Big Cohen-Macaulay Modules over Mixed Characteristic Local Rings Jun-ichi NISHIMURA [email protected] Osaka Electro-Communication University

2014.10.12

Flow of Presentation 1

Homological Conjectures and Modifications

2

Integral Closures vs.Tight Closures

3

Structure Theorem for Mixed Characteristic Complete Local Rings

4

Hochster’s Observation

5

Flenner’s Bertini Theorem

6

Base Change 1

7

Frobenius Maps

8

Base Change 2

9

The First Step of Induction and Inductive Assumptions

10

Inductive Step 1: The Case when ℓ ≥ 2 and rℓ ≥ 2

11

Inductive Step 2: The Case when ℓ ≥ 2 and rℓ = 1 Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

2 / 168

Conjectures

Homological Conjectures

Homological Conjectures

Big Cohen-Macaulay Modules Conjecture If A is a local ring and x1 , . . . , xd is a system of parameters, then there exists an A-module M (not necessarily of finite type) such that x1 , . . . , xd is an M -sequence. That is, (x1 , . . . , xi )M : xi+1 A = (x1 , . . . , xi )M for 0 ≤ i < d, and

Jun-ichi NISHIMURA (OECU)

(x1 , . . . , xd )M ̸= M.

Big Cohen-Macaulay Modules

2014.10.12

3 / 168

Conjectures

Homological Conjectures

Monomial Conjecture Let A be a local ring and let x1 , . . . , xd be a system of parameters. Then, t+1 xt1 · · · xtd ̸∈ (xt+1 1 , . . . , xd )A for every positive integer t.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

4 / 168

Conjectures

Homological Conjectures

Direct Summand Conjecture Let R be a regular local ring and let S be a module-finite extension algebra of R. Then R is a direct summand of S as R-module.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

5 / 168

Conjectures

Homological Conjectures

Improved New Intersection Conjecture Let F : 0 → Fn → Fn−1 → · · · → F0 → 0 be a complex of finitely generated free A-modules such that F is not exact and that ℓA (Hi (F)) < ∞ for any i ̸= 0, and there exists x ∈ H0 (F) \ mH0 (F) such that ℓA (Ax) < ∞. Then n ≥ dim A.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

6 / 168

Conjectures

Homological Conjectures

New Intersection Conjecture Let F : 0 → Fn → Fn−1 → · · · → F0 → 0 be a complex of finitely generated free A-modules such that F is not exact and that ℓA (Hi (F)) < ∞ for any i. Then n ≥ dim A.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

7 / 168

Conjectures

Homological Conjectures

Intersection Conjecture If M ̸= 0, N are A-modules of finite type such that M ⊗A N has finite length, then dim N ≤ pdA M.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

8 / 168

Conjectures

Homological Conjectures

Homological Height Conjecture Let A → B be a homomorphism of Noetherian rings, and let M be an A-module of finite type and finite projective dimension. Let I = AnnA M and let Q be a minimal prime of IB. Then htQ ≤ pdA M.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

9 / 168

Conjectures

Homological Conjectures

Zerodivisor Conjecture Let A be a local ring and let M be an A-module of finite type and finite projective dimension. If x ∈ A is not a zerodivisor on M , then x is not a zerodivisor on A.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

10 / 168

Conjectures

Homological Conjectures

Bass’ Conjecture If a local ring A possesses a nonzero module T of finite type and finite injective dimension, then A is Cohen-Macaulay.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

11 / 168

Conjectures

Diagram of Conjectures

Diagram of Conjectures Big Cohen-Macaulay Modules ↓ Direct Summand ↔ Monomial ↔

Improved New Intersection ↓ New Intersection ↓

Homological Height ↔ Intersection ↙ Zerodivisor Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

↘ Bass 2014.10.12

12 / 168

Conjectures

Historical Theorems

Historical Theorems

Theorem 1.1 (Peskine–Szpiro 1971, P. Roberts) New Intersection Conjecture holds if A is a local ring either of positive characteristic p or of essentially finite type over a field.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

13 / 168

Conjectures

Historical Theorems

Theorem 1.2 (Hochster 1973) Let A be a d-dimensional local ring of positive characteristic p, and let x1 , . . . , xd be any system of parameters for A. Then there exists a big Cohen-Macaulay module M for x1 , . . . , xd .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

14 / 168

Conjectures

Historical Theorems

Theorem 1.3 (Hochster 1973) Let A be a d-dimensional local ring such that Ared contains a field, and let x1 , . . . , xd be any system of parameters for A. Then there exists a big Cohen-Macaulay module M for x1 , . . . , xd .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

15 / 168

Conjectures

Historical Theorems

Theorem 1.4 (P. Roberts 1987) New Intersection Conjecture holds for any local ring.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

16 / 168

Conjectures

Historical Theorems

Theorem 1.5 (Heitmann 2002) Direct Summand Conjecture holds for any local ring of dimension at most 3.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

17 / 168

Conjectures

Historical Theorems

Theorem 1.6 (Hochster 2002) Big Cohen-Macaulay Conjecture holds for any local ring of dimension at most 3.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

18 / 168

Conjectures

Propositions and Theorem

Propositions and Theorem In this talk, we explain the following.

Proposition 1.7 Let A be a mixed characteristic d-dimensional local ring and let x1 , p, x3 , . . . , xd be a system of parameters for A. Then there exists a big Cohen-Macaulay module M for x1 , p, x3 , . . . , xd .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

19 / 168

Conjectures

Propositions and Theorem

Consequently,

Proposition 1.8 A mixed characteristic local ring has a big Cohen-Macaulay module.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

20 / 168

Conjectures

Propositions and Theorem

Combining Theorems 1.2, 1.3 and the above, we get

Theorem 1.9 Let A be a d-dimensional local ring and let x1 , . . . , xd be a system of parameters for A. Then there exists a big Cohen-Macaulay module M for x1 , . . . , xd .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

21 / 168

Conjectures

Modifications

Modifications Let A be a d-dimensional local ring. Take a system of parameters x1 , . . . , xd for A, that is abbreviated to x. Let M be an A-module with α ∈ M . Suppose that x1 m1 + · · · + xr+1 mr+1 = 0.

We then refer to ρ := (m1 , . . . , mr+1 ) ∈ M r+1 as a type r relation for x on M .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

22 / 168

Conjectures

If we put

   v :=  

mr+1 xr .. .

Modifications

    ∈ M ⊕ Ar , 

x1 we have canonical maps / M → M ⊕ Ar → (M ⊕ Ar ) Av =: M ′ . Let α′ be the image of α in M ′ . That is,   α  / 0   ∈ (M ⊕ Ar ) Av. . α′ :=   ..  0 Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

23 / 168

Conjectures

Modifications

Then we have a map (M, α) → (M ′ , α′ ), a map M → M ′ that takes α to α′ . We call (M ′ , α′ ) a first modification of (M, α) with respect to a type r relation ρ for x. In general, we may have a sequence M : (M, α) =: (M0 , α0 ) → (M1 , α1 ) → · · · → (Mt , αt ) where (Mℓ , αℓ ) is a modification of (Mℓ−1 , αℓ−1 ) with respect to a relation ρℓ on Mℓ−1 of type rℓ for x. We then say that (Mt , αt ) is a t th modification of (M, α) of type r := (r1 , . . . , rt ). Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

24 / 168

Conjectures

Modifications

Further, (Mt , αt ) is called a degenerate modification of (M, α) with respect to the system of parameters x1 , . . . , xd , when αt ∈ (x1 , . . . , xd )Mt . With notation above, we remark the following. Lemma 1.10 Let A be a d-dimensional local ring and let x1 , . . . , xd be a system of parameters for A, that is abbreviated to x. Then the following two conditions are equivalent: (1) A possesses an x-regular module M . (2) Every modification (Mt , αt ) of (A, 1) does not degenerate.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

25 / 168

Conjectures

Outline of Proof of Proposition 1.7

Outline of Proof of Proposition 1.7 1 2

3 4 5 6 7 8 9 10 11

Integral Closures vs.Tight Closures Structure Theorem for Mixed Characteristic Complete Local Rings Hochster’s Observation Flenner’s Bertini Theorem Base Change 1 Frobenius Maps Base Change 2 The First Step of Induction and Inductive Assumptions Inductive Step 1: The Case when ℓ ≥ 2 and rℓ ≥ 2 Inductive Step 2: The Case when ℓ ≥ 2 and rℓ = 1 Flow Chart of Induction (in construction)

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

26 / 168

Integral Closures vs.Tight Closures

Integral Closures vs.Tight Closures

In this section, we gather a few basic facts on the integral closure of ideals in a ring and the tight closure of ideals in a Noetherian ring of prime characteristic p > 0.

For the details, we refer the reader to [7] and [16].

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

27 / 168

Integral Closures vs.Tight Closures

Integral Closures

Integral Closures Definition 2.1 (Integral Closure) Let I be an ideal of a ring A. An element x ∈ A is said to be integral over I if there exist an integer n and elements ai ∈ I i , i = 1, . . . , n, such that xn + a1 xn−1 + a2 xn−2 + · · · + an−1 x + an = 0. Such an equation is called an equation of integral dependence of x over I (of degree n). The set of all elements that are integral over I is called the integral ¯ closure of I, and is denoted I.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

28 / 168

Integral Closures vs.Tight Closures

Integral Closures

Theorem 2.2 (Basic Properties) Let A be a ring with x ∈ A and letI, I1 , I2 be ideals. Then I¯ is an integrally closed ideal, that is, I¯ = I¯ if I1 ⊂ I2 , then I¯1 ⊂ I¯2 x ∈ I¯ iff the image of x in A/P is in the integral closure of (I + P )/P for every minimal prime P of A

(1) (2) (3)

When A is Noetherian, let I, J be ideals of A, then I¯J¯ ⊂ IJ x ∈ I¯ iff there exists c ∈ A◦ such that cxn ∈ I n for all large n Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(4) (5)

29 / 168

Integral Closures vs.Tight Closures

Integral Closures

Remark 2.3 Let I be an ideal of a ring R. Let A and B be R-algebras. Take a ∈ A. Assume that a is integral over IA that has an equation of integral dependence over IA of degree n. Suppose that there exists an R-algebra homomorphism ψ¯ : A/I ν A → B/I ν B with ν ≧ n. ¯ a) ∈ B/I ν B is in the integral closure of Then b ∈ B such that ¯b ≡ ψ(¯ IB.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

30 / 168

Integral Closures vs.Tight Closures

Integral Closures

Proposition 2.4 (Contraction of Integral Closure) Let A ⊂ B be an integral extension of rings. Let I be an ideal in A. Then ¯ IB ∩ A = I.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

31 / 168

Integral Closures vs.Tight Closures

Tight Closures

Tight Closures

Definition 2.5 (Tight Closure) Let A be a Noetherian ring of characteristic p and let I be an ideal. If A is reduced or if I has positive height, then x ∈ A is in I ∗ , the tight closure of I if and only if there exists c ∈ A◦ such that cxq ∈ I [q] for all q = pe .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

32 / 168

Integral Closures vs.Tight Closures

Tight Closures

Theorem 2.6 (Basic Properties) Let A be a Noetherian ring of characteristic p with x ∈ A and let I, I1 , I2 be ideals. Then we have the following: I ∗ is a tightly closed ideal, that is, (I ∗ )∗ = I ∗ if I1 ⊂ I2 , then I1∗ ⊂ I2∗ x ∈ I ∗ iff the image of x in A/P is in the tight closure of (I + P )/P for every minimal prime P of A let I, J be ideals of A, then I ∗ J ∗ ⊂ (IJ)∗

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(1) (2) (3) (4)

33 / 168

Integral Closures vs.Tight Closures

Tight Closures

Proof of Theorem 2.6 (3) We remember the proof of Theorem 2.6 (3). Let P1 , . . . , Ps be the minimal primes of A. If c′i ∈ A/Pi is nonzero we can always lift c′i to an element ci ∈ A◦ by using the Prime Avoidance theorem. Suppose that c′i ∈ A/Pi is nonzero and such that c′i xqi ∈ Ii for all large q, where xi (respectively Ii ) represent the images of x (respectively I) in A/Pi . [q]

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

34 / 168

Integral Closures vs.Tight Closures

Tight Closures

Take a lifting ci ∈ A◦ of c′i . Then ci xq ∈ I [q] + Pi for every i. Choose elements ti in all the minimal primes except Pi and set c :=

s ∑

ci ti

(5)

i

It is easy to check that c ∈ A◦ . ′

Choose q ′ ≫ 0 so that N [q ] = 0 where N is the nilradical. ′





Then cxq ∈ I [q] + N , and so cq xqq ∈ I [qq ] , which proves that x ∈ I ∗. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

35 / 168

Integral Closures vs.Tight Closures

Tight Closures

Theorem 2.7 (Tight Closure from Contractions) Let A ⊂ B be a module-finite extension of Noetherian domains of characteristic p. Let I be an ideal in A. Then (IB)∗ ∩ A ⊂ I ∗ .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

36 / 168

Integral Closures vs.Tight Closures

Tight Closures

Theorem 2.8 Let A be an F -finite reduced ring of characteristic p. Let c be any nonzero element of A such that Ac is regular. Then c has a power which is a test element.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

37 / 168

Integral Closures vs.Tight Closures

Tight Closures

Theorem 2.9 (Persistence of Tight Closure) Let ψ : A → B be a homomorphism of Noetherian rings of characteristic p. Let I be an ideal of A and let a ∈ A be an element in I ∗ . Assume either that A is essentially of finite type over an excellent local ring, or that Ared is F -finite. Then ψ(a) is in the tight closure of ψ(I)B.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

38 / 168

Integral Closures vs.Tight Closures

Tight Closures

Theorem 2.10 (Colon Capturing) Let (A, m, k) be a (d − 1)-dimensional complete local domain of characteristic p with a system of parameters x1 , x3 , . . . , xd . Let I and J be any two ideals of the subring R = k[[x1 , x3 , . . . , xd ]] ⊂ A. Then (IA)∗ :A JA ⊂ ((I :R J)A)∗ (IA)∗ ∩ (JA)∗ ⊂ ((I ∩ J)A)∗

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(1) (2)

2014.10.12

39 / 168

Integral Closures vs.Tight Closures

Tight Closures

Remark 2.11 With R in Theorem 2.10, let A be a Noetherian ring which is module -finite and torsion free over R. Take γ ∈ R such that γx1 , x3 , . . . , xd form a system of parameters for R

(1)

Then, by Theorem 2.10 and Definition 2.5, we have (x1 q , x3 q , . . . , xr q )(γ)∗ :A xr+1 q ⊂ ((x1 q , x3 q , . . . , xr q )γ)∗

(2)

whenever 3 ≤ r < d, and x1 q (γ)∗ :A x3 q ⊂ (x1 q γ)∗

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(3)

2014.10.12

40 / 168

Integral Closures vs.Tight Closures

Test Element

Test Element Let A be a reduced Noetherian ring of characteristic p > 0 and let P1 , . . . , Ps be the minimal primes of A. Suppose that cN ∈ A is a common test element of A/Pi for each i

(1)

Choose elements ti ∈ A in all the minimal primes except Pi and let s ∑

ti =: γ

(2)

i=1

Then, by Theorem 2.6 (5) ∑ ∑ cN ti = cN ti = cN γ is a test element for A i Jun-ichi NISHIMURA (OECU)

(3)

i Big Cohen-Macaulay Modules

2014.10.12

41 / 168

Integral Closures vs.Tight Closures

Test Element

Lemma 2.12 (Chinese Remainder Theorem) With notation and assumptions above, let I := (y1 , . . . , yr ) be an ideal of A. Suppose that a ∈ I ∗ . Then cN γa = y1 b1 + · · · + yr br

(4)

with b1 , . . . , br ∈ (γA)∗ .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

42 / 168

Integral Closures vs.Tight Closures

Test Element

Proof of Lemma 2.12 Because cN ∈ A is a common test element of A/Pi , we have cN a ≡ y1 b1i + · · · + yr bri

(mod Pi ).

