









	
 Home

	 Add Document
	 Sign In
	 Create An Account














[image: PDFKUL.COM]






































	
 Viewer

	
 Transcript













BlueJ Visual Debugger for Learning the Execution of Object-Oriented Programs? JENS BENNEDSEN Engineering College of Aarhus and CARSTEN SCHULTE ¨ Berlin Freie Universitat



This article reports on an experiment undertaken in order to evaluate the effect of a program visualization tool for helping students to better understand the dynamics of object-oriented programs. The concrete tool used was BlueJ’s debugger and object inspector. The study was done as a control-group experiment in an introductory programming course. The results of the experiment show that the students who used BlueJ’s debugger did not perform statistically significantly better than the students not using it; both groups profited about the same amount from the exercises given in the experiment. We discuss possible reasons for and implications of this result. Categories and Subject Descriptors: K3.2 [Computers & Education]: Computer and Information Science Education—computer science education, information systems education General Terms: Experimentation, Human Factors Additional Key Words and Phrases: CS1, tools, visualization, BlueJ, debugger, object inspector, object orientation, learning program execution ACM Reference Format: Bennedsen, J. and Schulte, C. 2010. BlueJ visual debugger for learning the execution of objectoriented programs? ACM Trans. Comput. Educ. 10, 2, Article 8 (June 2010), 22 pages. DOI = 10.1145/1789934.1789938. http://doi.acm.org/10.1145/1789934.1789938.



1. INTRODUCTION Learning to program is notoriously difficult. For almost 40 years teaching programming to novices has been considered a big challenge—and it still is [Astrachan et al. 2005; Bailie et al. 2003; Bruce 2005; Dijkstra 1969; Gries 1974; Soloway and Spohrer 1989; Tucker 1996; McCracken et al. 2001; Robins Author’s address: J. Bennedsen, Engineering College of Aarhus, Dalgas Avenue 2, DK-8000 Arrhus, Denmark; email: [email protected]. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permission may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or [email protected]. c 2010 ACM 1946-6626/2010/06-ART8 $10.00 DOI: 10.1145/1789934.1789938.  http://doi.acm.org/10.1145/1789934.1789938. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 2



·



J. Bennedsen and C. Schulte



et al. 2003; Bergin and Reilly 2005]. For example, Lahtinen et al. [2005] note that “Programming is not an easy subject to be studied. It requires correct understanding of abstract concepts. Many students have learning problems due to the nature of the subject. [...] This often leads to high drop-out rates on programming courses.” (p. 14). Among proposed solutions tools, especially tools for visualization, often are discussed. Obviously, visualization should be a means to make the abstract concepts illustrative and concrete. However, quite often empirical evidence for the effectiveness is missing as well as didactic knowledge about why and how (visual) tools enable learning [Valentine 2004]. In the 1980s, several experiments were undertaken in order to understand the problems a novice faces when learning programming. du Boulay [1989] summarized these and described five overlapping areas that a student must be able to master: General orientation. What is the general idea of programs, what are they for, and what can be done using them? The notional machine. An abstract model of the machine when it executes programs (i.e., the running program’s meaning). Notation. The syntax and semantics of the programming language used. Structures. (Abstract) solutions to standard problems, a structured set of related knowledge. Pragmatics. The skills of planning, developing, testing, debugging, and so on. In this article we focus on the notional machine and tools to help students learn about it. The notional machine’s properties are language dependent [du Boulay et al. 1999] and dependent on the programming paradigm taught. If it is an imperative paradigm, the execution can be described by the call stack (given that memory is not allocated dynamically). In the object-oriented paradigm, a description of the objects and their links is furthermore needed. We focus especially on the object-oriented paradigm. 1.1 Understanding Object Interaction Several articles have found that students often construct wrong execution models of object-oriented programs [Lahtinen et al. 2005; Milne and Rowe 2002; Ragonis and Ben-Ari 2005a]. Milne and Rowe [2002] conclude that most reported learning problems are due to the “inability [of students] to comprehend what is happening to their program in memory, as they are incapable of creating a clear mental model of its execution.” (p. 55). Lahtinen et al. [2005] studied what domains students found problematic. They concluded: ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 3



“For example, there are often misconceptions related to variable initialization, loops, conditions, pointers and recursion. Students also have problems with understanding that each instruction is executed in the state that has been created by the previous instructions” (p. 15). These findings are consistent with the findings of Guzdial [1995] “A specific problem that students encounter is creating collaborative objects—students have difficulty creating and understanding connections between objects” (p. 182). Ragonis and Ben-Ari [2005b] have conducted a longitudinal study among high school students learning object-oriented programming; they conclude, “students find it hard to create a general picture of the execution of a program that solves a problem” (p. 214). 2. PROGRAM VISUALIZATION Visualization seems a promising tool to show the otherwise hidden mechanics and details of program execution. In this section we will discuss related work. It is no surprise that a lot of computer science researchers work in the area of visualization. There are conferences especially for software visualization (e.g., SoftVis [ACM 2008]), journals (e.g., Journal of Visual Languages and Computing (JVLC)) and many tools available (e.g., Jain et al. [2005] conducted a survey of six tools aimed at visualizing data structures, Price et al. [1993] described twelve systems according to their taxonomy.) Many have found visualization tools to be a promising tool for novices to learn computer science. Naps et al. [2002] explores the role of visualization in computer science education and provides a good overview of studies in the area of algorithm visualization. Hundhausen et al. [2002] analyzes 21 experimental evaluations of algorithm visualization. As Naps et al. [2002] note, “The striking result from this metaanalysis is that the studies cast doubt on the pedagogical benefits of visualization technology. Indeed only 13 of those experiments ... showed that some aspect of visualization technology or its pedagogical application significantly impacted learning outcomes.” (p. 141). Price et al. [1993] discusses the different terms used in the software visualization literature. They define a taxonomy for software visualization systems with six categories and many subcategories. One important category is content, where they distinguish between program and algorithm visualization. Program visualization focuses on the actual implementation whereas algorithm visualization focuses on the “high-level” description of an algorithm. Smith and Webb [2000] distinguish between algorithm animation and program visualization. The focus of this study is the notional machine and thus on program visualization. Program visualization tools are seen to help the students build a mental model of the execution. In this more specialized area evaluation on the learning impact of the tool seems less common. In the following we will describe most the studies we have been able to find. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 4



