzaki, N.; Ohshiro, Y.; Agawa, T. J. Chem. Soc., Perkin Trans. 1 1980, 1731. http://dx.doi: 10.1039/P19800001731 Lathourakis, G. E.; Litinas, K. E. J. Chem. Soc., Perkin Trans. 1 1996, 491. http://dx.doi: 10.1039/P19960000491 Islam, M. R.; Khayer, K.; Akhter, A.; Duddeck, H. J. Bangladesh Chem. Soc. 2005, 18, 1. Bogdanov, A. V.; Mironov, V. F.; Musin, L. I.; Buzykin, B. I.; Konovalov, A. I. Russ. J. Gen. Chem. 2008, 78, 1977. http://dx.doi: 10.1134/S1070363208100277 Bogdanov, A. V.; Mironov, V. F.; Musin, L. I.; Musin, R. Z. Synthesis 2010, 19, 3268. http://dx.doi: 10.1055/s-0030-1258219 Bogdanov, A. V.; Mironov, V. F.; Musin, L. I.; Musin, R. Z.; Krivolapov, D. B.; Litvinov, I. A. Monatsh. Chem. 2011, 142, 81. http://dx.doi 10.1007/s00706-010-0416-z Bogdanov, A. V.; Musin, L. I.; Mironov, V. F. Russ. J. Gen. Chem. 2011, 81, 964. http://dx.doi: 10.1134/S1070363211050240 Bogdanov, A. V.; Bukharov, S. V.; Oludina, Yu. N.; Musin, L. I.; Nugumanova, G. N.; Syakaev, V. V.; Mironov, V. F. Arkivoc 2013, (iii), 424. http://dx.doi: 10.1080/00397911.2011.558232 Kleeblatt, D.; Siyo, B.; Hein, M.; Iaroshenko, V. O.; Iqbal, J.; Villinger, A.; Langer, P. Org. Biomol. Chem. 2013, 11, 886. http://dx.doi: 10.1039/c2ob25866h Bogdanov, A. V.; Mironov, V. F.; Musin, L.I.; Musin, R.Z.; Krivolapov, D. B.; Litvinov, I. A. Synth. Commun. 2012, 42, 2388. http://dx.doi: dx.doi.org/10.1080/00397911.2011.558232

Page 385

©

ARKAT-USA, Inc.

Reviews and Accounts

48.

49.

50.

51. 52.

53.

54.

55.

56.

57.

58.

59. 60. 61.