The choice of ti implies ti cN a = ti (y1 bi1 + · · · + yr bir ). By assumption (2), we get ∑ ∑ γcN a = ti cN a = ti (y1 b1i + · · · + yr bri ) i

with bj :=



i

= y1 b1 + · · · + yr br ti bji . Thus, bj ≡ γbji (mod Pi ) for each i.

i

Therefore, bj ∈ (γA)∗ by Theorem 2.6 (3). Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

43 / 168

Integral Closures vs.Tight Closures

Test Element

Theorem 2.13 (Tight Closure Brian¸con–Skoda Theorem) Let A be a Noetherian ring of characteristic p. Let I be an ideal generated by ℓ elements. Then for all n > 0, I n+ℓ−1 ⊂ (I n )∗ ⊂ I n

(1)

Hence, if I is a principal ideal I n = (I n )∗

(2)

for all n > 0.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

44 / 168

Structure Theorem

Structure Theorem for Mixed Characteristic Complete Local Rings

Structure Theorem for Mixed Characteristic Complete Local Rings In this section, we gather a few basic facts on the p-adic representation of elements in a ring. We recall Structure Theorem for Mixed Characteristic Complete Local Rings.

For the details, we refer the reader to [10].

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

45 / 168

Structure Theorem

p-adic Representation and n-th Witt polynomial

n-th Witt polynomial

Let wn denote the n-th Witt polynomial, that is n

n−1

wn (X0 , X1 , . . . , Xn ) := X0p + pX1p

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

+ · · · + pn Xn

2014.10.12

(1)

46 / 168

Structure Theorem

p-adic Representation and n-th Witt polynomial

p-adic Representation Lemma 3.1 Let Φ designate any polynomial in two variables with integral coefficients, which covers arithmetic operations such as addition, multiplication, etc. Then, there exist polynomials φ0 (X0 ; X0′ ), . . . , φn (X0 , . . . , Xn ; X0′ , . . . , Xn′ ) with integral coefficients such that Φ(wn (X0 , . . . , Xn ), wn (X0′ , . . . , Xn′ )) = wn (φ0 (X0 ; X0′ ), . . . , φn (X0 , . . . , Xn ; X0′ , . . . , Xn′ )) = φ0 (X0 ; X0′ )

pn

pn−1

+ pφ1 (X0 , X1 ; X0′ , X1′ )1

(2)

+ ···

· · · + pn φn (X0 , . . . , Xn ; X0′ , . . . , Xn′ ) Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

47 / 168

Structure Theorem

p-adic Representation and n-th Witt polynomial

Lemma 3.2 Let A be a ring and a, b ∈ A. Suppose that for ℓ > 0 a ≡ b (mod pℓ A)

(3)

Then k

k

a p ≡ bp

(mod pk+ℓ A)

(4)

Hence, by sending any element a of each residue class a ¯ ∈ A/pA to k pk its p -th power a , we get a canonical map τA,k : A/pA → A/pk+1 A

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(5)

2014.10.12

48 / 168

Structure Theorem

p-adic Representation and n-th Witt polynomial

Moreover, Lemma 3.3 The maps τA,n , . . . , τA,0 induce TA,n : (A/pA)n+1 → A/pn+1 A

(6)

with (¯ a0 , a ¯1 , . . . , a ¯n ) 7→ wn (a0 , a1 , . . . , an ) n

= a0p + pa1p

n−1

+ · · · + pn an

(7)

TA,n is injective when p is not a zero-divisor and when A/pA is reduced. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

49 / 168

Structure Theorem

p-adic Representation and n-th Witt polynomial

Lemma 3.4 Let A be a ring and a, z1 , z3 , . . . , zr ∈ A that satisfy a ≡ z1 b 1 + z3 b 3 + · · · + zr b r

(mod pA)

(8)

Suppose that ¯b1 , ¯b3 , . . . , ¯br ∈ J¯∗ for an ideal J¯ ⊂ A/pA. Then n

n

n

n

n

n

a p ≡ z1p b1p + z3p b3p + · · · + zrp brp n−1

+ pφ1 (b) p

n

+ · · · + pn φn (b)

(9)

(mod pn+1 A) with φ1 (b)

pn−1

n n , . . . , φn (b) ∈ (J¯∗ ) p ⊂ (J¯p )∗ .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

50 / 168

Structure Theorem

J¯∗ -Representation of Length n

J¯∗-representation of length n With notation as in Lemma 3.2, take γ ∈ A. n n−i i Let J := γ p A and let J¯1/p := γ¯ p A¯ where A¯ := A/pA. We say that a ∈ A has a J¯∗ -representation of length n

( ∗) ¯ . when the residue class of a in A/pn+1 A is contained in Im TA,n J That is, n

n−1

a ≡ a0p + pa1p

+ · · · + pn an

(mod pn+1 A)

(1)

¯ ∗ ⊂ (A/pA)n+1 , where with (¯ a0 , a ¯1 , . . . , a ¯n ) ∈ J ¯ ∗ : = (J¯1/pn )∗ × (J¯1/pn−1 )∗ × · · · × J¯∗ J n ¯ ∗ × (¯ ¯ ∗ × · · · × (¯ ¯∗ = (¯ γ A) γ p A) γ p A) Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(2)

2014.10.12

51 / 168

Hochster’s Observation

Hochster’s Observation

Now we recall Hochster’s Observation [5, p.22] on an equational description (for degeneracy) of modifications.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

52 / 168

Hochster’s Observation

Notation and Assumptions

Notation and Assumptions Let (A, m, k) be a mixed characteristic d-dimensional complete normal local domain with an algebraically closed residue field k. Fix a system of parameters x1 , p, x3 , . . . , xd and a Witt ring (W, pW, k). Then, we get a d-dimensional complete regular local ring R := W [[x1 , x3 , . . . , xd ]]

(1)

that makes A a finite extension of R.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

53 / 168

Hochster’s Observation

Notation and Assumptions

Further, we have a (d + h)-dimensional complete regular local ring S := W [[x1 , x3 , . . . , xd , xd+1 , . . . , xd+h ]] ⊃ R

(2)

and a prime ideal of height h P := (f1 , . . . , fr )S

(3)

A := S/P ⊃ R

(4)

that express

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

54 / 168

Hochster’s Observation

Equational Description

Equational Description With notation and assumptions above, we want to describe in an explicit way what a tth modification of (A, a) of type r := (r1 , . . . , rt ) with respect to a system of parameters x1 , p, x3 , . . . , xd looks like and what it means if such a modification degenerates. In working with vectors, it will be convenient to identify a vector of length r with the vector of length r + r′ whose last r′ entries are 0. It will also be convenient to define x2 = p and r0 = 1.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

55 / 168

Hochster’s Observation

Equational Description

Let M : (A, a) = (M0 , α0 ) → (M1 , α1 ) → · · · → (Mt , αt )

(1)

be the sequence of modifications considered. For each ℓ, we may identify Mℓ = A ⊗S Lℓ = S/P ⊗S Lℓ where Lℓ :=

ℓ ⊕ µ=0

Jun-ichi NISHIMURA (OECU)

S rµ

/ ℓ ∑

SVλ

(2)

λ=1

Big Cohen-Macaulay Modules

2014.10.12

56 / 168

Hochster’s Observation



Here

  Vλ :=  

with

(λ−1) Urλ +1



λ−1 ⊕

Equational Description

(λ−1)

Urλ +1 xrλ .. . x1

 λ  ⊕  S rµ ∈  µ=0

(3)

S rµ that satisfies

µ=0 rλ ∑

(λ−1)

xi Ui

(λ−1)

+ xrλ +1 Urλ +1 =

λ−1 ∑

s(λ−1) Vµ + µ

µ=1

i=1

r ∑

(λ−1)

fj W j

j=1

for suitable choices of the vectors (λ−1) Ui ,

(λ−1) Wj



λ−1 ⊕

S rµ and s(λ−1) ∈ S. µ

µ=0 Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

57 / 168

Hochster’s Observation

Equational Description

Then, by taking s ∈ S that represents a = s¯ ∈ S/P , the condition αt ∈ (x1 , p, x3 , . . . , xd )Mt is then expressed by the existence of vectors Ui , Wj ∈

t ⊕

S rµ and elements sλ ∈ S

µ=0

such that 

 s d t r ∑ ∑  0  ∑  . + x U = s V + fj W j i i λ λ  ..  i=1 j=1 λ=1 0

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(4)

2014.10.12

58 / 168

Flenner’s Bertini Theorem

Notation and Assumptions

Flenner’s Bertini Theorem With notation and assumptions as in 4.1, let U := R \ pR.

Because AU is a one-dimensional regular semi-local ring, we may assume that I := (f1 , . . . , fh )S is an ideal of height h and that there exists u ∈ U that makes uP ⊂ I.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

59 / 168

Flenner’s Bertini Theorem

That is, ufk =

Notation and Assumptions

h ∑

ujk fj

(1)

j=1

with ujk ∈ S for k = h + 1, . . . , r. For a given γ ∈ R, put c := uγx1

(2)

c, p, x3 , . . . , xd form a system of parameters for R

(3)

Further we assume that

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

60 / 168

Flenner’s Bertini Theorem

p-adic Representation and f˜0

p-adic Representation and f˜0 With notation and assumption above, fix an ϵ ∈ N. By taking pϵ th root ξi of xi , let ˜ := W [[ξ1 , ξ3 , . . . , ξd ]], R⊂R S ⊂ S˜ := W [[ξ1 , ξ3 , . . . , ξd , ξd+1 , . . . , ξd+h ]]. Given an n ∈ N. If ϵ above is chosen large enough, we have the p-adic representation for any s ∈ S: n

n−1

s = s˜0p + p˜ s1p Jun-ichi NISHIMURA (OECU)

+ · · · + pn s˜n with s˜i ∈ S˜

Big Cohen-Macaulay Modules

(1)

2014.10.12

61 / 168

Flenner’s Bertini Theorem

p-adic Representation and f˜0

In particular, if we choose an m ∈ N such that 2m ≤ n, we get n

n−1

fj = f˜j0p + pf˜j1p

n−m

p + · · · + pm f˜jm pn−m−1 + pm+1 f˜jm+1 + · · · + pn f˜jn .

Letting pn−m−1 r˜j := f˜jm+1 + · · · + pn−m−1 f˜jn ,

we express n n−1 pn−m fj = f˜j0p + pf˜j1p + · · · + pm f˜jm + pm+1 r˜j

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(2)

62 / 168

Flenner’s Bertini Theorem

p-adic Representation and f˜0

Take an indeterminate π and let ˜ T := S[[π]] ⊃ W [[π]]

Fix an µ ∈ N and let

(3)

Q := pµ .

Put f˜0 := π Q − p ∈ W [[π]]

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(4)

2014.10.12

63 / 168

Flenner’s Bertini Theorem

p-adic Representation and f˜0

Because p = π Q − f˜0 , we get n n−1 pn−m fj = f˜j0p + (π Q − f˜0 )f˜j1p + · · · + (π Q − f˜0 )m f˜jm + pm+1 r˜j n n−1 pn−m = f˜j0p + π Q f˜j1p + · · · + π mQ f˜jm + σj f˜0 + pm+1 r˜j

where n−1 n−2 σj := −f˜j1p + (−2π Q + f˜0 )f˜j2p + . . . ( m ) ( ) ∑ m pn−m ··· + π (m−k)Q f˜0k−1 f˜jm (−1)k . k k=1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

64 / 168

Flenner’s Bertini Theorem

p-adic Representation and f˜0

Hence we have m

m−1

p p fj := φj0 + pφj1

+ · · · + pm φjm + σj f˜0 + pm+1 r˜j

with n−m−1 n−m m m pn−2m ∈ T, + π Q/p f˜j1p + · · · + π mQ/p f˜jm φj0 := f˜j0p ( n−m ) n−m−1 m m pn−2m φji := φi f˜j0p ; π Q/p f˜j1p ; . . . ; π mQ/p f˜jm ∈ T.

