www.5starnotes.com Notes prepared by M.Sundaresan. AERO-ENGINEERING THERMODYNAMICS A.

Two mark question and answers.

1.0. State the Kelvin-Planck statement of second law of thermodynamics. Ans. Kelvin-Planck states that it is impossible to construct a heat engine working on a cyclic process, whose only purpose is to convert all the heat energy given to it in an equal amount of work. It essentially means that while the heat is getting converted to work you need a second body which is at a lower temperature through which part of the heat should also pass. That is why heat is considered a lower grade of energy compared to work. 2.0 State Clausius statement of the second law of thermodynamics. Ans. It states that heat can flow from a cold body to a hot body only with external aid or work added in a cyclic process. But heat can easily pass from a hot body to a cold body without any external aid and in the process does work 3.0 State Carnot’s theorem. Ans. No heat engine operating in a cyclic process between two fixed temperatures can be more efficient than that of a reversible engine operating between the same temperature limits. 4.0 What are the corollaries of Carnot theorem ? Ans. i) All the reversible engines operating between the two given thermal reservoirs with the fixed temperatures have the same efficiency. .ii) The efficiency of any reversible heat engine operating between two reservoirs is independent of the nature of the working fluid and depends only on the temperature of the reservoirs. 5.0 Define PMM of the second kind. Ans. Perpetual motion machine of the second kind draws heat continuously from a single reservoir and converts it into equivalent amount of work. Thus it gives 100% efficiency. This is impossible. 6.0 What is the difference between a heat pump and refrigerator ? Ans. Heat pump is a device which operating in a cyclic process maintains the temperature of a hot body at a temperature higher than that of the surroundings A refrigerator is a device operating in a cyclic process maintains the temperature of a cold body at a temperature lower than the temperature of the surroundings. 7. What is meant by a heat engine.? Ans. A heat engine is a device, which is used to convert the thermal energy int mechanical energy. 8. Define the term COP ? Ans. Co-efficient of performance is defined as the ratio of heat extracted or rejected to work input. COP = Heat extracted /rejected Work input. 9. Write the expansion for COP of a heat pump and refregirator. Ans COP for a heat pump

1

www.5starnotes.com

www.5starnotes.com COPHP =

Heat...rejected work ...input

=

T1 (T1 − T2 )

COP for a refrigerator COPref =

Heat...extracted work ...input

=

T2 (T1 − T2 )

10 Why Carnot cycle cannot be realized in practice ? Ans. (i) In a Carnot cycle, all the four processes are reversible but in actual practice there is no process that is reversible. (ii) There are two processes to be carried out during compression and expansion. For isothermal process, the piston moves slowly and for adiabatic process the piston moves as fast as possible. This speed variation during the same stroke of the engine is not possible. (iii) It is not possible to avoid friction between moving parts completely. 11. Name two distinct methods by which the efficiency of a Carnot cycle can be increased. Ans (i) Efficiency can be increased as the higher temperature T2 increases. (ii) Efficiency can be increased as the lower temperature T1 decreases. 12. Why a heat engine cannot have 100 % efficiency ? Ans. For all the heat engines there will be a heat loss between system and the surroundings. Therefore we cannot convert all the heat input into useful work. 13. When the Carnot cycle efficiency will be the maximum?. Ans. Carnot cycle efficiency is maximum when the initial temperature is 0K. 14. What is the process involved in Carnot cycle ? Ans. Carnot cycle consists of the following processes. (i) reversible adiabatic compression. (ii) Reversible isothermal heat addition. (iii) Reversible adiabatic compression. (iv) Reversible isothermal heat rejection. 15. Sketch the p-v and T-s diagram for Carnot cycle.

T

p

w

V

s

16. Is the second law independent of the first law ? Ans. Yes , the second law of thermodynamics independent of the first law. The second law speaks about quality of energy. 17. Define Entropy ?

2

www.5starnotes.com

www.5starnotes.com Ans. The entropy of an assembly in a state of thermal equilibrium is a thermodynamic property, in principle related through equations of state to other thermodynamic properties. The change of entropy is defined only for reversible processes stated as :

2

dq

∫T

= ds .

1

Hence in a closed isolated system the entropy change ds ≥ 0 . This aspect relates to the second law of thermodynamics in dictating the direction and flow of heat in a workable engine or heat pump. The property of the entropy namely specific entropy has been arrived on the basis that equilibrium values are easily and quickly achieved though the various molecules are in random and disorderly motion and are in combination as various meta states in a system. Once the assembly are system is in a highly probable macro-state though disorderly, the probability of returning to a low probable macro-state is very small. 18. Define the terms source sink and heat reservoir. Ans. Source. The part from where heat is rejected to a colder body for doing work, or the part from where heat is generated for doing work is called as the source, Sink. The part which receives heat from work absorbing or work developing device is called sink. Reservoir. The part which supplies or receives heat continuously without change in its temperature is called a reservoir. 19. Why is the performance of refrigerator and heat pump are given in terms of COP and not in terms of efficiency ? Ans. The performance of any device is expressed in terms of efficiency for work developing machines.. But for Heat pump and refrigerator are work absorbing machines. So the performance of these devices are based on COP only. 20. What is meant by principle of increase of entropy ? Ans. For any infinitismal process undergone by a system, change in entropy,

(ds ) ≥ dQ

T For a reversible, dQ = 0 and hence dS = 0 For irreversible, dS > 0 So the entropy of a system would never decrease, it will always increase and remains constant if the pressure is reversible and is called as principle increase of entropy. 21. What is meant by Clausius inequality? Ans. It is impossible for a self acting machine working in a cyclic process unaided by any external agency to convey heat from a body at a lower temperature to a body at a higher temperature, 22. Explain briefly the Clausius inequality. Ans. dQ is known as inequality of Clausius ≤0 . ∫ T

3

www.5starnotes.com

www.5starnotes.com If





dQ = 0 , the cycle is reversible T

dQ < 0 , the cycle is irreversible and possible T

dQ > 0 , the cycle is impossible. (Violation of second law) T 23. For the compressible process between the same two states, which work will be more reversible or irreversible ? Ans. Irreversible work will be more in the compressor. Generally for compression, the actual work given will be higher than the calculated work (Wrev). 24. A heat pump pumps 10MJ/KWhr to the high temperature reservoir. What is the COP ? Ans. COP= Heat supplied / work output. 10 × 10 3 = 2.78 3600 25. Find the entropy of the universe where 1000kj of heat is transferred from800K to 500K. Ans. − Q Q − 1000 1000 + = 0.75 KJ / K + = Entropy change of universe = T1 T2 800 500 26. Give the expressions for change in entropy during constant pressure and polytropic process. Show on T-s diagram 2s Ans. For the constant pressure process,



∆S = S 2 − S1 = mC P ln

T2 . T1

For polytropic process,

∆S = S 2 − S1 = m[C P ln

T2 p − R ln 2 ] T1 p1

2n

T

2T

or

T2 v s + R ln 2 ] (adiabatic ∆S =0 ). T1 v1 27. Explain the term reversibility. Ans If the process traces the same path during the process when reversed is called as reversibility. And the entropy change is zero. 28. Can the entropy of the universe decrease? why? Ans Entropy of the universe cannot decrease. It will be constant or will increase due to irreversibility. ∆S = S 2 − S1 = m[C v ln

4

www.5starnotes.com

www.5starnotes.com 29. Ans.

What is the essence of the second law of thermodynamics? 1.0 To know the feasibility of process. 2.0 To know about the quality of energy.

30. If the Carnot engine efficiency is 50%. Find COP of Carnot refrigerator working between same temperatures

Ans. Efficiency (HP) =

T1 − T2 =0.5 T1

T1 =2 T2

T2 1 1 = = = 1 Ans. 2 −1 T1 − T2 T1 −1 T2 31. Define the term absolute entropy. Ans. The change in entropy of the system with respect to ambient conditions or any other standard reference condition is known as absolute entropy.

COP of refrigerator

32. Define a system. Ans. A THERMODYNAMIC SYSTEM IS DEFINED AS A DEFINITE SPACE OR AREA WHICH THE STUDYOF ENERGY TRANSFER AND ENERGY CONVERSIONS IS MADE.