·



J. Bennedsen and C. Schulte



Smith and Webb [2000] developed a program visualization system called Bradman. They did an experiment showing that students indeed did perform better when learning C programming using Bradman. Bradman “provides a model which reinforces the view of the program achieving its results by the sequential change of program state caused by the execution of programming statements. This model is intended to assist students visualize the execution of programs more clearly thus enhancing their mental models of program execution.” (p. 190). The experiment involved 24 students, 13 of whom used the full Bradman and 11 who used it in a modified way (without an explanation window) during the lab sessions for a period of three weeks. The exercises were desk-checking of programs (prediction the output of a predesigned program). The groups answered four tests to evaluate the impact of the system. They found that the students using the full Bradman visualization environment did perform statistically better in the last test, but not during the first three tests (the first test was a pre-test so no difference was expected). The last test was about parameter passing; a topic the third test also was about. Consequently it seems a little questionable to conclude that the tool showed statistically significant results. Sajaniemi et al. have been working with the concept of “roles of variables” [Sajaniemi 2002] in order to help students understand the general usagepatterns underlying various variables. They have built a visualization system (PlanAni - Sajaniemi and Kuittinen [2004]) that visualizes program execution in terms of metaphors for the roles of variables. Using a controlled experiment with three groups of students that were instructed differently (no roles of variables; using roles throughout the course; and using a role-based program animator) they found that the students “seemed to foster the adoption of role knowledge as animation users had less problems with variables in program construction. Moreover, animation users tended to stress deep program structures which is a sign of better comprehension.” [Sajaniemi and Kuittinen 2005] (p. 80). However, the animation tool users did not receive better grades than the other groups. Lately they have been suggesting metaphors for object-oriented concepts and proposed a visualization tool using these metaphors. However, as they note the “visualizations and animations do not scale up to large programs” [Sajaniemi et al. 2007] (p. 21). Furthermore, a visualization script needs to be designed for each program. So helping students understand the execution of programs with complex object-interaction seems very difficult. However, since Smith and Webb created their Bradman system, programming environments including debuggers have been made for novices. It consequently seems reasonable to use the debugger as a visualization tool for the programming execution; especially since the students already know the development environment. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 5



3. VISUALIZATION IN LEARNING TO UNDERSTAND THE OBJECT-ORIENTED NOTIONAL MACHINE In this section the role of visualization in learning to understand the objectoriented notional machine is discussed based on the previous review of the role of visualization in learning programming. We focus on understanding the object-oriented features of the notional machine. Understanding the execution of object-oriented programs is different from understanding imperative/procedural programs due to the interaction of objects during run time. In order to be able to describe this understanding and to define different levels of understanding, we use a competence model of object interaction, the object interaction hierarchy (OIH) [Bennedsen and Schulte 2006]. The OIH distinguishes between four levels of understanding: (1) Interaction with objects. The student can understand simple forms of interactions between a couple of objects, such as method calls and creation of objects. The student is aware that the results of method calls depend on the identity and state of the object(s) involved. (2) Interaction on object structures. The student is able to comprehend interaction on more than a couple of objects, including iteration through object structures and nested method calls. The structure is created and changed explicitly via creations, additions, and deletions. (3) Interaction on dynamic object structures. The student knows the dynamic nature of object structures, understands the overall state of the structure and that interaction on the structure or elements from it can lead to side effects (e.g., implicit changes in the structure). (4) Interaction on dynamic polymorphic object structures. The student takes into account polymorphism in dynamic object structures and is able to understand the effects of inheritance and late binding on dynamic changes in the object structure. The student takes into account side effects of late binding (different method-implementations, different actual objects referred to by the same variable). (p. 217). In an empirical study Bennedsen and Schulte [2006] could verify that these levels are taxonomic: A learner who understands a program with object interaction on level X understands object interaction on all lower levels (X-1). That is, understanding of object interaction is sequentially developed according to the above described levels of the OIH. We use the OIH as a model to formally describe what we mean by understanding the object-oriented notional machine. To understand the notional machine is defined as understanding OIH at a certain level. The role of visualization in order to increase the understanding of the object-oriented notional machine is defined as supporting learners to be able to understand object interaction at a higher level of the OIH. In particular, the role of visualization depends on the prior level of understanding. For example, if a learner is not able to understand programs that include object interaction on level 1, he is not able to understand some or all of the following issues: ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 6



·



J. Bennedsen and C. Schulte



—The state of an object. —Links/references to other objects. —The flow of method calls between objects. Based on the above discussion, we can analyze, how visualization using a debugger might help to gain understanding of this first level of the OIH. The debugger’s visualization might help by: —Showing the state of primitive attributes. —Showing reference to other objects. —Being used to trace the flow of method calls between objects. A debugger can visualize the internal structure of a collection of objects, thereby helping the student to better understand object interaction at level two. If multiple references to the same object are present, the debugger will visualize that updating any of the references (to the same object) will change the state of the object, thus visualizing one important aspect of level three. In analogy to the hypothesis of the empirical study with the Bradman system (see prior section) we assume that the debugger provides a model intended to assist students visualize the execution of object-oriented programs and thus enhancing their mental models of the object-oriented notional machine and understanding of the execution of object-oriented programs. Based on this operationalization of the role of visualization in understanding the object-oriented notional machine we can now define the research question. 4. EXPECTATION AND RESEARCH QUESTION Based on the general beliefs on the positive impact of program visualization, and the difficulty novices have with learning to program, we have the following expectation: Using a tool to show the internal state of the objects and the call sequence helps the students to learn the notional machine for objectoriented programs. 4.1 Tool In order to evaluate our expectation, we turn it into a research question. Before doing so, we need to decide on a tool to investigate. We have several criteria: Stable version of the tool. The students participating are novices so it should not be the tool that gives problems. No tagging of source code needed. The tool should be useful in visualizing all programs without special features needed to be added to the program, since the students should be able to use the tool by themselves. Pedagogical. The tool should be useful in a teaching situation and not with efficient creation/debugging of production code as the primary design goal. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 7



