APPLIED PHYSICS LETTERS 89, 173905 共2006兲

Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers Kyo Seon Hwang,a兲 Kilho Eom, Jeong Hoon Lee, Dong Won Chun, Byung Hak Cha, Dae Sung Yoon,b兲 and Tae Song Kimc兲 Microsystem Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea

Jung Ho Park Department of Electronics and Computer Engineering, Korea University, Seoul 136-701, Republic of Korea

共Received 29 May 2006; accepted 14 September 2006; published online 26 October 2006兲 Nanomechanical microcantilevers have played a vital role in detecting biomolecular interactions. The ability of microcantilevers to detect biomolecular interactions is ascribed to the principle that the surface stress, caused by biomolecular interactions, dominates the dynamical response of the microcantilever. Here we have experimentally studied the correlation between biomolecular interactions and the dynamical response of microcantilevers. Moreover, the authors employed a mechanical beam model to calculate the surface stress, representing the biomolecular interactions, through measuring the resonant frequency shift. The quantitative analysis of surface stress, driven by the specific protein-protein interactions, demonstrated that microcantilevers enable the quantitative study of biomolecular interactions. © 2006 American Institute of Physics. 关DOI: 10.1063/1.2372700兴 Nanomechanical microcantilevers have been utilized to gain insight into biomolecular interactions such as proteinprotein interactions and protein dynamics.1–3 It was recently revealed that molecular interactions generate surface stress on a microcantilever surface.4 This surface stress is usually estimated by using Stoney’s equation with measurements from the deflection change induced by biomolecular interactions.1,5 For microcantilevers operated in the dynamic 共oscillating兲 mode, biomolecular interactions drive the resonant frequency shift.6–9 Scaling down of microcantilevers increases the resonant frequency enormously.10 This improves the sensitivity of microcantilevers for label-free detection of biomolecules because of the much larger frequency shift even for very small amounts of molecular interactions. Accordingly, microcantilevers can be used as immunosensors to monitor specific proteins, which are related to specific diseases, even at a very low concentration in blood serum. Despite increased interest in oscillating microcantilevers, a quantitative study on the dynamical response change of microcantilevers to biomolecular interactions has not appeared in research publications. In this letter, we report the quantitative analysis regarding the role of surface stress induced by protein-protein interactions on the dynamical response change 共i.e., resonant frequency shift兲 of the microcantilevers. We employed a mechanical beam model in order to understand the relationship between resonant frequency shift and surface stress induced by the protein-protein interaction. Specifically, we consider the dynamical response of microcantilevers driven by the myoglobin antigen-antibody interactions even for low concentrations of antigen ranging from 1 to 100 ng/ ml. We also estimate the surface stress on

the oscillating microcantilevers induced by antigen-antibody interactions. The results indicate that the quantitative study of the surface stress can provide insight into biomolecular interactions. In situ microcantilevers allow the real-time monitoring of antigen-antibody interactions. However, the damping effect of viscous fluid reduces the resonant frequency and consequently degrades the sensitivity of microcantilevers. Here we consider the oscillating microcantilevers in normal air. Let us take into account a cantilever exhibiting the surface stress. The equation of motion for the deflection w共x , t兲 of microcantilevers is given as







⳵4w共x,t兲 ⳵ ⳵w共x,t兲 ⳵2w共x,t兲 ␶x + +␮ = 0, 4 ⳵x ⳵x ⳵t2 ⳵x

共1兲

where ␰ is the effective flexural rigidity of the microcantilever, ␶ is the surface stress, and ␮ is the effective mass per unit length for the microcantilever. For an oscillating microcantilever, the deflection w共x , t兲 is assumed as w共x , t兲 = u共x兲exp关i␻t兴, where u共x兲 is the vibration mode and ␻ is the resonant frequency. Consequently, Eq. 共1兲 becomes the following eigenvalue problem:



冉 冊

d 4u d du ␶x ⬅ 㜷u = ␮␻2u. 4 + dx dx dx

共2兲

The boundary conditions for Eq. 共2兲 are u共0兲 = 0, u⬘共0兲 = 0, u⬙共L兲 = 0, and ␰u⵮共L兲 = ␶Lu⬘共L兲, where L is the microcantilever length. We employ the Ritz method11 which assumes the deflection mode u共x兲 in the form of ⬁

u共x兲 = 兺 ␣n␺n共x兲 ⬅ ␣ · ␺ ,

共3兲

n=1

a兲

Also at Department of Electronics and Computer Engineering, Korea University, Seoul 136-701, Republic of Korea. Electronic mail: [email protected] c兲 Electronic mail: [email protected] b兲

where ␣n is a constant that should be determined and ␺n共x兲 is a basis function. This basis function typically employs a polynomial function that satisfies the essential boundary con-

0003-6951/2006/89共17兲/173905/3/$23.00 89, 173905-1 © 2006 American Institute of Physics Downloaded 27 Oct 2006 to 161.122.103.104. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

173905-2

Appl. Phys. Lett. 89, 173905 共2006兲

Hwang et al.

FIG. 1. 共Color online兲 Ritz method allows us to determine the relationship between the resonant frequency shift and the surface stress caused by biomolecular interaction.

ditions, i.e., ␺n共0兲 = 0 and ␺n⬘共0兲 = 0. Here we use the polynomial basis function ␺n共x兲, given as ␺n共x兲 = 共x / l兲n+1. From Eqs. 共2兲 and 共3兲, we obtain the numerical linear eigenvalue problem K␣ = ␻2M␣ with a stiffness matrix K and a mass matrix M defined as



Kij =

L

关␰␺i⬙共x兲␺⬙j 共x兲 + ␶x␺i⬘共x兲␺⬘j 共x兲兴dx,

0

Mij =



L

␮␺i共x兲␺ j共x兲dx.

共4兲

0

The numerical linear analysis of the eigenvalue problem provides the resonant frequency as a function of the surface stress,



␻i = ␻0i 1 +

2 ␶L3 ␲2 ␰



1/2

共5兲

.

Here ␻0i is the resonant frequency when the microcantilever does not exert any surface stress, i.e., ␻0i = 共␭i / L兲2冑␰ / ␮, where ␭i is the parameter satisfying the transcendental equation, i.e., cos ␭i cosh ␭i + 1 = 0, and the subscript i indicates the mode i. For calculation of the surface stress induced by biomolecular interactions, it is assumed that the resonant frequency of a microcantilever without any biomolecular interaction is ␻0i . After the antigen-antibody interaction on the microcantilever surface, the resonant frequency is shifted to

␻i ⬅

␻0i

+ ␦␻i =

冉 冊 冑冋 册冋 ␭i

2



␮ + ⌬␮

L

1+

2 ␶L3

␲2 ␰



FIG. 2. Scanning electron microscopy photograph of the piezoelectric microcantilever array.

We utilize piezoelectric microcantilevers that are capable of self-actuating/sensing due to piezoelectric and conversepiezoelectric effects. Piezoelectric microcantilevers with dimensions of 150⫻ 50⫻ 2.18 ␮m3 共length⫻ width ⫻ thickness兲 are fabricated by a micromachining process 共for details, review Ref. 7 and see Fig. 2兲. Antibodies were immobilized on the cantilever surface, which is functionalized with a calixcrown self-assembled monolayer that can bind to ammonium ions of proteins 共for details, see Refs. 6 and 13兲. We used an impedance analyzer to measure the resonant frequency of oscillating microcantilevers actuated by an induced ac signal of 0.5 V p.p. via the electrode of microcantilevers. We measure the resonant frequency of microcantilevers before and after the antigen-antibody interactions. Consequently, the resonant frequency shift, resulting from the antigen-antibody interaction, is evaluated. The microcantilevers are held in a humidity- and temperaturecontrolled chamber 关37 ° C, 70% 共relative humidity兲兴 during the experiment. The microcantilever has a length scale on the order of 102 ␮m, and thus the resonant frequency is on the order of 102 kHz. Specifically, the resonant frequencies for our microcantilever arrays 共six cantilevers for each array兲 are 74± 7 kHz for the first mode and 490± 20 kHz for the second mode. This is consistent with the analytical prediction of ␻01 = 77.662 kHz for the first mode and ␻02 = 486.739 kHz for the second mode. The small deviation of experimental data