BOUNDARY

SYSTEM

SURROUNDINGS

33. What is a closed and open system.? and an isolated system Ans. In open systems both the mass and energy transfer take place. The open system is often specified within a control volume. e.g. air compressor. The system boundary is determined by the space that the matter occupies. In a closed system it does not permit mass transfer, but only the energy transfer takes place. A closed system is also referred to control mass. The isolated system is not affected by the surroundings. Simply there is no heat, work and mass transfer. e.g Universe. 33. Write the two property equations involving entropy. Ans. Tds = du + pdv Tds = dh − vdp 34.

Define the steam rate in using the Rankine cycle

5

www.5starnotes.com

www.5starnotes.com Ans.

3600 Kg where Wt and Wp are the work done by WT − WP kW .h

Steam rate =

turbine and pump respectively. 35. Define the heat rate in using the Rankine cycle Ans. 3600 × Qi 3600kJ = where Qi heat supplied. heat rate = WT − WP η CYCLE kW .h 36.

Ans.

Define dryness fraction of steam, and total volume of steam. mf X = . m f + mg

v = (1 − x) + v f + xv g where v f and vg are specific liquid and gas volume respectively.

37. Give the formulae relating temperature , pressure and value for an adiabatic process. ANS . γ −1

γ −1

V  T2  P2  γ =   =  1  T1  P1   V2  38. What is meant by one tonne of refrigeration ? Ans. One tonne of refrigeration is defined as the rate of heat removal from the surroundings equivalent to the heat required to melt 1 tonne of ice in oe day. If the latent heat of fusion of ice is taken as 336kj /kg then 1 tonne is equivalent to heat removal at the rate of 91000x336)/24=14000kJ/hr.

Therefore capacity of the refrigeration plant is=

w × (h1 − h 4) × 3600 1400

C O N STA N T VO L UM E P R O C ESS

( F O R STEA M )

P1

P

1

1

T

P2

T 1 2

V 2=V 1

2

T 2

V 2=V 1 S

V

dq = du

q = u 2 − u 1 = C v o (T 2 − T1 ) 2

S 2 − S1 =

q = u 2 − u1 2

S 2 − S1 =

∫ 1

2

dq = T

∫ 1

∫ 1

du T

du T = C v o ln 2 T T1

P1 P = 2 T1 T2 6

www.5starnotes.com

www.5starnotes.com REVERSIBLE ISOTHERMAL PROCESS ( STEAM ) P2

P

T2 = T1

2

P1

T

2

P2

1

T2 1

P1 W

Q

S

V

V2=V1

T ( S 2 − S1 ) = q = u 2 − u1 + w, and ...dq = du + dw u 2 = u1, P2V2 = P1V1, and ....q = w =



v pdv = RT ln 2 v1

2

S 2 − S1 =

∫ 1

dq v == R ln 2 ; and .... p1v1 = p2v2 T v1

P

P2 =P

1

REVERSIBLE CONSTANT PRESSURE PROCESS ( FOR STEAM )

T

T1

2

P2=P1 1 2

1

Q

W T2 S

V

2

WORK

.. W =



= p ( v 2 − v 1 ) = R ( T 2 − T1 )

pdv

1

dq = du + dw = dh = C po ( T 2 − T 1 ) q = h 2 − h1 2

S 2 − S1 =

∫ 1

2

dq T

=

∫ 1

dh T

= C po ln

T2 T1

v1 v = 2 T2 T1

7

www.5starnotes.com

www.5starnotes.com REVERSIBLE ADIABATIC PROCESS P1 P

T

1

P1

P2

1 2

P2 2

S2=S1 S

V FOR

STEAM P1

P2

T

T1

P1

P

1

S2=S1

T2 T1

2

P2 T2

S

V

FOR

FOR

AIR

AIR

CONSTANT PRESSURE T

T1

P

P2=P1

2

1 2 1

P2=P1 T2

Q

W S

V

CONSTANT TEMPERATURE

P2 P1

T P

P2

T2=T1 2

1

P1

W

T2=T1

Q

V

S

8

www.5starnotes.com

www.5starnotes.com First law and second law

dw = −du Q = Tds = 0; and ..W = −(u2 − u1 ) S 2 = S1 W = −(u2 − u1 ) = −Cvo (T2 − T1 ) T2 T1

k −1 P  k V =  2  =  1  P1   V2

   

k −1

PHASE RULE.

The number of independent variables with a multicomponent, multiple system is given by the phase rule. It is also called the Gibbs phase rule. It is expressed by the equation as: N= C – Φ +2 Where, N= the number of independent variables. C= the number of components. Φ = the number of phases present in equilibrium. For the single component (C=1) Two phase system (Φ=2) system, the number of independent variables needed is : N=1-2+2=1 For example, water (C=1) at the triple point has three phases (Φ=3 ) and thus n=0. That is none of the properties of a pure substance at the triple point can be varied. From this rule we can know that a pure substance which exists in a single phase (Φ=1) will have two independent variables (n= 2 ). That means there are two independent intensive properties required to be specified to fix up the state of the system at equilibrium.

Problem A reheat cycle operating between 30 and 0.04 bar has a superheat and a reheat temperature of 450 deg C. The first expansion takes place till the stem is dry saturated and then reheat is given. Neglecting feed pump work determine the reheat cycle efficiency.

9

www.5starnotes.com

www.5starnotes.com Solution :- given data ;- P1=30 BAR; P2=0.04 BAR, T1=450 deg C and T3=450degC,and x 2 = 1.0 .

1

450 deg C

3

T 30 bar

2 6

5

0.04 bar

4

S

From steam tables : at 30 bar at 450 deg C : h1= 3344 kJ/kg ; S1= 7.08 Kj/kg K

h1 = 3344kJ / kg s1 = 7.08kJ / kgK At 0.04 bar;

h f 4 = 121kJ / kg, s f 4 = 0.423kJ / kgK h fg 4 = 2433kJ / kg , s fg 4 = 8.05kJ / kgK 1-2 ISENTROPIC PROCESS S1=S2=7.08 Kj/kg K S2=Sg .. dry saturated steam P2= Psat at Sg From steam table :

P2 =2.3 bar.

At 2.3 bar : 10

www.5starnotes.com

www.5starnotes.com h2 = 2712.6kJ / kg , h3 = 3381.0kJ / kg , s3 = 8.306kJ / kgK

3-4

Isentropic process S3=S4=8.306 Kj/kg/K S 4 = S f 4 + x 4 × S fg = 0.423 + x 4 × 8.053

X4 =0.98 h4 = h f 4 + x4 × h fg 4 = 121.4 + 0.98 × 2433

=2505 Kj/kg. The cycle efficiency :

η =

=

 (h1 − h2 ) + (h3 − h4 )    ( − ) + ( − ) h h h h  1 5 3 2 

 (3344 − 2712.6) + (3381 − 2505)    x100 ( 3344 − 121 . 4 ) + ( 3381 − 2712 . 6 )  

Efficiency =0.3873 =38.73% Ans/

11

www.5starnotes.com

www.5starnotes.com AERO -THERMODYNAMICS PROBLEMS.

Problem –1. Three identical bodies of A,B and C constant heat capacity are at temperatures of 300, 100 and 300K respectively. A heat engine is operated between A and B and a heat pump working as a refrigerator between B and C. The heat pump is operated by the output of heat engine. If no work or heat is supplied from outside, find the highest temperature to which any one of the body can be raised by the operation of heat engine or a refrigerator.

