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Abstract. Given a positive integer k and an edge-weighted undirected graph G = (V, E; w), the minimum k-way cut problem is to ﬁnd a subset of edges of minimum total weight whose removal separates the graph into k connected components. This problem is a natural generalization of the classical minimum cut problem and has been well-studied in the literature. A simple and natural method to solve the minimum k-way cut problem is the divide-and-conquer method: getting a minimum k-way cut by properly separating the graph into two small graphs and then ﬁnding minimum k -way cut and k -way cut respectively in the two small graphs, where k + k = k. In this paper, we present the ﬁrst algorithm for the tight case of k = k/2. Our algorithm runs in O(n4k−lg k ) time and can enumerate all minimum k-way cuts, which improves all the previously known divide-and-conquer algorithms for this problem. Keywords: k-Way Cut, Divide-and-Conquer, Graph Algorithm.
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Introduction



Let k be a positive integer and G = (V, E; w) a connected undirected graph where each edge e has a positive weight w(e). A k-way cut of G is a subset of edges whose removal separates the graph into k connected components, and the minimum k-way cut problem is to ﬁnd a k-way cut of minimum total weight. The minimum k-way cut problem is a natural generalization of the classical minimum cut problem and has great applications in the area of VLSI system design, parallel computing systems, clustering, network reliability and ﬁnding cutting planes for the travelling salesman problems. The minimum 2-way cut problem is commonly known as the minimum cut problem and can be solved in O(mn+ n2 log n) time by Nagamochi and Ibaraki’s algorithm [12] or Stoer and Wagner’s algorithm [19]. Another version of the minimum 2-way cut problem is the minimum (s, t) cut problem, which asks us to 
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ﬁnd a minimum cut that separates two given vertices s and t. The minimum (s, t) cut problem can be solved in O(mn log n2 /m) time by Goldberg and Tarjan’s algorithm [4] and O(min(n2/3 , m1/2 )m log(n2 /m) log U ) time by Goldberg and Rao’s algorithm [3], where U is the maximum capacity of the edge. Finding a minimum cut or minimum (s, t) cut is a subroutine in our algorithms. In the  remainder of the paper, we use T (n, m) = O(mn) to denote the running time of computing a minimum cut or a minimum (s, t) cut in an edge-weighted graph. For k = 3, Kamidoi et al. [8] and Kapoor [10] showed that the minimum 3-way cut problem can be solved by computing O(n3 ) minimum (s, t) cuts. Later, Burlet and Goldschmidt [1] improved this result to O(n2 ) minimum cut computations. He [6] showed that in unweighted planar graphs the minimum 3-way cut problem can be solved in O(n log n) time. Xiao [22] designed the ﬁrst polynomial algorithm for ﬁnding minimum 3-way cuts in hypergraphs. Furthermore, Kamidoi et al. [8] and Nagamochi and Ibaraki [13] proved that the minimum 4-way cut problem can be solved by computing O(n) minimum 3-way cuts. Nagamochi et al. [14] extended this result for minimum {5, 6}-way cuts by showing that Tk (n, m) = O(nTk−1 (n, m)), where k = 5, 6, and Tk (n, m) is the running time of computing a minimum k-way cut. Those results lead to k  O(mn ) time algorithms for the minimum k-way cut problem for k ≤ 6. For general k, Goldschmidt and Hochbaum [5] proved that the minimum k-way cut problem is NP-hard when k is part of the input and gave the ﬁrst polyno2 mial algorithm for ﬁxed k. The running time of their algorithm is O(nk T√(n, m)). Later, Kamidoi et al. [9] improved the running time to O(n4k/(1−1.71/ k)−34 T (n, m)). Karger and Stein [11] proposed a Monte