

	
 Home

	 Add Document
	 Sign In
	 Create An Account

	
 Viewer

	
 Transcript

DEIM Forum 2010 E8-2

An Experimental Study on IO Optimization Techniques for Flash-based Transaction Processing Systems Yongkun WANG† , Kazuo GODA† , Miyuki NAKANO† , and Masaru KITSUREGAWA† † Institute of Industrial Science, the University of Tokyo 4–6–1 Komaba, Meguro–ku, Tokyo 153–8505 Japan E-mail: †{yongkun,kgoda,miyuki,kitsure}@tkl.iis.u-tokyo.ac.jp Abstract Flash SSDs are being considered and partially starting to be utilized for enterprise storage. In order to maximize the performance benefit, different IO optimization techniques can be applied to the existing storage system. We examined the IO optimization techniques and the distinct features of the flash SSD. The IOs applied with optimization techniques are analyzed through the IO path with the trace generated from the transaction processing system which is usually hosted on the enterprise storage platforms. Key words NAND Flash Memory, SSD, LFS, Transaction Processing

1. Introduction

For flash SSD, these IO optimization techniques should be reconsidered. For example, for log-structured file system, al-

Flash SSDs (Solid State Drive) are being considered and

though the sequential reads may be converted into random

partially starting to be utilized for enterprise storage. Many

reads, the performance may not be harmed since the perfor-

enterprise storage platforms, such as EMC Symmetrix V-

mance of sequential read is close to that of random read on

Max [2], Oracle EXADATA V2 [11], have incorporated flash

flash SSD since there is no mechanical moving parts.

SSDs to boost the IO performance of the whole system. How-

Therefore, we studied the IO optimization techniques and

ever, the flash SSD is a brand new storage media, with spe-

the distinct features of the flash SSD. IOs applied with opti-

cial IO characteristics which is far away from the traditional

mization techniques are analyzed through the IO path with

hard disk, such as the fast read performance, “erase-before-

the trace generated from the transaction processing system

write”, and wear-leveling. Therefore, the conventional IO

which is usually hosted on the enterprise storage platforms.

optimization techniques should be reconsidered based on the

The rest of this paper will organize as follow: Section 2 will

characteristics of flash SSD.

describe the experiment setup. In Section 3, we will present

IO optimization techniques are important to the overall

the transaction throughput. The trace-based analysis will be

performance of the storage system, especially the transac-

provided in Section 4. Section 5 will summarize the related

tion processing system. The IO optimization techniques are

work. Finally, our conclusion and the future work will be

usually designed by the characteristics of the workload and

provided in Section 6.

storage media. In the case of the transaction processing systems, the workload is mainly composed of the random writes

2. Experiment Setup

to the storage media. For the widely used storage media,

Our experiments focus on the transaction processing sys-

hard disk, the random writes are very slow due to the me-

tem, which is one of the most important applications hosted

chanical moving parts. Hence lots of IO optimization tech-

on enterprise storage platform. We used the popular TPC-

niques are applied to try to convert the random writes to se-

C [15] as the benchmark for the performance of transaction

quential writes in order to maximize the overall performance.

processing systems. A database server to run the TPC-C

For example, at file system level, the log-structured file sys-

benchmark was built with the Linux operating system. High-

tem is proposed to convert the random writes to sequential

end SLC flash SSDs are connected to the computer system

writes, with the side-effect that sequential reads may also be

with SATA 3.0Gbps hard drive controller. These SSDs are

converted into random reads. At the block IO level, the IO

different in random access time or throughput. Fig. 1 gives

scheduler plays a vital role to group, merge and re-order the

the view of our experimental system.

requests to utilize the sequential performance of the storage media.