ARKIVOC 2015 (vi) 362-392

Bogdanov, A. V.; Pashirova, T. N.; Musin, L.I.; Krivolapov, D. B.; Zakharova, L. Ya.; Mironov, V. F.; Konovalov, A.I. ChemPhysLett. 2014, 594, 69. http://dx.doi: dx.doi.org/10.1016/j.cplett.2014.01.026 Musin, L.I.; Bogdanov, A. V.; Krivolapov, D. B.; Dobrynin, A. B.; Litvinov, I. A.; Mironov, V. F. Russ. J. Org. Chem. 2014, 50, 822. http://dx.doi: 10.1134/S1070428014060116 Musin, L.I.; Bogdanov, A. V.; Il’in, A. V.; Mironov, V. F. J. Heterocyclic Chem. 2014, 51, 1027. http://dx.doi: 10.1002/jhet.2011 Bogdanov, A. V.; Mironov, V. F.; Sinyashin, O. G. Russ. J. Org. Chem. 2014, 50, 906. http://dx.doi: 10.1134/S107042801406027X Romanova, I. P.; Yusupova, G. G.; Latypov, Sh. K.; Strelnik, A. G.; Rizvanov, I. Kh.; Bogdanov, A. V.; Mironov, V. F.; Sinyashin, O. G. Monatsh. Chem. 2015, 146, 365. http://dx.doi: 10.1007/s00706-014-1356-9 Xu, Sh.; Ai, N.; Zheng, J.; Zhao, N.; Lan, Zh.; Wen, L.; Wang, X.; Pei, J.; Wan, X. RSC Adv. 2015, 5, 8340. http://dx.doi: 10.1039/c4ra14072a Romanova, I. P.; Bogdanov, A. V.; Mironov, V. F.; Shaikhutdinova, G. R.; Larionova, O. A.; Latypov, Sh. K.; Balandina, A. A.; Yakhvarov, D. G.; Gubaidullin, A. T.; Saifina, A. F.; Sinyashin, O. G. J. Org. Chem. 2011, 76, 2548. http://dx.doi:10.1021/jo102332e Valitov, M. I.; Romanova, I. P.; Gromchenko, A. A.; Shaikhutdinova, G. R.; Yakhvarov, D. G.; Bruevich, V. V.; Dyakov, V. A.; Sinyashin, O. G. Paraschuk, D. Yu. Solar Energy Materials Solar Cells 2012, 103, 48. http://dx.doi: dx.doi.org/10.1016/j.solmat.2012.04.013 Bogdanov, A. V.; Yusupova, G. G.; Romanova, I. P.; Latypov, Sh. K.; Krivolapov, D. B.; Mironov, V. F.; Sinyashin, O. G. Synthesis 2013, 45, 668. http://dx.doi: 10.1055/s-0032-1316844 Romanova, I. P.; Bogdanov, A. V.; Izdelieva, I. A.; Trukhanov, V. A.; Shaikhutdinova, G. R.; Yakhvarov, D. G.; Latypov, Sh. K.; Mironov, V. F.; Dyakov, V. A.; Golovnin, I. V.; Paraschuk, D. Yu.; Sinyashin, O. G. Beilstein J. Org. Chem. 2014, 10, 1121. http://dx.doi:10.3762/bjoc.10.111 El-Kateb, A. A.; Hennawy, I. T.; Shabana, R.; Osman, F. H. Phosphorus Sulfur 1984, 20, 329. http://dx.doi: 10.1080/03086648408077642 Elderfield, R. C.; Rembges, H. H. J. Org. Chem. 1967, 32, 3908. http://dx.doi:10.1021/jo01287a018 King, H.; Wright, J. J. Chem. Soc. 1948, 2314. http://dx.doi:10.1039/JR9480002314 Joshi, K. C.; Jain, R.; Dandia, A.; Sharma, V. J. Heterocyclic Chem. 1986, 23, 97.

Page 386

©

ARKAT-USA, Inc.

Reviews and Accounts

62. 63. 64.

65. 66. 67. 68. 69. 70.

71. 72. 73. 74. 75.

76.

77. 78.

79.