Carlo algorithm with O(n2(k−1) log3 n) running time. Recently, Thorup [20] designed an deterministic algorithm with running time O(n2k ), which is based on tree packing. Since this problem is NP-hard for arbitrary k, it is also interesting to design approximation algorithms for it. Saran and Vazirani[18] gave two simple approximation algorithms with ratio of (2 − 2/k) and running time of O(nT (n, m)). Naor and Rabani [16] obtained an integer program formulation of this problem with integrality gap 2, and Ravi and Sinha [17] also derived a 2-approximation algorithm via the network strength method. Zhao et al. [24] proved that the approximation ratio is 2 − 3/k for an odd k and 2 − (3k − 4)/(k 2 − k) for an even k, if we compute a k-way cut of the graph by iteratively ﬁnding and deleting minimum 3-way cuts in the graph. Xiao et al. [23] determined the tight approximation ratio of a general greedy splitting algorithm, in which we iteratively increase a constant number of components of the graph with minimum cost. That result implies that the approximation ratio is 2−h/k+O(h2 /k 2 ) for the algorithm that iteratively increases h−1 components. Most deterministic algorithms for ﬁnding minimum k-way cuts, including the two algorithms presented by Goldschmidt and Hochbaum [5] and Kamidoi et al. [9], are based on a divide-and-conquer method. The main idea is to get a minimum k-way cut by properly separating the graph into two small graphs and then ﬁnding minimum k  -way cut and k  -way cut respectively in the two small graphs, where k  + k  = k. We say that cut C = [X, X] is an (h, k − h)-cut of
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G, if there is a minimum k-way cut Ck = [Y1 , · · · , Yh , Yh+1 · · · , Yk ] of G such h k that i=1 Yi = X and i=h+1 Yi = X. Once an (h, k − h)-cut C = [X, X] is given, we only need to ﬁnd a minimum h-way cut in induced subgraph G[X] and a minimum (k − h)-way cut in induced subgraph G[X]. Goldschmidt and Hochbaum [5] proved that there are a set S of at most k − 2 vertices and a set T of at most k − 1 vertices such that a minimum (S, T ) cut is a (1, k − 1)-cut. By enumerating all the possibilities of S and T , we have at most O(n2k−3 ) candidates 2 for (1, k − 1)-cuts. Goldschmidt and Hochbaum obtained an O(nk ) algorithm for the minimum k-way cut problem by recursively applying this method. There are two ways to improve this method. First, we can reduce the sizes of S and T . Second, we can try to make minimum (S, T ) cut a more ‘balanced’ cut, in other words, we want minimum (S, T ) cut an (h, k − h)-cut such that h is close to k2 . Kamidoi et al. [9] proved that there are a set S of at most k − 2 vertices and a set T of at most k − 2 vertices such that a minimum (S, T ) cut is√a (p, k − p)-cut √ with p = (k − k)/2 − 1, and then they got an O(n4k/(1−1.71/ k)−34 T (n, m)) algorithm for the minimum  k-way cut problem. In this paper, we show that there are a set S of at most 2 k2 vertices and a set T of at most k − 1 vertices such     that a minimum (S, T ) cut is a ( k2 , k2 )-cut. Based on this property, we obtain an O(n4k−lg k ) algorithm for ﬁnding all minimum k-way cuts. Previous results as well as our result are summarized in the following table. Recently Thorup [20] designed an even faster algorithm for the minimum k-way cut problem, which is based on tree packing, but not the divide-and-conquer method. Table 1. History of divide-and-conquer algorithms for the minimum k-way cut problem Bounds on |S| and |T | The min (S, T ) cut Running time for the min k-way cut problem



Goldschmidt et al. [5] k − 2 and k − 1 (1, k − 1)-cut 2



O(nk )



Kamidoi et al. [9] This paper k − 2 and k − 2 2 k/2 and k − 1 (p, k −√p)-cut, (k/2 , k/2)-cut p = (k − k)/2 − 1 √ O(n4k/(1−1.71/ k)−16 ) O(n4k−lg k )