Commonly accepted tool. In order to receive applicable results in practical teaching situations, we would like the tool to be used by many teachers. Low learning curve. The tool should be easy to use for the students participating. Programming language. The tool must be available for a typical introductory programming language. As described in Section 2, teachers have several tools for showing the execution of a program and consequently the notional machine. Many visualization tools arise from research projects and are just implemented as prototypes (see Dobs [2008]) and consequently not stable. Some tools use a special scripting language to describe the visualization. From a survey of university and high school teachers, Schulte and Bennedsen [2006, p. 5] concluded that the most commonly used development environments are BlueJ [K¨olling 2008] (27%) and Eclipse [Eclipse 2008] (14%). De Raadt et al. [2004] found that in Australia and New Zealand most instructors used Visual Basic IDE (17%) followed by BlueJ (12%). Schulte and Bennedsen [2006] furthermore found that “by far the most used programming language was Java (used by 58.3%)” (p. 6). This is compliant with other studies [de Raadt et al. 2004; Dale 2005]. Many courses use Java as the programming language and BlueJ as the integrated development environment. BlueJ has both a build-in debugger and an object-inspector. The debugger makes it possible to single-step program execution; the object-inspector visualize the internal state of the object and is updated according to the program execution (see Figure 1). The visualization features of the debugger and the object inspector thus show particular features of the object-oriented notional machine on levels 1 to 4, and allow exploring the execution by step-wise animation of the program’s execution. Alternative program visualization tools that can be used include jGrasp [jGRASP 2008] and JIVE [JIVE 2008]. JIVE is an Eclipse plug-in; it consequently requires that the students participating use Eclipse on beforehand, otherwise the learning curve will be too high. The students participating in this study do not use Eclipse. jGrasp has a build in debugger.1 The debugger is almost identical to the debugger in BlueJ but missing the object inspector. 4.2 Research Question Given the pedagogical design criteria of BlueJ, its widespread use and our expected positive effect of visually showing the state changes during execution of programs, our research will answer the following research question: Do students using the debugger and object inspector in BlueJ to show the internal state of the objects and the call sequence perform better than students manually tracing the program execution? 1 See



http://www.jgrasp.org/images/debug large.htm. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 8



·



J. Bennedsen and C. Schulte



Fig. 1. The debugger and object inspector in BlueJ. The execution is stopped at the breakpoint and the object referenced by ford is inspected.



In visualization research it has been shown that the learning effect of the visualization tool depends on the level of student engagement with the tool [Grissom et al. 2003]. As Grissom et al. conclude: “AV [algorithm animation] has a bigger impact on learning when students go beyond merely viewing a visualization and are required to engage in additional activities structured around the visualization.” (p. 87). We believe the same to be true for program visualization. In our research design, the students actively use the tool to trace code, being able to actively define the breakpoints, change the input values etc. 5. THE EXPERIMENT In this section we outline and argument for the general empirical approach chosen for this study and describe its design. We want to study whether using a debugger is more effective. In order to answer our research question, we need to be able to compare students not using the debugger with students using it. Consequently, we choose a control group design. In the design of a control group experiment, one needs to ensure that it is only the treatment that differs. One of the most common examples is the use of placebo drugs when testing for the effect of a given drug in order to eliminate the effect of just knowing that you get a treatment. We designed an experiment where both the experimental and the control group get the same information and have the same limits (e.g., same time, usage of compiler) according to the guidelines given in Pfleeger [1994]. This section describes in detail the design ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 9



with a focus on controlling the relevant variables: learning time and information given. As discussed previously, understanding of the notional machine for objectoriented programs is operationalized as understanding object interaction, which can be described and measured with the object interaction hierarchy (OIH). Consequently, we can make the research question even more precise: RQ: Do students using the debugger and object inspector in BlueJ to show the internal state of the objects and the call sequence have a statistically significant higher gain in OIH than students manually tracing the program execution? This study is designed as a control group experiment with two subgroups: BlueJ debugger group. This group used the debugger and object inspector of BlueJ. Manual trace group. This group used no computer-based visualization tool. It was the control group. The experiment was done as a two hours online-learning course. The test questions were delivered as multiple-choice questions. 5.1 The Design of the Experiment The students were familiar with BlueJ, but not the use of the BlueJ debugger for program tracing and debugging. In order to control the variables learning time and information given, we developed the following sequence of testphases: Pre-test. Both groups answered the same pre-test. The pre-test allowed us to evaluate the students’ understanding of program execution. Introduction of tool. Both groups were taught how to trace program execution using a tool. The BlueJ debugger group was instructed how to use the debugger and object inspector in BlueJ to visualize a program execution. The manual trace group was instructed on how to manually trace a program execution; they used BlueJ for showing the source code. Intervention. In this phase both groups solved tasks by using the newly introduced tools. All questions were designed to be similar to the pre- and posttest-questions. Post-test. In this phase both groups answered the same post-test questions similar to the pre-test questions. Listing 1 shows an example of the source code related to a typical test question. In Figure 2 an overview on the experiment design is given. In the following sections the experiment design is explained in more detail. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 10



·



J. Bennedsen and C. Schulte



Fig. 2. Overview on the experiment design.



5.2 Pre- and Post-test Pre- and post-test measured the students’ level of understanding of the objectoriented notional machine by testing their competence level with an instrument equal to the OIH-instrument developed in Bennedsen and Schulte [2006]. We only used questions on levels 1 to 3, since the goals of introductory programming courses normally only focus on these three levels [Schulte and Bennedsen 2006]. In general, a question consists of source code, usually three classes, and one or more questions concerning the source code, For example, “What is the value of n.numberOfAssociatedObjects()?” In the OIHinstrument described in Bennedsen and Schulte [2006], we used arbitrary class names, for example, class A was a container, class B the client, and class TestClass instantiated several objects and associated several b’s with one or more a’s. In order to make the pre- and post-test more natural and appear more different, we chose to use names for actual concepts. The preand post-test UML-class model is described in Figure 3. In the pre-test the container was a Course-class with Students as clients, and in the post-test a TaxiFirm with several Cars was used. Structurally, in terms of the OIH, questions in both tests had the same difficulty, and there were the same number of questions for each level. In order to check the equality, both authors independently assigned the OIH level to each question—in comparison no differences occurred. Furthermore, colleagues checked the two tests and found them to be of equal difficulty. In the pre- and post-test, both groups answered a set of multiple choice questions. All of them had the following form: A program, consisting out of two or three classes, and questions on either (a) output (variable values) at certain points in a test code. Therefore one class was a test class, in which a sequence of operation was described (instantiating objects, and method calls on these objects). (b) questions on the number of objects involved. Here we were interested mainly in objects that were instantiated in constructors and methods, for example, container objects. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



Fig. 3.



·



8: 11



The class diagram from the OIH test instrument from 2006 plus the pre- and post-test.