Remark that φji above satisfies m π Q/p φji

(5)

for i = 1, . . . , m. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

65 / 168

Flenner’s Bertini Theorem

Let

p-adic Representation and f˜0

pm pm−1 + pφj1 + · · · + pm φjm + pm+1 r˜j . f˜j := φj0

Then we get fj = f˜j + σj f˜0

(6)

Consequently, the relations above imply that uf˜k =

h ∑

ujk f˜j + u0k f˜0

(7)

j=1

with u0k :=

h ∑

ujk σj − uσk

j=1

for k = h + 1, . . . , r. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

66 / 168

Flenner’s Bertini Theorem

p-adic Representation and f˜0

Let I0 := (f˜0 , f1 , . . . , fh )S[[π]] ⊃ (f1 , . . . , fh )S[[π]] = IS[[π]], P0 := (f˜0 , f1 , . . . , fr )S[[π]] ⊃ (f1 , . . . , fr )S[[π]] = P S[[π]]. Then by (6), we have I0 T = (f˜0 , f˜1 , . . . , f˜h )T and P0 T = (f˜0 , f˜1 , . . . , f˜r )T

(8)

Finally, we have the rings as follows ˜ S˜ ⊂ T /P0 T =: A˜ R ⊂ A = S/P ⊂ S/P

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(9)

2014.10.12

67 / 168

Flenner’s Bertini Theorem

Bertini Theorem

Bertini Theorem With notation and assumptions above, for any ν ∈ N, choose ν0 and νj ∈ N (j = 1, . . . , h) such that ν < ν0 < νj . Take c in 5.1 (2). Let g0 := f˜0 − cν0 π

(1)

= π − c π − p ∈ R[[π]] Q

ν0

and, for j = 1, . . . , h, let gj := f˜j + cνj τj (cf. (9) below) Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(2) 2014.10.12

68 / 168

Flenner’s Bertini Theorem

Bertini Theorem

Put P := (g1 , . . . , gh )Tc ∩ T

(3)

P0 := (g0 , g1 , . . . , gh )Tc ∩ T ⊃ P

(4)

and

Flenner’s Bertini Theorem shows that τj s above can be chosen so that P and P0 are prime ideals of T and further:

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

69 / 168

Flenner’s Bertini Theorem

Bertini Theorem

Theorem 5.3 (Bertini Theorem) With notation and assumptions above, let E be the integral closure of T /P in its quotient field Q(T /P) and let ( ) B := E/g0 E ⊂ E/g0 E c . Then the local domains E and B ⊃ T /P0 satisfy: c, π is a sub-system of parameters in E¯ = E/pE ( ) ˜ c makes Ec = T /P c an etale R[[π]] c -algebra ( ) ˜ c -algebra c makes Bc = T /P0 c an etale R

(5) (6) (7)

˜ There exists an R-algebra homomorphism ˜ ν A˜ → B/cν B ψ˜ : A/c Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(8) 2014.10.12

70 / 168

Flenner’s Bertini Theorem

Outline of Proof

Outline of Proof Flenner’s Proof of Bertini Theorem [3, Satz (2.1)] shows that, if we choose a sequence of elements p p t˜1 , . . . , t˜h ∈ T [p] := W [[ξ1 , ξ3 , . . . , ξd , π, ξd+1 , . . . , ξd+h ]]

and sequences of natural numbers ν1 , . . . , νh with νj > ν0 and suitable µ1 , . . . , µh , we get ( µj ) gj := f˜j + cνj t˜j ξd+j + xp1 = f˜j + cνj τj

(9)

that make ˜ ˜ (T /(p, g1 , . . . , gh ))c etale over (R[[π]]/p R[[π]]) c. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

71 / 168

Flenner’s Bertini Theorem

Outline of Proof

For k ≥ h + 1, put } 1 {∑ νj ν0 ˜ gk := fk + ujk c τj − u0k c π u j=1 h

(10)

Then by 5.2 (7), we have ugk =

h ∑

ujk gj

(11)

j=0

Hence, gj ∈ P0 for j = 0, 1, . . . , r. Therefore, E and B fulfil the conditions (5), (6), (7) and (8), because (P0 , cν )T ⊂ (P0 , cν ) by (1), (2) and (10). Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

72 / 168

Flenner’s Bertini Theorem

Remarks

Remarks With notation and assumption above, suppose that A¯ := A/pA is reduced and that any element v of a finite set Υ ⊂ A has p-adic representation 5.2 (1) which further satisfies the following: n

n−1

v = v0p + pv1p

+ · · · + p n vn

(1)

n−i ¯ ∗. with v¯ip ∈ (¯ γ κ A) Take (any) elements ω0 , ω1 , . . . , ωn ∈ B that satisfy

˜ i ) ∈ B/cν B ωi ≡ ψ(v for i = 0, 1, . . . , n and let n

n−1

ω := ω0p + pω1p Jun-ichi NISHIMURA (OECU)

+ · · · + pn ωn .

Big Cohen-Macaulay Modules

2014.10.12

73 / 168

Flenner’s Bertini Theorem

Remarks

Then

Remark 5.4 By Theorem 2.6 (4), we can choose ν large enough such that any ˜ ˜ element ψ(v) ∈ ψ(Υ) satisfies the following: ˜ ψ(v) ≡ ω ∈ B/cν B pn

pn−1

ω1 ω ¯=ω ¯ 0 + p¯

(2) + · · · + pn ω ¯n

(3)

n−i ¯ := B/pB with ω ¯ ∗. where ω ¯, ω ¯0, ω ¯1, . . . , ω ¯n ∈ B ¯ ip ∈ (¯ γ κ B)

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

74 / 168

Flenner’s Bertini Theorem

Remarks

With notation and assumption above, take pϵˇth root ζi of ξi and let ˇ := W [[ζ1 , ζ3 , . . . , ζd ]] R (1) Then ˇ ⊃ W [[ξ1 , ξ3 , . . . , ξd ]] = R ˜ R and ¯ˇ := R/p ˇ R ˇ = k[[ζ1 , ζ3 , . . . , ζd ]] R ¯˜ ˜ R ˜ =: R. ⊃ k[[ξ1 , ξ3 , . . . , ξd ]] = R/p Let E¯ := E/pE ˇ ⊗˜ E Eˇ := R R ¯ ¯ˇ ⊗ ¯ E¯ ˇ Eˇ = R Eˇ := E/p ˜ R

ˇ := R ˇ ⊗˜ B B R ¯ ¯ˇ ⊗ ¯ B ˇ ˇ ˇ=R ¯ B := B/pB ˜ R Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

75 / 168

Flenner’s Bertini Theorem

Remarks

Then

Remark 5.5 With notation above, we have ˇ ⊗ ˜ Ec is an etale R[[π]] ˇ Eˇc = R c -algebra R ¯ˇ ⊗ ¯ E¯ is an etale R[[π]] ¯ˇ E¯ˇc = R c c -algebra ˜ R ( ) ˇc = E/g ˇ 0 Eˇ ˇ c -algebra B is an etale R c ¯ˇ = (E/¯ ¯ˇ g E¯ˇ ) is an etale R ¯ˇ -algebra B c 0 c

(2) (3) (4) (5)

c

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

76 / 168

Flenner’s Bertini Theorem

Remarks

( ) ¯ Let Eˇ be the integral closure of E¯ˇ in Q E¯ˇ , the total quotient ring ¯ˇ Then of E. (¯ ) ¯ˇ ¯ ( ¯ˇ ¯) ˇ g0 E¯ˇ , E/¯ g0 Eˇ ⊂ E/¯ g0 Eˇ c = E/¯ c ¯ˇ because c and g0 form a regular sequence in E. Hence Remark 5.6 With notation above, we have ¯ˇ ¯ E/¯ g0 Eˇ is reduced

(1)

¯ Because E¯ˇ ⊂ Eˇ is a finite extension, ¯ g¯0 Eˇ ∩ E¯ˇ is the integral closure of the ideal g¯0 E¯ˇ Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(2) 77 / 168

Flenner’s Bertini Theorem

Remarks

Finally, remark that Remark 5.7 With notation above, we have (¯ ) ( ¯) ˇ g0 E¯ˇ : Q R ˇ ] is bounded for any ϵˇ [Q E/¯ ( ) (¯ ) ˇ [Q E¯ˇ : Q R[[π]] ] is bounded for any ϵˇ

(1) (2)

¯ˇ ¯ ¯ˇ That is, both the number of minimal prime ideals P/¯ g0 Eˇ of E/¯ g0 E¯ˇ ( ) ¯ˇ ¯ˇ ¯ˇ ] are bounded and the degree of extension [Q(E/ P) : Q R independently for any large ϵˇ. Also, both the number of minimal prime ideals Pˇ¯ of E¯ˇ and its degree ¯ˇ P¯ˇ ) : Q(R[[π]])] ¯ˇ of extension [Q(E/ are bounded independently for any large ϵˇ. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

78 / 168

Base Change 1

Base Change 1

Base Change 1 Let (A, m, k) and (B, n, k) be d-dimensional local rings with (common) system of parameters x := x1 , x2 , . . . , xd . Suppose that for some ν > 0, there exists a ring homomorphism ψ¯ : A/xν1 A → B/xν1 B that maps x¯i to x¯i . Let M be an A-module with α ∈ M and let N be a B-module with β ∈ N. Assume that, for ν0 ≤ ν, we have an A/xν1 A-module homomorphism ¯ ϕ¯ : M/xν10 M → N/xν10 N with α ¯ 7→ β. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

79 / 168

Base Change 1

Base Change 1

Let ρ := (m1 , . . . , mr+1 ) ∈ M r+1 be a type r relation for x: x1 m1 + · · · + xr+1 mr+1 = 0 . By taking ni ∈ N such that ¯m n ¯ i ≡ ϕ( ¯ i ) on N/xν10 N , we have: x1 n ¯ 1 + x2 n ¯ 2 + · · · + xr+1 n ¯ r+1 ≡ 0 . That is, x1 n1 + x2 n2 + · · · + xr+1 nr+1 = xν10 n with n ∈ N . Put

Jun-ichi NISHIMURA (OECU)

n∗1 := n1 − xν10 −1 n. Big Cohen-Macaulay Modules

2014.10.12

80 / 168

Base Change 1

Base Change 1

Then we get a type r relation ρ∗ := (n∗1 , n2 , . . . , nr+1 ) ∈ N r+1 for x on N : x1 n∗1 + x2 n2 + · · · + xr+1 nr+1 = 0 ∗ ¯m where n ¯ ∗ ≡ ϕ( ¯ 1 ) on N/xν N for ν ∗ ≥ ν0 − 1. 1

1

When r ≥ 1, put    v˜ :=  

nr+1 xr .. .

    ∈ N ⊕ Br 

x1 and let v˜ := n∗1 ∈ N when r = 0. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

81 / 168

Base Change 1

Base Change 1

Then we have canonical maps / N → N ⊕ B r → (N ⊕ B r ) B v˜ =: N ′ . Let β ′ be the image of β in N ′ . That is,   β  / 0   ∈ (N ⊕ B r ) B v˜ . . β ′ :=   ..  0 Then we have a map (N, β) → (N ′ , β ′ ), a map N → N ′ that takes β to β ′ . We call (N ′ , β ′ ) a first modification of (N, β) with respect to a type r relation ρ∗ for x. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

82 / 168

Base Change 1

Base Change 1

By construction, for ν0 ≥ ν1 ≥ ν0 − 1, we have an A/xν1 A-module homomorphism ϕ¯′ : M ′ /xν11 M ′ → N ′ /xν11 N ′ with α¯′ 7→ β¯′ that makes the following diagram commutative

(M/xν10 M, α ¯ ) −−−→ (M ′ /xν11 M ′ , α¯′ )     ¯′ ϕ¯y yϕ ¯ −−−→ (N ′ /xν1 N ′ , β¯′ ) . (N/xν10 N, β) 1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

83 / 168

Base Change 1

Base Change 1

Consequently, assume that we have a sequence M : (M, α) =: (M0 , α0 ) → (M1 , α1 ) → · · · → (Mt , αt ) where (Mℓ , αℓ ) is a modification of (Mℓ−1 , αℓ−1 ) with respect to a relation ρℓ on Mℓ−1 of type rℓ for x. Then, by the argument above, whenever ν0 > t, we get a sequence N : (N, β) =: (N0 , β0 ) → (N1 , β1 ) → · · · → (Nt , βt ) where (Nℓ , βℓ ) is a modification of (Nℓ−1 , βℓ−1 ) with respect to a relation ρ∗ℓ on Nℓ−1 of type rℓ for x.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

84 / 168

Base Change 1

Base Change 1

Further, we have A/xν1 A-module homomorphisms ϕ¯ℓ : (Mℓ /xν1ℓ Mℓ , α ¯ ℓ ) → (Nℓ /xν1ℓ Nℓ , β¯ℓ ) with νℓ−1 ≥ νℓ ≥ ν0 − ℓ, that make the following diagram commutative ν

(Mℓ−1 /x1ℓ−1 Mℓ−1 , α ¯ ℓ−1 ) −−−→ (Mℓ /xν1ℓ Mℓ , α ¯ℓ)    ¯ ϕ¯ℓ−1 y yϕℓ ν (Nℓ−1 /x1ℓ−1 Nℓ−1 , β¯ℓ−1 ) −−−→ (Nℓ /xν1ℓ Nℓ , β¯ℓ ).

Hence, if (Mt , αt ) is a degenerate modification of (M, α) with respect to x, (Nt , βt ) is a degenerate modification of (N, β) with respect to x. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

85 / 168

Frobenius Maps

Frobenius Maps

Frobenius Maps

In this section, we gather a few basic facts on Frobenius maps.

For the details, we refer the reader to [10] and [13].