In this paper, we assume the original graph G = (V, E; w) is a connected graph with more than k vertices. For an edge subset E  ⊆ E, w(E  ) denotes the total weight of the edges in E  . Let X1 , X2 , · · · , Xl ⊂ V be l (2 ≤ l ≤ n) disjoint nonempty subsets of vertices, then [X1 , X2 , · · · , Xl ] denotes the set of edges crossing any two diﬀerent vertex sets of {X1 , X2 , · · · , Xl }. A 2-way cut is also simply called a cut of the graph. Cut [X, X] is called an (S, T ) cut, if S ⊆ X and T ⊆ X. Sometimes a singleton set {s} is simply written as s and w([X1 , X2 , · · · , Xl ]) as w(X1 , X2 , · · · , Xl ). The rest of the paper is organized as follows: We ﬁrst present the simple divide-and-conquer algorithm in Section 2. Then we give the proofs of our structural results in Section 3. In the last section, we conclude with some remarks.
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The Divide-and-Conquer Algorithm



Let C = [X, X] be a cut. Recall that cut C is an (h, k − h)-cut of G if there is a h minimum k-way cut Ck = [Y1 , · · · , Yh , Yh+1 · · · , Yk ] of G such that X = i=1 Yi k and X = i=h+1 Yi . Let Ck = [Y1 , · · · , Yk ] be a minimum k-way cut and 1 ≤ h ≤ k − 1 an integer. By arbitrarily choosing h components {Yj1 , Yj2 , · · · , Yjh } h h of Ck , we get an (h, k − h)-cut [ i=1 Yji , i=1 Yji ], which is called an (h, k − h)partition of Ck . Among all (h, k − h)-partitions, those with minimum weight are called minimum (h, k − h)-partitions of Ck and the weight of them is denoted by wh,k−h (Ck ). For an (h, k − h)-cut [X, X] of graph G, a minimum h-way cut [Y1 , · · · , Yh ] in induced graph G[X] and a minimum (k − h)-way cut [Z1 , · · · , Zk−h ] in induced graph G[X] together yields a minimum k-way cut [Y1 , · · · , Yh , Z1 , · · · , Zk−h ] in the original graph G. This suggests a recursive way to solve the minimum k-way cut problem: ﬁnd an (h, k − h)-cut [X, X] and recursively ﬁnd minimum h-way and (k − h)-way cuts respectively in G[X] and G[X]. However it is not easy to ﬁnd an (h, k − h)-cut,   even for h = 1. In Section 3, we will prove that for each minimum ( k2 , k2 )-partition [X, X] of each min  imum k-way cut, there are a set S of at most 2 k2 vertices and a set T of at most k − 1 vertices such that a minimum (S, T ) cut is [X, X] (See Theorem 2). This minimum (S, T ) cut is called the nearest minimum (S, T ) cut of S and can be found by using the same time of computing a maximum ﬂow from S to T . Theorem 2 enables us to obtain the following divide-and-conquer algorithm to ﬁnd minimum k-way cuts. We enumerate all possibilities of S and T and ﬁnd the nearest minimum (S, T ) cuts in the graph. Then we get a family Γ 



n 



k of at most 2nk × k−1 < n2 2 +(k−1) (S, T ) cuts by using the same num2 ber ﬂow computations. By Theorem 2, Γ contains all minimum  ofmaximum  ( k2 , k2 )-partitions of all minimum k-way cuts. We then recursively ﬁnd, for     each member of Γ , minimum k2 -way cut in G[X] and minimum k2 -way cut in G[X]. The minimum ones among all k-way cuts we ﬁnd will be returned as our solution. The algorithm is described in Figure 1. The correctness of algorithm Multiwaycut follows from Theorem 2. Now we analyze the running time. When k = 2, we use Nagamochi et al.’s algorithm [15] to ﬁnd all minimum cuts directly, which runs in O(m2 n + mn2 log n)=O(mT (n, m)) time. When k > 2, we get the recurrence relation C(n, k) ≤ n2 2 + k − 1 (C(n,  k2 ) + C(n,  k2 )) + n2 2 + k − 1 , k