, 共6兲

where ⌬␮ is the added mass induced by the ligand 共antigen兲 binding. In general, the contribution of added mass by ligand binding to the resonant frequency shift is negligible.8,12 The surface stress responsible for the resonant frequency shift ␦␻i is represented as follows 共see Fig. 1兲:

␶=

冋 冉 冊 冉 冊册

␲2 ␰ ␦␻i ␦␻i + 0 3 2 2 L ␻i ␻0i

2

⯝ ␲2

冉 冊

␰ ␦␻i . L3 ␻oi

共7兲

Here, in general, for a low concentration of antigen, the ratio 共␦␻i / ␻0i 兲 is very small. Hence, the quadratic term 共␦␻i / ␻0i 兲2 can be neglected in Eq. 共7兲.

FIG. 3. 共Color online兲 Resonant frequency shift due to a myoglobin antigen-antibody interaction with antigen concentrations ranging from 1 to 100 ng/ ml. Downloaded 27 Oct 2006 to 161.122.103.104. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

173905-3

Appl. Phys. Lett. 89, 173905 共2006兲

Hwang et al.

FIG. 4. 共Color online兲 Surface stress exerted on our microcantilevers due to myoglobin antigen-antibody interaction with antigen concentration in a range of 1 – 100 ng/ ml.

from the analytical predictions for the resonant frequencies may be originated from the etching fabrication process. This process might slightly affect the thickness of the cantilevers, resulting in alternation of the resonant frequencies of the microcantilever. In this work, we consider the resonant frequency shift caused by myoglobin antigen-antibody interactions with the antigen concentrations of 1, 10, and 100 ng/ ml. The resonant frequency shift for the first mode induced by the myoglobin antigen-antibody interaction is on the order of 1 Hz for given antigen concentrations. The resonant frequency shift for the second mode is in the range from 100 to 600 Hz for the same antigen concentration 共see Fig. 3兲. As stated earlier, the resonant frequency shift is originated from surface stress driven by biomolecular interactions. The relationship between the resonant frequency shift and the surface stress due to the biomolecular interactions is provided in the model 共see Fig. 1兲. It shows that the dimensionless resonant frequency shift ␦␻i / ␻0i is a constant regardless of the mode i, consistent with our results. The dimensionless resonant frequency shift is on the order of −1%, and thus the dimensionless surface stress ␶L3 / ␰ is in a range of −10−3 to −10−2. Here it should be noted that the negative sign in the resonant frequency shift indicates a decrease in the resonant frequency and that the negative sign for the surface stress represents the compressive surface stress. Despite the small amount of dimensionless surface stress, our microcantilevers are able to recognize the surface stress owing to mechanical properties of our microcantilevers such as a relatively large bending modulus and a small length scale 共␰ = 6.49⫻ 10−12 N m2, l = 150 ␮m兲. Specifically, the surface stress exerted on our microcantilevers is in the range of −2 ⫻ 10−3 to − 2 ⫻ 10−2 J / m2 共see Fig. 4兲. The role of the mechanical properties of microcantilevers on the surface stress can be understood by considering Ref. 5. In Ref. 5, Arntz et al. studied the static deflection behavior of soft microcantilevers driven by myoglobin antigen-antibody interactions with higher antigen concentrations ranging from 20 to 100 ␮g / ml. In their case, the surface stress evaluated by Stoney’s equation is in a range of −2 ⫻ 10−3 to − 8 ⫻ 10−3 J / m2. This indicates that the soft microcantilevers with larger length scale 共e.g., ␰ = 3.02⫻ 10−13 N m2, l = 500 ␮m for Ref. 5兲 generate a small amount of surface stress even for large biomolecular interactions. The dimensionless surface stress of the microcantilevers used in Ref. 5