Listing 1 presents as example the source code of question three from the post-test. The assigned b-type question asks for the number of objects instantiated during the execution of the source code (correct answer is 5: one taxi firm, one internal list-object, and three car objects). The corresponding a-type question asks for the output (see the println-statement. Here five alternatives are given: 1, 2, 3, 4, and other. The correct answer is 3.) Listing 1. An example of the source code for a test question. public class Car { private int millage; public Car(int initialMillage) { millage = initialMillage; } public int getMillage() { return millage; } public void drive(int km) { millage = millage + km; } } import java.util.*; public class TaxiFirm { private List taxies; private int firmNo; public TaxiFirm(int initialFirmNo) { firmNo = initialFirmNo; taxies = new ArrayList(); } public void partner(Car c) { taxies.add(c); } public int noOfCars() { return taxies.size(); } ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 12



·



J. Bennedsen and C. Schulte



} public class TestClass { public static void main() { TaxiFirm t = new TaxiFirm(2); Car ford = new Car(0); Car bmw = new Car(120000); Car fiat = Car(0); t.partner(ford); t.partner(fiat); t.partner(bmw); System.out.println(t.noOfCars()); } }



The example was the same for both groups. It was a code example with two questions (form a and form b) as described above. Duration of this phase was fixed to 15 minutes. 5.2.1 Additional instruments used in pre- and post-test. We used additional questions in order to evaluate other factors that might be influential for the results of the experiment. In the pre-test some additional questions were given to check for experiences that might affect prior knowledge of the notional machine. This might have been learned in other courses, by personal programming experiences, or in high school. We furthermore checked the students’ self-efficacy concerning the object-oriented paradigm. Students’ personal view might influence how they approach the task, and especially how they use the visual learning tool (see Ramalingam and Wiedenbeck [1998]). We used the object-oriented part of Ramalingam and Wiedenbeck’s instrument: —I can identify the objects in a problem domain and define, declare and use them (Not at all, A little, Some, Much, Very much). —I can understand the object-oriented paradigm (Not at all, A little, Some, Much, Very much). —I can use classes already implemented given that I have a clear description of them (Not at all, A little, Some, Much, Very much). In the post-test the students’ attitude towards and usage of the tool was checked. Results of these additional instruments are used in the discussion in Section 7.1. 5.3 Introduction of the Tool After the students had answered the pre-test, the experimental group was introduced to the visual debugger and object inspector in BlueJ and then asked to use it in a short training phase. The control group was shown how to trace a source code manually and then asked to train this manual tracing technique. For the training, more questions similar to the pre- and post-test were asked. In order to minimize the influence of instructors showing how to use the given tool, we designed a series of annotated screen shots to explain the usage of the tool. In Figure 4, an example of a screen shot is given. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 13



Fig. 4. An example screen shoot in the video explaining the use of the debugger in BlueJ.



5.4 Intervention During the intervention phase the students of both groups individually solved tasks using the “tool” (either the debugger or manual code-trace). Its format is shown above. The intervention phase took 40 minutes. The general procedure for the groups was the same: (1) Answer the questions given in the main() method Without running the program (write the answer in the text box on the Web page). (2) Run the program using the tool. (3) Was your answer correct? If not - why? (Again, write in the text box). During the intervention, teaching assistants (TAs) were available to observe what was happening and to help with technical problems. They did not help the students with the tasks, but made sure that the students actually used the tool. In the beginning of the intervention phase, the students had to download the code examples and unzip them on their local machine. The format of all examples was a BlueJ project. The intervention phase consisted of eight tasks in increasing difficulty (according to the OIH). The TAs reported that the number of tasks were appropriate. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 14



·



J. Bennedsen and C. Schulte



5.5 Participants The experiment was conducted at Aarhus University, Denmark. It was done in the fifth week of the introductory programming course (the course was 70% finished). The introductory programming course is a seven-weeks course with the following goals: At the end of the course, the student should be able to —Apply fundamental constructs of a common programming language. —Identify and explain the architecture of simple programs. —Identify and explain the semantics of simple specification models. —Implement simple specification models in a common programming language. —Apply standard classes for implementation tasks. For a more thorough description of the course and its goals, see Bennedsen [2008]. Approximately 350 students were enrolled in the course. The students in the course were enrolled in different study-programs: computer science, mathematics, economics, nano-science, and multimedia. The students were asked to participate on a voluntary basis and 227 participated. All students are assigned to a study group based on their intended major. The size of a study group is approximately 25. When the study groups were formed the only selection criteria were the intended major. We assigned the study groups to the BlueJ debugger group and the manual trace group (i.e., all students in a given study group was assigned to the same condition of treatment) so that the same number of, for example, computer science major student study groups were assigned to each type of treatment. 6. ANALYSIS AND RESULTS In this section we analyse the data and discuss the results of that analysis. 6.1 Data Cleanup Overall 227 students took part in the experiment. In order to exclude those who did not take the study seriously, we excluded answers according to the following procedure: Time to do the pre-test less than five minutes. To exclude students who did not actually do the test. 4 deletions. Time to do the post-test less than five minutes. To exclude students who did not actually do the test. 8 deletions. Students who did the pre-test but not the post-test. 37 deletions No answers to pre-test questions. Students not answering the pre-test even though they looked upon the test for more than 5 min. 3 deletions. Annoyed by the test. One student wrote that he was annoyed by the test and did not want to do the post test. 1 deletion. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 15



Fig. 5. Number of correct answers of all students in pre- and post-test.



Fig. 6. All students Object Interaction Hierarchy (OIH) level in pre- and post-test.



The total population for this study is consequently 174. 6.2 Results Of all results, we are mainly interested in the number of correct answers for the questions of type A (see Section 5.2). In the pre- and post-test 17 of these questions were given. In Figure 5 the number of students per number of correct answers for these questions are shown. The mean values for these 17 questions are 7.36 for the pre-test and 9.33 for the post-test. The standard deviation is 3.12 (pre) and 3.80 (post). The difference between pre- and post-means are highly significant (paired t-test: df = 173, t = 9.6002, p < .0001; Wilcox-test p < .0001). As we have based our study on the object-interaction hierarchy (OIH), the overall results were recorded in terms of competence levels. We used the same procedure as Bennedsen and Schulte [2006] to compute the level of OIH. Figure 6 presents the numbers of students on each level in the pre- and post-test. The mean values for the OIH are 1.29 in the pre-test and 1.75 in the posttest. The standard deviation is 0.78 (pre) and 0.91 (post). The difference of mean-values for pre- and post test are highly significant (paired t-test: df = 173, t = 6.5744, p < .0001; Wilcox-test: p < .0001). Based on each student’s pre- and post-hierarchy level we computed the gain in understanding the execution of object-oriented programs as the difference between a student’s score in the pre- and the post-OIH. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 16



·



J. Bennedsen and C. Schulte



Fig. 7. OIH Level for BlueJ debugger group.