We chose a commercial DBMS, as well as popular open source DBMS MySQL, as the database system for the TPC-

K L , D4M C5++ . 1!* 6$5N .:;: 6$+' 6"'/

K L R "5 Q . 1!* "$5N .:;: 6$+' &0 '/

. ? :;: 6'

K L M!O PQ4; QR QR . 1!* "$5N .:;: 6$+' #"+ '/

\TTT [TTT Q 2 #++ ,

; 7? D!

 ! " #$%&'()* + # &&,() -. /* 0 ,/ 1" 2 '/ 3 4 " " 566 2 ,78 9 3.:;: 6$+ ' (3 ?@ ! A? 2 > == B 4: +* #* 5 3 #+ . 9 C"++ 4D, 5++'/ (3 ?@ E F I J "GH $&$#%

Fig. 1 System Configuration

vwxV

ZTTT ut rs

ybqzoV

YTTT XTTT WTTT VTTT UTTT T

]^ _` a

ba^cd

efg

]^_` a

f` hhc _ijk d lm

ba^cd

efg

]nop q

Fig. 2 Transaction Throughput with “Anticipatory” scheduler with 30 users and 30 warehouses

C benchmark. In the commercial database system, the buffer cache was

to simulate virtual users, the number varying from 10 to 30,

set to 8MB, redo log buffer was 5MB, and the block size was

with 10 to 30 warehouses accordingly. The “Key and Think-

4KB. For logging, we set the behavior to immediately do

ing” time was set to zero in order to get a hot workload.

flushing of the redo log buffer with wait when committing

The mix of the transaction types followed the standards

the transaction. The data file was fixed to a large size in

in [15], that is, “New-Order”: 43.48%, “Payment”: 43.48%,

order to have a better sequential IO performance. All the

“Order-Status”: 4.35%, “Delivery”: 4.35%, “Stock-Level”:

IOs were set to be synchronous IO, but not direct IO since

4.35%. Only the “New-Order” transaction was counted in

we use file system.

the transaction throughput since it is the backbone of the

For MySQL, we installed the InnoDB storage engine. The data buffer pool size was 4MB, log buffer was 2MB, and the block size was 16KB. The block size of MySQL was different from that of the commercial DBMS, because MySQL does not allow us to configure the block size, although 16KB might not be optimal. We also fixed the size of data file instead of “autoextend”. Synchronous IO behavior was chosen. For the flushing method of log, we set it to flush the log at transaction commit; for the flushing of data, we used the synchronous IO. Different file systems have different optimizations on the

workload [15]. Some SSDs do not allow us to disable the cache, so the write-back cache was enabled on each SSD by default.

3. Transaction Throughput We present the transaction throughput by special IO optimization technique. We will examine the following cases: •

Case 1: Data files are hosted on SSD formated with

traditional in-place update file system •

Case 2: Data files are hosted on SSD formated with

log-structured file system

IO. We evaluated two file systems on flash SSD, the con-

We compare the performance in Case 1 and Case 2. The

ventional EXT2 file system and a log-structured file system,

transaction throughput is shown in Fig. 2. We find that the

NILFS2 [7]. For EXT2, we set it with the default block size and group size, that was 4KB blocks and 32K blocks per group. For NILFS2, we set the block size to 4KB too, with 2KB blocks per segments. The segment size is influential to the garbage collection (GC, a.k.a segment cleaning) policy. By default we disabled it for the simplicity of analysis. The “Anticipatory” was chosen as the default IO schedul-

log-structured file system is superior to traditional file system on Mtron SSD, but not outstanding on other SSDs. We think it is due to the different character of each SSD. Section 4. 2 will discuss this point.