is in a range between 0.82 and 3.79. These values are much larger than the dimensionless surfaces stress of our microcantilevers. This suggests that a cantilever exhibiting a large bending modulus and a small length scale is able to retain a large amount of surface stress in spite of small amounts of biomolecular interactions. Thus, our microcantilevers possessing a large bending modulus and a small length scale allow the very sensitive label-free detection of proteins, even at a very low concentration in solution. Moreover, it is shown that dimensionless surface stress represents the quantity of biomolecular interaction regardless of mechanical properties of the microcantilevers. The surface stress is known to be originated from repulsive intermolecular forces between biomolecules.2 This is consistent with our result that the antigen concentration representing the packing density of biomolecules 共antigen-antibody pairs兲 is closely associated with the magnitude of surface stress. In conclusion, we provide the quantitative analysis regarding the role of the surface stress induced by biomolecular interactions on the dynamical response of microcantilevers. It is shown that antigen-antibody interaction induces the compressive surface stress and consequently reduces the resonant frequency. The dimensionless surface stress is the parameter representing the biomolecular interaction regardless of the mechanical properties of the microcantilevers. Hence, the quantitative study of dimensionless surface stress may enable one to gain insight into biomolecular interaction. For future work, the experimental studies on dynamical response of nanoscale 共submicron-scale兲 cantilever to biomolecular interaction will be considered, because the thermal effect 共Brownian dynamics兲 plays a role in dynamical response of nanoscale oscillators.12,14 The authors are very grateful for financial support from Intelligent Microsystem Center sponsored by the Korean Ministry of Science and Technology as a part of the 21st Century’s Frontiers R&D Projects 共Grant No. MS-01-13301兲 and the National Core Research Center for Nanomedical Technology sponsored by KOSEF 共Grant No. R15-2004024-00000-0兲. 1

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, Nat. Biotechnol. 19, 856 共2001兲. 2 G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, Proc. Natl. Acad. Sci. U.S.A. 98, 1560 共2001兲. 3 M. F. Hagan, A. Majumdar, and A. K. Chakraborty, J. Phys. Chem. B 106, 10163 共2002兲. 4 R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H.-J. Guntherodt, Science 276, 2021 共1997兲. 5 Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P. Hunziker, J. P. Ramseyer, E. Meyer, M. Hegner, and Ch. Gerber, Nanotechnology 14, 86 共2003兲. 6 K. S. Hwang, J. H. Lee, J. Park, D. S. Yoon, J. H. Park, and T. S. Kim, Lab Chip 4, 547 共2004兲. 7 J. H. Lee, K. S. Hwang, J. Park, K. H. Yoon, D. S. Yoon, and T. S. Kim, Biosens. Bioelectron. 20, 2157 共2005兲. 8 J. H. Lee, T. S. Kim, and K. H. Yoon, Appl. Phys. Lett. 84, 3187 共2004兲. 9 J. H. Lee, K. H. Yoon, K. S. Hwang, J. Park, S. Ahn, and T. S. Kim, Biosens. Bioelectron. 20, 269 共2004兲. 10 J. W. Yi, W. Y. Shih, and W.-H. Shih, J. Appl. Phys. 91, 1680 共2002兲. 11 L. Mierovitch, Analytical Methods in Vibrations 共Macmillan, New York, 1967兲. 12 J. Dorignac, A. Kalinowski, S. Erramilli, and P. Mohanty, Phys. Rev. Lett. 96, 186105 共2006兲. 13 Y. Lee, E. K. Lee, Y. W. Cho, T. Matsui, I.-C. Kang, T.-S. Kim, M. H. Han, Proteomics 3, 2289 共2003兲. 14 M. R. Paul and M. C. Cross, Phys. Rev. Lett. 92, 235501 共2004兲.

Downloaded 27 Oct 2006 to 161.122.103.104. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

Appl Phys Lett 89 - iMechanica

Microsystem Research Center, Korea Institute of Science and Technology, Seoul 136-791,. Republic of Korea .... The small deviation of experimental data. FIG. 3. .... Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and ...

249KB Sizes 7 Downloads 248 Views

Recommend Documents

Appl. Phys. Lett. 93, 266101
emission maximum with varying angle. This corroborates that the detected TM polarized emission is indeed dominated by the leakage radiation of the SP1 mode and directly emit- ted light plays only a minor role. 1Z. Wu, S. Liang, B. Jiao, X. Zhao, and

J. Appl. Phys. 90, 322 (2001)
Within a simple model of electron tunneling processes, we show that the enhanced local strain leads to values of GF higher than those expected for a ...