Fig. 8. OIH Level for manual trace group.



In more detail, Figure 7 shows the changes in the BlueJ debugger group only. In the pre-test the mean value of OIH-level is 1.24. In the post-test it is 1.7. Figure 8 shows the changes in the manual trace group. In the pre-test the mean value of OIH-level is 1.35 and in the post-test it is 1.8. The difference between pre- and post-OIH levels for the two different treatments are not significant (unpaired t-test: df = 169, t = 0.18, p = 0.86; Wilcox: p = 0.91). 6.3 Analysis In this subsection we analyze the results in order to answer the research question: RQ: Do students using the debugger and object inspector in BlueJ to show the internal state of the objects and the call sequence statistically have a significantly higher gain in OIH than students manually tracing the program execution? For both treatments, the mean value for the OIH is 1.29 in the pre-test and 1.75 in the post-test. This increase of about half a level of the OIH taxonomy is highly significant (paired t-test: df = 173, t = 6.5744, p < .0001). Comparing ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 17



the BlueJ debugger group with the manual trace group show only a small difference between the groups. In the BlueJ debugger group the mean gain is 0.47, in the manual trace group the mean gain is 0.45. The variances are 0.77 and 0.94. The difference in gain is not statistically significant (unpaired t-test with different variances: df = 169, t = 0.18, p = 0.86). The results of the experiment show that the students who used BlueJ’s debugger did not perform statistically significantly better than the students not using it; both groups profited about the same from the exercises given in the experiment. Does that imply that the usage of the debugger in BlueJ was irrelevant? Given the results (see Figure 7) it seems that students using the debugger and object inspector in BlueJ indeed increased their level of competence (at least is the difference between pre- and post test statistically significant)? The students did learn about object-interaction, but they did not learn more than the control group. In conclusion, we think that using a visual debugger helps to understand the object oriented notional machine. However, giving students practising tasks in form of manual tracing questions leads to the same effect. In the following section we discuss possible reasons for this unexpected result, and make further statistical analyses to check for a better learning outcome for the BlueJ group.



7. DISCUSSION In this section we discuss possible reasons for the unexpected result. Reasons might be interaction between some aspects of the treatment and the learner, or the type of visual tool used, or in the implementation of the empirical study. 7.1 Learners Overall we saw no differences between the groups, but that was for all students. One reason might be that the use of a debugger supports only some students, based on their prior knowledge. Having a further look at the data, we decided to investigate if the visualization tool had a positive impact for specific groups. We divided the students into several groups: Majors in CS vs. non-majors. Students following other study programs than computer science participate in the course. We analyzed, whether there were differences between majors and non-majors. Low achievers vs. high achievers. Low achievers were defined as students who had less than five correct answers (out of 17) in the pre-test. Highachievers were those with more than 11 correct answers in the pre-test. Low OO self efficacy vs. high OO self efficacy. The students indicated their object-oriented self efficacy. We used the object-oriented part of the instrument developed by Ramalingam and Wiedenbeck [1998]. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 18



·



J. Bennedsen and C. Schulte



Students who liked the tool vs. those how did not like the tool. The students indicated in the questionnaire after the test whether they liked the “tool” or not. Difficult questions. For difficult questions (the questions related to level three of the OIH) one could speculate that a tool is useful, since it helps to trace the code. However, in the BlueJ debugger group, 24.7% answered the level three questions correctly and in the manual trace group 25.9% did so. None of the above groupings showed any statistical difference (using a t-test) between the two groups and their gain in object-interaction hierarchy level. These attempts to check for differences did not change the picture. Overall, the results are stable across different subgroups. This indicates that the results are not due to a specific interaction between the chosen method and the learners. Across a variety of subgroups students improved their results regardless of manual trace or BlueJ debugger use.



7.2 Visual Tool Used Although we are generally interested in the role of visualization for learning programming, we had to use a specific tool in the experiment. Prior to the experiment we chose BlueJ debugger as visualization tool (see Section 4). Given the results of the experiment, maybe we have overlooked some issues connected to specific characteristics of the visual debugger and object inspector in BlueJ. The results could be due to the specific debugger used in the study. It could be that there are other debuggers which have different effects (easier to learn, to use, more advanced visualization features supporting better the understanding or tracing of object interaction, etc.). A debugger is primarily designed to be used for finding errors related to the execution of a program. It consequently focuses on topics like call sequence, value and actual type of variables and parameters, etc. It could be that the debugger is not useful for understanding the object interaction but just for finding errors in the program execution. JAN (Java ANimation [Lohr and Vratislavsky 2003]) focuses on this distinction. They use UML object- and sequence diagrams to visualize the program execution. However, sequence diagrams might be useful for understanding complex object interaction but when generated automatically they tend to become rather large and confusing. JAN, furthermore, is just a prototype. Gries [2008] suggest another object-oriented model of execution; as yet, there is no implementation of a visualization using this execution model. Based on our data, we can hardly conclude anything regarding the tool used, although we have the feeling that differences between debuggers might not be relevant, because these differences are minor compared to the differences of using a debugger or not. So presumably, repeating the experiment with a different tool would lead to the same results. To check this, we repeated the experiment at another university, and included the visual debugger connected to the Fujaba-project [Dobs 2008], which is available as a plug-in for BlueJ. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 19



There were no differences between the groups, supporting the feeling that the concrete debugger plays a very minor role. 7.3 The Implementation of the Experiment Another reason for the result could be due to the implementation of the experiment, for example the environment used, or the way the debugging tool was introduced in the experiment. It could be that students simply were not able to profit from the additional possibilities given by the debugger, because they had an additional learning task, namely to cope with its use, and this distracted them from focusing on the object interaction. Expressed in terms of cognitive load [Sweller et al. 1998], introducing an additional tool in the middle of a learning task increases extraneous cognitive load. In order to check this effect, we can use some additional questions given to the students after completing the test. We asked whether they felt comfortable using the tool, and whether they thought the tool was helpful. Splitting the group into according subgroups (those who indicated that they liked the tool vs. those who did not; comfortable vs. non-comfortable) shows no differences in learning gain (using a t-test). A second issue connected to the implementation of the experiment might be due to the type of learning task and test questions used. In our experiment students did not produce code, but only analysed given short code fragments. There could be a difference between analysing and synthesizing object interaction. For example, in Bloom’s taxonomy of learning objectives [Bloom et al. 1956], synthesizing is on a higher level (i.e., more difficult to learn). It could be that a debugger supports a higher learning gain by using it in learning tasks in which synthesizing of object interaction, being designing and implementing, is the core of the learning activity. Another effect could be due to characteristics of the test questions used. As already pointed out, they were solely based on reading and analysing short code fragments. Despite our aim of focusing on object interaction, that is the complex and dynamic patterns of method calls and changing references between different objects, we could capture only some of this dynamics in at most 50 lines of code. In these short fragments we had to define objects, instantiate some and build a pattern of references between them (the object structure), and then initiate some interaction on this structure. As a consequence large parts of the tasks necessarily are directed towards basic issues (class definition and object creation) and not solely on object interaction solely. We aimed at setting up some tricky object interactions, so that (some) questions at least are only answerable with a pretty good understanding of the structure described. For example, the same object reference was inserted in a list for several times, so that changing the content of one list element affects multiple object references at once (after the change the code iterated through the list and, for example, summed up some values from the objects). In connection with the above discussed difference between analytic and synthetic types of tasks, perhaps we should have used more types of questions on which students had to make inferences. Those are questions in which the ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 20