Tf

T f/

C 300K

QS1

W = QS1 − QR1

HE

HP

QR1

Tf

B 100K

/

Let T f be the final temperature of bodies A and B. T f be the final temperature of body C and C be the final heat capacity of these three identical bodies. (∆ S)Universe > 0

………………………(1)

(∆ S)Univ = (∆ S)A + (∆ S)B + (∆ S)C + (∆ S)HE + (∆ S)HP. But (∆ S)HE & (∆ S)HP =0 Therefore C ln

(∆ S)Univ = (∆ S)A + (∆ S)B + (∆ S)C > 0

T f/ Tf Tf ≥0 + C ln + C ln 300 300 100

∴ C ln

T f2 × T f/ (300 × 300 × 100)

[ ∆s =CP ln

T2 ] T1

≥0

For minimum value of Tf (∆ S)Univ =0

12

www.5starnotes.com

www.5starnotes.com ∴ C ln

∴ C ln

T f2 × T f/ (3 × 10 6 )

=0

T f2 × T f/

= ln 1 (3 × 10 6 ) Since ln 1=0 the above equation becomes

T f2 × T f/ = 9 × 10 6.............(2) and also QS 1 = QR1 + QR 2 C(300-Tf ) =C(Tf -100) + C (Tf/ -300) [ because Q=m C (T2 – T1 )] 300-Tf = Tf –100 + Tf/ -300 Tf'=700-2 x Tf …………………(3) From 2 &3 T f2 (700 − 2 × T f ) = 9 × 10 6 T f = 300 K

Tf' =700-2 x Tf =700-2 x 300 =100K The maximum temperature can be raised for 100K body as 300 K of B

PROBLEM 2. Two reversible engines A & B are arranged in series. A rejecting heat directly to B engine , receives 200 kJ at a temperature of 421deg C from a hot source, while engine B is in communication with a cold sink at a temperature of 4.4 degC. If the work output of A is twice that of B, find : i) The intermediate temperature between A and B ii) The efficiency of each engine, and iii) The heat rejected to the cold sink. Solution: Work output from engine A, WA= QS1 - QR1 =200- QR1

13

www.5starnotes.com

www.5starnotes.com For reversible heat engine,

TH

TH Q S 1 = ..........(1) T QR1

QS1 WA =2 WB

A

694 200 = T QR1

QR1 Therefore QR1=0.288t….. (2) QS2

B

WB

QR2

TL So WA =200-0.288 T But WB =100-0.144 T……..(3) And also WB= QS2 - QR2

= 0.288T - QR2

….

(4)

(Because QR1 = QS2 )

Eliminating (3) and (4) 100-0.144T =0.288T- QR2 QR2 =0.432T –100 …….(5) Similarly, for reversible engine B, T Q = S2 TL Q R 2 T Q = R1 ......as QS2 = QR1 So 277.4 QR 2 0.288T 0.288T = = . Therefore T=416.42 K or 143.42 deg C…..Ans 0.432T − 100 QR 2 So QR1 = 0.288 x 416.42=119.93 KJ.

And QR2 =0.432 x416.42 – 100 =79.89 KJ. Ans Q 119.93 =40.04 % Efficiency of engine A, = 1- R1 = 1 200 QS1 Efficiency of engine B, = 1-

QR2 79.89 =33.39%. …Ans. = 1119.93 QS 2

(because QS2 = QR1) )

14

www.5starnotes.com

www.5starnotes.com Problem 4: Throttling process:

Steam at 1Mpa and 0.9 dry is throttled to a pressure of 200 kPa. Using steam table, find the quality of steam and change of entropy. Check your answer using Mollier chart. State whether the process is reversible or reversible. SOLUTION: Given data :- P1=1 Mpa=10 bar. X=0.9. Throttling process P2= 200 kPa=2 bar. To find : quality of steam and change of entropy. During the throttling process enthalpy remains constant, i.e. h2=h1. From steam tables at 1 Mpa or 10 bar:

h fg1 = 2013.6kJ / kg

h f 1 = 726.6kJ / kg

s fg1 = 4.445kJ / kgK

s f 1 = 2.138kJ / kgK

h1 = 762.2 + 0.9 × 2013.6 : h1 = 2574.8kJ / kg s1 = s f 1 + xs fg1 : s1 = 2.138 + 0.9 × 4.445 s1 = 6.1385kJ / kg

h f 2 = 504.7 kJ / kg : h fg 2 = 2201.6kJ / kg s f 2 = 1.53kJ / kgK

s fg 2 = 5.597kJ / kgK

h2 = h f 2 + xhfg 2 h2 = 504.7 + x2 × 2201.6 Since : h1 = h2 : 2574.84 = 504.7 + x2 × 2201.6 Ans : x2 = 0.94 Quality of steam is wet

15

www.5starnotes.com

www.5starnotes.com s 2 = 1 . 53 + 0 . 94 ( 5 . 59 ) s 2 = 6 . 79 kJ / kgK change .. in .. entropy

= ∆ s = s 2 − s1 = 6 . 79 − 6 . 138

∆ s = 0 . 652 kJ / kgK Generally throttling is an irreversible process. From Mollier chart, For x1=0.9 at 10 bar line, note the enthalpy of steam, S1=6.1 kJ/kgK. Since the throttling process is a constant enthalpy process, draw horizantal line in the Mollier chart upto 2 bar as shown in figure below. Now read theentropy of final state of steam, S1= 6.76 kJ/kgK. Change in entropy = (s2-s1)= 0.66kJ/kgK. Since ∆s is positive, the process is irreversible……Answer.

10

ba r

h

ar 2b

X=0.96

h2=h1

X=0.94

1

2 X= 0.9

0

Sp. Entropy (s)

Problem 5 Steam turbine receives steam at a pressure of 20 bar superheated at 300 degC. The exhaust pressure is 0.07 bar and expansion takes place isentropically. Using steam steam tables calculate the following ; a)Heat supplied assuming that the feed pump supplies water to the boiler at 20 bar.

16

www.5starnotes.com

www.5starnotes.com b) Heat rejected. c)work done. d) Thermal efficiency. e) Theoretical steam consumption. T

300 C 1 p1=20 bar

4 P2=0.07 bar

2

3

ENTROPY (S)

SOLUTION: Given data :- p1=20 bar : T1=Tsup=300deg C ; P2=0.07 bar To find Qs, Qr, W, Efficiency (Rankine), and SSC. From super heated steam table at 20 bar and 300 degC, h1 = 302 . 5 kJ / kg

s1 = 6 . 77 kJ / kgK

from .. steam .. tables ..at .. 0 . 07 .bar

h f 2 = 163 . 42 kJ / kg

h fg 2 = 2409 . 2 kJ / kg

s f 2 = 0 . 559 kJ / kgK

s fg 2 = 7 . 718 kJ / kgK

v f 2 = 0 . 001007 m 3 / kg

we .. know .. that s1 = s 2 = s f 1 + x 2 × s fg 2

h2 = h f 2 + x 2 × h fg 2

6 . 77 = 0 . 558 + x 2 × 7 . 718

h2 = 163 . 4 + 0 . 8 × 2409 . 2 = 2090 . 76 kJ / kg .

x = 0 .8 pump .work : W P = h4 − h3 = v 3 × ( p 4 − p 3 ) = v f 2 ( p1 − p 2 ) = 0 . 001007 × ( 2000 − 7 ) W P = 2 . 0068 kJ / kg heat sup plied : Q S = h1 − ( h f 2 + w p ) = 3025 − (163 . 4 + 2 . 0069 ) Q S = 2859 . 79 kJ / kg . heat .. rejected : Q R = h2 − h3 = h2 − h f 2 = 2090 . 76 − 163 . 4 Q R = 1927 . 36 kJ / kg .... Ans work ..done ..W = Q S − Q R ..or ( h1 − h2 ) − W P = 2859 . 7 − 1927 . 37 = 932 . 34 kJ / kg ....... Ans

Thermal ..efficiency =

W 932 . 34 = = 0 . 326 = 32 . 6 % Q S 2859 . 79

17

www.5starnotes.com

www.5starnotes.com Theoretical steam consumption :

=

3600 3600 = = 3.86kg / kW − hr 932.34 W

IMPORTANT FORMULAE IN STEAM OR PURE SUBSTANCE PROPERTIES ENTHALPY ( h ) KJ/kg

WET STEAM

DRY STEAM

SUPER HEATED STEAM

hwet = h f + x.h fg

hg = h f + h fg

hsup = hg + C P (TSUP − TS )

SPECIFIC VOLUME, (v) in m3/kg Density (ρ ) in kg/m3

v wet = x.v g

v dry = v g

ρ wet =

ρ wet =

Work done (W) in KJ/kg

WWET

Wsup

Internal energy in KJ/kg

U WET = hwet − WWET U G = hG − WG

Specific Entropy (s) in KJ/kg.K

S wet = S f + x.S fg

v sup =

1 1 ρg = vg v wet = 100 × p.v g W g = 100 × p.v g

S DRY = S f + S fg

v g × TSUP TS

1 v sup = 100 × p.v sup

U SUP = hSUP − W SUP

T S SUP = S G + C PS ln SUP  TS

  

FOR NON-FLOIW PROCESS.