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

86 / 168

Frobenius Maps

Frobenius Maps

With notation and assumptions in Section 5, let FW : W → W be the Frobenius map of a Witt ring (W, pW, k) that lifts the Frobenius map Fk : k → k of the residue field k of characteristic p. Because ˜ = W [[ξ1 , ξ3 , . . . , ξd ]] R is a formal power series ring over W with indeterminates ξ1 , ξ3 , . . . , ξd , FW has an extension ˜→R ˜ FR˜ : R by mapping ξi to ξi p for i = 1, 3, . . . , d. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

87 / 168

Frobenius Maps

Frobenius Maps

With c in 5.1 (2), FR˜ has the canonical extension ˜c → R ˜ F (c) FR˜c : R ˜ R that induces ˜ c /pn+1 R ˜c → R ˜ F (c) /pn+1 R ˜ F (c) FR˜c ,n : R ˜ ˜ R R for any n ∈ N0 . ˜ c -algebra, Because Bc in Theorem 5.3 (Bertini Theorem) is an etale R the Frobenius map FBc /pBc : Bc /pBc → Bc /pBc has the extension FBc ,n : Bc /pn+1 Bc → BFR˜ (c) /pn+1 BFR˜ (c) which satisfies the following commutative diagrams: Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

88 / 168

Frobenius Maps

FB

Frobenius Maps

c Bc /pn+1 Bc −−− → BFR˜ (c) /pn+1 BFR˜ (c) x x     ,n

˜ c /pn+1 R ˜ c −−−→ R ˜ F (c) /pn+1 R ˜ F (c) R ˜ ˜ R R FR ˜ c ,n

and

FB

c Bc /pn+1 Bc −−− → BFR˜ (c) /pn+1 BFR˜ (c)     y y ,n

Bc /pn Bc −−−−−→ BFR˜ (c) /pn BFR˜ (c) FBc ,n−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

89 / 168

Frobenius Maps

Frobenius Maps

˜ generated by Hence, with the FR˜ -stable multiplicative set ∆ of R { e } FR˜ (c) e∈N0 , FR˜ is extended to the endomorphism FB∆∗ of B∆∗ , the pB∆ -adic completion of B∆ , that makes the following diagram commutative:

FB ∗

B∆∗ −−−∆→ x  

B∆∗ x  

˜ −−−→ R ˜. R FR ˜

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

90 / 168

Definition of De

Frobenius Maps

Definition of De With notation and assumptions above, take e ∈ N and let ˜ De := the derived normal ring of R[B, FB∆∗ (B), . . . , FBe∆∗ (B)]. Then De is a finite B-algebra both via the inclusion map ι and via φe , the canonical homomorphism induced by FBe∆∗ ι

B −−−→ De x φe 

(1)

B Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

91 / 168

Frobenius Maps

Remarks

Remarks Remark 7.3 With notation above, let P1 , . . . , Pse be the minimal primes of pDe . That is, pDe = P1 ∩ · · · ∩ Pse . Because the set of quotient fields ΦB := {Q(De /Pi ) | e ∈ N, i = 1, . . . , se }

(1)

is a finite set, when eB is large enough, we have canonical isomorphisms ( ) ∼ = DeB / Pi ∩ DeB ,→ De /Pi

(2)

for any e > eB and for any i = 1, . . . , se . Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

92 / 168

Frobenius Maps

Remarks

Hence, putting ¯ e := De /pDe and P¯i := Pi /pDe D we find an N ∈ N that satisfies: ¯ e /P¯i c¯N is a common test element of D

(1)

for any i = 1, . . . , se and for any e (cf.Theorem 2.8, Remark 7.3 (2)). Choose elements ¯e t¯i ∈ D in all the minimal primes except P¯i and assume further that se ∑

t¯i = γ¯

(2)

i=1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

93 / 168

Frobenius Maps

Remarks

Then

Remark 7.4 With notation and assumptions above, ∑ ∑ c¯N t¯i = c¯N t¯i = c¯N γ¯ i

(3)

i

¯ e. is a test element for D

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

94 / 168

Frobenius Maps

Remarks

With notation and assumptions above, for r ≥ 2, suppose that e e e e x¯p1 d¯1 + x¯p3 d¯3 + · · · + x¯pr d¯r + x¯pr+1 d¯r+1 = 0

(1)

¯ e )∗ . with d¯1 , d¯3 , . . . , d¯r ∈ (¯ γ0 D Here γ0 ∈ R that satisfies γ0 , p, x3 , . . . , xd form a system of parameters for R (cf. 5.1 (2)).

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

95 / 168

Frobenius Maps

Remarks

Then

Remark 7.5 By Theorem 2.10 (Colon Capturing) , we get e e e e ¯ e )∗ (¯ d¯r+1 ∈ (¯ γ0 D xp1 , x¯p3 , . . . , x¯pr ) :D¯ e x¯pr+1 e

e

(2)

⊂ ((¯ γ0 )(¯ xp1 , x¯p3 , . . . , x¯pr ))∗

Jun-ichi NISHIMURA (OECU)

e

Big Cohen-Macaulay Modules

2014.10.12

96 / 168

Frobenius Maps

Remarks

Thus, we get Lemma 7.6 With notation and assumptions above, for r ≥ 2, suppose that e e e e x¯p1 d¯1 + x¯p3 d¯3 + · · · + x¯pr d¯r + x¯pr+1 d¯r+1 = 0

(1)

¯ e )∗ . Here γ0 ∈ R that satisfies with d¯1 , d¯3 , . . . , d¯r ∈ (¯ γ0 D γ0 , p, x3 , . . . , xd form a system of parameters for R.

(2)

Then e e e c¯N γ¯ d¯r+1 = γ¯0 (¯ xp1 ω ¯ 1 + x¯p3 ω ¯ 3 + · · · + x¯pr ω ¯r ) e

e

e

= x¯p1 γ¯0 ω ¯ 1 + x¯p3 γ¯0 ω ¯ 3 + · · · + x¯pr γ¯0 ω ¯r

(3)

¯ e )∗ (cf. Lemma 2.12 (4)). with ω ¯1, ω ¯3, . . . , ω ¯ r ∈ (¯ γD Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

97 / 168

Base Change 2

Base Change 2

Base Change 2 Let (B, n, k), (De , ne , k) be d-dimensional mixed characteristic local rings with system of parameters x1 , p(= x2 ), x3 , . . . , xd , that is abbreviated to x.

Suppose that we have a ring homomorphism φ e : B → De e

that maps xi to xpi for i = 1, 3, . . . , d (cf. 7.2 (1)).

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

98 / 168

Base Change 2

Base Change 2

If N is a B-module with β ∈ N . Then De ⊗B N becomes a De -module and we have a canonical homomorphism φe ⊗ 1N : (N, β) → (De ⊗B N, 1 ⊗ β) with β 7→ 1 ⊗ β.

Let

ρ∗ := (n∗1 , n2 , n3 , . . . , nr+1 ) ∈ N r+1

be a type r relation for x on N x1 n∗1 + pn2 + x3 n3 + · · · + xr+1 nr+1 = 0.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

99 / 168

Base Change 2

Base Change 2

Then, we get a type r relation De ⊗B ρ∗ := (1 ⊗ n∗1 , 1 ⊗ n2 , 1 ⊗ n3 , . . . , 1 ⊗ nr+1 ) ∈ (De ⊗B N )r+1 e

e

e

for xp1 , p, xp3 , . . . , xpd , abbreviated to xp , on De ⊗B N . e

Namely, e

e

e

xp1 ⊗ n∗1 + p ⊗ n2 + xp3 ⊗ n3 + · · · + xpr+1 ⊗ nr+1 = 0.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

100 / 168

Base Change 2

Base Change 2

When r ≥ 2, put    1 ⊗ v˜ :=  

1 ⊗ nr+1 e xpr .. . xp1

e

    ∈ (De ⊗B N ) ⊕ Der . 

When r = 1, let ( 1 ⊗ v˜ := and put

1 ⊗ n2 e xp1

) ∈ (De ⊗B N ) ⊕ De

1 ⊗ v˜ := 1 ⊗ n∗1 ∈ De ⊗B N

when r = 0. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

101 / 168

Base Change 2

Base Change 2

Then we have canonical maps De ⊗B N → (De ⊗B N ) ⊕ Der

/ → ((De ⊗B N ) ⊕ Der ) De (1 ⊗ v˜) = De ⊗B N ′ .

Let 1 ⊗ β ′ be the image of 1 ⊗ β in De ⊗B N ′ . That is,   1⊗β  0  /  ∈ ((De ⊗B N ) ⊕ Der ) De (1 ⊗ v˜). . 1 ⊗ β′ =  .  .  0 We may call (De ⊗B N ′ , 1 ⊗ β ′ ) a first modification of e (De ⊗B N, 1 ⊗ β) with respect to a type r relation De ⊗B ρ∗ for xp . Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

102 / 168

Base Change 2

Base Change 2

By construction, we have a B-module homomorphism φe ⊗ 1N ′ : (N ′ , β ′ ) → (De ⊗B N ′ , 1 ⊗ β ′ ) that makes the following diagram commutative

(N, β)   φe ⊗ 1 N y

−−−→

(N ′ , β ′ )  φ ⊗ 1 ′ y e N

(De ⊗B N, 1 ⊗ β) −−−→ (De ⊗B N ′ , 1 ⊗ β ′ ).

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

103 / 168

Base Change 2

Base Change 2

Consequently, assume that we have a sequence N : (N0 , β0 ) → (N1 , β1 ) → · · · → (Nt , βt ) where (Nℓ , βℓ ) is a modification of (Nℓ−1 , βℓ−1 ) with respect to a relation ρ∗ℓ on Nℓ−1 of type rℓ for x. Then, by the argument above, we get a sequence De ⊗B N : (De ⊗B N0 , 1 ⊗ β0 ) → · · · → (De ⊗B Nt , 1 ⊗ βt ) where (De ⊗B Nℓ , 1 ⊗ βℓ ) is a modification of (De ⊗B Nℓ−1 , 1 ⊗ βℓ−1 ) e with respect to a relation De ⊗B ρ∗ℓ on De ⊗B Nℓ−1 of type rℓ for xp .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

104 / 168

Base Change 2

Base Change 2

Further, we have B-module homomorphisms φe ⊗ 1Nℓ : (Nℓ , βℓ ) → (De ⊗B Nℓ , 1 ⊗ βℓ ) that make the following diagram commutative (Nℓ−1 , βℓ−1 )   φe ⊗ 1Nℓ−1 y

−−−→

(Nℓ , βℓ )  φe ⊗ 1 Nℓ y

(De ⊗B Nℓ−1 , 1 ⊗ βℓ−1 ) −−−→ (De ⊗B Nℓ , 1 ⊗ βℓ ). Hence, if (Nt , βt ) is a degenerate modification of (N, β) with respect to x1 , p, x3 , . . . , xd , (De ⊗B Nt , 1 ⊗ βt ) is a degenerate modification e e e of (De ⊗B N, 1 ⊗ β) with respect to xp1 , p, xp3 , . . . , xpd . Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

105 / 168

First Step of Induction

Notation and Assumptions

Notation and Assumptions We prove Proposition 1.7. Suppose that the assertion of Proposition 1.7 is false. Then, there exists a d-dimensional mixed characteristic local ring (A, m, k) which has no big Cohen-Macaulay module. We may assume that A is a complete normal local domain of dim A = d ≥ 3 with a system of parameters x1 , p, x3 , . . . , xd , that is abbreviated to x, and that the residue field k is algebraically closed of characteristic p > 0.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

106 / 168

First Step of Induction

Notation and Assumptions

Because A has no big Cohen-Macaulay module, there exist an integer t and a degenerate sequence of modifications of type r = (r1 , . . . , rt ) with respect to x: M : (A, 1) =: (M0 , α0 ) → (M1 , α1 ) → · · · → (Mt , αt )

(1)

such that αt ∈ (x1 , p, x3 , . . . , xd )Mt .

We work with this sequence and obtain a contradiction.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

107 / 168

First Step of Induction

The case when ℓ = 1

The case when ℓ = 1 With notation and assumptions above, we prove Proposition 1.7 by inductive steps. Let ℓ = 1. Because A is normal, we may assume r1 ≥ 2. Suppose that we have a type r1 relation on A: x1 a1 + pa2 + · · · + xr1 ar1 + xr1 +1 ar1 +1 = 0

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(2)

108 / 168

First Step of Induction

The case when ℓ = 1

Then, by the argument in 5.1, we get a type r1 relation on B: x1 b∗1 + pb2 + · · · + xr1 br1 + xr1 +1 br1 +1 = 0 and we put

   v˜1 =  

br1 +1 xr1 .. .

(3)

    ∈ B ⊕ B r1 

(4)

x1 Take sufficiently large ϵ1 . Then by 5.2 (1), we have n1

n1 −1

br1 +1 = b(rp 1 +1)0 + pb(rp 1 +1)1 + · · · + pn1 b(r1 +1)n1

(5)

with b(r1 +1)i ∈ B for i = 0, 1, . . . , n1 . Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

109 / 168

First Step of Induction

q1 and Φ1

q1 and Φ1 Let c1 := u1 x1

(1)

(cf. 5.1 (2)). Assume that K1 ∈ N satisfies K1 K1 ¯ 1 c¯1 ̸∈ (xK 1 , x3 , . . . , xd )R

(2)

Take eB and N1 in 7.3. Then we can find e1 ∈ N (e1 > eB ) enough large that satisfies the following and let 4K1 N1 pn1 < pe1 =: q1 (3) Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

110 / 168

First Step of Induction

q1 and Φ1

Then we have a type r1 relation on De1 with respect to the system of parameters x1q1 , p, x3q1 , . . . , xdq1 : x1q1 φe1 (b∗1 ) + pφe1 (b2 ) + · · · + xrq11 φe1 (br1 ) + xrq11+1 φe1 (br1 +1 ) = 0 ¯ e1 with respect to the system And we have a type r1 − 1 relation on D q1 q1 q1 of parameters x1 , x3 , . . . , xd : x1q1 φ¯e1 (b∗1 ) + x3q1 φ¯e1 (b3 ) + · · · + xrq11 φ¯e1 (br1 ) + xrq11+1 φ¯e1 (br1 +1 ) = 0 We remark that n1

n

φ¯e1 (br1 +1 ) = φ¯e1 (b(rp 1 +1)0 ) = φ¯e1 (b(r1 +1)0 ) p 1 .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

111 / 168

First Step of Induction

q1 and Φ1

By Theorem 2.8, Remark 2.11 and 2.12 (3), we may further assume that 1 ¯ e1 c¯N ¯1 is a test element for D (4) 1 γ Then, by Lemma 7.6 n

p 1 1 (cN φe1 (b(r1 +1)0 ) p 1 γ1 )

n1

n1

n1

n1

p p p + x3q1 ω13 + · · · + xrq11 ω1r ≡ x1q1 ω11 1 n1 −1

n1 −2

p p + p2 η12 + pη11 (mod pn1 +1 De1 )