ARKIVOC 2015 (vi) 362-392

http://dx.doi: 10.1002/jhet.5570230120 Schönberg, A.; Junghans, K. Chem. Ber. 1963, 96, 3328. http://dx.doi: 10.1002/cber.19630961234 Voigt, E.; Meier, H. Chem. Ber. 1975, 108, 3326. http://dx.doi: 10.1002/cber.19751081025 Grieve, D. M. A.; Lewis, G. E.; Ravenscroft, M. D.; Skrabal, P.; Sonoda, T.; Szele, I.; Zollinger, H. Helv. Chim. Acta. 1985, 68, 1427. http://dx.doi: 10.1002/hlca.19850680534 Moriconi, E. J.; Murray, J. J. J. Org. Chem. 1964, 29, 3577. http://dx.doi:10.1021/jo01035a033 Velezheva, V. S.; Tomchin, A. B.; Mel'man, A. I.; Marysheva, V. V. Russ. J. Org. Chem. 1998, 34, 570. Rui, L.; Reardon, K. F.; Wood, T. K. Appl. Microbiol. Biotechnol. 2005, 66, 422. http://dx.doi: 10.1007/s00253-004-1698-z Bouchikhi, F.; Anizon, F.; Moreau, P. Eur. J. Med. Chem. 2009, 44, 2705. http://dx.doi:10.1016/j.ejmech.2009.01.027 Tang, W.; Hemm, I.; Bertram, B. Planta Med. 2003, 69, 97. http://dx.doi: 10.1055/s-2003-37718 Lee, C.-C.; Lin, C.-P.; Lee, Y.-L.; Wang, G.-C.; Cheng, Y.-C.; Liu, H. E. Leukemia Lymphoma 2010, 51, 897. http://dx.doi:10.3109/10428191003672115 Xiao, Z.; Wang, Y.; Lu, L.; Li, Z.; Peng, Z.; Han, Z.; Hao, Y. Leukemia Res. 2006, 30, 54. http://dx.doi:10.1016/j.leukres.2005.05.012 Wang, L.; Liu, X.; Chen, R. U.S. Patent 6 566 341, 2003. Ji, X. J.; Liu, X. M.; Li, K.; Chen, R. H.; Wang, L. G. Biomed. Environ. Sci. 1991, 4, 332. Wee, X. K.; Yang, T.; Go, M. L. ChemMedChem 2012, 7, 777. http://dx.doi: 10.1002/cmdc.201200018 Wee, X. K.; Yeo, W. K.; Zhang, B.; Tan, V. B. C.; Lim, K. M.; Tay, T. E.; Go, M.-L. Bioorg. Med. Chem. 2009, 17, 7562. http://dx.doi: 10.1016/j.bmc.2009.09.008 Sassatelli, M.; Bouchikhi, F.; Messaoudi, S.; Anizon, F.; Debiton, E.; Barthomeuf, C.; Prudhomme, M.; Moreau, P. Eur. J. Med. Chem. 2006, 41, 88. http://dx.doi: 10.1016/j.ejmech.2005.10.004 Zhang, W.; Go, M.-L. Bioorg. Med. Chem. 2009, 17, 2077. http://dx.doi:10.1016/j.bmc.2008.12.052 Xu, J.-J.; Dai, X.-M.; Liu, H.-L.; Guo, W.-J.; Gao, J.; Wang, Ch.-H.; Li, W.-B.; Yao, Q.-Z. J. Appl. Toxicol. 2011, 31, 164. http://dx.doi 10.1002/jat.1577 Zhao, P.; Li, Y.; Gao, G.; Wang, Sh.; Yan, Y.; Zhan, X.; Liu, Z.; Mao, Zh.; Chen, Sh.; Wang, L. Eur. J. Med. Chem. 2014, 86, 165.

Page 387

©

ARKAT-USA, Inc.

Reviews and Accounts

80. 81. 82. 83.

84.

85. 86. 87. 88. 89. 90. 91. 92.

93.

94.

95. 96.