4. Performance Analysis In this section, we will analyze the effect of the IO optimization techniques, combined with the prominent perfor-

ing algorithm. The IO scheduling is important for the tra-

mance character of flash SSD.

ditional file system. For the log-structured file system, we

4. 1 IO Optimizations

think it is not necessary to do IO scheduling since the log-

We placed trace points at VFS layer, generic block IO

structured file system has already organized all the writes to

(BIO) layer and IO scheduler layer, as shown in Fig. 3.

sequential writes, while the read, both sequential and ran-

Firstly, we examined the difference by the difference IO opti-

dom, is fast and minor part of IO.

mizations at file system level, that is, the different processing

For the TPC-C benchmark, we started a number of threads

results between the traditional file system and log-structured

25

Database Application

Write

VFS

Read

20

Trace

EXT2 NILFS2 File System File System Address Mapping Layer

15

10

Generic Block Layer IO Scheduler Layer Device Driver

Device Driver

Hard Disk

Flash SSD

Trace 5

Trace

Mtron

Fig. 3 IO path in the Linux kernel of our experiment system

Intel

OCZ

file system. The amount of IOs at the VFS layer is almost identical for the two file system. A comparison between the

EXT2

Intel

NILFS2

EXT2

Mtron

MySQL

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

0

OCZ

Commercial DB

Fig. 4 Ratio between the VFS and generic block layer about the number of requests per transaction

VFS layer and generic block IO layer will tell us the changes

4

after processed by different file systems. Fig. 4 shows the dif-

EXT2

NILFS2

3.5

ference by the number of requests per transaction. Clearly,

3

the number of read requests decreased a lot, due to the hit

2.5

by file system buffer. A close view about the difference of

2

writes is shown in Fig. 5, which shows that the number of

1.5

write requests does not change on EXT2, while the num-

1

ber of requests reduces at 2x to 3.5x for NILFS2 in the case

0.5

of MySQL, but it does not vary in the case of Commercial

0

database system. We conjecture that it is due to the differ-

Mtron

ent buffer policy of different storage engine by the database applications. Fig. 6 shows the changes in bytes, which confirms that not only the number of requests, but the total

Intel

OCZ

Mtron

MySQL

Intel

OCZ

Commercial DB

Fig. 5 Ratio between the generic block layer and VFS layer about the number of write request per transaction

amount of reads in bytes are absorbed by the buffer. A close view on writes shown in Fig. 7 tells us that the write amount

18

in bytes are still not changed on EXT2, but it is increased

16

Write Read

14

on NILFS2, especially in the case of commercial database.

12)

(

Combined with the number changes of the write requests

10

%

&'

#$

!

"

8

in bytes for commercial database on NILFS2, although the

6

number of write requests is not changed. This shows that

4

We also analyzed the changes processed by the IO scheduler. As for the changes about the number of requests and the amount of bytes, Fig. 8 and Fig. 9 show that none of them has experienced a big change after processed by IO

Mtron

Intel

OCZ

MySQL

Mtron

Intel

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

0 NILFS2

More IOs than EXT2 will put the NILFS2 at a disadvantage.

2

EXT2

more writes are added on NILFS2 compared to the EXT2.

NILFS2

shown in Fig. 5, it is clear that each request is enlarged

OCZ

Commercial DB

Fig. 6 Ratio between the VFS and generic block layer about the amount of IOs in bytes per transaction

scheduler, which shows that the requests of transaction processing system are dominated by random requests which cannot be merged significantly. Another function of the IO scheduling is the re-ordering. Fig. 10 shows the address distribution after processed by the IO scheduler. At this time, the sectors are ready for transfer via the device driver. Fig. 10(a) shows that the writes are organized to approximately sequential write on each run for commercial DB on EXT2, noticed that the sequential log

writes are shown both at the top and bottom as a line. The reads are in burst between each run of writes. As comparison, Fig. 10(b) shows the access pattern of commercial DB on NILFS2: the writes are completely linear for all the data, and reads are in burst as well. The address distribution in Figure 10 shows that the writes in the conventional file system are well ordered by the IO

3.5 EXT2

NILFS2

read

12000000

3

write

2.5

10000000

2

N

1.5

GF HIJ GG D EF D C

1

E

0.5

8000000

L MK

6000000

4000000

0 Mtron

Intel

OCZ

Mtron

MySQL

Intel

OCZ

2000000

Commercial DB 0

Fig. 7 Ratio between the generic block layer and VFS layer about

0

2

4

OPQR STU

6

8

10

the amount of writes in bytes per transaction (a) Commercial DB on EXT2 3 -

Write

, +

Read

2.5

* ' &()

rstu

ZVVVVVVV

vrwxs

2

$%

YWVVVVVV " "

1.5 !