+ · · · + pn1 η1n1

with n1

n1

n1

n1 −1

p p p p ω ¯ 11 ,ω ¯ 13 , ..., ω ¯ 1r , η¯11 1

Jun-ichi NISHIMURA (OECU)

n1 −2

p , η¯12

n1 ¯ e1 )∗ , . . . , η¯1n1 ∈ (¯ γ1p D

Big Cohen-Macaulay Modules

2014.10.12

112 / 168

First Step of Induction

q1 and Φ1

Hence n

p 1 1 (cN φe1 (br1 +1 ) 1 γ1 ) n1

n1

n1

p p p = x1q1 ω11 + x3q1 ω13 + · · · + xrq11 ω1r 1 { } N1 pn1 pn1 −1 n1 + (c1 γ1 ) pφe1 (b(r1 +1)1 ) + · · · + p φe1 (b(r1 +1)n1 ) n1 −1

p + pη11

n1 −2

p + p2 η12

+ · · · + pn1 η1n1 + pn1 +1 η1(n1 +1)

Let Φ1 : De1 ⊕ Der11 → De1 be a De1 -homomorphism given by ( 1 pn1 ) pn1 pn1 pn1 Φ1 := (cN − ω1r . . . − ω13 − η˜1 − ω11 1 γ1 ) 1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(5)

113 / 168

First Step of Induction

where n1

p 1 η˜1 := (cN 1 γ1 )

{ } n −1 φe1 (b(r1 +1)1 ) p 1 + · · · + pn1 −1 φe1 (b(r1 +1)n1 ) n1 −1

p + η11

Then Φ1 kills

n1 −2

p + pη12

    1 ⊗ v˜1 =   

Jun-ichi NISHIMURA (OECU)

q1 and Φ1

+ · · · + pn1 −1 η1n1 + pn1 η1(n1 +1)

φe1 (br1 +1 ) xrq11 .. . p x1q1

Big Cohen-Macaulay Modules

      

(6)

2014.10.12

114 / 168

First Step of Induction

ϕ1 and J1

ϕ1 and J1 Because De1 ⊗B N1 = De1 ⊕ Der11 /De1 (1 ⊗ v˜1 ) , Φ1 induces a De1 -homomorphism ϕ1 : De1 ⊗B N1 → De1 . Thus, we have the following diagram ι

−−−→

De 1



De1 ⊕ Der11 −−−→ De1  Φ y 1

De1 −−−−−−n→ N

(c1 1 γ1 ) p

Jun-ichi NISHIMURA (OECU)

1

De 1

Big Cohen-Macaulay Modules

⊗B N1  ϕ y 1

De1

2014.10.12

115 / 168

First Step of Induction

ϕ1 and J1

Then n1

n

n1

n1

p p p p 1 1 Im ϕ1 = ((cN , ω1r , . . . , ω13 , η˜1 , ω11 1 γ1 ) 1

)

De1

(1)

Because a1 := ϕ1 (1 ⊗ β1 )  β0 (  0 = ϕ1 1 ⊗   ... 0

   

)

( = ϕ1



 1 )  0  pn1 1  .  = (cN 1 γ1 )  ..  0

(2)

we have n1

1p a ¯1 = c¯N γ¯1p 1

n1

n n n1 n1 1 N1 p 1 1 N1 p 1 ¯ ̸∈ (xK , xK , . . . , xdK1 N1 p )¯ γ1p R 1 3

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(3) 2014.10.12

116 / 168

First Step of Induction

Let

ϕ1 and J1

n1

J1 := γ1p De1

(4)

Then ) ( N1 pn1 pn1 pn1 ¯ pn1 ˜ ¯ 13 , η˜1 , ω ¯ 11 De 1 Im ϕ¯1 = (¯ c1 γ¯1 ) , ω ¯ 1r1 , . . . , ω pn1 ¯ ∗ ⊂ (¯ γ1 De1 ) = J¯1∗

(5)

Hence, by 9.3 (3), 9.4 (3) and 9.4 (4) ( q /4 q /4 )∗ q /4 a ¯1 ̸∈ (x1 1 , x3 1 , . . . , xd 1 )J¯1 .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(6)

2014.10.12

117 / 168

First Step of Induction

Inductive Notation

Inductive Notation Applying ϕ1 to the top r0 + r1 = 1 + r1 components of each vectors, we get the following diagram: De1 ⊗B N1 −−−→ De1   ϕ1 y De 1

−−−→

⊗B N2 −−−→ · · · −−−→ De1 ⊗B Nt   ϕ1 ⊕1 r2 ϕ1 ⊕1 r2 +···+rt  De D y y e1 1

M11

−−−→ · · · −−−→

M1 (t−1)

Let n

p 1 1 (De1 , (cN ) =: (A1 , a1 ) = (M10 , α10 ) 1 γ1 )

and, for 1 ≤ ℓ ≤ t − 1, put / M1ℓ := (M1(ℓ−1) ⊕ Der1ℓ+1 ) De1 (ϕ1 ⊕ 1Dr2 +···+rℓ+1 (1 ⊗ v˜ℓ+1 )) e1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

118 / 168

First Step of Induction

Inductive Notation

Then we get a new degenerate sequence of modifications of type r1 = (r11 , . . . , r1(t−1) ) = (r2 , . . . , rt ): M1 : (M10 , α10 ) → (M11 , α11 ) → · · · → (M1(t−1) , α1(t−1) )

(1)

in which (M1ℓ , α1ℓ ) is a modification of (M1(ℓ−1) , α1(ℓ−1) ) for a relation ϕ1 ⊕ 1Dr2 +···+rℓ+1 (1 ⊗ ρ∗ℓ+1 ) on M1(ℓ−1) of type r1ℓ = rℓ+1 e1

with respect to the system of parameters x1q1 , p, x3q1 , . . . , xdq1 of A1 . We remark further that n1 γ1p A¯1 )∗ Im ϕ¯1 ⊂ J¯1∗ = (¯ ( q /4 q /4 )∗ q /4 a ¯1 ̸∈ (x1 1 , x3 1 , . . . , xd 1 )J¯1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(2) (3)

2014.10.12

119 / 168

First Step of Induction

Notation and Inductive Assumptions

Notation and Inductive Assumptions Suppose that ℓ ≥ 2. Take eℓ−1 ∈ N such that e0 = 0, e1 < · · · < eℓ−2 < eℓ−1 . Let qℓ−1 := pe1 · · · peℓ−1 = pe1 +···+eℓ−1

(1)

We want to describe in an explicit way what a (t − ℓ + 1)th modification of (Aℓ−1 , aℓ−1 ) of type rℓ−1 = (r(ℓ−1)1 , . . . , r(ℓ−1)(t−ℓ+1) ) = (rℓ , . . . , rt ) q

q

q

with respect to a system of parameters x1 ℓ−1 , p, x3 ℓ−1 , . . . , xd ℓ−1 looks like. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

120 / 168

First Step of Induction

Notation and Inductive Assumptions

Namely, applying ϕℓ−1 to the top r(ℓ−2)0 + r(ℓ−2)1 = 1 + rℓ−1 components of each vectors, we get the following diagram: Deℓ−1 ⊗Bℓ−2 N(ℓ−2)1 −−−→   ϕℓ−1 y Deℓ−1

Deℓ−1 ⊗Bℓ−2 N(ℓ−2)2 −−−→ · · ·  ϕℓ−1 ⊕1 r(ℓ−2)2 De y ℓ−1

−−−→

M(ℓ−1)1

−−−→ · · ·

· · · −−−→

Deℓ−1 ⊗Bℓ−2 N(ℓ−2)(t−ℓ+2)  ϕℓ−1 ⊕1 r(ℓ−2)2 +···+r(ℓ−2)(t−ℓ+2)  y De ℓ−1 · · · −−−→

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

M(ℓ−1)(t−ℓ+1)

2014.10.12

121 / 168

First Step of Induction

Notation and Inductive Assumptions

Let (Deℓ−1 , ϕℓ−1 (1 ⊗ β(ℓ−2)1 )) =: (Aℓ−1 , aℓ−1 ) = (M(ℓ−1)0 , α(ℓ−1)0 )

(2)

(cf. 9.4 (2)) and, for 1 ≤ m ≤ t − ℓ + 1, put / ℓ+m−1 M(ℓ−1)m := (M(ℓ−1)(m−1) ⊕ Derℓ−1 ) Deℓ−1 (ϕℓ−1 ⊕ 1Drℓ +···+rℓ+m−1 (1 ⊗ v˜ℓ+m−1 ))

(3)

eℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

122 / 168

First Step of Induction

Notation and Inductive Assumptions

Then we get a new degenerate sequence of modifications of type rℓ−1 : Mℓ−1 : (M(ℓ−1)0 , α(ℓ−1)0 ) → (M(ℓ−1)1 , α(ℓ−1)1 ) → . . . · · · → (M(ℓ−1)(t−ℓ+1) , α(ℓ−1)(t−ℓ+1) ) in which (M(ℓ−1)m , α(ℓ−1)m ) is a modification of (M(ℓ−1)(m−1) , α(ℓ−1)(m−1) ) for a relation ϕℓ−1 ⊕ 1Drℓ +···+rℓ+m−1 (1 ⊗ ρ∗ℓ+m−1 ) eℓ−1

on M(ℓ−1)(m−1) of type r(ℓ−1)m = rℓ+m−1 with respect to the system q q q of parameters x1 ℓ−1 , p, x3 ℓ−1 , . . . , xd ℓ−1 of Aℓ−1 .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

123 / 168

First Step of Induction

Let

Notation and Inductive Assumptions

nℓ−1

p Jℓ−1 := γℓ−1 φeℓ−1 (Jℓ−2 )Deℓ−1

(4)

Then, on A¯ℓ−1 = Aℓ−1 /pAℓ−1 : nℓ−1

p ¯ e )∗ = J¯∗ Im ϕ¯ℓ−1 ⊂ (¯ γℓ−1 φ¯eℓ−1 (J¯ℓ−2 )D ℓ−1 ℓ−1

(5)

and ( q /4ℓ−1 qℓ−1 /4ℓ−1 )∗ q /4ℓ−1 ¯ a ¯ℓ−1 ̸∈ (x1 ℓ−1 , x3 , . . . , xd ℓ−1 )Jℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(6)

124 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

Assumption and Notation

Assumption and Notation Assume that rℓ ≥ 2. We have a type rℓ relation on Aℓ−1 : q

x1 ℓ−1 a(ℓ−1)1 + pa(ℓ−1)2 + · · · q · · · + xrqℓℓ−1 a(ℓ−1)rℓ + xrℓℓ−1 +1 a(ℓ−1)(rℓ +1) = 0 (1) With notation in 6.1, we get a type rℓ relation on Bℓ−1 : x1 ℓ−1 b∗(ℓ−1)1 + pb(ℓ−1)2 + · · · q

q

· · · + xrqℓℓ−1 b(ℓ−1)rℓ + xrℓℓ−1 +1 b(ℓ−1)(rℓ +1) = 0 (2)

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

125 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

Assumption and Notation

and we put     v˜ℓ =   

b(ℓ−1)(rℓ +1) q xrℓℓ−1 .. . p q x1 ℓ−1

    rℓ  ∈ Bℓ−1 ⊕ Bℓ−1  

(3)

Taking sufficiently large ϵℓ (cf.5.2 (1)), we have b(ℓ−1)(rℓ +1) = nℓ

nℓ −1

p p b(ℓ−1)(r + pb(ℓ−1)(r + · · · + pnℓ b(ℓ−1)(rℓ +1)nℓ (4) ℓ +1)0 ℓ +1)1 pnℓ −i ¯ℓ−1 )∗ for i = 0, 1, . . . , nℓ . with ¯b(ℓ−1)(r ∈ (J¯ℓ−1 B ℓ +1)i

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

126 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

qℓ and Φℓ

qℓ and Φℓ Let

Mℓ−1

q

p cℓ := uℓ−1 γℓ−1 x1 ℓ−1

(1)

Assume that Kℓ ∈ N satisfies ¯ c¯ℓ ̸∈ (x1Kℓ , x3Kℓ , . . . , xdKℓ )R

(2)

By 9.6 (1), we may assume Kℓ−1 Nℓ−1 pnℓ−1 + Kℓ−2 Nℓ−2 pnℓ−2 +eℓ−1 + · · · · · · + K1 N1 pn1 +e2 +···+eℓ−1 < qℓ−1 (3)

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

127 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

qℓ and Φℓ

Take eBℓ−1 and Nℓ in 7.3. Then we can find eℓ ∈ N (eℓ > eBℓ−1 ) enough large such that Kℓ Nℓ pnℓ + Kℓ−1 Nℓ−1 pnℓ−1 +eℓ + · · · · · · + K1 N1 pn1 +e2 +···+eℓ−1 +eℓ < qℓ−1 peℓ (4) Let qℓ := qℓ−1 peℓ

(5)

Then we have a type rℓ relation on Deℓ with respect to the system of parameters x1qℓ , p, x3qℓ , . . . , xdqℓ : x1qℓ φeℓ (b∗(ℓ−1)1 ) + pφeℓ (b(ℓ−1)2 ) + · · · · · · + xrqℓℓ φeℓ (b(ℓ−1)rℓ ) + xrqℓℓ+1 φeℓ (b(ℓ−1)(rℓ +1) ) = 0 (6) Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

128 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

qℓ and Φℓ

¯ e with respect to the system And we have a type rℓ − 1 relation on D ℓ qℓ qℓ qℓ of parameters x1 , x3 , . . . , xd : x1qℓ φ¯eℓ (b∗(ℓ−1)1 ) + x3qℓ φ¯eℓ (b(ℓ−1)3 ) + · · · · · · + xrqℓℓ φ¯eℓ (b(ℓ−1)rℓ ) + xrqℓℓ+1 φ¯eℓ (b(ℓ−1)(rℓ +1) ) = 0 (7) We remark that nℓ

p φ¯eℓ (b(ℓ−1)(rℓ +1) ) = φ¯eℓ (b(ℓ−1)(r ) = φ¯eℓ (b(ℓ−1)(rℓ +1)0 ) p ℓ +1)0

nℓ

By Theorem 2.8, Remark after Theorem 2.6and 2.12 (3), we may further assume that ℓ ¯e ¯ℓ is a test element for D c¯N ℓ ℓ γ

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(8)

2014.10.12

129 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

qℓ and Φℓ

Then, n

nℓ

p ℓ ℓ (cN φeℓ (b(ℓ−1)(rℓ +1)0 ) p ℓ γℓ ) nℓ

nℓ

nℓ

≡ x1qℓ ωℓ1p + x3qℓ ωℓ3p + · · · + xrqℓℓ ωℓrp ℓ nℓ −1

nℓ −2

+ pηℓ1p + p2 ηℓ2p (mod pnℓ +1 Deℓ )