ARKIVOC 2015 (vi) 362-392

http://dx.doi: dx.doi.org/10.1016/j.ejmech.2014.08.049 Zhang, J. M.; Zhang, X. J.; Xu, Z. H.; Tian, J. H. Chinese Chem. Lett. 2012, 23, 205. http://dx.doi:10.1016/j.cclet.2011.10.014 Bouchikhi, F.; Anizon, F.; Brun, R.; Moreau, P. Bioorg. Med. Chem. Lett. 2011, 21, 6319. http://dx.doi:10.1016/j.bmcl.2011.08.116 Głowacki, E. D.; Voss, G.; Sariciftci, N. S. Adv. Mater. 2013, 25, 6783. http://dx.doi: 10.1002/adma.201302652 Popere, B. C.; Della Pelle, A. M.; Poe, A.; Thayumanavan, S. Phys. Chem. Chem. Phys. 2012, 14, 4043. http://dx.doi: 10.1039/c2cp23422j Robb, M. J.; Ku, S.-Y.; Brunetti, F. G..; Hawker, C. J. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1263. http://dx.doi: 10.1002/pola.26531 Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533. http://dx.doi: 10.1021/cm049654n Stalder, R.; Mei, J.; Reynolds, J. R. Macromolecules 2010, 43, 8348. http://dx.doi: 10.1021/ma1018445 Stalder, R.; Mei, J.; Graham, K. R.; Reynolds, J. R. Org.Lett. 2010, 12, 660. http://dx.doi: 10.1021/ol902512x Walker, B.; Kim, C.; Nguyen, T.-Q. Chem. Mater. 2011, 23, 470. http://dx.doi:10.1021/cm102189g Mishra, A.; Bäuerle, P. Angew. Chem. Int. Ed. 2012, 51, 2020. http://dx.doi: 10.1002/anie.201102326 Mayukh, M.; Jung, I. H.; He, F.; Yu, L. J. Polym. Sci. Part B: Polym. Phys. 2012, 50, 1057. http://dx.doi: 10.1002/polb.23102 Uy, R. L.; Price, S. C.; You, W. Macromol. Rapid Commun. 2012, 33, 1162. http://dx.doi: 10.1002/marc.201200129 Estrada, L. A.; Stalder, R.; Abboud, K. A.; Risko, C.; Brédas, J.-L.; Reynolds, J. R. Macromolecules 2013, 46, 8832. http://dx.doi:10.1021/ma4013829 Wang, E.; Ma, Z.; Zhang, Z.; Henriksson, P.; Inganas, O.; Zhang, F.; Andersson, M. R. Chem. Commun. 2011, 47, 4908. http://dx.doi: 10.1039/c1cc11053e Wan, M.; Zhu, H.; Deng, H.; Jin, L.; Guo, J.; Huang, Y. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3477. http://dx.doi: 10.1002/pola.26746 Zhang, G.; Fu, Y.; Xie, Z.; Zhang, Q. Macromolecules 2011, 44, 1414. http://dx.doi:10.1021/ma102357b Allard, N.; Najari, A.; Pouliot, J.-R.; Pron, A.; Grenier, F.; Leclerc, M. Polym. Chem. 2012, 3, 2875.

Page 388

©

ARKAT-USA, Inc.

Reviews and Accounts

97.

98.

99. 100. 101.

102.

103.

104.

105.

106.

107. 108.

109.

110.

ARKIVOC 2015 (vi) 362-392

http://dx.doi: 10.1039/c2py20422c Zhuang, W.; Bolognesi, M.; Seri, M.; Henriksson, P.; Gedefaw, D.; Kroon, R.; Jarvid, M.; Lundin, A.; Wang, E.; Muccini, M.; Andersson, M. R. Macromolecules 2013, 46, 8488. http://dx.doi:10.1021/ma401691r Elsawy, W.; Lee, C.-L.; Cho, S.; Oh, S.-H.; Moon, S.-H.; Elbarbary, A.; Lee, J.-S. Phys. Chem. Chem. Phys. 2013, 15, 15193. http://dx.doi: 10.1039/c3cp52151f Ren, Y.; Hailey, A. K.; Hiszpanski, A. M.; Loo, Y.-L. Chem. Mater. 2014, 26, 6570. http://dx.doi: 10.1021/cm503312c Hu, C.; Fu, Y.; Li, S.; Xie, Z.; Zhang, Q. Polym. Chem. 2012, 3, 2949. http://dx.doi: 10.1039/c2py20504a Li, Sh.; Yuan, J.; Deng, P.; Ma, W.; Zhang, Q. Solar Energy Materials Solar Cells 2013, 118, 22. http://dx.doi:10.1016/j.solmat.2013.07.049 Wang, E.; Ma, Z.; Zhang, Z.; Vandewal, K.; Henriksson, P.; Inganäs, O.; Zhang, F.; Andersson, M. R. J. Am. Chem. Soc. 2011, 133, 14244. http://dx.doi:10.1021/ja206610u Xu, X.; Cai, P.; Lu, Y.; Choon, N. S.; Chen, J.; Hu, X.; Ong, B. S. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 424. http://dx.doi: 10.1002/pola.26400 Cao, K.; Wu, Z.; Li, S.; Sun, B.; Zhang, G.; Zhang, Q. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 94. http://dx.doi: 10.1002/pola.26275 Ma, Z.; Wang, E.; Jarvid, M. E.; Henriksson, P.; Inganäs, O.; Zhang, F.; Andersson, M. R. J. Mater. Chem. 2012, 22, 2306. http://dx.doi: 10.1039/c1jm14940g Liu, B.; Zou, Y.; Peng, B.; Zhao, B.; Huang, K.; He, Y.; Pan, C. Polym. Chem. 2011, 2, 1156. http://dx.doi: 10.1039/c0py00401d Wu, F.; Yang, H.; Lib, Ch. M.; Qin, J. Polym. Adv. Technol.2013, 24, 945. http://dx.doi: 10.1002/pat.3169 Ren, Y.; Hiszpanski, A. M.; Whittaker-Brooks, L.; Loo, Y.-L. ACS Appl. Mater. Interfaces 2014, 6, 14533. http://dx.doi: dx.doi.org/10.1021/am503812f Wang, C.; Zhao, B.; Cao, Z.; Shen, P.; Tan, Z.; Li, X.; Tan, S. Chem. Commun. 2013, 49, 3857. http://dx.doi: 10.1039/c3cc40620b Stalder, R.; Mei, J.; Subbiah, J.; Grand, C.; Estrada, L. A.; So, F.; Reynolds, J. R. Macromolecules 2011, 44, 6303. http://dx.doi:10.1021/ma2012706