·



J. Bennedsen and C. Schulte



source code describes an object structure, and the questions involve imagination effects of creation changes which are described more general. One example could be: Given the described object structure, is it possible to produce an effect like X, where X refers to a different object structure. This would require that the student understand both object structures, and imagine method calls that transfer one structure into the other. Maybe, this kind of question could be supported by a debugger, in which students could interactively play with the objects. The underlying understanding of learning is constructivism [Ben-Ari 2001] (or a rationalist view on learning as described by Greeno et al. [1996]). Others do not see knowledge as individual but as a social construct [Palincsar 1998]. It could be that the use of a visual tool is more helpful in supporting collaborative building of knowledge than individual one; the debugger could foster discussion and examination of object interaction. 8. CONCLUSION In this article we have evaluated the effect of a visual debugger to help students learning about object interaction. This evaluation was done in a controlled experiment using the debugger and object inspector in BlueJ. We expected a positive effect of using the debugger and found this to be true. To our surprise however, we could not find that students using the debugger and object inspector statistically performed significantly better than students manually tracing the program execution. We made several groupings (e.g., CSmajors vs. non-majors, low achievers vs. high achievers, low OO self efficacy vs. high OO self efficacy) of the students in order to check for a positive impact using the debugger for special groups. None of the groupings showed a significantly better performance of the students using the debugger and object inspector. We have discussed the findings and given several possible answers to the surprising result. Based on our discussion we reach a general (but not very surprising) conclusion: Practising helps! The type of exercise used in the experiment helped students to gain a better understanding. On average the results in the posttest were nearly a half OIH-level higher than in the pre-test. REFERENCES ACM. 2008. ACM symposium on software visualization. http://www.softvis.org. ¨ , M., AND R EGES, S. 2005. Resolved: Objects A STRACHAN, O., B RUCE , K., K OFFMAN, E., K OLLING early has failed. In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’05). ACM Press. 451–452. B AILIE , F., C OURTNEY, M., M URRAY, K., S CHIAFFINO, R., AND T UOHY, S. 2003. Objects first— Does it work? J. Comput. Small Coll. 19, 2, 303–305. B EN -A RI , M. 2001. Constructivism in computer science education. J. Comput. Math. Sci. Teach. 20, 1, 45–73. B ENNEDSEN, J. 2008. Teaching and learning introductory programming—A model-based approach. PhD thesis, University of Oslo. B ENNEDSEN, J. AND S CHULTE , C. 2006. A competence model for object-interaction in introductory programming. In Proceedings of the 18th Workshop of the Psychology of Programming Interest Group (PPIG’06). P. Romero, J. Good, S. Bryant, and E. A. Chaperro, Eds. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



BlueJ Visual Debugger for Learning Object-Oriented Programs



·



8: 21



B ERGIN, S. AND R EILLY, R. 2005. Programming: Factors that influence success. In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’05). ACM Press. 411–415. B LOOM , B. S., K RATHWOHL , D. R., AND M ASIA , B. B. 1956. Taxonomy of Educational Objectives. The Classification of Educational Goals. Handbook I: Cognitive Domain. Longmans, Green & Co., New York. B RUCE , K. B. 2005. Controversy on how to teach CS1: A discussion on the sigcse-members mailing list. SIGCSE Bull. 37, 2, 111–117. D ALE , N. 2005. Content and emphasis in CS1. SIGCSE Bull. 37, 4, 69–73. DE R AADT, M., WATSON, R., AND T OLEMAN, M. 2004. Introductory programming: What’s happening today and will there be any students to teach tomorrow? In Proceedings of the 6th Conference on Australasian Computing Education (ACE’04). 277–282. D IJKSTRA , E. W. 1969. Notes on structured programming. http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF. D OBS. 2008. Bluej dobs-extension. http://life.upb.de/index.php?level1 open=3&level2 open=&level3 open=&storyid=67. DU B OULAY, B. 1989. Some difficulties of learning to program. In Studying the Novice Programmer. E. Soloway and J. C. Spohrer, Eds. Lawrence Erlbaum, Hillsdale, N.J., 57–73. DU B OULAY, B., O’S HEA , T., AND M ONK , J. 1999. The black box inside the glass box: Presenting computing concepts to novices. Int. J. Hum.-Comput. Stud. 51, 2, 265–277. E CLIPSE. 2008. http://www.eclipse.org/. G REENO, J. G., C OLLINS, A. M., AND R ESNICK , L. B. 1996. Handbook of Educational Psychology. Macmillan, New York, 15–46. G RIES, D. 1974. What should we teach in an introductory programming course? In Proceedings of the 4th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’74). 81–89. G RIES, D. 2008. A principled approach to teaching OO first. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’08). 31–35. G RISSOM , S., M C N ALLY, M. F., AND N APS, T. 2003. Algorithm visualization in CS education: Comparing levels of student engagement. In Proceedings of the ACM Symposium on Software Visualization (SoftVis’03). 87–94. G UZDIAL , M. 1995. Centralized mindset: A student problem with object-oriented programming. In Proceedings of the 26th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’95). 182–185. H UNDHAUSEN, C. D., D OUGLAS, S. A., AND S TASKO, J. T. 2002. A meta-study of algorithm visualization effectiveness. J. Vis. Lang. Comput. 13, 3, 259–290. J AIN, J., J AMES H. C ROSS, I., AND H ENDRIX , D. 2005. Qualitative comparison of systems facilitating data structure visualization. In Proceedings of the 43rd Annual Southeast Regional Conference (ACM-SE’43). 309–314. J GRASP. 2008. jGRASP home page. http://www.jgrasp.org/. JIVE. 2008. Jive: Java interactive visualization environment. http://www.cse.buffalo.edu/jive/. ¨ K OLLING , M. 2008. Using bluej to introduce programming. In Reflections on the Teaching of Programming. J. Bennedsen, M. E. Caspersen, and M. K¨olling, Eds. Lecture Notes in Computer Science vol. 4821, 98–115. ¨ L AHTINEN, E., A LA -M UTKA , K., AND J ARVINEN , H.-M. 2005. A study of the difficulties of novice programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education (ITiCSE’05). 14–18. L OHR , K.-P. AND V RATISLAVSKY, A. 2003. Jan - Java animation for program understanding. In Proceedings of the IEEE Symposium on Human Centric Computing Languages and Environments (HCC’03). 67–75. M C C RACKEN, M., A LMSTRUM , V., D IAZ , D., G UZDIAL , M., H AGAN, D., K OLIKANT, Y. B.-D., L AXER , C., T HOMAS, L., U TTING, I., AND W ILUSZ , T. 2001. A multi-national, multiinstitutional study of assessment of programming skills of first-year CS students. SIGCSE Bull. 33, 4, 125–180. ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