+ · · · + pnℓ ηℓnℓ

with nℓ

nℓ

nℓ

nℓ −1

ω ¯ ℓ1p , ω ¯ ℓ3p , . . . , ω ¯ ℓrp ℓ , η¯ℓ1p

nℓ −2

, η¯ℓ2p

, . . . , η¯ℓnℓ nℓ ¯ e )∗ ∈ (¯ γℓp φ¯eℓ (J¯ℓ−1 )D ℓ

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

130 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

qℓ and Φℓ

Hence n

p ℓ ℓ (cN φeℓ (b(ℓ−1)(rℓ +1) ) ℓ γℓ ) nℓ

nℓ

nℓ

= x1qℓ ωℓ1p + x3qℓ ωℓ3p + · · · + xrqℓℓ ωℓrp ℓ { n −1 pnℓ ℓ + (cN γ ) pφeℓ (b(ℓ−1)(rℓ +1)1 ) p ℓ + · · · ℓ ℓ

} · · · + pnℓ φeℓ (b(ℓ−1)(rℓ +1)nℓ )

nℓ −1

+ pηℓ1p

Jun-ichi NISHIMURA (OECU)

nℓ −2

+ p2 ηℓ2p

+ · · · + pnℓ ηℓnℓ + pnℓ +1 ηℓ(nℓ +1)

Big Cohen-Macaulay Modules

2014.10.12

131 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

qℓ and Φℓ

Let Φℓ : Deℓ ⊕ Derℓℓ → Deℓ be a Deℓ -homomorphism given by ( ℓ pnℓ nℓ nℓ ) nℓ Φℓ := (cN − ωℓrp ℓ . . . − ωℓ3p − η˜ℓ − ωℓ1p ℓ γℓ ) where η˜ℓ :=

pnℓ ℓ (cN ℓ γℓ )

nℓ −1

+ ηℓ1p

Jun-ichi NISHIMURA (OECU)

(9)

{ n −1 φeℓ (b(ℓ−1)(rℓ +1)1 ) p ℓ + · · ·

} · · · + pnℓ −1 φeℓ (b(ℓ−1)(rℓ +1)nℓ )

nℓ −2

+ pηℓ2p

+ · · · + pnℓ −1 ηℓnℓ + pnℓ ηℓ(nℓ +1) .

Big Cohen-Macaulay Modules

2014.10.12

132 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

Then Φℓ kills

    1 ⊗ v˜ℓ =   

Jun-ichi NISHIMURA (OECU)

qℓ and Φℓ

φeℓ (b(ℓ−1)(rℓ +1) ) xrqℓℓ .. . p x1qℓ

Big Cohen-Macaulay Modules

      

(10)

2014.10.12

133 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

ϕℓ and Jℓ

ϕℓ and Jℓ Because Deℓ ⊗Bℓ−1 N(ℓ−1)1 = Deℓ ⊕ Derℓℓ /Deℓ (1 ⊗ v˜ℓ ) Φℓ induces a Deℓ -homomorphism ϕℓ : Deℓ ⊗B N(ℓ−1)1 → Deℓ Thus, we have the following diagram De ℓ



ι

Deℓ ⊕ Derℓℓ −−−→ Deℓ ⊗Bℓ−1 N(ℓ−1)1   Φ ϕ y ℓ y ℓ

−−−→

Deℓ −−−−−−n→ N

(cℓ ℓ γℓ ) p

Jun-ichi NISHIMURA (OECU)



De ℓ Big Cohen-Macaulay Modules

De ℓ 2014.10.12

134 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

ϕℓ and Jℓ

Then ( ℓ pnℓ nℓ nℓ nℓ ) Im ϕℓ = (cN Im ϕℓ−1 , ωℓrp ℓ , . . . , ωℓ3p , η˜ℓ , ωℓ1p Deℓ ℓ γℓ )

(1)

Because aℓ := ϕℓ (1 ⊗ β(ℓ−1)1 )   β (ℓ−1)0 ( )   0   .. = ϕℓ 1 ⊗   . 0   ( φeℓ (bℓ−1 ) )   0  = (cNℓ γℓ ) pnℓ φe (bℓ−1 ) . = ϕℓ  ℓ ℓ .   . 0 Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(2)

135 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

ϕℓ and Jℓ

we have a ¯ℓ n nℓ ℓp ℓ = (¯ cN γ¯ℓp )φ¯eℓ (¯bℓ−1 ) ℓ

Nℓ pnℓ

= (¯ cℓ

nℓ

pnℓ

γ¯ℓ

N

ℓ−1 )(¯ cℓ−1

N

ℓ−1 ℓp = (¯ cN c¯ℓ−1 ℓ

(3)

nℓ−1

p

pnℓ−1 +eℓ

nℓ−1

p γ¯ℓ−1 )

1p · · · c¯N 1

× (¯ γℓ K Nℓ pnℓ +Kℓ−1 Nℓ−1

N1 pn1

· · · (¯ c1

n1 +e2 +···+eℓ−1 +eℓ

pnℓ

̸∈ (x1 ℓ

peℓ

pnℓ−1 +eℓ

γ¯ℓ−1

pn1

pe2 +···+eℓ−1 +eℓ

γ¯1 )

) n1 +e2 +···+eℓ−1 +eℓ

· · · γ¯1p

pnℓ−1 +eℓ +···+K1 N1 pn1 +e2 +···+eℓ−1 +eℓ

,

Kℓ Nℓ pnℓ +Kℓ−1 Nℓ−1 pnℓ−1 +eℓ +···+K1 N1 pn1 +e2 +···+eℓ−1 +eℓ

x3

,...

Kℓ Nℓ pnℓ +Kℓ−1 Nℓ−1 pnℓ−1 +eℓ +···+K1 N1 pn1 +e2 +···+eℓ−1 +eℓ

. . . , xd

nℓ

pnℓ−1 +eℓ

× (¯ γℓp γ¯ℓ−1 Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

)

)

pn1 +e2 +···+eℓ−1 +eℓ

· · · γ¯1

2014.10.12

¯ )R

136 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

Inductive Notation

Inductive Notation Applying ϕℓ to the top r(ℓ−1)0 + r(ℓ−1)1 = 1 + rℓ components of each vectors, we get the following diagram: Deℓ ⊗Bℓ−1 N(ℓ−1)1 −−−→ Deℓ ⊗Bℓ−1 N(ℓ−1)2 −−−→ · · ·    ϕℓ ⊕1 r(ℓ−1)2 ϕℓ y y De ℓ −−−→

De ℓ

−−−→ · · ·

Mℓ1

· · · −−−→

Deℓ ⊗Bℓ−1 N(ℓ−1)(t−ℓ+1)  ϕℓ−1 ⊕1 r(ℓ−1)2 +···+r(ℓ−1)(t−ℓ+1)  y De ℓ · · · −−−→

Jun-ichi NISHIMURA (OECU)

Mℓ(t−ℓ)

Big Cohen-Macaulay Modules

2014.10.12

137 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

Inductive Notation

Let (Deℓ , ϕℓ (1 ⊗ β(ℓ−1)1 )) =: (Aℓ , aℓ ) =: (Mℓ0 , αℓ0 )

(1)

(cf. 9.4 (2)), and / Mℓm := (Mℓ(m−1) ⊕ Derℓℓ+m )

(2)

Deℓ (ϕℓ ⊕ 1Drℓ+1 +···+rℓ+m (1 ⊗ v˜ℓ+m )) eℓ

for 1 ≤ m ≤ t − ℓ.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

138 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

Inductive Notation

Then we get a new degenerate sequence of modifications of type rℓ := (rℓ1 , . . . , rℓ(t−ℓ) ) = (rℓ+1 , . . . , rt ): Mℓ : (Mℓ0 , αℓ0 ) → (Mℓ1 , αℓ1 ) → . . . . . . → (Mℓ(t−ℓ) , αℓ(t−ℓ) )

(3)

in which (Mℓm , αℓm ) is a modification of (Mℓ(m−1) , αℓ(m−1) ) for a relation ϕℓ ⊕ 1Drℓ+1 +···+rℓ+m (1 ⊗ ρ∗ℓ+m ) eℓ

on Mℓ(m−1) of type rℓm = rℓ+m with respect to the system of parameters x1qℓ , p, x3qℓ , . . . , xdqℓ of Aℓ .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

139 / 168

The Case when ℓ ≥ 2 and rℓ ≥ 2

Inductive Notation

Let nℓ

Jℓ :=γℓp φeℓ (Jℓ−1 )Deℓ

(4)

Then ( Nℓ pnℓ nℓ nℓ ) nℓ ¯ e (5) ¯ ℓ3p , η¯˜ℓ , ω ¯ ℓ1p D cℓ γ¯ℓ ) φ¯eℓ (Im ϕ¯ℓ−1 ), ω ¯ ℓrp ℓ , . . . , ω Im ϕ¯ℓ = (¯ ℓ ( Nℓ pnℓ ) pnℓ pnℓ ¯ pnℓ ¯ ∗ ¯ ⊂ (¯ cℓ γ¯ℓ ) φ¯eℓ (Jℓ−1 ) , ω ¯ ℓrℓ , . . . , ω ¯ ℓ3 , η˜ℓ , ω ¯ ℓ1 Deℓ pnℓ ¯ e )∗ ⊂ (¯ γℓ φ¯eℓ (J¯ℓ−1 )D ℓ = J¯ℓ∗ Hence, by 10.2 (4), 10.3 (3) and 10.4 (4) ( )∗ a ¯ℓ ̸∈ (x1qℓ , x3qℓ , . . . , xdqℓ )J¯ℓ Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(6) 2014.10.12

140 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation

Assumption and Notation Assume that rℓ = 1. We have a type 1 relation on Aℓ−1 : q

x1 ℓ−1 a(ℓ−1)1 + pa(ℓ−1)2 = 0.

(1)

With notation in 5.1, we get a type 1 relation on Sℓ−1 := W [[ξ(ℓ−1)1 , ξ(ℓ−1)3 , . . . , ξ(ℓ−1)d , ξ(ℓ−1)(d+1) , . . . , ξ(ℓ−1)(d+hℓ−1 ) ]] q x1 ℓ−1 s(ℓ−1)1

+ ps(ℓ−1)2 =

rℓ−1 ∑

w(ℓ−1)j f(ℓ−1)j

(2)

j=1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

141 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation

Then, with notation in Theorem 5.3, a type 1 relation on Eℓ−1 means: ∗ x1 ℓ−1 τ(ℓ−1)1 + pτ(ℓ−1)2 = τ(ℓ−1)0 g(ℓ−1)0 q

(3)

nℓ−1

p where we may assume that τ(ℓ−1)0 = σ ˜(ℓ−1)0 .

Let n

e∗

p ℓ−1 ¯ p ℓ−1 δ¯ℓ−1 := γ¯ℓ−1 δℓ−2

and take a large number Lℓ−1 that satisfies L L L ¯ ℓ−1 δ¯ℓ−1 ̸∈ (x1 ℓ−1 , x3 ℓ−1 , . . . , xd ℓ−1 )R

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(4)

2014.10.12

142 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation

Let λℓ−1 be a large number that satisfies 2/pλℓ−1 < qℓ−1 /4ℓ−1 Lℓ−1 . Then λℓ−1

2/p δ¯ℓ−1

( q /4ℓ−1 qℓ−1 /4ℓ−1 )∗ q /4ℓ−1 ¯ ̸∈ (x1 ℓ−1 , x3 , . . . , xd ℓ−1 )Rℓ−1 .

By assumption 9.6 (6), we have ( 2q /4ℓ−1 2qℓ−1 /4ℓ−1 2q /4ℓ−1 ¯ 1−2/pλℓ−1 )∗ a ¯ℓ−1 ̸∈ (x1 ℓ−1 , x3 , . . . , xd ℓ−1 )Jℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(5)

143 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ε ˇ p ℓ−1 and E

pεℓ−1 and Eˇ For a(ny) given large number εℓ−1 , by taking sufficiently large ϵˇℓ−1 , we have in 11.1 (3) εℓ−1

p ∗ τ¯(ℓ−1)1 = υ¯ℓ−1

¯ ∈ Eˇℓ−1

(1)

(cf. Remark 5.5). By inductive assumption, ∗ ¯ℓ−1 )∗ = (δ¯ℓ−1 B ¯ℓ−1 )∗ τ¯(ℓ−1)1 ∈ (J¯ℓ−1 B

(2)

By Theorem 5.3, 5.5 (1) and 5.5 (2), ¯ℓ−1 = E¯ℓ−1 /¯ B g(ℓ−1)0 E¯ℓ−1 ( ) ¯ ⊂ E¯ˇℓ−1 /¯ g(ℓ−1)0 E¯ˇℓ−1 ↠ E¯ˇℓ−1 / g¯(ℓ−1)0 Eˇℓ−1 ∩ E¯ˇℓ−1 ¯ ¯ ⊂ Eˇ /¯ g Eˇ ℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(ℓ−1)0

ℓ−1

2014.10.12

144 / 168

ε ˇ p ℓ−1 and E

The Case when ℓ ≥ 2 and rℓ = 1

Then

( 1/pεℓ−1 ¯ )∗ ¯ υ¯ℓ−1 ∈ δ¯ℓ−1 (Eˇℓ−1 /¯ g(ℓ−1)0 Eˇℓ−1 )

(3)

By Remark 5.7 (1), for a fixed number Gℓ−1 that is independent on ϵˇℓ−1 , we have G

G

ℓ−1 ℓ−1 χ¯ℓ−1 := υ¯ℓ−1 + ··· + σ ¯i υ¯ℓ−1

−i

¯ + ··· + σ ¯Gℓ−1 ∈ g¯(ℓ−1)0 Eˇℓ−1

i/pεℓ−1 ˇ ¯ . with σ ¯i ∈ δ¯ℓ−1 R ℓ−1

Then εℓ−1

p χ¯ℓ−1

εℓ−1

∗ )Gℓ−1 + · · · + σ ¯ip = (¯ τ(ℓ−1)1 εℓ−1 ¯ ∈ g¯ p Eˇ ∩ E¯ˇ (ℓ−1)0

Jun-ichi NISHIMURA (OECU)