Page 389

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

111. Ying, W.; Guo, F.; Li, J.; Zhang, Q.; Wu, W.; Tian, H.; Hua, J. ACS Appl. Mater. Interfaces 2012, 4, 4215. http://dx.doi:10.1021/am300925e 112. Yang, M.; Chen, X.; Zou, Y.; Pan, C.; Liu, B.; Zhong, H. J. Mater. Sci. 2013, 48, 1014. http://dx.doi: 10.1007/s10853-012-6831-2 113. Liu, Q.; Du, Z.; Chen, W.; Sun, L.; Chen, Y.; Sun, M.; Yang, R. Synthetic Metals 2013, 178, 38. http://dx.doi:10.1016/j.synthmet.2013.06.024 114. Graham, K. R.; Stalder, R.; Wieruszewski, P. M.; Patel, D. G.; Salazar, D. H.; Reynolds, J. R. ACS Appl. Mater. Interfaces 2013, 5, 63. http://dx.doi:10.1021/am301944g 115. Wang, T.; Chen, Ya.; Bao, X.; Du, Zh.; Guo, J.; Wang, N.; Sun, M.; Yang, R. Dyes Pigments 2013, 98, 11. http://dx.doi:10.1016/j.dyepig.2013.02.003 116. Randell, N. M.; Douglas, A. F.; Kelly, T. L. J. Mater. Chem. A 2014, 2, 1085. http://dx.doi: 10.1039/c3ta14263a 117. Bialas, D.; Suraru, S.-L.; Schmidt, R.; Würthner, F. Org. Biomol. Chem. 2011, 9, 6127. http://dx.doi: 10.1039/c1ob05508a 118. Ruiz, C.; García-Frutos, E. M.; Hennrich, G.; Gómez-Lor, B. J. Phys. Chem. Lett. 2012, 3, 1428. http://dx.doi:10.1021/jz300251u 119. Biniek, L.; Schroeder, B. C.; Nielsen, C. B.; McCulloch, I. J. Mater. Chem. 2012, 22, 14803. http://dx.doi: 10.1039/c2jm31943h 120. Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. J. Am. Chem. Soc. 2013, 135, 6724. http://dx.doi:10.1021/ja400881n 121. Lei, T.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2014, 136, 594. http://dx.doi: 10.1021/cm4018776 122. Stalder, R.; Mei, J.; Graham, K. R.; Estrada, L. A.; Reynolds, J. R. Chem. Mater. 2014, 26, 664. http://dx.doi:10.1021/cm402219v 123. Lei, T.; Wang, J.-Y; Pei, J. Acc. Chem. Res. 2014, 47, 1117. http://dx.doi:10.1021/ar400254 124. Lei, T.; Cao, Y.; Fan, Y.; Liu, C.-J.; Yuan, S.-C.; Pei, J. J. Am. Chem. Soc. 2011, 133, 6099. http://dx.doi:10.1021/ja111066r 125. Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao Z. J. Am. Chem. Soc. 2011, 133, 20130. http://dx.doi:10.1021/ja209328m 126. Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.; Bian, J.; Pei, J. Chem. Mater. 2012, 24, 1762.