WORK DONE

HEAT TRANSFER

CONSTANT VOLUME

W=0

Q = (h2 − h1 ) − ( p2 v sup − p1 x1v g1 )

CONSTANT PRESSURE CONSTANT TEMPERATURE HYPERBOLIC

W=p(v2-v1)

Q =h2 – h1

W=p(v2-v1)

Q= h2 - h1

v  W = p1v1 ln 2   v1 

v W = p1 v 1 ln  2  v1

ISENTROPIC POLYROPIC

W=U1- U2

Q= 0

PROCESSES

W=

p1v1 − p2 v 2 n −1

Q=

  + ( h2 − h1 ) 

n( p1v1 − p2 v 2 ) + (h2 − h1 ) n −1

18

www.5starnotes.com

www.5starnotes.com FOR FLOW PROCESS.

SYSTEMS

WORK DONE

HEAT TRANSFER

BOILER TURBINE CONDENSOR NOZZLE

W=0 W=h2-h1 W=0 W=0

Q=h2-h1 Q=0 Q=h1 –h2 Q=0

APPLICATION OF STEADY FLOW ENERGY EQUATIONS TO VARIOUS ENGINEERING SYSTEMS.

1.0

BOILER OR STEAM GENERATOR.

Q = h2 − h1 …………….in KJ. 2.O

CONDENSOR.

h1 + Q = h2 2.0

NOZZLE.

V2 =

(2 × (h

2

− h1 ) + V12 )

The expansion of the fluid in a nozzle is treated as reversible adiabatic or isentropic.

V2 =

(2 × C

P

(T1 − T2 ) + V12 )

γ −1    P2  γ  2  V2 =  2 × C P (T1 − T1   + V1     P1   

P 

as…….. T2 =  2   P1 

γ −1 γ

γ −1    P2  γ   V2 = 2 × C P × T1 1 −   + V12 ……………m/sec   P1    

19

www.5starnotes.com

www.5starnotes.com TURBINE.

Turbine is a device which converts potential energy of working fluid into mechanical work. The turbine is fully insulated. Therefore there is no heat transfer (Q=0).

h1 = h2 + W

AIR COMPRESSOR.

h1 = h2 − W

h1 − Q = h2 − W

……..IF ‘Q’ IS

…..FOR NO HEAT LOSS

REJECTED TO SURROUNDINGS.

20

www.5starnotes.com

www.5starnotes.com THROTTLING PROCESS.

When a liquid expands through a minute aperture orifice or a slightly opened valve, the process is called throttling process.

P2 ,V2 , U1

P1 ,V1 , U1

Q=0,

W=0,

AND

Enthalpy is constant i.e. h1=h2

Relation between specific heats at constant volume and pressure.

The ratio between specific heat

CP IS DENOTED BY GAMMA, i.e. ‘ γ ’ CV

CP =γ CV C P − CV = γ PROBLEM 6.

A refrigerator works on an ideal vapor compression refrigeration cycle, uses R-12 as the working fluid. The minimum and maximum pressure of the cycle is 0.15 Mpa and 0.9Mpa respectively. If the mass flow rate of the refrigerant is 0.045 kg/sec; determine (a) the rate of heat removal from the refrigerated space and the power input to the condenser. (b)the rate of heat rejection to the environment and (c) COP of the refrigerant. SOLUTION:

21

www.5starnotes.com

www.5starnotes.com In an ideal vapour compression refrigeration cycle the compression process is isentropic and the refrigerant nters the compressor as a saturated vapour at the evaporator pressure and leaves the condenser as saturated liquid at the condenser pressure.

IRREVERSIBLE PROCESS BECAYSE OF

T

THROTTLING

h3=h4

2 p1=0.9 MPa

Q1

3

Win

4

1

P2=0.15 MPa

Q2

ENTROPY (S)

The enthalpy of the refrigerant at all four states is obtained from the refrigerant R-12 TABLES. At

P1 =0.15Mpa,

h1 = hg = 178.64kJ / kg : S1 = S g = 0.7089kJ / kgK At

P1 =0.9 Mpa,

h2 = 210.43kJ / kg : and ..S 2 = S1 = 0.7089 kJ / kgK At

P3 =0.9 Mpa,

h3 = h f = 71.93kJ / kg : and ..h4 = h3 : throttling = 71.93kJ / kg The rate of heat removal and the power input to the compressor respectively is given by :

22

www.5starnotes.com

www.5starnotes.com .

.

Q L = m (h1 − h4 ).....and ............W IN = m (h2 − h1 ) .

Q L = 0.045 × (178.641 − 71.93) = 4.8kW .

W IN = 0.045 (210.43 − 178.64) = 1.43kW (b) The rate of heat rejected from the refrigerant to the environment is : •

m×(h2 − h ) = 0.045 × (210.43 − 71.93) = 6.33kW 3

Also QH is given by : .

Q H = Q L +Win = 4.80+1.43=6.23kW ( c ) COP=

Q L 4.80 = = 3.36... Ans W IN 1.43

PROBLEM :7 In an aircraft engine compressed air at 3 bar and 450K enters a combustion chamber in which heat is added at constant pressure to the air by the combustion of the fuel.Air is thus heated to a temperature of 1250K.It then enters a turbine with a negligible velocity . It expands in the turbine until its temperature falls to 100K.The velocity of air leaving the turbine is 50m/sec.Air then enters a convergent divergent nozzle wherein it expands until its temperature drops to 800K.Flow through both turbine and nozzle may be considered as reversible adiabatic. Determine :

(a) (b) (c) (d)

1

Heat added in the co0mbustion chamber/kg of air. Work done in the turbine per kg of air. Velocity of air leaving the nozzle. Pressure of air leaving the turbine and at the exit from the nozzle.

Compressed air at 3 bar , 450K

2

Combustion chamber

3 bar, 1250K

w

1000K, 50 m/sec Air turbine

3

v4 nozzle

23

www.5starnotes.com

www.5starnotes.com (a) combustion chamber.

Heat added to air Q = ( h2 − h1 ) = C PO (T2 − T1 ) = 1.0035(1250 − 450) = 804kJ / kg (b) Turbine : work done in the turbine

V22 − V32 W = (h2 − h3 ) + ( ) + Q as Q=0 2 V32 50 2 = 1.0035(1259 − 1000) − = 251kJ / kg W = C PO (T2 − T3 ) − 2 2000 note that the kinetic terms are negligible. ( c ) Velocity of air leaving nozzle.