ℓ−1

εℓ−1

∗ )Gℓ−1 −i + · · · + σ ¯Gp ℓ−1 (¯ τ(ℓ−1)1

ℓ−1

Big Cohen-Macaulay Modules

2014.10.12

145 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ε ˇ p ℓ−1 and E

By Remark 5.7 (2), for a fixed number Hℓ−1 that is independent on ϵˇℓ−1 , we have εℓ−1

εℓ−1

p p (χ¯ℓ−1 )Hℓ−1 + · · · + κ ¯ j (χ¯ℓ−1 )Hℓ−1 −j + · · · + κ ¯ Hℓ−1 = 0 j pεℓ−1 ¯ Eˇℓ−1 . with κ ¯ j ∈ g¯(ℓ−1)0

Then ∗ ∗ (¯ τ(ℓ−1)1 )Gℓ−1 Hℓ−1 + · · · + θ¯k (¯ τ(ℓ−1)1 )Gℓ−1 Hℓ−1 −k + · · · · · · + θ¯G

ℓ−1 Hℓ−1

= 0 (4)

) ( k m pεℓ−1 ¯k−mGℓ−1 pεℓ−1 ¯k−Gℓ−1 δℓ−1 , . . . E¯ˇℓ−1 . , g¯(ℓ−1)0 δℓ−1 , . . . , g¯(ℓ−1)0 with θ¯k ∈ δ¯ℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

146 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ε ˇ p ℓ−1 and E

For a given large number pλℓ−1 , take sufficiently large ϵˇℓ−1 (cf. Remark 5.7). Then pεℓ−1 in 11.2 (1) satisfies the condition pεℓ−1 ≥ pλℓ−1 Gℓ−1 and m pεℓ−1 ¯k−mGℓ−1 k (δ¯ℓ−1 , . . . , g¯(ℓ−1)0 δℓ−1 , . . . )Eˇ¯ℓ−1 mpλℓ−1 G k−mG k ⊂ (δ¯ℓ−1 , . . . , g¯(ℓ−1)0 ℓ−1 δ¯ℓ−1 ℓ−1 , . . . )Eˇ¯ℓ−1 p ℓ−1 k ¯ ) Eˇℓ−1 ⊂ (δ¯ℓ−1 , g¯(ℓ−1)0 λ

λℓ−1 1/pλℓ−1 ⊂ (δ¯ℓ−1 , g¯(ℓ−1)0 ) p k E¯ˇℓ−1

This means that λ 1/pλℓ−1 ∗ τ¯(ℓ−1)1 ∈ (δ¯ℓ−1 , g¯(ℓ−1)0 ) p ℓ−1 Eˇ¯ℓ−1 Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

147 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ε ˇ p ℓ−1 and E

Thanks to Theorem 2.13 1/pλℓ−1

(δ¯ℓ−1

Thus

λℓ−1

, g¯(ℓ−1)0 ) p

( 1/pλℓ−1 )∗ λℓ−1 E¯ˇℓ−1 ⊂ (δ¯ℓ−1 , g¯(ℓ−1)0 ) p −1 E¯ˇℓ−1 ( 1/pλℓ−1 (pλℓ−1 −2) 2 )∗ ⊂ (δ¯ℓ−1 , g¯(ℓ−1)0 )E¯ˇℓ−1 ( 1−2/pλℓ−1 2 )∗ = (δ¯ℓ−1 , g¯(ℓ−1)0 )Eˇ¯ℓ−1

( 1−2/pλℓ−1 2 )∗ ∗ τ¯(ℓ−1)1 ∈ (δ¯ℓ−1 , g¯(ℓ−1)0 )E¯ˇℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(5)

2014.10.12

148 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ε ˇ p ℓ−1 and E

By Theorem 2.10, we have (

q 1−2/p x1 ℓ−1 (δ¯ℓ−1

λℓ−1

)∗ 2 , g¯(ℓ−1)0 )E¯ˇℓ−1 : g¯(ℓ−1)0 E¯ˇℓ−1 (( )∗ ) q 1−2/pλℓ−1 2 = x1 ℓ−1 (δ¯ℓ−1 , g¯(ℓ−1)0 ) : g¯(ℓ−1)0 E¯ˇℓ−1 ( q )∗ 1−2/pλℓ−1 = x1 ℓ−1 (δ¯ , g¯(ℓ−1)0 )E¯ˇℓ−1 ℓ−1

Then, by 11.1 (3) and 11.2 (5), we have ( q )∗ 1−2/pλℓ−1 pnℓ−1 τ¯(ℓ−1)0 = τ¯˜(ℓ−1)0 ∈ x1 ℓ−1 (δ¯ℓ−1 , g¯(ℓ−1)0 )E¯ˇℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

(6)

149 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation (continued)

Assumption and Notation (continued) Remember that rℓ = 1. We have a type 1 relation on Eℓ−1 (cf. 11.1 (3)): ∗ x1 ℓ−1 τ(ℓ−1)1 + pτ(ℓ−1)2 = τ(ℓ−1)0 g(ℓ−1)0 q

(1)

With notation above, let ϵ˜ℓ−1 be a sufficiently large number that satisfies ϵ˜ℓ−1 > ϵˇℓ−1 By taking pϵ˜ℓ−1 th root ξ˜(ℓ−1)i of ξ(ℓ−1)i and pϵ˜ℓ−1 th root π ˜ℓ−1 of πℓ−1 , let ˜ ℓ−1 := W [[ξ˜(ℓ−1)1 , ξ˜(ℓ−1)3 , . . . , ξ˜(ℓ−1)d ]] Rℓ−1 ⊂ R Sℓ−1 ⊂ S˜ℓ−1 := W [[ξ˜(ℓ−1)1 , ξ˜(ℓ−1)3 , . . . , ξ˜(ℓ−1)d , π ˜ℓ−1 , ξ˜(ℓ−1)(d+1) , . . . , ξ˜ ˜

(2) (3)

(ℓ−1)(d+hℓ−1 ) ]]

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

150 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation (continued)

With notation in 6.1, we get a type 1 relation on E˜ℓ−1 : ∗ x1 ℓ−1 τ˜(ℓ−1)1 + p˜ τ(ℓ−1)2 = τ˜(ℓ−1)0 g˜(ℓ−1)0 q

(4)

where, by taking a new variable ϖℓ−1 on S˜ℓ−1 , ˜ Q

ν˜

(ℓ−1)0 ℓ−1 g˜(ℓ−1)0 := ϖℓ−1 − c˜ℓ−1 ϖℓ−1 − p

ν˜

(5) ν˜

(ℓ−1)0 (ℓ−1) ∗ ∗ x1 ℓ−1 τ˜(ℓ−1)1 := x1 ℓ−1 τ(ℓ−1)1 − τ(ℓ−1)0 c˜ℓ−1 ϖℓ−1 + c˜ℓ−1 υ˜ℓ−1

q

Jun-ichi NISHIMURA (OECU)

q

Big Cohen-Macaulay Modules

2014.10.12

(6)

151 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation (continued)

Because ˜ℓ−1 := E˜ℓ−1 /˜ B g(ℓ−1)0 E˜ℓ−1 ˜ℓ−1 : we get a type 1 relation on B q x1 ℓ−1 ˜b∗(ℓ−1)1 + p˜b(ℓ−1)2 = 0

and we put

( v˜ℓ =

Jun-ichi NISHIMURA (OECU)

˜b(ℓ−1)2 q x1 ℓ−1

(7)

) ˜ℓ−1 ⊕ B ˜ℓ−1 ∈B

Big Cohen-Macaulay Modules

(8)

2014.10.12

152 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation (continued)

Because we may assume that n ˜ ℓ−1

p ∗ τ(ℓ−1)1 =σ ˜(ℓ−1)1

(9)

n ˜ ( ¯˜ )∗ and that ¯˜(ℓ−1)1 ∈ J¯1/p ℓ−1 B with σ ℓ−1 ℓ−1 nℓ−1

p τ(ℓ−1)0 = τ˜(ℓ−1)0

(10)

( q ) 1−2/pλℓ−1 ¯ pnℓ−1 ˜ℓ−1 ∗ (cf. 11.2 (6)) with τ¯˜(ℓ−1)0 ∈ x1 ℓ−1 J¯ℓ−1 B and because ν˜

˜ Q

(ℓ−1)0 ℓ−1 −p c˜ℓ−1 ϖℓ−1 ≡ ϖℓ−1

(mod g˜(ℓ−1)0 )

(11)

if ϵ˜ℓ−1 is chosen large enough (cf. 5.2 (1)), we have Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

153 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Assumption and Notation (continued)

x1 ℓ−1 ˜b∗(ℓ−1)1 q

n ˜ ℓ−1

q

˜ Q

nℓ−1

ν˜

p p (ℓ−1) ℓ−1 = x1 ℓ−1 σ ˜(ℓ−1)1 − τ˜(ℓ−1)0 (ϖℓ−1 − p) + c˜ℓ−1 υ˜ℓ−1 n ˜

−1

−2

n ˜

p ℓ−1 p ℓ−1 + p2˜b(ℓ−1)12 + · · · + pn˜ ℓ−1 +1˜b(ℓ−1)1˜nℓ−1 +1 (12) = p˜b(ℓ−1)11

with ¯˜b pn˜ ℓ−1 −i ∈ (x qℓ−1 J¯1−2/pλℓ−1 B ¯˜ )∗ for i = 1, . . . , n ˜ ℓ−1 + 1. ℓ−1 1 ℓ−1 (ℓ−1)1i Hence n ˜

n ˜

−1

˜b(ℓ−1)2 = ˜b p ℓ−1 + p˜b p ℓ−1 + · · · + pn˜ ℓ−1 ˜b(ℓ−1)2˜n ℓ−1 (ℓ−1)20 (ℓ−1)21

(13)

with ¯˜b pn˜ ℓ−1 −i ∈ (x qℓ−1 J¯1−2/pλℓ−1 B ¯˜ )∗ for i = 0, . . . , n ˜ ℓ−1 . ℓ−1 1 ℓ−1 (ℓ−1)2i Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

154 / 168

The Case when ℓ ≥ 2 and rℓ = 1

qℓ and Φℓ

qℓ and Φℓ Let

Mℓ−1

q

p cℓ := u˜ℓ−1 γ˜ℓ−1 x1 ℓ−1

(1)

Assume that Kℓ ∈ N satisfies ¯ c¯ℓ ̸∈ (x1Kℓ , x3Kℓ , . . . , xdKℓ )R

(2)

By 9.3 (3), we may assume ∗

Kℓ−1 Nℓ−1 pnℓ−1 + Kℓ−2 Nℓ−2 pnℓ−2 +eℓ−1 + · · · ∗



· · · + K1 N1 pn1 +e2 +···+eℓ−1 < qℓ−1 (3)

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

155 / 168

The Case when ℓ ≥ 2 and rℓ = 1

qℓ and Φℓ

Take eB˜ℓ−1 and Nℓ in 7.3. Then we can find eℓ ∈ N (eℓ > eB˜ℓ−1 ) enough large such that Kℓ Nℓ pnℓ + Kℓ−1 Nℓ−1 pnℓ−1 +eℓ + · · · ∗



· · · + K1 N1 pn1 +e2 +···+eℓ−1 +eℓ < qℓ−1 peℓ (4) Let qℓ := qℓ−1 peℓ

(5)

Then we have a type 1 relation on Deℓ with respect to the system of parameters x1qℓ , p, x3qℓ , . . . , xdqℓ : x1qℓ φeℓ (˜b∗(ℓ−1)1 ) + pφeℓ (˜b(ℓ−1)2 ) = 0

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(6)

2014.10.12

156 / 168

The Case when ℓ ≥ 2 and rℓ = 1

qℓ and Φℓ

Here n ˜

n ˜

−1

p ℓ−1 p ℓ−1 φeℓ (˜b(ℓ−1)2 ) = φeℓ (˜b(ℓ−1)20 ) + pφeℓ (˜b(ℓ−1)21 ) + ···

· · · + pn˜ ℓ−1 φeℓ (˜b(ℓ−1)2˜nℓ−1 ) (7) with ( ˜ ℓ−1 −i 1−2/pλℓ−1 ¯ )∗ pn φeℓ (¯˜b(ℓ−1)2i ) ∈ x1qℓ φeℓ (J¯ℓ−1 )Deℓ for i = 0, . . . , n ˜ ℓ−1 .