1

YVVVVVVV j

a

h ig

cb def cc

0.5

XWVVVVVV

` ab

Mtron

Intel

OCZ

Mtron

MySQL

EXT2

Intel

`_

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

0

OCZ

XVVVVVVV

WVVVVVV

Commercial DB V

Fig. 8 Ratio between the generic block layer and IO scheduler

V

layer about the number of requests per transaction 3

= 7; ?B @

2.5

/9

2

< 6= 2 1

1.5 :79

1

> 45

V^ [

X

XY [

X

[\

fered to Intel SSD by device driver after processed by “Anticipatory” scheduling algorithm. The sector address on other SSDs have similar access patterns and are not shown here for sake of brevity. Both figures contain equal

79 7

number of IOs.

Mtron

Intel MySQL

OCZ

Mtron

EXT2

Intel

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

EXT2

NILFS2

0 EXT2

2

0.5

NILFS2

./

klmn opq

Read

7;

01 2

V] [

Fig. 10 The sector address of Commercial database IOs trans-

? 45

08 67 3 45

V [\

(b) Commercial DB on NILFS2

Write

A7

VY [

OCZ

Commercial DB

Fig. 9 Ratio between the generic block layer and IO scheduler layer about the amount of IOs in bytes per transaction

spaces. Consequently, the erase operations would happen much less than that on EXT2. Therefore, the address distribution shows that the flash SSD would be quite favorable on the log-structured file system providing the same number of IOs. 4. 2 Prominent Performance Character of Flash

scheduler, so that it appears to be approximately linear in

SSD

each run. However, the writes are limited in the address

We discuss the prominent performance character of flash

space of the file, rendering frequently going back and writ-

SSD which will be favorable for the log-structured file sys-

ing from the starting address of the file, causing the erase

tem, and disclose the reason of the difference of transaction

operations for each run. As a comparison, writes in log-

throughput on different file systems. Figure 11 show the per-

structured file system are well organized and distributed to

formance gain of the sequential IO against random IO with

the whole disk space. We can see that the write addresses

one million requests for each size on “raw” SSD device. The

are always linear increasing providing there are enough disk

read-ahead number is set to 256 sectors. Even with read-

 mtron read mtron write intel read intel write ocz read ocz write

technology automatically saving a copy of every change made to that data to a separate storage location in an enterprise storage system. Another successful example is the Sprite LFS [12], a log-structured file system. The LFS is designed

to exploit fast sequential write performance of hard disk, by

converting the random writes into sequential writes. How-

ever, the side effect is that the sequential reads may also 1

2

4 8 16 32

64

128

Fig. 11 Performance ratio of sequential IO to random IO

be scattered into random reads. Overall, the performance can be improved to write-intensive applications. The LFS is also expected to improve the random write performance of flash memory, since the fast read performance of flash

ahead, the gap between sequential and random reads is close

memory well mitigates the side effect. For the garbage col-

to 1 for Mtron and OCZ SSD. We got the same results for

lection of LFS, an adaptive method based on usage patterns

these two SSDs even when we disabled the read-ahead. For

is proposed in [10]. Shadow paging [13] is a copy-on-write

Intel SSD, sequential read speedup ratio is round 2x to 3x .

technique for avoiding in-place updates of pages. It needs to

We observed in our test system that the amount of sequential

modify indexes and block lists when the shadow pages are

reads of transaction processing system are small compared

submitted. This procedure may recurse many times, becom-

to the random reads, so the suffering from random reads on

ing quite costly.