V4 = 2(h3 − h4 ) + V32 = 2C PO (T3 − T4 ) + V32

V4 = 2 × 1003.5(1000 − 800) + 50 2 = 636m / sec (d) Pressure of air leaving the turbine is given by:

k

1.4

 T  k −1  1000  0.4 P3 = P2  3  = 3.0 ×   = 1.374bar T 1250    2 (e) pressure of air at exit of the nozzle is given similarly by:

T  P4 = P3  4   T3 

k k −1

1.4

 800  0.4 = 1.374 ×   = 0.63bar  1000 

PROBLEM 8

An aircraft is flying at a speed of 1000km.p.h. The ambient air pressure and temperature is 0.35 bar and –15 deg C. respectively. What is the pressure of air entering the compressor after inlet

24

www.5starnotes.com

www.5starnotes.com diffuser section, and what is the pressure ratio required for compressor for the pressurization of the aircraft? Solution: Speed of aircraft

V=

1000 × 1000 = 277.8m / sec 3600

from the SSSF conditions for the diffuser.

h2 = h1 +

V12 2

Turbo jet engine Fuel flow

Exhaust gases from exit

Ambient air

Diffuser intake

Combustion chamber

3

COMB CHAMBER

COMPRESSOR

Turbine

4

TURBINE

DIFFUSER

1

NOZZLE

5

2

6

4

T 3

5 2

6 1

S

25

www.5starnotes.com

www.5starnotes.com V12 C PO T2 = C PO T1 + 2 Whence the temperature of air leaving inlet diffuser,

V12 277.8 2 T2 = T1 + = 258 + = 258 + 38.5 = 296.5 K 2C PO 2 × 1003.5 k

1.4

 T2  k −1  296.5  0.4 P2 = P1   = 0.35 ×   = 0.57bar  258   T1  Pressure ratio of compression required for cabin pressurization:

=

1.01325 = 1.78 0.57

…Answer

PROBLEM : 9

An engine operates on the air –standard cycle. The compression ratio is 18. The pressure and temperature at the start of compression process are 100kPa and300K.The heat added is 1800 KJ/kg of air. Determine the maximum pressure and temperature in the cycle, the thermal efficiency and the mean effective pressure.

QH T

2

3 ρMAX S=CONSTANT

4

QL 1

v

State 2:

26

www.5starnotes.com

www.5starnotes.com v  T2 = T1.  1   v2 

γ −1

= 300(18) 0.4 = 953.3 K γ

v  P2 = P1.  1  = 100(18)1.4 = 5720kPa.  v2  state :3

Q H 2 = 2 Q3 = h3 − h2 = C PO (T3 − T2 ) 1800 = 1.0035(T3 − 953.3);∴T3 = 2744.3 K Maximum temperature and pressure of the cycle. Tmax=T3=2744.3K Pmax=P2 =p3=5720 kPa. State 4 :

v3 =

RT3 0.287(2744.3) = = 0.1377m 3 / kg P3 5720

v 4 = v1 =

RT1 0.287(300) = = 0.861m 3 / kg P1 100

v  T4 = T3.  3   v4 

γ −1

 0.1377  = 2744.3   .861 

γ

0.4

= 1318.3 K

v   0.1377  P4 = P3.  3  = 5720  = 439.4kPa  .861   v4  1.4

Heat rejected:

Q L = 4 Q1 = U 1 − U 4 = CVO (T1 − T4 ) = 0.7165(300 − 1318.3) = −731kJ / kg Net work :

W NET = Q H − Q L = 1800 − 731 = 1069kJ / kg Thermal efficiency:

η theor

W NET 1069 = = 0.594(59.4%) 1800 1 QH

Mean effective pressure:

27

www.5starnotes.com

www.5starnotes.com pmean = 1.0

W NET 1069 = = 1419kPa. (v1 − v 2 ) 0.861 − (0.86 / 18)

PROBLEM 10.

Consider the entropy change of an ideal gas following reversible path : 1-a (isothermal) and a-2 (constant volume ) & 1-b (adiabatic & b-2 (constant volume ) as shown below. Show that the path combination produces the same entropy.

1 p

T=C

a

V=C Q=0

2

b

v

For path 1-a-2:

S A − S1 = R ln

va v T = R ln 2 : and .S 2 − S a = CVO ln 2 v1 v1 T1

So that by adding we get;

S 2 − S1 = R ln

v2 T + CVO ln 2 …………………….(A) v1 T1

For path 1-b-2: S B − S 1 = 0..as..Q = 0(adiabatic ) ∴ S 2 − S B = C VO ln

T2 TB

γ −1

For adiabatic process

= CVO ln

T1  vb  T v =   . ∴ S 2 − S B = CVO ln[ 2 × ( 2 ) λ −1 ] TB  v1  T1 v1

T2 v + CVO ( K − 1) ln 2 T1 v1 28

www.5starnotes.com

www.5starnotes.com T2 v + R ln 2 ………(B) EXPRESSIO SAME AS (A) T1 v1 C R .as.....C P −C V = R ∴ P − 1 = ie..R = CVO ( K − 1) CV CVO = C VO ln

2.0

REVERSIBLE POLYTROPIC PROCESS FOR AN IDEAL GAS.

P2 T

T2=T1

2S

P1

2N

REVERSIBLE ADIABATIC N=K

2T

ISOTHERMAL N=1

REVERSIBLE POLYTROPIC WORK

Q

we ..have ... pv n = C . dp dv dp p +n = 0..... ∴ = −n p v dv v

S

also ...... p1v n1 = p2 v n 2 = C = pv n log p1 + n log v1 = log p1 + n log v 2

∴n =

ln( p1 / p2 ) ln( v 2 / v1 )

c p 1 v 1n p 2 v 2n also ... p = = = vn vn vn 2

Hence ..1 W 2 =

∫ 1

2

pdv = C

dv

∫v

n

1

p 2 v 2n v 11 − n − p 1 v 1n v 11 − n  v 12 − n − v 11 − n  = C  = 1W 2 = 1− n  1− n  p v − p1v 1 = 2 2 1− n p 2 v 2 − p1v 1 .......... .......... .....( 2 ) 1W 2 = 1− n

www.5starnotes.com

29

www.5starnotes.com 1

v 2  p1  n p1v1  p2 nn−1  =   ....∴1 W 2 = ( ) − 1 Substituting 1 − n  p1 v1  p2   R [T 2 − T1 ] 1− n now ..... q = ( u 2 − u 1 ) + W

∴1 W 2 =

R ) × (T 2 − T1 ) 1− N k − n ∴ q = C VO ( ) × (T 2 − T1 ) 1− n k − n ∴q = ( )× 1W 2 1− n = ( C VO +

3.0 PROBLEM 11. Air expands irreversibly from 3 bars, 200 deg C, to 1.5 bars and 105deg C.Compute the entropy change/kg of air. Solution. Although the process is irreversible, entropy being a property change can be computed by integrating along a reversible path between the two specified states.

S 2 − S1 = C PO ln = 1.0035 ln 4.0

T2 P − R ln 2 T1 P1

378 1.5 − 0.278 ln = −0.0323kJ / kgK 3 473

PROBLEM 12.

An insulated tank is divided into equal parts by volume. One part contains Argon gas at 30 degC and 5 bar. The other part is vacuum. The partition between these two parts is broken and the gas fills the whole tank. Determine final pressure and entropy change per kg of Argon gas.

Solution. Considering it as an ideal gas, we have :

30

www.5starnotes.com

www.5starnotes.com T2 = T1 ,..as...u2 = u1.. for .. free.. exp ansion.. process . v  1 ∴ p2 = p1  1  = p1 = 2.5bar  v2  2 Entropy change ( choosing the reversible path)

= R ln

v 2 8.344 = ln 2 = 0.1441kJ / kgK as molecular weight of Argon gas =40 v1 40

5.0

PROBLEM 13

A Single stage reciprocating air compressor has a swept volume of 2000cm3 and runs at 800rpm. It operates on a pressure ratio of 8, with a clearance of 5 % of the swept volume. Assume NTP room conditions and at inlet (p=101.3 kpa, t=15 deg C), and polytropic compression and expansion with n=1.25; calculate (a)indicated power (b) volumetric efficiency c) mass flow rate d) FAD (free air delivery ) e) isothermal efficiency f)the actual power needed to drive the compressor, if mechanical efficiency is 0.85.

3

P

2 ρMAX

P2

PVN =C

P1

4

VC

1

VS

V

SUCTION AT CONSTANT TEMPERATURE T1. P1=101.3kpa;P2=8P1=810.4kpa; T1=288K, VS=2000cm3 V3==VC=0.05*VS=100 cm3. V1=VC+VS=2100 cm3.