By Theorem 2.8, Remark after Theorem 2.6 and 2.12 (3), we may assume that ℓ ¯e c¯N ¯ℓ is a test element for D (8) ℓ ℓ γ

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

157 / 168

The Case when ℓ ≥ 2 and rℓ = 1

qℓ and Φℓ

Then, p ℓ (cN ℓ γℓ )

n ˜ ℓ−1 −i

˜ ℓ−1 −i pn φeℓ (¯˜b(ℓ−1)2i ) n ˜ ℓ−1 −i

p ℓ = (cN ℓ γℓ )

n ˜ ℓ−1 −i

≡ x1qℓ ωℓip with

n ˜ ℓ−1 −i

ω ¯ ℓip

Jun-ichi NISHIMURA (OECU)

n ˜ ℓ−1 −i

∈ (¯ γℓp

n ˜ ℓ−1 −i φeℓ (¯˜b(ℓ−1)2i ) p

(mod pn˜ ℓ−1 −i+1 Deℓ )

1−2/p φ¯eℓ (J¯ℓ−1

Big Cohen-Macaulay Modules

λℓ−1

¯ e )∗ )D ℓ

2014.10.12

158 / 168

The Case when ℓ ≥ 2 and rℓ = 1

qℓ and Φℓ

Letting pnℓ := pn˜ ℓ−1 and

nℓ −i

ηℓip

nℓ −i

i p ℓ := (cN ℓ γℓ ) ωℓi

we have pnℓ ℓ (cN φeℓ (˜b(ℓ−1)2 ) ℓ γℓ ) ( nℓ ) nℓ −1 ≡ x1qℓ ηℓ0p + pηℓ1p + · · · + pnℓ ηℓnℓ (mod pnℓ +1 Deℓ )

with nℓ −i

η¯ℓip

nℓ −i

ℓ = (¯ cN ¯ℓ )i ω ¯ ℓip ℓ γ

Jun-ichi NISHIMURA (OECU)

nℓ

1−2/pλℓ−1

∈ (¯ γℓp φ¯eℓ (J¯ℓ−1

Big Cohen-Macaulay Modules

¯ e )∗ )D ℓ

2014.10.12

159 / 168

The Case when ℓ ≥ 2 and rℓ = 1

qℓ and Φℓ

Hence pnℓ ℓ (cN φeℓ (˜b(ℓ−1)2 ) ℓ γℓ ) nℓ

nℓ −1

= x1qℓ (ηℓ0p + pηℓ1p

+ · · · + pnℓ ηℓnℓ ) + pnℓ +1 ηℓ(nℓ +1)

Remark that x1qℓ | ηℓ(nℓ +1) by 11.4 (6) That is,

Jun-ichi NISHIMURA (OECU)

′ ηℓ(nℓ +1) = x1qℓ ηℓ(n ℓ +1)

Big Cohen-Macaulay Modules

2014.10.12

160 / 168

The Case when ℓ ≥ 2 and rℓ = 1

qℓ and Φℓ

Let Φℓ : Deℓ ⊕ Deℓ → Deℓ be a Deℓ -homomorphism given by ( ℓ pnℓ Φℓ := (cN ℓ γℓ ) nℓ

nℓ −1

− (ηℓ0p + pηℓ1p

Then Φℓ kills

( 1 ⊗ v˜ℓ =

Jun-ichi NISHIMURA (OECU)

) ′ + · · · + pnℓ ηℓnℓ + pnℓ +1 ηℓ(n ) (9) +1) ℓ

φeℓ (˜b(ℓ−1)2 ) x1qℓ

Big Cohen-Macaulay Modules

) (10)

2014.10.12

161 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ϕℓ and Jℓ

ϕℓ and Jℓ Because Deℓ ⊗Bℓ−1 N(ℓ−1)1 = Deℓ ⊕ Deℓ /Deℓ (1 ⊗ v˜ℓ ) Φℓ induces a Deℓ -homomorphism ϕℓ : Deℓ ⊗B N(ℓ−1)1 → Deℓ Thus, we have the following diagram De ℓ



ι

−−−→

Deℓ ⊕ Deℓ −−−→ Deℓ ⊗Bℓ−1 N(ℓ−1)1   Φ ϕ y ℓ y ℓ

Deℓ −−−−−−n→ N

(cℓ ℓ γℓ ) p

Jun-ichi NISHIMURA (OECU)



De ℓ Big Cohen-Macaulay Modules

De ℓ 2014.10.12

162 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ϕℓ and Jℓ

Then ( ℓ pnℓ nℓ nℓ −1 Im ϕℓ−1 , ηℓ0p + pηℓ1p Im ϕℓ = (cN + ··· ℓ γℓ )

) ′ · · · + pnℓ ηℓnℓ + pnℓ +1 ηℓ(n Deℓ (1) ℓ +1)

Because aℓ := ϕℓ (1 ⊗ β(ℓ−1)1 ) ( ( )) β(ℓ−1)0 = ϕℓ 1 ⊗ 0 (( )) φeℓ (bℓ−1 ) pnℓ ℓ = ϕℓ = (cN φeℓ (bℓ−1 ) ℓ γℓ ) 0

(2)

we have Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

163 / 168

The Case when ℓ ≥ 2 and rℓ = 1

ϕℓ and Jℓ

n nℓ ℓp ℓ a ¯ℓ = (¯ cN γ¯ℓp )φ¯eℓ (¯bℓ−1 ) ℓ

Nℓ pnℓ

= (¯ cℓ

nℓ

pnℓ

γ¯ℓ

N

ℓ−1 )(¯ cℓ−1

N

ℓ−1 ℓp = (¯ cN c¯ℓ−1 ℓ

(3)

pnℓ−1

pnℓ−1 +eℓ

pnℓ−1

peℓ

γ¯ℓ−1 )

N1 pn1

· · · (¯ c1

n1 +e2 +···+eℓ−1 +eℓ

1p · · · c¯N 1

pnℓ

× (¯ γℓ

pnℓ−1 +eℓ

γ¯ℓ−1

pn1

pe2 +···+eℓ−1 +eℓ

γ¯1 )

) n1 +e2 +···+eℓ−1 +eℓ

· · · γ¯1p

Kℓ Nℓ pnℓ +Kℓ−1 Nℓ−1 pnℓ−1 +eℓ +···+K1 N1 pn1 +e2 +···+eℓ−1 +eℓ

̸∈ (x1

,

Kℓ Nℓ pnℓ +Kℓ−1 Nℓ−1 pnℓ−1 +eℓ +···+K1 N1 pn1 +e2 +···+eℓ−1 +eℓ

x3

,...

Kℓ Nℓ pnℓ +Kℓ−1 Nℓ−1 pnℓ−1 +eℓ +···+K1 N1 pn1 +e2 +···+eℓ−1 +eℓ

. . . , xd

nℓ

pnℓ−1 +eℓ

× (¯ γℓp γ¯ℓ−1

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

)

)

n1 +e2 +···+eℓ−1 +eℓ

· · · γ¯1p

2014.10.12

¯ )R

164 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Inductive Notation

Inductive Notation Applying ϕℓ to the top r(ℓ−1)0 + r(ℓ−1)1 = 1 + rℓ = 2 components of each vectors, we get the following diagram: Deℓ ⊗Bℓ−1 N(ℓ−1)1 −−−→ Deℓ ⊗Bℓ−1 N(ℓ−1)2 −−−→ · · ·    ϕℓ ⊕1 r(ℓ−1)2 ϕℓ y y De ℓ −−−→

De ℓ

−−−→ · · ·

Mℓ1

· · · −−−→

Deℓ ⊗Bℓ−1 N(ℓ−1)(t−ℓ+1)  ϕℓ−1 ⊕1 r(ℓ−1)2 +···+r(ℓ−1)(t−ℓ+1)  y De ℓ · · · −−−→

Jun-ichi NISHIMURA (OECU)

Mℓ(t−ℓ)

Big Cohen-Macaulay Modules

2014.10.12

165 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Inductive Notation

Let (Deℓ , ϕℓ (1 ⊗ β(ℓ−1)1 )) =: (Aℓ , aℓ ) = (Mℓ0 , αℓ0 )

(1)

(cf. 9.4 (2)), and / Mℓm := (Mℓ(m−1) ⊕Derℓℓ+m )

(2)

Deℓ (ϕℓ ⊕ 1Drℓ+1 +···+rℓ+m (1 ⊗ v˜ℓ+m )) eℓ

for 1 ≤ m ≤ t − ℓ.

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

166 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Inductive Notation

Then we get a new degenerate sequence of modifications of type rℓ := (rℓ1 , . . . , rℓ(t−ℓ) ) = (rℓ+1 , . . . , rt ): Mℓ : (Mℓ0 , αℓ0 ) → (Mℓ1 , αℓ1 ) → · · · → (Mℓ(t−ℓ) , αℓ(t−ℓ) )

(3)

in which (Mℓm , αℓm ) is a modification of (Mℓ(m−1) , αℓ(m−1) ) for a relation ϕℓ ⊕ 1Drℓ+1 +···+rℓ+m (1 ⊗ ρ∗ℓ+m ) eℓ

on Mℓ(m−1) of type rℓm = rℓ+m with respect to the system of parameters x1qℓ , p, x3qℓ , . . . , xdqℓ of Aℓ .

Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

167 / 168

The Case when ℓ ≥ 2 and rℓ = 1

Inductive Notation

Let nℓ

1−2/pλℓ−1

Jℓ :=γℓp φeℓ (Jℓ−1

)Deℓ

(4)

Then ( Nℓ pnℓ nℓ ) ¯e Im ϕ¯ℓ = (¯ cℓ γ¯ℓ ) φ¯eℓ (Im ϕ¯ℓ−1 ), η¯ℓ0p D ℓ ( Nℓ pnℓ ) n ℓ p ∗ ¯e ⊂ (¯ cℓ γ¯ℓ ) φ¯eℓ (J¯ℓ−1 ) , η¯ℓ0 D ℓ nℓ 1−2/p ⊂ (¯ γℓp φ¯eℓ (J¯ℓ−1 = J¯ℓ∗

λℓ−1

(5)

¯ e )∗ )D ℓ

Hence, by 11.4 (4), 11.5 (3) and 11.6 (4) ( )∗ a ¯ℓ ̸∈ (x1qℓ , x3qℓ , . . . , xdqℓ )J¯ℓ Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

(6) 2014.10.12

168 / 168

References

References [1] Bruns, W.–Herzog, J., Cohen–Macaulay rings, Cambridge University Press 1993. [2] EGA, chapitre IV, Publ. Math. I.H.E.S. 20 (1964), 24 (1965). [3] Flenner, H., Die S¨atze von Bertini f¨ur lokale Ringe, Math. Ann. 229 (1977), 97–111. [4] Heitmann, R. C.,The direct summand conjecture in dimension three, Ann. of Math., 156 (2002), 695–712. [5] Hochster, M.,Topics in the homological theory of modules over commutative rings, Regional Conference Ser. Math., 24, Amer. Math. Soc., 1975. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

168 / 168

References

[6] Hochster, M., Big Cohen–Macaulay algebras in dimension three via Heitmann’s theorem, J. Algebra 254 (2002), 395–408. [7] Huneke, C., Tight closure and its applications, Regional Conference Ser. Math., 88, Amer. Math. Soc., 1996. [8] Matsumura, H., Commutative Algebra, Benjamin 1970 (second ed. 1980). [9] Matsumura, H., Commutative ring theory, Cambridge University Press 1986. [10] Mumford, D., Lectures on Curves on an Algebraic Surface, Princeton University Press 1966. [11] Nagata, M., Local Rings, John Wiley 1962 (reprt. ed. Krieger 1975). Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

168 / 168

References

[12] Peskine, C.–Szpiro, L., Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S. 42(1973), 323–395. [13] Raynaud, M., Anneaux Locaux Hens´eliens, Lect. Notes Math. 169, Springer–Verlag, 1970. [14] Roberts, P., Two applications of dualizing complexes over local rings, Ann. ENS (4) 9 (1976), 103–106. [15] Roberts, P., Le th´eor`eme d’intersection, C. R. Acad Paris 304 (1987), 177–180. [16] Swanson, I.–Huneke, C., Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lect. Note Ser. 336, Cambridge Univ. Press 2006. Jun-ichi NISHIMURA (OECU)

Big Cohen-Macaulay Modules

2014.10.12

168 / 168

Big Cohen-Macaulay Modules over Mixed ...

Oct 12, 2014 - Structure Theorem p-adic Representation and n-th Witt polynomial. Lemma 3.2. Let A be a ring and a, b ∈ A. Suppose that for ℓ > 0 a ≡ b (mod pℓA). (3). Then apk ≡ bpk. (mod pk+ℓA). (4). Hence, by sending any element a of each residue class ¯a ∈ A/pA to its pk-th power apk. , we get a canonical map.

337KB Sizes 0 Downloads 221 Views

Recommend Documents

ulrich modules
Ulrich ideal, then I/Q is a free A/I–module with rankA/I I/Q = µA(I) − d. Therefore, when A ... AMS 2000 Mathematics Subject Classification: 13H10, 13H15, 13A30.

Uses for Modules - GitHub
In this article, I will walk you through several practical examples of what modules can be used for, ranging from ... that is not the case. Ruby would apply the definitions of Document one after the other, with whatever file was required last taking

F-ing modules
Aug 23, 2014 - Max Planck Institute for Software Systems (MPI-SWS) ... their support for hierarchical namespace management (via structures), a fine-grained va- .... In particular, unlike earlier unifying accounts of ML modules (Dreyer et al.,.

F-ing modules
Aug 23, 2014 - We assume a standard left-to-right call-by-value dynamic semantics, which ...... The rules for functor applications (M-APP) and sealed modules ...

The Big Debate Over Synthetic Oils (Part 2)
mineral oil to synthetic of same viscosity in test by Smokey. Yunick. .... speed sludging conditions test), and .... never seen anything so clean in my life. I said let's ...

Hello, It is a mixed feeling... Summer is almost over ...
of mutants in healthcare settings. (4). The last article that we are discussing is about drug ... suggested as first line therapy of enteric fever in many studies. This is ...

CONDITIONALS MIXED TYPES III
I would help them if they ……...….. (listen)to me. 6.- If the weather ………. (be) warmer, we ... plane ticket? 25.- If they .................. (not / have) a dog, they wouldn't.

mixed up - Nature
NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 14 NUMBER 1 JANUARY 2007. 13. Earnshaw ... Acad. Sci. USA, published online 13 December 2006, doi:10.1073/ ... observed, the amplitude of which corresponds to the degree.

CONDITIONALS MIXED TYPES III
CONDITIONALS: MIXED TYPES. Complete the sentences with the correct form of the verbs in brackets. 1.- I wouldn't tell her if I ………...... (be) you. She can't keep a secret. 2.- Paul would be a good artist if he ……......... (have) more patien

Fractions - Mixed Numbers.pdf
Sign in. Page. 1. /. 3. Loading… Page 1 of 3. Page 1 of 3. Page 2 of 3. Page 2 of 3. Page 3 of 3. Page 3 of 3. Fractions - Mixed Numbers.pdf. Fractions - Mixed Numbers.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Fractions - Mixed

Security Injections: Modules to Help Students ... - bloghosting
Keywords. Security Education, Computer Science Curriculum, Information .... programming courses required of all CS majors: Computer. Science I (CS1) and ...

D4.2: NUBOMEDIA Media Server and modules v2
Jan 27, 2016 - 10-01-15 ...... Figure 72: 10x8 matris and activated blocks . ...... https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf.

Modules, Componentization, and Transition -
Oct 5, 2015 - precompiled headers, and 40+ years of the include-file model, which has ... model into the era of semantics-aware developer tools, and of smart distributed and ... a) Component boundaries: what is consumable from outside vs. what is ...

Writing Perl Modules for CPAN
further by creating your own reusable Perl modules. Chapter 2 will teach .... The master server was set up at FUNet, where ...... print "My favorite cafe is $cafe\n";.

sap modules mm pdf
Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. sap modules mm pdf. sap modules mm pdf. Open. Extract.