8: 22



·



J. Bennedsen and C. Schulte



M ILNE , I. AND R OWE , G. 2002. Difficulties in learning and teaching programming—Views of students and tutors. Educ. Inform. Technol. 7, 1, 55–66. ¨ N APS, T. L., R OSSLING , G., A LMSTRUM , V., D ANN, W., F LEISCHER , R., H UNDHAUSEN, C., ´ K ORHONEN, A., M ALMI , L., M C N ALLY, M., R ODGER , S., AND V EL AZQUEZ -I TURBIDE , J. A. 2002. Exploring the role of visualization and engagement in computer science education. In Proceedings of the Working Group Reports from ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-WGR’02). 131–152. PALINCSAR , A. S. 1998. Social constructivist perspectives on teaching and learning. Rev. Psych. 49, 345–375. P FLEEGER , S. L. 1994. Design and analysis in software engineering: The language of case studies and formal experiments. SIGSOFT Softw. Engin. Notes 19, 4, 16–20. P RICE , B. A., B AECKER , R., AND S MALL , I. S. 1993. A principled taxonomy of software visualization. J. Vis. Lang. Comput. 4, 211–266. R AGONIS, N. AND B EN -A RI , M. 2005a. A long-term investigation of the comprehension of OOP concepts by novices. Comput. Sci. Educ. 15, 3, 203–221. R AGONIS, N. AND B EN -A RI , M. 2005b. On understanding the statics and dynamics of objectoriented programs. In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’05). ACM Press, 226–230. R AMALINGAM , V. AND W IEDENBECK , S. 1998. Development and validation of scores on a computer programming self-efficacy scale and group analyses of novice programmer self-efficacy. J. Educ. Comput. Res. 19, 4, 367–381. R OBINS, A., R OUNTREE , J., AND R OUNTREE , N. 2003. Learning and teaching programming: A review and discussion. J. Comput. Sci. Educ. 13, 2, 137–172. S AJANIEMI , J. 2002. An empirical analysis of roles of variables in novice-level procedural programs. In Proceedings of the IEEE Symposia on Human Centric Computing Languages and Environments (HCC’02). 37–39. S AJANIEMI , J., B YCKLINGA , P., AND G ERDT, P. 2007. Animation metaphors for object-oriented concepts. Electron. Notes Theor. Comput. Sci. 178, 15–22. S AJANIEMI , J. AND K UITTINEN, M. 2004. Visualizing roles of variables in program animation. Inform. Vis. 3, 137–153. S AJANIEMI , J. AND K UITTINEN, M. 2005. An experiment on using roles of variables in teaching introductory programming. Comput. Sci. Educ. 15, 1, 59–82. S CHULTE , C. AND B ENNEDSEN, J. 2006. What do teachers teach in introductory programming? In Proceedings of the 2nd International Workshop on Computing Education Research (ICER’06). 17–28. S MITH , P. A. AND W EBB, G. I. 2000. The efficacy of a low-level program visualization tool for teaching programming concepts to novice C programmers. J. Educ. Comput. Res. 22, 2, 187–215. S OLOWAY, E. AND S POHRER , J. C. 1989. Studying the Novice Programmer. Lawrence Erlbaum, Hillsdale, N.J. S WELLER , J., VAN M ERRIENBOER , J., AND PAAS, F. 1998. Cognitive architecture and instructional design. Educ. Psychol. Rev. 10, 3, 251–296. T UCKER , A. B. 1996. Strategic directions in computer science education. ACM Comput. Surv. 28, 4, 836–845. T YRMAN, P. AND B ALDWIN, D., eds. 2005. In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’05). ACM Press. VALENTINE , D. W. 2004. CS educational research: A meta-analysis of SIGCSE technical symposium proceedings. In Proceedings of the 35th ACM Technical Symposium on Computer Science Education (SIGCSE’04). 255–259.



Received July 2008; revised March 2009, September 2009; accepted November 2009



ACM Transactions on Computing Education, Vol. 10, No. 2, Article 8, Pub. date: June 2010.



























[image: practice - ACM Digital Library]
practice - ACM Digital Library












[image: Evolutionary Learning of Syntax Patterns for ... - ACM Digital Library]
Evolutionary Learning of Syntax Patterns for ... - ACM Digital Library












[image: Incorporating heterogeneous information for ... - ACM Digital Library]
Incorporating heterogeneous information for ... - ACM Digital Library












[image: 6LoWPAN Architecture - ACM Digital Library]
6LoWPAN Architecture - ACM Digital Library












[image: Kinetic tiles - ACM Digital Library]
Kinetic tiles - ACM Digital Library












[image: The Chronicles of Narnia - ACM Digital Library]
The Chronicles of Narnia - ACM Digital Library












[image: Who knows?: searching for expertise on the ... - ACM Digital Library]
Who knows?: searching for expertise on the ... - ACM Digital Library












[image: A Framework for Technology Design for ... - ACM Digital Library]
A Framework for Technology Design for ... - ACM Digital Library












[image: Borg, Omega, and Kubernetes - ACM Digital Library]
Borg, Omega, and Kubernetes - ACM Digital Library












[image: A Framework for Technology Design for ... - ACM Digital Library]
A Framework for Technology Design for ... - ACM Digital Library












[image: Proceedings Template - WORD - ACM Digital Library]
Proceedings Template - WORD - ACM Digital Library