k



(1)



where C(n, k) is the upper bound on the number of maximum ﬂow computations to be computed when algorithm Multiwaycut runs on an n-vertex graph and an integer k. It is easy to verify that C(n, k) = O(n4k−lg k−3 ) satisﬁes (1) by using the substitution method. Theorem 1. All minimum k-way cuts can be found in O(n4k−lg k ) time.
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Multiwaycut(G, k) Input: A graph G = (V, E; w) with nonnegative edge weights and a positive integer k ≤ |V |. Output: The set R of all minimum k-way cuts and the weight W of the minimum k-way cut. 1. If {k = 2}, then return the set of all the minimum cuts and the weight directly. 2. Else {k ≥ 3}, Let W be +∞. For each  of disjoint nonempty vertex subsets S and T with  pair |S| ≤ 2 k2 and |T | ≤ k − 1, do Compute the   (S, T ) cut C = [X, X] of S.  nearest minimum If {|X| ≥ k2 and |X| ≥ k2 }, then   (R1 , W1 ) ←− Multiwaycut(G[X], k2 ).   (R2 , W2 ) ←− Multiwaycut(G[X], k2 ). If {W > w(C) + W1 + W2 }, then W ←− w(C) W1 + W2 ,  + R ←− {C F1 F2 | F1 ∈ R1 , F2 ∈ R2 }. Else if {W  = w(C) W1 + W2 }, then  + R ←− R {C F1 F2 | F1 ∈ R1 , F2 ∈ R2 }. Return (R, W ). Fig. 1. The Algorithm Multiwaycut(G, k)
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Structural Properties



In this section, we prove the following key theorem, which is the foundation of our divide-and-conquer algorithm. Theorem 2. Let  Ckbe a minimum k-way (k ≥ 3) cut of a graph G and [A, B] a minimum ( k2 , k2 )-partition of Ck . Then there exits a set S ⊆ A of at most   2 k2 vertices and a set T ⊆ B of at most k − 1 vertices such that the nearest minimum (S, T ) cut of S is [A, B]. To prove this theorem, we will derive some useful structural properties. Given two disjoint vertex sets S and T , a minimum (S, T ) cut separates the graph into two components. One that contains S is called the source part and the other one is called the sink part, which contains T . For most cases, there are more than one minimum (S, T ) cut. Among all minimum (S, T ) cuts, the unique one that makes the source part of the maximum cardinality is called the farthest minimum (S, T ) cut of S, and the unique one that makes the sink part of the maximum cardinality is called the nearest minimum (S, T ) cut of S. The farthest minimum (S, T ) cut of S is the same as the nearest minimum (T, S) cut of T . Ford and Fullkerson [7] proved the uniqueness of the farthest and nearest minimum (S, T ) cuts by using the Max ﬂow/Min cut theorem. We can easily get the farthest
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and nearest minimum (S, T ) cuts in linear time based on a maximum ﬂow from S to T . (Note that given a maximum ﬂow, in the residual graph, let X be the set of vertices who are connected with t. Then [V − X, X] is the farthest minimum isolating cut for s). These two special minimum (S, T ) cuts have been discussed and used in the literature [7], [21], [5], [2]. Next, we give more structural properties of them. Lemma 1. Let [X1 , X1 ] be the nearest minimum (S1 , T ) cut of S1 and [X2 , X2 ] the nearest minimum (S2 , T ) cut of S2 , if S1 ⊇ S2 , then X1 ⊇ X2 . Lemma 2. Let [X1 , X1 ] be the farthest minimum (S, T1 ) cut of S and [X2 , X2 ] the farthest minimum cut (S, T2 ) of S, if T1 ⊇ T2 , then X1 ⊆ X2 . Lemma 1 and Lemma 2 can be proved easily by using the uniqueness of the nearest and farthest minimum (s, t) cuts. Lemma 3. Let C1 = [X1 , X1 ] be the nearest minimum (S1 , T ) cut of S1 and C2 = [X2 , X2 ] a minimum (S2 , T ) cut. If S1 ⊆ X2 , then X1 ⊆ X2 . Proof. Let Z = X1 − X2 , Y = X2 − X1 , U = X1 ∩ X2 , and W = X1 ∪ X2 (See Figure 2). To prove X1 ⊆ X2 , we only need to prove that Z = ∅. Assume to the contrary that Z = ∅. We show the contradiction that [X1 − Z, X1 + Z] is a ‘nearer’ minimum (S1 , T ) cut of S1 than C1 = [X1 , X1 ]. Obviously, we only need to prove that w(X1 − Z, X1 + Z) ≤ w(S1 , T ).