J. Appl. Phys. 90, 322 (2001)
applied strain ε, range in fact from GF2 up to GF35 at ... quest for high GF values rests only on an empirical basis. An even more ..... which, as long as B1.

Development Research Engineer GRIII - iMechanica
... of 222 teraflops — or 222 trillion floating-point-operations — per second, making KAUST's campus in Thuwal the site of one of the ... Dedicated to inspiring a ...

Development Research Engineer GRIII - iMechanica
Technology (KAUST). This engineer will be engaged in two different activities. First, he will act as the Lab manager from the computational and simulation side.

ORGN/PHYS
H. P. Hratchian .... Interfaces and Materials for Energy Storage ...... U. Das. Section E. Moscone Center, West Bldg. 2004. Photoinduced Proton Transfer in ...

PHYS 234 - GitHub
Jul 29, 2014 - In summary,. • Experiment ..... operator A acts to right on ket |α> ... So if A = A† then the operator can act to the left or the right to give appropriate.

credit-appl-witney-ltd.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item.

ORGN/PHYS
with a large Stokes shift: Chemical mechanism ..... istry expanding into a new dimension: Big data. C. P. Sosa ..... large-scale software systems for emerging HPC.

HHG Appl Info.pdf
in United States. Colorado law requires that household good movers must obtain a permit from the Public Utilities. Commission (PUC) prior to beginning service.

HHG Appl Info.pdf
Page 1 of 3. COLORADO PUBLIC UTILITIES COMMISSION. Household Goods Annual Permit. Application Requirements and Information. 1. Rules The PUC's ...

89.pdf
companies based upon the Global Entrepreneurship Monitor - GEM ... H2: The level of network knowledge positively relates to the likelihood of engaging in.

89.pdf
Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. 89.pdf.

Ridgeview Phys Ed 2015 flyer.Cardinal.Sports.pdf
Page 1 of 1. Thank you for using our online web store to order your Ridgeview. Middle School Phys. Ed. apparel. Please follow these simple. steps to place your ...

89 Jahre3.pdf
Mar 29, 2017 - Try out the HTML to PDF API pdfcrowd.com. Wetter. Verkehr. Themen. Archiv. Service. Kontakt. Newsletter. Redaktion hessenschau.de. Hilfe.

Common Appl Form - 310306.p65
Name of Contact Person (In case of Body Corporate/Company/Society/FII/Trust/AOP/BOI etc). Address of Sole/First Applicant (Local Indian address only). City: Pin: Dist: State: Send me a pin for Internet services. Telephone: STD Code: Off.: Res.: Fax:

credit-appl-camp-sole.pdf
Name: Address: Postcode: Tel: Fax: Name: Address: Postcode: Tel: Fax: Trade References - Please give Names, Addresses,Telephone and Fax Numbers of two companies with whom you have a current credit account. and trade with regularly, preferably steel s

AP Phys 1 Overview.pdf
Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. AP Phys 1 Overview.pdf. AP Phys 1 Overview.pdf. Open. Extract.

8-89.pdf
Loading… Page 1. Whoops! There was a problem loading more pages. Retrying... 8-89.pdf. 8-89.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying 8-89.pdf.

89-103.pdf
North was pro- mised 25 new army hats and a year's supply of legal advice. from the law firm, Jacoby and .... Palestinian Liberation Organiza- tion leader Yasir Arafat, another. noted terrorist who ... PHARMA COURSES CUTOFF RANK OF CET-2016 - R2 Exte

man-89\kerlapundai.pdf
... in link web page. DOWNLOAD EBOOK PDF FROM OUR ONLINE LIBRARY. Page 2 of 4. Page 3 of 4. man-89\kerlapundai.pdf. man-89\kerlapundai.pdf. Open.

SEM-89-Cujo.pdf
RABV. Afortunadamente, los niveles de murciélagos rabiosos son muy bajos en. una población dada. El CDC los estima en un 6 por ciento para los USA. Pero.

676-89.pdf
Sign in. Page. 1. /. 1. Loading… Page 1 of 1. Page 1 of 1. 676-89.pdf. 676-89.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying 676-89.pdf. Page 1 of 1.