Page 390

©

ARKAT-USA, Inc.

Reviews and Accounts

127.

128. 129.

130. 131. 132.

ARKIVOC 2015 (vi) 362-392

http://dx.doi:10.1021/cm300117x Deng, Y.; Chen, Y.; Zhang, X.; Tian, H.; Bao, C.; Yan, D.; Geng, Y.; Wang, F. Macromolecules 2012, 45, 8621. http://dx.doi:10.1021/ma301864f Lei, T.; Dou, J.-H.; Pei, J. Adv. Mater. 2012, 24, 6457. http://dx.doi: 10.1002/adma.201202689 Lei, T.; Dou, J.-H.; Ma, Z.-J.; Yao, C.-H.; Liu, C.-J.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2012, 134, 20025. http://dx.doi:10.1021/ja310283f Lei, T.; Dou, J.-H.; Ma, Z.-J.; Liu, C.-J.; Wang, J.-Y.; Pei, J. Chem. Sci. 2013, 4, 2447. http://dx.doi: 10.1039/c3sc50245g Sonar, P.; Tan, H.-S.; Sun, S.; Lam, Y. M.; Dodabalapur, A. Polym. Chem. 2013, 4, 1983. http://dx.doi: 10.1039/c2py20942j Yue, W.; He, T.; Stolte, M.; Gsänger, M.; Würthner, F. Chem. Commun. 2014, 50, 545. http://dx.doi: 10.1039/c3cc48037b

Authors’ Biographies

Andrei Vladimirovich Bogdanov was born in 1980. He graduated from Kazan State University, Kazan, Russia in 2002. After studying for 3 years as graduate student in A. E. Arbuzov Institute of Organic and Physical Chemistry, he obtained his PhD in 2005. Since 2008 he has been a senior researcher of the laboratory of phosphorus-containing analogues of natural compounds of the A. E. Arbuzov Institute of Organic and Physical Chemistry. His scientific interests are in the fields of organophosphorus chemistry, the chemistry of indigoid compounds, and in organic solar cell creation. He is author or coauthor of 50 papers and has received several awards for scientific achievements.

Page 391

©

ARKAT-USA, Inc.

Reviews and Accounts

ARKIVOC 2015 (vi) 362-392

Lenar Inarikovich Musin graduated from Kazan State Technological University, Kazan, Russia in 2011. He received his PhD in 2014 at A. E. Arbuzov Institute of Organic and Physical Chemistry under the supervision of Prof. Vladimir F. Mironov, in the field of organoelement chemistry. As a 2nd year student he began his scientific work in Prof. Vladimir F. Mironov’s laboratory where he is now a junior researcher. His interests are focused on deoxygenation reactions, nitrogen heterocycles and their potential as anti-cancer or antimicrobial agents.

Vladimir Fedorovich Mironov was born in 1957. He graduated from V. I. Ul’yanov-Lenin Kazan State University (KSU), Kazan, Russia in 1979. He received his PhD in 1983 at KSU under the supervision of Prof. Irina V. Konovalova, in the field of organoelement chemistry; he became professor of chemistry there in 1995. Since that time he has worked at the A.E.Arbuzov Institute of Organic and Physical Chemistry. In 2008 he was elected a corresponding member of the Russian Academy of Sciences. Now he is head of the laboratory of phosphorus-containing analogues of natural compounds in A.E.Arbuzov Institute of Organic and Physical Chemistry. His research interests are in the fields of organophosphorus chemistry, organofluorine chemistry, heterocyclic chemistry and the chemistry of natural compounds.