C1



Z S1



U



W



T



Y C2



Fig. 2. Illustration for the proof of Lemma 3



Since [U + Y + Z, W ] is an (S2 , T ) cut and C2 = [X2 , X2 ] a minimum (S2 , T ) cut, we have w(U + Y + Z, W ) ≥ w(X2 , X2 ). It is clear that [U + Y + Z, W ] = [U + Y, W ] + [Z, W ] and [X2 , X2 ] = [U + Y, W + Z] = [U + Y, W ] + [U, Z] + [Y, Z]. We get w(U, Z) + w(Y, Z) ≤ w(Z, W ).
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Therefore, w(U, Y +W +Z) = w(U, Y +W )+w(U, Z) ≤ w(U, Y +W )+w(Z, W ) ≤ w(U, Y + W ) + w(Z, Y + W ) = w(U + Z, Y + W ) = w(C1 ). We will use the following relation between two multi-way cuts, which was proved by Xiao et al. in [23]. Proposition 1. Given an edge-weighted graph G, and integers h and k (2 ≤ h ≤ k), then for any minimum h-way cut Ch and any k-way cut Ck of G, the following relation holds w(Ch ) ≤



(2k − h)(h − 1) w(Ck ). k(k − 1)



(2)



Kamidoi et al. [9] proved the following two important results Proposition 2. Given an edge-weighted graph G and two integers h and k (1 ≤ h < k), let Ck be a minimum k-way cut in G and wh,k−h (Ck ) the weight of the minimum (h, k − h)-partitions of Ck , then wh,k−h (Ck ) ≤



2h(k − h) w(Ck ). k(k − 1)



(3)



Proposition 3. Given a graph G = (V, E) with at least 4 vertices, two disjoint nonempty subsets T and R of V , and an integer p ≥ 2, let {s1 , s2 , · · · , sp } = S ⊆ V − T ∪ R be a set of p vertices such that, for each i ∈ {1, 2, · · · , p}, there is a minimum (S ∪ R − {si }, T ) cut [Xi , Xi ] which satisﬁes (T ∪ {si }) ⊆ Xi . Let  Z = 1≤i≤p Xi , W = 1≤i


(4)



Based on Proposition 3, we can prove the following Lemma 4. The detailed proof can be found in the full version of this paper. Lemma 4. Given a graph G = (V, E) with at least 4 vertices, a nonempty subset of vertices T ⊂ V , and an integer p ≥ 2, let {s1 , s2 , · · · , sp } = S ⊆ V − T be a set of p vertices such that, for each i ∈ {1, 2, · · · , p}, there is aminimum (S − {si }, T ) cut [Xi , Xi ] which satisﬁes (T ∪ {si }) ⊆ Xi . Let Z = 1≤i≤p Xi ,  W = 1≤i


(5)



(b) : When Z = ∅ and p ≥ 3, then C  = [Y1 , Y2 , · · · , Yp , W ] is a (p + 1)-way cut such that w(C  ) +



p−3 p · w(Y1 , Y2 , · · · , Yp ) ≤ · 2w(V − T, T ). p+1 p+1



(6)
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[X2, X2] S1 S2 T



...