31

www.5starnotes.com

www.5starnotes.com 1

1  P n n P3V3 = P4V4n .∴V4 =  3  × V3 = (8 )1.25 × 100 = 528cm 3  P4 

V1-V4=2100-528=1572 cm3

n −1   n   P n 2 W = P1 (V1 − V4 )   − 1   P1  n −1  

OR

n −1   n   P n 2 W = (m1 − m 4)   − 1   P1  n −1  

W=

n −1 1.25 101.3 × 10 3 × 1572 × 10 6 × (8) n − 1 = 411J  0.251 

NOTE : If the number of stages is ‘N’ then work done =Nx W Indicated power=

speed ..in..rpm × work..done watts 60

411 × 800 × 10 −3 kW Indicated power 60 (b) volumetric efficiency =

5.46 Kw

1572 × 100 = 78.6% 2000

pV 101.3 × 10 3 × 1572 × 10 −6 = = 1.93 × 10 −3 c) mass of compressed air per cycle : m = 287 × 288 RT −3

THEREFORE MASS FLOW RATE= 1.93 × 10 × 800 = 1.54kg / min −6

3

d) FAD (free air delivery ) 1572 × 10 × 800 = 1.26m / min

e)

W1 = P1 (V1 − V4 ) × ln

p2 = 101.3 × 10 3 × 1572 × 10 −6 ln 8 = 331J p1

0.331 × 800 = 80.6% 5.47 × 60 5.47 Input .. Power .. = 6.44 kW 0.85

η ISOTHERMAL =

www.5starnotes.com

32

www.5starnotes.com

6.0

EFFICIENCY OF COMPRESSOR

The efficiency of a compressor is defined the ratio of isothermal work done to the actual work done by the compressor. P1V1 ln

Efficiency of a compressor = η =

P2 P1

P1V1 ln

WT = WC W COMP

N × nRT1 The work done by the compressor W C = n −1

=

V1 V2

W COMP

  PX  P  1

  

n −1 n

  − 1  

Where N=number of stages of compression and Px is the intermediate pressure. The optimum pressure Px= P1 × P3 for two stages. For number of stages the optimum pressure is given by 1

 P N PX =  D  Where Pd=delivery pressure and Ps=suction pressure and Px=intermediate P1  PS  pressure.

7.0

PROBLEM 14

A two stage air compressor with perfect inter-cooling takes in air at 1 bar pressure at 27deg C . The law of compression in both the stages is PV 1.3 = cons tan t .The compressed air is delivered at 9 bar from the HP cylinder to an air reservoir. Calculate per kg of air a) the minimum work done and b) the heat rejected to the intercooler. SOLUTION. The minimum work required is a two stage compressor is given by :-

N × nRT1 WC = n −1

  PX  P  1

  

n −1 n

  − 1  

33

www.5starnotes.com

www.5starnotes.com =

2 × 1.3 × 0.287 × 300 1  0.3  (3)1.3 − 1 ……..as Px=3  0.3 

=26x0.287x100x0.287=214.16kJ/kg

T2  P2  =  T1  P 1 

n −1 n

=3

0.3 1.3

= 1.2886

therefore T2=386.56 K Heat rejected to the intercooler =1.005(386.56-300)=86.99kJ/kg…Ans

8.0

PROBLEM 15.

GAS POWER CYCLE OTTO CYCLE.

An engine working in the Otto cycle is supplied with air at 0.1mPa, 35 deg C. The compression ratio is 8. Heat supplied is 2100 KJ/kg.Calculate the max pressure and temperature of the cycle, the cycle efficiency and the mean effective pressure.(for air Cp=1.005, Cv==0.718, and R=0.287kJ/kgK).

P

3

OTTO CYCLE

T2  V21  =  T1  V2 

γ −1

= (8)

0.4

3

T

0.884 V2 = = 0.11m 3γ /S=kgC Pv = C 8

Q1

2

WE

WC

4

= 2.3 : .......T2 = 2.3 × 308 = 708.4 K 1

1

Q1 = CV (T3 −T 2) = 2100 kJ / kg : .........T3 − 708.4 = V

T1 = 273 + 35 = 308 K P  V T3 = TMAX = 3633 K .......... ......... 2 2=  1 P1 = 0.1MPa = 100kN /Pm 1  V2

4 Q2

2100 = 2925 K 0.718

S

γ

  = (8 )1.4 = 18.37........ P2 = 1.873 MPa  P3V3 Q P1V= 2100kJ / kg ,..rk = 8...γ = 1.4363 = 2 2 .......... ..P3 = PMAX = 1.837 × = 9.426 MPa 1 1 1 708 T3 T2

η cyc = 1 −

= 1−

= 1−

= 0.565..or ..56.5%

2.3 .5kJ / kg W NET = Q1 × η CYCLE rkγ −=1 2100 ×800..4565 = 1186

1186 .5 RT V 0.287 × 308 = PM × (V11 −=V82,...... )=P =3 = 1.533 MPa ......... Ans VM1 (=0.8841 ==0.11)... ∴ PM = MEP 0.844m 0.774 P1 V2 100

34

www.5starnotes.com

www.5starnotes.com 9.0

PROBLEM 16

A diesel engine has a compression ratio of 14 and cut off takes place at 6% of the stroke. Find the air standard efficiency.

QH P

3 ρMAX

2

S=CONSTANT

PV γ = C

4

QL 1

v

rk =

V1 = 14 : .........V3 − V2 = 0.06 (V1 − V2 ) = 0.06 (14 × V2 − V2 ) = 0.78V2 V2

V3 = 1.78V2 : CUT ..OFF .. RATIO ...

η diesel

V3 = 1.78 = rc V2

rcγ − 1 = 1 − × γ −1 × γ rk rc − 1 1

1

1 1 1.781.4 − 1 × 0 .4 × 1.4 14 1.78 − 1 1.24 1 − 0.248 × = 0.605 = 60 .5% 0.78 = 1−

10.0

PROBLEM 16.

35

www.5starnotes.com

www.5starnotes.com A turbojet aircraft flies with a velocity of 300 m/sec at an altitude where the air is at 0.35 bar and –40 degC. The compressor has a pressure ratio of 10, and the temperature of the gases at the turbine inlet is 1100deg C. Air enters the compressor at a rate of 50 kg/sec. Estimate a) the temperature and pressure of the gases at the turbine exit. b) the velocity of gases at the nozzle exit and c) the propulsive efficiency of the cycle.

NOZZLE DIFFUSER COMB CHAMBER

PRODUCT GAS COMPRESSOR

TURBINE

6

1

2

3

5

4

T

4

Q1 3

P=C 5

2

6 1

Q2

S

For isentropic flow of air in the diffuser,

Q12 − W1− 2 = h2 − h1 +

V 22 − V12 2

V12 0 = C P × (T2 − T1 ) − 2 2 V1 300 2 × 10 − 3 T2 = T1 + = 233 + : ... ∴ T2 = 277.8 K 2×CP 2 × 1.005 1 .4

γ

T  277.8  0.4 P2 = P1 × ( 2 ) γ −1 = 35kN / m 2 ×   9 = 64.76kPa T1  233  P3 = r p × P2 = 10 × 64.76 = 647.6kPa. P T3 =  3  P2

  

γ −1 γ

× T2 = 277.8 × (10)

0 .4 1.4

: ......T3 = 536.6 K M

36

www.5starnotes.com

www.5starnotes.com

W C = WT

h3 − h2 = h4 − h5 : ...T3 − T2 = T5 − T5 T5 = T4 − T3 + T2 = 1373 − 536 .66 + 277 .78 = 1114 .2 K γ

 T  γ −1  1114 .12  P5 =  5  × P4 = 647 .6   1373   T4  P5 = 311 .69 kPa .

3.5

b) for isentropic expansion of gases in the nozzle: P  T6 = T5 ×  6   P5 

γ −1 γ

 35  = 1114 .2 ×    311.69 

0.286

= 596.12

Neglecting the KE of gas at nozzle inlet, 1

V6 = [2 × C P × [T5 − T6 ] × 1000]2 V = [2 × (h − h )]12 m / sec  = 1029.4m / sec  6  5 6  

c) The propulsive efficiency of a turbo-jet engine is the ratio of the propulsive power developed Wp to the total heat transfer to the fluid. W P = W [V EXIT − V INT ]× V AIRCRAFT

= 50 × [1020.4 − 300]× 300 = 10.80 MW Q1 = w × (h4 − h3 ) = 50 × 1.005 × (1373 − 536.66) = 42.026 MW

η=

10.806 = 0.257 = 25.7%........ Ans 42.026

11.0

JET PROPULSION

T = ( m& air + m& fuel ) × V E + m& AIR × V∞ + ( PE − P∞ ) × AE Where T =thrust in Newtons, m& air and m& fuel are mass flow of air and fuel respectively.