Page 392

©

ARKAT-USA, Inc.

Advances in the synthesis and application of isoindigo ... - Arkivoc

O. Scheme 5. Recently, Bergman and Romero have described the synthesis of isoindigo and its dimethyl derivative using readily available starting compounds ...

504KB Sizes 1 Downloads 280 Views

Recommend Documents

Advances in the synthesis and application of isoindigo ... - Arkivoc
3.2.1 Isoindigo in organic solar cell production ..... of renewable clean energy.85 Reynolds's group was the first to report the use of isoindigo in OSC.86,87 High.

Advances in synthesis of monocyclic β-lactams - Arkivoc
Reviews and Accounts. ARKIVOC 2014 (i) 337-385. Page 360. ©ARKAT-USA, Inc. HC. N. R1. R2. O. R3. CuOTf.Tol (10 mol%). 142 (12 mol%). Cy2NH (1 equiv) ...

Advances in synthesis of monocyclic β-lactams - Arkivoc
Hachiya, I.; Yoshitomi, T.; Yamaguchi, Y.; Shimizu, M. Org. Lett. 2009,11, 3266. http://dx.doi.org/10.1021/ol901192y. 96. Vaske, Y. S. M.; Mahoney, M. E.; Konopelski, J. P.; Rogow, D. L.; McDonald, W. J. J. Am. Chem. Soc. 2010, 132, 11379. http://dx.

Advances in synthesis of monocyclic β-lactams - Arkivoc
But the ketene with strong electron-donating substituent such as ...... Venkateshwarlu, J.; Ramakanth, P.; Meshram, J. S.; Chopde, H. N.; Malladi, L. J. Heterocycl.

Application of aluminum triiodide in organic synthesis - Arkivoc
http://dx.doi.org/10.1016/j.tetlet.2014.10.039. 147. Shimizu, M.; Toyoda, T.; Baba, T. Synlett 2005, 2516-2518. http://dx.doi.org/10.1055/s-2005-872679. 148. Haszeldine, R. N. J. Chem. Soc. 1952, 3490-3498. http://dx.doi.org/10.1039/JR9520003490. 149

Application of aluminum triiodide in organic synthesis - Arkivoc
chromium(III) chloride and AlCl3were applied in preparation of acetophenones .... Mahajan, A. R.; Dutta, D. K.; Boruah, R. C.; Sandhu, J. S. Tetrahedron Lett.

Application of aluminum triiodide in organic synthesis - Arkivoc
Page 446. ©ARKAT-USA, Inc. Application of aluminum triiodide in organic synthesis. Juan Tian and Dayong Sang*. Jingchu University of Technology, Jingmen, ...

Site-specific synthesis and application of Deuterium-Labeled ... - Arkivoc
Dec 27, 2016 - Chemistry, Fried, J.; Edwards, J. A., Eds. Van Nostrand Reinhold Company: New York, 1972; Vol. 1, pp. 572. 145–221. 573. 8. Shinkyo, R.; Xu ...

Site-specific synthesis and application of Deuterium-Labeled ... - Arkivoc
Dec 27, 2016 - 1974, 22, 2656-2661. 617 http://dx.doi.org/10.1248/cpb.22.2656. 618. 29. Seo, S.; Yoshimura, Y.; Satoh, T.; Uomori, A.; Takeda, K. i., J. Chem.

Synthesis of substituted ... - Arkivoc
Aug 23, 2016 - (m, 4H, CH2OP), 1.39 (t, J 7.0 Hz, 6H, CH3CH2O); 13C NMR (176 MHz, CDCl3) δ 166.5 (s, C-Ar), ... www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of - Arkivoc
Taiwan. E-mail: [email protected] ...... www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge. CB2 1EZ, UK; fax: ...