Z



Sp



[X p, X p]



Fig. 3. Illustration for Proposition 3 and Lemma 4



Lemma 5. Given a graph G and an integer k ≥ 3, let wk be the weight of a minimum k-way cut of G. For any cut [A, B] in G with weight w(A, B) < k k+1 2(k−1) wk (respectively, w(A, B) < 2k−1 wk ), there exists a set S ⊆ A of at most k − 1 (respectively, k) vertices such that the nearest minimum (S, B) cut of S is [A, B]. Proof. Let k  = k − 1 or k (for the two cases respectively), we only need to consider the case that |A| ≥ k  + 1 (when |A| < k  + 1, we can just let S = A). Our proof includes two phases. In the ﬁrst phase, we prove that if the lemma does not hold, then we can ﬁnd a set S0 ⊆ A of k  + 1 vertices such that, for each nonempty subset S0 of S0 , the nearest minimum (S0 , B) cut C  = [Z, Z] of S0 satisfying S0 ⊆ Z and (S0 − S0 + B) ⊆ Z. Then S0 is a vertex set that satisﬁes the conditions in Lemma 4. In the second phase, based on S0 , we will show that there is a k-way cut with weight less than wk , which is a contradiction. Phase 1: ﬁnding S0 . We will give a procedure to select some vertices from A into S. Initially, all the vertices in A are unmarked and S is an empty set. Once a vertex is selected into S, we mark it. Sometimes a vertex in S0 will also be removed from S, but this vertex is still remained as marked. First, we arbitrarily select k  + 1 vertices in A into S. For each nonempty subset S  ⊂ S, we check the nearest minimum (S  , B) cut C  = [Z, Z] of S  . If (S − S  + B) ⊂ Z, say   a ∈ (S − S ) Z, we update S by removing a from S and adding an unmarked vertex into S (When there are no more unmarked vertex in V −S, we just remove a from S and stop the procedure). Once S is updated, we check all nonempty subsets S  ’s of S again. Since A is a ﬁnite set and in each iteration, one more vertex is marked, we will ﬁnd a set S of k  +1 vertices that satisﬁes the conditions in Lemma 4 or no more unmarked vertex can be added into S. For the former case, we just let S0 = S. For the later case, we show that S is a set of k  vertices such that the nearest minimum (S, B) cut of S is [A, B], and thus the lemma holds. Let S (1) , S (2) , · · · , S (l0 ) be the updated sequence of S. Let C (l) = [Zl , Zl ] and C (l+1) = [Zl+1 , Zl+1 ] be the nearest minimum (S (l) , B) and (S (l+1) , B) cuts of S (l) and S (l+1) respectively. Since S (l) ⊂ Zl+1 , we know that Zl ⊆ Zl+1 by
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Lemma 3. For each 1 ≤ l ≤ l0 − 1, we have Zl ⊆ Zl+1 . Then all the marked vertices will be in Zl0 , where [Zl0 , Zl0 ] = [A, B] is the nearest minimum (S (l0 ) , B) cut of S (l0 ) . Furthermore, since S (l0 ) is obtained by removing a vertex a from S (l0 −1) , we know that the size of S (l0 ) is k  . Phase 2: ﬁnding a k-way cut with weight less than wk based on S0 . Suppose S0 = {s1 , · · · , sk , sk +1 }. Let [Xi , Xi ] be the nearest minimum (S − {si }, B)  1), then [Xi , Xi ] satisﬁes that (B ∪ {si }) ⊆ Xi . Let Z = cut  (i = 1, · · · , k +   X , W =  i 1≤i≤k +1 1≤i


k − 2 k + 1  +1 ) ≤ · w(Y · 2w(A, B). + · · · + Y 1 k k + 2 k + 2



(7)



Since C  is a (k  + 2)-way cut and k  + 2 > k, by Proposition 1, we know that there is a k-way cut Ck with weight w(Ck ) ≤