NILFS2 is small. We then mainly focus on the gap caused by

5. 2 Flash-based Technologies

the sequential writes to random writes. The “mtron-write”

By a systematical “Bottom-Up”view, the research on flash

line shows that the sequential write speedup ratio of Mtron

memory can be categorized as follow:

is more than 100 times for small request. But this speedup

Hardware Interface This is a layer to bridge the oper-

is obtained by the evenly distributed random writes on the

ating system and flash memory, usually called FTL (Flash

whole disk spaces. Recall the address access pattern shown

Translation Layer). The main function of FTL is mapping

in Figure 10(a), the writes on EXT2 is approximately linear

the logical blocks to the physical flash data units, emulat-

in each run within the file address space. That is why the

ing flash memory to be a block device like hard disk. Early

overall transaction performance is only around 6x instead of

FTL using a simple but efficient page-to-page mapping [4]

100/2 = 50 times, where 2 comes from the two times writes

with a log-structured architecture [12]. However, it requires

on NILFS2 as many as that on EXT2. On Intel SSD, the

a lot of space to store the mapping table. In order to reduce

gain of sequential to random is only around 2x to 3x. So

the space for mapping table, the block mapping scheme is

the overall performance on NILFS2 is not better than that

proposed, using the block mapping table with page offset to

on EXT2 with twofold increase of the sectors to write. It is

map the logical pages to flash pages [1]. However, the block-

medium on OCZ SSD since the sequential speedup ratio is

copy may happen frequently. To solve this problem, Kim

about 8x to 18x, which ranks between the Mtron SSD and

improved the block mapping scheme to the hybrid scheme

Intel SSD.

by using a log block mapping table [6].

Therefore, the effectiveness of the log-structured IO optimization on SSD can be summarized as follows:

File System Most of the file system designs for flash memory are based on Log-structured file system [12], as a way to

The advantage of log-structured IO optimization is

compensate for the write latency associated with erasures.

still based on the asymmetric performance between sequen-

JFFS, and its successor JFFS2 [3], are journaling file systems

tial IO and random IO. The performance asymmetry is

for flash. JFFS2 performs wear-leveling with the cleaner se-

caused by the erase operations instead of the disk head mov-

lecting a block with valid data at every 100th cleaning, and

ing. The more time-consuming is the erase operation, the

one with most invalid data at other times. YAFFS [17] is a

more speedup is obtained by log-structured IO optimization.

flash file system for embedded devices.

•

In order to achieve high performance, the implemen-

Database System Previous design for database system

tation of the log-structured IO optimization should not in-

on flash memory mainly focused on the embedded systems or

troduce extra IOs for special purpose, such as snapshot.

sensor networks in a log-structured behavior. FlashDB [9] is

•

5. Related Work

a self-tuning database system optimized for sensor networks, with two modes: disk mode for infrequent write, much like

5. 1 Non-In-Place Update Techniques

regular B + –tree; log mode for frequent write, employed a log-

Continuous data protection (CDP) [14] [18] is a backup

structured approach. LGeDBMS [5], is a relational database

system for mobile phone. For enterprise database design on flash memory, In-Page Logging [8] is proposed. The key idea is to co-locate a data page and its log records in the same physical location.