37

www.5starnotes.com

www.5starnotes.com V∞ ….velocity of free stream air or aircraft velocity VE …velocity of jet exhaust PE …..pressure at nozzle exit P∞ ….free stream pressure or static pressure at the altitude where aircraft is flying.

12

ROCKET MOTOR.

The specific Impulse of the rocket motor is given by :

 2 × γ × R × To  PE 1 − ( ) I SP =   − 1 γ P  O 

γ −1 γ

    

1 2

PE is the ratio of the nozzle exit PO pressure to the rocket chamber pressure, R is the gas constant, and γ = ratio of the specific heat for the combustion gases taken as 1.4 for adiabatic flow.

where Isp=specific impulse; To =chamber temperature

The mass flow through the nozzle is given by :-

PO × A m& = TO



  γ  R 

  2   γ + 1  

γ +1 γ −1

   

Where A∗ is the area of throat cross section.

13.0

STEADY STATE STEADY FLOW ENERGY EQUATIONS.……SSSFE.

w1 (u1 + p1 v1 +

(u1 + p1 v1 +

v12 v2 dQ dW )+ ….is energy flow per unit time = w 2 (u2 + p2 v 2 + 2 ) − 2 2 dτ dτ

v12 v2 dQ dW = (u 2 + p 2 v 2 + 2 ) − )+ ………for energy flow per unit mass 2 2 dm dm

In differential form :-

38

www.5starnotes.com

www.5starnotes.com dQ = dh + VdV + gdz + dW

Where dQ = du + pdv dh = du + pv dh = du + pdv + vdp dh = dq + vdp dq = dh − vdp Tds = dh − vdp For closed system the work done by the gas is pdv while for flow systems the work done is given by

14.0

vdp .

PROBLEM 17.

NOZZLE FLOW FOR A GAS FOR A POLYTROPIC PROCESS. Since this is a flow system i.e. not a closed system the work done should be a nozzle flow analyses is taken as an example to make things more clearer.

vdp

term. A

2 1 V1=70 m/S

V1=? m/S

.v1=0.1m 3 /kg

.v1=0.6m 3 /kg

P1=15 bar

P1=1.5 bar

A system above is steady flow nozzle ideally insulated device so that no heat transfer takes place with the surroundings, while the flow takes place through it. A gas expands through the nozzle following a reversible polytropic law pv γ = C . There is no change in PE but the pressure drop from 15 bar to 1.5 bar and the specific volume increases from 0.1 m3 to 0.6m3.

39

www.5starnotes.com

www.5starnotes.com If the entrance velocity to the nozzle is 70 m/sec determine the exit velocity. We have;

dQ = dh + VDV + gdz + dW here Q=0 ; W=0 as no external work is added and the potential energy is =0 as z is in the same datum. Therefore,

dq = du + pdv + vdp + VdV dq = dq + vdp + VdV − vdp = VdV 2

∫ − vdp = work..done.in.a. polytropic.. process 1

=

n ( p1v1 − p2 v 2 ) n −1

2 V 2 − V12  VdV = ∫ VdV =  2  2   1

V22 − V12  1.3 5 5 5 5  2  = 0.3 (15 × 10 × 0.1 − 1.5 × 10 × 0.6 ) = 4.33 × 0.6 × 10 = 6 × 10 J   2 2 V2 − 70 = 2.6 × 10 5 J 2 V2 = 2 × 2.6 × 10 5 + 4900 = 724 .5m / s

15.0

Reversible adiabatic flow of a fluid with area change.

Consider reversible adiabatic flow of a fluid in a passage of varying cross sectional area. The following equations can be written for the flow :Continuity equation : ρ × A × V = m& = cons tan t Differentiating we have dρ

dA dV + =0 A V ρ SSSF equations (neglecting PE changes )

+

40

www.5starnotes.com

www.5starnotes.com dh = VdV = 0 dp Tds = dh −

ρ Therefore combining SSSF equations with the property relation we get; dV =

1 dp V ρ

substituting for , dV ,from the continuity equations dA dρ dV dρ dp =− − =− + ρ A V ρ ρV 2

dA dp = A ρV 2

  dρ  − V 2 + 1 dp  

Since the flow is reversible adiabatic , dp V2 2 =C = 2 dρ M Substituting the same in the above we obtain

dA dp = (1 − M 2 ) ………………………………….(1) 2 A ρV

For nozzles always dp <0 While for diffusers it is dp >0. Hence on closer analyses of the above equation we can see the following :FOR NOZZLES :-

For subsonic portion of the nozzle the nozzle cross section converges i.e. when M<1; And the nozzle diverges for supersonic speeds i.e. M>1.0. FOR DIFFUSERS:

It is the reverse of nozzles i.e. at the convergent portion diverges or M>1.0 and converges for supersonic flow.

41

www.5starnotes.com

www.5starnotes.com EXAMPLE E7-3 A 4-cylinder SI engine with a cylinder displacement of 0.5 L and a clearance volume of 62.5 mL is running at 3000 RPM. At the beginning of the compression process, air is at 100 kPa and 20oC. The maximum temperature during the cycle is 1800 K. Employing the cold-air standard Otto cycle, determine (a) the power developed by the engine, (b) the thermal efficiency, and (c) the MEP. (d) What-if-Scenario: How would the answer in part (b) change if the maximum temperature were raised to 2200 K? (e) How would the answer in part (b) change if the ideal gas model were used? [Manual Solution] [TEST Solution]

Answers: (a) 30.7 kW, (b) 58.6%, (c) 614 kPa, (d) 58.5%, (e) 53.5%

42

www.5starnotes.com

www.5starnotes.com

43

www.5starnotes.com

www.5starnotes.com EXAMPLE E7-5 An air standard Diesel cycle has a compression ratio of 18. The heat transferred to the working fluid per cycle is 2000 kJ/kg. At the beginning of the compression process the pressure is 100 kPa and the temperature is 25oC. Employing the perfect gas (PG) model for the working fluid, determine (a) the pressure at each point in the cycle, (b) the cut-off ratio, (c) the thermal efficiency, (d) the net work per unit mass, and (e) the MEP. (f) What-if-Scenario: How would the thermal efficiency change if the heat transfer were 1500 kJ/kg? [Manual Solution] [TEST Solution]

Answers: (a) 5728 kPa, 487 kPa, (b) 3.1, (c) 57.8%, (d) 1153 kJ/kg, (e) 1430 kPa, (f) 60.6%

EXAMPLE E7-6 The Diesel cycle described in Example E7-5 is modified into a Dual cycle by breaking the heat addition process into two equal halves so that 1000 kJ/kg of heat is added at constant volume followed by 1000 kJ/kg of heat addition at constant pressure. Determine (a) the temperature at each point in the cycle, (b) the thermal efficiency, (c) the net work per unit mass, and (d) the MEP. (e) What-if-Scenario: How would the thermal efficiency change if 75% of the total heat transfer took place at constant volume? [Manual Solution] [TEST Solution]

Answers: (a) T2 = 947 K, T3 = 2340 k, T4 = 3335 K, T5 = 1209 K, (b) 67.3%, (c) 1346 kJ/kg, (d) 1666 kPa, (e) 61.1%

44

www.5starnotes.com

www.5starnotes.com

45

www.5starnotes.com

www.5starnotes.com

46

www.5starnotes.com

www.5starnotes.com

EXAMPLE E8-2 Air enters the compressor of a 50 MW simple gas turbine at 100 kPa, 298 K. The pressure ratio of the compressor is 11 and the turbine inlet temperature is 1500 K. Using the cold-air standard Brayton cycle to model the power plant, determine (a) the mass flow rate, (b) the thermal efficiency, and (c) the back work ratio. (d) What-if-Scenario: How would the efficiency and mass flow rate change if the compression ratio is varied within the range 4-50? [Manual Solution] [TEST Solution]