(2(k  + 2) − k)(k − 1) w(C  ). (k  + 2)(k  + 1)



(8)



It follows from (7) and (8) that w(Ck ) ≤



(2(k  + 2) − k)(k − 1) k  + 1 ·  2w(A, B). (k  + 2)(k  + 1) k +2



In the case of w(A, B) < w(Ck ) ≤



we have k  = k − 1. Then



k (k + 2)k (k + 2)(k − 1) · · 2w(A, B) < wk < wk . (k + 1)k k+1 (k + 1)2



In the case of w(A, B) < w(Ck ) ≤



k 2(k−1) wk ,



k+1 2k−1 wk ,



we have k  = k. Then



2(k + 4)(k 2 − 1) (k + 4)(k − 1) k + 1 · · 2w(A, B) < wk < wk . (k + 2)(k + 1) k + 2 (k + 2)2 (2k − 1)



We get a contraction that Ck is k-way cut with weight less than wk . When Z = ∅, it follows from Lemma 4 that C  = [Z, Y1 , Y2 , · · · , Yk +1 , W ] is a (k  + 3)-way cut such that w(C  ) + w(Z, W ) + w(Y1 , · · · , Yk +1 ) ≤ 2w(A, B).



(9)



Suppose w(Yi0 , W ) ≥ w(Yi1 , W ) ≥ w(Yi2 , W ) ≥ maxi=i0 ,i1 ,i2 {w(Yi )}. For the k case of w(A, B) < 2(k−1) wk , we prove that Ck = [Z, Y−i0 −i1 , W + Yi0 + Yi1 ] is a k-way cut with weight less than wk , where Y−i0 −i1 = {Y1 , · · · , Yi0 −1 , Yi0 +1 , · · · , k+1 wk , we prove that Ck = Yi1 −1 , Yi1 +1 , · · · , Yk +1 }. For the case of w(A, B) < 2k−1 [Z, Y−i0 −i1 −i2 , W +Yi0 +Yi1 +Yi2 ] is a k-way cut with weight less than wk , where Y−i0 −i1 −i2 is deﬁned by the same way as Y−i0 −i1 .
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k 2(k−1) wk ,
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we have k  = k−1. Then Ck = [Z, Y−i0 −i1 ,



W + Yi0 + Yi1 ] is a k-way cut. Since [Xi , Xi ] is a minimum (S − {si }, B) cut, we have w(Z, Yi ) ≤ w(Yi , W ) for each i ∈ {1, 2, · · · , k}. Therefore, k 2 k ( w(Yi0 + Yi1 , W ) ≥ w(Yi , W ) + w(Z, Yi )) i=1 i=1 2k 1 = (w(C  ) − w(Z, W ) − w(Y1 , · · · , Yk )). k By using this inequality and (9), we get w(Ck ) ≤ w(C  ) − w(Yi0 + Yi1 , W ) 1 1 k−1 w(C  ) + w(Z, W ) + w(Y1 , · · · , Yk ) ≤ k k k k−1 k k−1 2w(A, B) < wk = wk . ≤ k k k−1 k+1 wk , we have k  = k. Clearly, Ck = [Z, Y−i0 −i1 −i2 , In the case of w(A, B) < 2k−1 W + Yi0 + Yi1 + Yi2 ] is still a k-way cut. We get k+1 k+1 3 ( w(Yi0 + Yi1 + Yi2 , W ) ≥ w(Yi , W ) + w(Z, Yi )) i=1 i=1 2(k + 1) 3 = (w(C  ) − w(Z, W ) − w(Y1 , · · · , Yk+1 )). 2(k + 1)