Synthesis of substituted ... - Arkivoc
Aug 23, 2016 - S. R. 1. 2. Figure 1. Structures of 4H-pyrimido[2,1-b][1,3]benzothiazol-4-ones 1 and 2H-pyrimido[2,1- b][1,3]benzothiazol-2-ones 2.

Synthesis of sulfanylidene-diazaspirocycloalkanones in a ... - Arkivoc
Jul 1, 2017 - DOI: https://doi.org/10.24820/ark.5550190.p010.136. Page 43. ©ARKAT USA, Inc. The Free Internet Journal for Organic Chemistry. Paper.

Ninhydrin in synthesis of heterocyclic compounds - Arkivoc
... hypochlorite gave the required ninhydrin analogues in good overall yields (Scheme 6). ...... Na, J. E.; Lee, K. Y.; Seo, J.; Kim, J. N. Tetrahedron Lett. 2005, 46 ...

Synthesis of sulfanylidene-diazaspirocycloalkanones in a ... - Arkivoc
Jul 1, 2017 - magnetically separable and easy recyclable heterogeneous CuFe2O4 nanocatalyst,. 11 ... we report now on an easy and efficient synthesis of spirohexapyrimidine derivatives from the ...... (m, 1 H, CHH-9), 2.28 (dt, J 19.0, 2.9 Hz, 1H, CH

Ninhydrin in synthesis of heterocyclic compounds - Arkivoc
There are many published articles on the different reactions of ninhydrin, such as .... f]ninhydrin 26 as alternative ninhydrin analogue with excellent potential as a .... preparation of the solid supported SSA, reduced energy requirements and ...

Synthesis of substituted meso-tetraphenylporphyrins in ... - Arkivoc
Institute of Green Chemistry and Fine Chemicals, Beijing University of Technology, 100124. Beijing, PR China b ... and energy transfer. 13. The importance of.

Synthesis, spectral characteristics and electrochemistry of ... - Arkivoc
studied representatives of electron-injection/hole-blocking materials from this class is .... Here, the diagnostic peak comes from C2 and C5 carbon atoms of the.

Gold catalyzed synthesis of tetrahydropyrimidines and ... - Arkivoc
Dec 21, 2017 - or the replacement of hazardous organic solvents with environmentally benign solvents has received ..... Replacement of p-MeOC6H4 8c or t-Bu 8i by other hydrophobic groups such as o,p-. Me2 8d ..... Jones, W.; Krebs, A.; Mack, J.; Main

Recent applications of isatin in the synthesis of organic ... - Arkivoc
Apr 10, 2017 - halogen atoms (4-Cl, 4-Br). 5,7-Dimethyl-substituted isatin ...... Reactions with isatins bearing an electron-donating group in the 5-position gave ...

Synthesis and spectroscopic characterization of double ... - Arkivoc
Dec 4, 2016 - with the elaboration at positions 2, 3 or 6, depending on the application ..... CHaHbO), 4.32 (dd, J 5.9, 11.7 Hz, 1H, CHaHbO), 4.80 (d, J2.0 Hz, ...

Synthesis and physicochemical properties of merocyanine ... - Arkivoc
Mar 30, 2017 - fragment is the three-component reaction of salts 3, СН-acids 8, and ..... (s, 2Н, (3`)СН2), 1.69 (s, 2Н, (2`)СН2), 4.12 (s, 2Н, (1`)СН2), 5.57 (d, ...

Synthesis and antimitotic properties of orthosubstituted ... - Arkivoc
Jun 20, 2017 - Abstract. Ortho-substituted polymethoxydiarylazolopyrimidines were synthesized using polymethoxysubstituted benzaldehydes and acetophenones as starting material. X-ray crystallography data clearly confirmed that the subsequent cyclizat

Synthesis and spectroscopic characterization of double ... - Arkivoc
Dec 4, 2016 - Such derivatives are used as reagents in organic synthesis and, due to their interest from the biological point of view, in the preparation of ...