Answers: (a) 11.61 kg/s, (b)

47

www.5starnotes.com

www.5starnotes.com

48

www.5starnotes.com

www.5starnotes.com

49

www.5starnotes.com

www.5starnotes.com

50

www.5starnotes.com

www.5starnotes.com

EXAMPLE E9-2 A steam power plant operates on an ideal Rankine cycle. Superheated steam flows into the turbine at 3 MPa and 400 oC with a flow rate of 100 kg/s and exits the condenser at 50 oC as saturated water. De termine (a) the net power output, (b) the thermal efficiency, and (c) the quality of steam at the turbine exit. (d) Whatif-scenario: How would the efficiency change if the condenser temperature can be lowered to 30oC? [Manual Solution] [TEST Solution] Answers: (a) 108,179 kW, (b) 33.2%, (c) 91.3%, (d) 36.5%

51

www.5starnotes.com

www.5starnotes.com

52

www.5starnotes.com

www.5starnotes.com 10-1-7 A refrigerator uses R-12 as the working fluid and operates on an ideal vapor compression refrigeration cycle between 0.15 MPa and 1 MPa. If the mass flow rate is 0.04 kg/s, determine (a) the tonnage of the system, (b) compressor power, and (c) the COP. (d) What-if-scenario: How would the answer in part (c) change if R12 was replaced with R-134a, a more Environmentally benign refrigerant? [Manual Solution] [TEST Solution] Answers: (a) 1.165 tons, (b) 1.36 kW, (c) 3.01, (d) 3.33

53

www.5starnotes.com

www.5starnotes.com

54

www.5starnotes.com

www.5starnotes.com Notes prepared by M.Sundaresan.

EXAMPLE E10-5 A two-stage cascade refrigeration plant uses R-22 as the working fluid in both the stages. The lower cycle operates between the pressure limits of 120 kPa and 380 kPa and the topping cycle has a condenser pressure of 1200 kPa. The heat exchanger that couples the two cycles requires a minimum temperature difference of 5oC between the heating and the heated streams. If the mass flow rate in the lower cycle is 0.08 kg/s, determine (a) the mass flow rate in the upper cycle, (b) the cooling capacity, and (c) the COP. (d) What-if-Scenario: How would the COP change if a single cycle operated between 1200 kPa and 120 kPa? [Manual Solution] Answers: (a) 0.11 kg/s, (b) 4.53 tons, (c) 2.7, (d) 2.58

55

www.5starnotes.com

www.5starnotes.com

56

www.5starnotes.com

AE 2202 Problem Material.pdf

(ii) There are two processes to be carried out during compression and expansion. For. isothermal process, the piston moves slowly and for adiabatic process the ...

2MB Sizes 2 Downloads 147 Views

Recommend Documents

ae syllabus.pdf
Page 1 of 9. JPSC. Assistant Engineer-(Syllabus) Page 1. Assistant Engineer-(Syllabus). Page 1 of 9. Page 2 of 9. JPSC. Assistant Engineer-(Syllabus) Page 2. Page 2 of 9. Page 3 of 9. JPSC. Assistant Engineer-(Syllabus) Page 3. Page 3 of 9. ae syllab

AE-2013_DSpace_sunum.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item.

AE-R.pdf
Commissioner of Education, the responsibilities for school district and school advisory accountability may be. assumed by one committee. Page 2 of 2. AE-R.pdf.

AE-AntonydeMello-SpiritualityMeansWakingUp.pdf
... fine; if you don't, too bad! As the Arabs say, "The nature of rain is the. same, but it makes thorns grow in the marshes and flowers in the gardens." Page 1 of 1.

AE-AntonydeMello-SpiritualityMeansWakingUp.pdf
Page 1. AE-AntonydeMello-SpiritualityMeansWakingUp.pdf. AE-AntonydeMello-SpiritualityMeansWakingUp.pdf. Open. Extract. Open with. Sign In. Main menu.

TANGEDCO AE Notification.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. TANGEDCO AE ...

Problem Finding Problem Solving - Playbooks
mind/pdf/value-of-mind-mapping.pdf .... Feeling. Services. Source: http://palojono.blogspot.com/2007/07/recording-ethnographic-observations.html .... Page 24 ...

AE-ValoresSigloXX-quino.pdf
Sign in. Page. 1. /. 6. Loading… Page 1 of 6. Page 1 of 6. Page 2 of 6. Page 2 of 6. Page 3 of 6. Page 3 of 6. AE-ValoresSigloXX-quino.pdf. AE-ValoresSigloXX-quino.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying AE-ValoresSigloXX-quin

Problem 1 Problem 2 Problem 3 -
roads through the forest are both extremely important, so a boy who reaches the age of manhood is not designated ... first hike is a 5 kilometer hike down the main road. The second hike is a 51. 4 kilometer ..... from one state to another with two cl

ME 6602 - AE- Q.pdf
PERATURAN DIRJEN DIKTI PEDOMAN OPERASIONAL. Desember 2014. Page 3 of 4. ME 6602 - AE- Q.pdf. ME 6602 - AE- Q.pdf. Open. Extract. Open with.

ME 6602 - AE - A.pdf
Why epicyclic gears are used in overdrive units? 12. What are the functions of clutch? 13. State the various functions of propeller shaft. 14. What are the features ...

TSGENCO-AE- Previous Year Papers-recruitmentnotice.pdf ...
Page 1 of 16. CheckExamResults.net. Page 1 of 16. Page 2 of 16. CheckExamResults.net. Page 2 of 16. Page 3 of 16. CheckExamResults.net. Page 3 of 16. TSGENCO-AE- Previous Year Papers-recruitmentnotice.pdf. TSGENCO-AE- Previous Year Papers-recruitment

AE (OT)-Electronics & Communication.pdf
Page 1. Whoops! There was a problem loading more pages. Retrying... AE (OT)-Electronics & Communication.pdf. AE (OT)-Electronics & Communication.pdf.

UR PCAT AE 2012.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. UR PCAT AE ...

AE t cosr c19
European Science Foundation c0s'|' Office ' Scientific and Technical Research. 149 avenue Louise - P.O. Box 12 - 1050 Brussels - Belgium. Tel: +32 (0)2 533 38 ...

AE Concentrations, Stoichiometry, Colligative Properties Answers 15 ...
Sign in. Page. 1. /. 2. Loading… Page 1 of 2. Page 1 of 2. Page 2 of 2. Page 2 of 2. AE Concentrations, Stoichiometry, Colligative Properties Answers 15-16.pdf.

AE Paper 1.pdf
Loading… Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. AE Paper 1.pdf. AE Paper 1.pd

180511 HSD AE Listserve Announcement.pdf
Sign in. Page. 1. /. 1. Loading… ... 180511 HSD AE Listserve Announcement.pdf ... Sign In. Details. Comments. General Info. Type. Dimensions. Size. Duration.

PR-AE-GAC-INV-USSok.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. PR-AE-GAC-INV-USSok.pdf. PR-AE-GAC-INV-USSok.pdf. Open. Extract. Open with. Sign In. Main menu.

AE(Elect)compEngg-1.pdf
Sign in. Loading… Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying.

TSNPDCL-AE-Notification-2015.pdf
Page 1. Whoops! There was a problem loading more pages. Retrying... TSNPDCL-AE-Notification-2015.pdf. TSNPDCL-AE-Notification-2015.pdf. Open. Extract.

Srinivasan Engineering College AE Finite Element Method.pdf ...
Point collocation method. Sub domain collocation method. Least squares ... Displaying Srinivasan Engineering College AE Finite Element Method.pdf. Page 1 of ...

AE Paper 1.pdf
Page 1 of 18. www.previouspapers.in. Page 1 of 18. Page 2 of 18. www.previouspapers.in. Page 2 of 18. Page 3 of 18. www.previouspapers.in. Page 3 of 18.