6. Conclusion and Future Work Many IO optimization techniques can be applied to the flash-based transaction processing systems. Different IO optimizations with special characteristics of the flash SSD, can yield different transaction throughput. We provided a tracebased analysis at different layers of the kernel through the IO path on SSDs with two different IO optimization techniques at file system level. As for the future work, we plan to boost the performance of the whole system by combining the characteristics of database system, the IO optimization techniques and the features of flash SSD. References [1] Ban, A.: Flash file system. US Patent No. 5404485 (April 1995) [2] EMC: Specification Sheet: EMC Symmetrix V-Max Storage System. http://www.emc.com/products/detail/hardware/ symmetrix-v-max.htm [3] JFFS2: The Journalling Flash File System, Red Hat Corporation, http://sources.redhat.com/jffs2/jffs2.pdf. (2001) [4] Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash-Memory Based File System. In: USENIX Winter. (1995) 155-164 [5] Kim, G.J., Baek, S.C., Lee, H.S., Lee, H.D., Joe, M.J.: LGeDBMS: A Small DBMS for Embedded System with Flash Memory. In: VLDB. (2006) 1255-1258 [6] Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A spaceefficient flash translation layer for CompactFlash systems. IEEE J CE 48(2) (May 2002) 366-375 [7] Konishi, R., Amagai, Y., Sato, K., Hifumi, H., Kihara, S., Moriai, S.: The Linux implementation of a log-structured file system. Operating Systems Review 40(3)(2006) 102-107 [8] Lee, S.W., Moon, B.: Design of flash-based DBMS: an inpage logging approach. In: SIGMOD Conference. (2007) 55-66 [9] Nath, S., Kansal, A.: FlashDB: dynamic self-tuning database for NAND flash. In: IPSN. (2007) 410-419 [10] Neefe, J.M., Roselli, D.S., Costello, A.M., Wang, R.Y., Anderson, T.E.: Improving the Performance of Log-Structured File Systems with Adaptive Methods. In: SOSP. (1997) 238251 [11] Oracle: ORACLE EXADATA V2: http://www.oracle. com/us/products/database/exadata/index.htm [12] Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a Log-Structured File System. ACM Trans. Comput. Syst. 10(1) (1992) 26-52 [13] Shenai, K. In: Introduction to database and knowledge-base systems. World Scientific (1992) page 223 [14] Strunk, J.D., Goodson, G.R., Scheinholtz, M.L., Soules, C.A.N., Ganger, G.R.:Self-Securing Storage: Protecting Data in Compromised Systems. In: OSDI. (2000) 165-180 [15] TPC: Transaction Processing Performance Council: TPC BENCHMARK C, Standard Specification,Revision 5.10. (April 2008) [16] Wang, Y., Goda, K., Kitsuregawa, M.: Evaluating Non-InPlace Update Techniques for Flash-based Transaction Pro-

cessing Systems. In: DEXA (2009), 777-791 [17] YAFFS: Yet Another Flash File System, http://www. yaffs.net [18] Zhu, N., Chiueh, T.: Portable and Efficient Continuous Data Protection for Network File Servers. In: DSN. (2007) 687-697

An Experimental Study on Basic Performance of Flash ...

An Experimental Study on the Capture Effect in ... - Semantic Scholar

Bad News: An Experimental Study On The ...

An Experimental Study on Non-Linear Vibration ...

An Experimental Study on Coupled Balancing Tasks ...

Flash Oriented IO Management for Data Intensive ...

Measurement-Based Optimization Techniques for ... - Semantic Scholar

Measurement-Based Optimization Techniques for ... - Semantic Scholar

Minority vs. Majority: An Experimental Study of ...

Constrained School Choice: An Experimental Study

Cross-situational learning: an experimental study of ...

An Experimental Study of Security Vulnerabilities ... - Semantic Scholar

Cross-situational learning: an experimental study of ...

Push: An Experimental Facility for Implementing Distributed ...

An Experimental and Numerical Study of a Laminar ...

Write Here, Write Now!: An Experimental Study ... - Research at Google

Cross-situational learning: an experimental study of ...

CrossSituational Learning: An Experimental Study of ...

An Experimental Study on IO Optimization Techniques for Flash ...

We examined the IO optimization techniques and the distinct features of the flash SSD. The IOs applied with optimization techniques are analyzed through the IO ...

 Download PDF

 661KB Sizes
 0 Downloads
 286 Views

 Report

Recommend Documents

An Experimental Study on Basic Performance of Flash ...

The simulator is expected to be effective to design flash-based database ... calculated the trend line for each data series. The ... RAID 0, 1, 5 and 10. Seagate ...