By using this inequality and (9), we get w(Ck ) ≤ w(C  ) − w(Yi0 + Yi1 + Yi2 , W ) 3 2k − 1 3 w(C  ) + w(Z, W ) + w(Y1 , · · · , Yk+1 ) ≤ 2(k + 1) 2(k + 1) 2(k + 1) 2k − 1 2k − 1 2(k + 1) ≤ 2w(A, B) < wk = wk . 2(k + 1) 2(k + 1) 2k − 1 We have proved that, in both cases, there is a k-way cut with weight less than wk . Thus, we have ﬁnished the proof. Lemma 6. Given a graph G and an integer k ≥ 3, let wk be the weight of the minimum k-way cut of G, then for any cut [A, B] in G with weight w(A, B) ≤ k k+1 2(k−1) wk (respectively, w(A, B) ≤ 2k−1 wk ), there exists a set S ⊆ A of at most k − 1 (respectively, k) vertices such that the farthest minimum (S, B) cut of S is [A, B]. k k+1 wk or 2k−1 wk and there In Lemma 6, the weight of the cuts can equal 2(k−1) are the farthest minimum (S, B) cuts, instead of the nearest minimum (S, B) cuts in Lemma 5. The proof of Lemma 6 just follows the proof of Lemma 5. Note that since in Lemma 6 there are farthest minimum (S, B) cuts, we have w(Xi , Xi ) < w(V − T, T ) for each i ∈ {1, 2, · · · , p}. Therefore, The equal signs in (5) and (6) will not hold, which guarantees that the remaining part of the proof of Lemma 5 suitable for Lemma 6.
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Now we are ready to prove Theorem 2:



  Proof. By Proposition 2, we have w(A, B) ≤ 2h(k−h) wk , where h = k2 . Since k(k−1) k k k 2 k 2 2 ≤ ( 2 ) , we have w(A, B) ≤ 2(k−1) wk and the equal sign does not hold for oddk.By Lemma 5 and Lemma 6, we know that there is a set S ⊆ A of at most 2 k2 vertices such that the nearest minimum (S, B) cut of S is [A, B] and there is a set T ⊆ B of at most k − 1 vertices such that the farthest minimum (T, A) cut of T is [B, A]. We look at the nearest minimum (S, T ) cut [X, X] of S. Since [A, B] is the nearest minimum (S, B) cut of S and T ⊆ B, we have A ⊆ X by Lemma 1. Since [B, A] is the farthest minimum (T, A) cut of T and S ⊆ A, we have B ⊆ X by Lemma 2. Therefore, [X, X] = [A, B]. Thus, Theorem 2 holds. Corollary 1. Given a graph G and an integer k ≥ 3, let wk be the weight of the minimum k-way cut of G, then the number of cuts with weight less than k 2k−2 and the number of cuts with weight less than 2(k−1) wk in G is bounded by n k+1 2k−1 wk



4



is bounded by n2k .



Discussion



In this paper, we presented a simple divide-and-conquer algorithm for ﬁnding minimum k-way cuts. As we mentioned in Section 1, there are two possible ways to improve the algorithm. One is to reduce the sizes of S and T , and the other one is to make the  minimum (S, T ) cut be a more ‘balanced’ (h, k−h)-cut. In our algorithm, h = k2 and this means our (h, k − h)-cuts are the most ‘balanced’. Our questions are: For the most ‘balanced’ case, can we reduce the sizes of S and T ? What are the lower bounds on the two sizes? Note that if we can reduce the two sizes to k2 , then the divide-and-conquer algorithm will run in O(n2k ) time. Nagamochi et al. [13], [14] proved that the minimum k-way cut problem can be solved by computing O(n) minimum (k − 1)-way cuts for k ≤ 6. Does this hold for general k? If so, then the minimum k-way cut problem can be solved in k  ) time. O(mn Karger and Stein [11] and Nagamochi et al. [15] have studied the bounds on the number of small cuts, which motivates the following question: Can we give nontrivial lower and upper bounds on the number of minimum k-way cuts? It is of n edges easy to get a lower bound of O(nk ). Note that in a cycle consisting 



with equal weight, the number of minimum k-way cuts is nk . Can better bounds be achieved?
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