An Experimental Study on the Capture Effect in ... - Semantic Scholar

A recent measurement work on the cap- ture effect in 802.11 networks [12] argues that the stronger frame can be successfully decoded only in two cases: (1) The.

Bad News: An Experimental Study On The ...

Sep 1, 2011 - rewards can be an effective way of motivating people, there is also a vast We did not find any indication of order effects of the conditions (I-U.

An Experimental Study on Non-Linear Vibration ...

... structures need stronger design and higher service life associated with saving in weight. ... top, keeping the chamber open to atmosphere. ... to account them.

An Experimental Study on Coupled Balancing Tasks ...

linearized inverted pendulum, the subject manipulates the displacement of cart xc. H by mice. In this system, the subject can perform a balancing task, manipulating the cart xc. H to make it track the target repelling from the cart. To achieve this,

Flash Oriented IO Management for Data Intensive ...

Feb 16, 2011 - Intel 2GHz processor, 2GB memory with Mtron PRO 7500 32GB SLC. Linux 2.6.x, TPC-C (#W=30), DBMS-X with 4KB blocks, 80MB buffer ...

Measurement-Based Optimization Techniques for ... - Semantic Scholar

the TCP bandwidth achievable from the best server peer in the candidate set. lection hosts to interact with a large number of realistic peers in the Internet, we ... time) like other systems such as web servers; in fact the average bandwidth ...

Measurement-Based Optimization Techniques for ... - Semantic Scholar

the TCP bandwidth achievable from the best server peer in the candidate set. Host. Location. Link Speed. # Peers. TCP Avg. 1. CMU. 10 Mbps. 2705. 129 kbps. 2 ... time) like other systems such as web servers; in fact the average bandwidth ...

Minority vs. Majority: An Experimental Study of ...

Jan 11, 2008 - reason, you wish to vote for project 2, write 1 in the second cell in the first row and write 0 in the other two. You can choose only one project, that is there must appear a 1 and two zeros as your votes in every row. Choose your vote

Constrained School Choice: An Experimental Study

Nov 18, 2008 - SÃ¶nmez, Utku Ãœnver and participants of the Caltech SISL Mini-Conference on Matching for helpful discussions, and Sebastian Bervoets for ...

Cross-situational learning: an experimental study of ...

Spoken forms were produced using the Victoria voice on the Apple Mac OS X speech synthe-ac.uk/research/Ëœmtucker/SlideGenerator.htm), and participants were tested ... or 8 non-target referents co-present with the target referent on each ...

An Experimental Study of Security Vulnerabilities ... - Semantic Scholar

Networked systems, such as large web server farms and host. A user logon to an FTP server authenticates itself by user name and password and then ...

Cross-situational learning: an experimental study of ...

School of Philosophy, Psychology and Language Sciences, ... ,. Richard ... SUPA, School of Physics and Astronomy,.

Push: An Experimental Facility for Implementing Distributed ...

Distributed database systems need special operating system support. Support rou- ... supplement or modify kernel facilities for database transaction processing.

An Experimental and Numerical Study of a Laminar ...

for broadband emissions by subtracting an im- Figure 13 shows the comparison for the fuel LinËœÃ¡n A., in Combustion in High Speed Flows (J. Buck-.

Write Here, Write Now!: An Experimental Study ... - Research at Google

particular on group maintenance, impression management and relationship-focused ... writing software is often not geared toward a relational ap- proach to ...

Cross-situational learning: an experimental study of ...

call Random from C, a learner would learn a given word with probability. 1. (C+1) bridge, MA: MIT Press. Pinker, S. (1994). How could ... (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 1023â€“1028).

CrossSituational Learning: An Experimental Study of ...

voice on the Apple Mac OS X speech synthesizer. The experiment mize the likelihood of the data are preferred) and overfitting (strategies which account for.

×
Report An Experimental Study on IO Optimization Techniques for Flash ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