[image: Computing: An Emerging Profession? - ACM Digital Library]
Computing: An Emerging Profession? - ACM Digital Library












[image: Towards a Relation Extraction Framework for ... - ACM Digital Library]
Towards a Relation Extraction Framework for ... - ACM Digital Library












[image: Designing Unbiased Surveys for HCI Research - ACM Digital Library]
Designing Unbiased Surveys for HCI Research - ACM Digital Library












[image: Privacy-preserving query log mining for business ... - ACM Digital Library]
Privacy-preserving query log mining for business ... - ACM Digital Library












[image: An interactive multi-touch sketching interface for ... - ACM Digital Library]
An interactive multi-touch sketching interface for ... - ACM Digital Library












[image: Online Microsurveys for User Experience Research - ACM Digital Library]
Online Microsurveys for User Experience Research - ACM Digital Library












[image: Challenges on the Journey to Co-Watching ... - ACM Digital Library]
Challenges on the Journey to Co-Watching ... - ACM Digital Library












[image: The multidimensional role of social media in ... - ACM Digital Library]
The multidimensional role of social media in ... - ACM Digital Library












[image: The word-gesture keyboard: reimagining ... - ACM Digital Library]
The word-gesture keyboard: reimagining ... - ACM Digital Library












[image: The Character, Value, and Management of ... - ACM Digital Library]
The Character, Value, and Management of ... - ACM Digital Library















BlueJ Visual Debugger for Learning the ... - ACM Digital Library






Science Educationâ€”computer science education, information systems education. General Terms: Experimentation, Human Factors. Additional Key Words and ... 






 Download PDF 



















 3MB Sizes
 38 Downloads
 361 Views








 Report























Recommend Documents







[image: alt]





practice - ACM Digital Library 

This article provides an overview of how XSS vulnerabilities arise and why it is so difficult to avoid them in real-world Web application software development.














[image: alt]





Evolutionary Learning of Syntax Patterns for ... - ACM Digital Library 

Jul 15, 2015 - ABSTRACT. There is an increasing interest in the development of tech- niques for automatic relation extraction from unstructured text. The biomedical domain, in particular, is a sector that may greatly benefit from those techniques due














[image: alt]





Incorporating heterogeneous information for ... - ACM Digital Library 

Aug 16, 2012 - A social tagging system contains heterogeneous in- formation like users' tagging behaviors, social networks, tag semantics and item profiles.














[image: alt]





6LoWPAN Architecture - ACM Digital Library 

ABSTRACT. 6LoWPAN is a protocol definition to enable IPv6 packets to be carried on top of low power wireless networks, specifically IEEE. 802.15.4.














[image: alt]





Kinetic tiles - ACM Digital Library 

May 7, 2011 - We propose and demonstrate Kinetic Tiles, modular construction units for kinetic animations. Three different design methods are explored and evaluated for kinetic animation with the Kinetic Tiles using preset movements, design via anima














[image: alt]





The Chronicles of Narnia - ACM Digital Library 

For almost 2 decades Rhythm and Hues Studios has been using its proprietary software pipeline to create photo real characters for films and commercials. However, the demands of "The Chronicles of. Narnia" forced a fundamental reevaluation of the stud














[image: alt]





Who knows?: searching for expertise on the ... - ACM Digital Library 

ple had to do to find the answer to a question before the Web. Imagine it is. 1990, before the age of search engines, and of course, Wikipedia. You have.














[image: alt]





A Framework for Technology Design for ... - ACM Digital Library 

Internet in such markets. Today, Internet software can ... desired contexts? Connectivity. While the Internet is on the rise in the Global South, it is still slow, unreliable, and often. (https://developers.google.com/ billions/). By having the devel














[image: alt]





Borg, Omega, and Kubernetes - ACM Digital Library 

acmqueue | january-february 2016 71 system evolution. As more and more applications were developed to run on top of Borg, our application and infrastructure ...














[image: alt]





A Framework for Technology Design for ... - ACM Digital Library 

learning, from the technological to the sociocultural, we ensured that ... lives, and bring a spark of joy. While the fields of ICTD and ..... 2015; http://www.gsma.com/ mobilefordevelopment/wp-content/ uploads/2016/02/Connected-Women-. Gender-Gap.pd














[image: alt]





Proceedings Template - WORD - ACM Digital Library 

knowledge-level approach (similarly to many AI approaches developed in the ..... 1 ArchE web: http://www.sei.cmu.edu/architecture/arche.html by ArchE when ...














[image: alt]





Computing: An Emerging Profession? - ACM Digital Library 

developments (e.g., the internet, mobile computing, and cloud computing) have led to further increases. The US Bureau of Labor Statistics estimates 2012 US.














[image: alt]





Towards a Relation Extraction Framework for ... - ACM Digital Library 

to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi- supervised Natural Language Processing and ...














[image: alt]





Designing Unbiased Surveys for HCI Research - ACM Digital Library 

May 1, 2014 - enable the creation of unbiased surveys, this course ... Permission to make digital or hard copies of part or all of this work for personal or ...














[image: alt]





Privacy-preserving query log mining for business ... - ACM Digital Library 

transfer this problem into the field of privacy-preserving data mining. We characterize the possible adversaries interested in disclosing Web site confidential data and the attack strategies that they could use. These attacks are based on different v














[image: alt]





An interactive multi-touch sketching interface for ... - ACM Digital Library 

Diffusion curves are effective 2D vector-graphics primitives, for creating smoothly-shaded drawings with rich colors and unique styles. Conventional drawing ...














[image: alt]





Online Microsurveys for User Experience Research - ACM Digital Library 

May 1, 2014 - experience research. We focus specifically on Google. Consumer Surveys (GCS) and analyze a combination of log data and GCSs run by the ...














[image: alt]





Challenges on the Journey to Co-Watching ... - ACM Digital Library 

Mar 1, 2017 - Examples they gave include watching video to avoid interacting with ... steps that people take to co-watch and the main challenges faced in this ...... 10. Erving Goffman and others. 1978. The presentation of self in everyday life. Harm














[image: alt]





The multidimensional role of social media in ... - ACM Digital Library 

informed consent to informed choice in medical decisions. Social media is playing a vital role in this transformation. I'm alive and healthy because of great doctors. Diagnosed with advanced kidney cancer, I received care from a great oncologist, a g














[image: alt]





The word-gesture keyboard: reimagining ... - ACM Digital Library 

Sep 1, 2012 - tion in the form of email, text chat, and Web posting. As com- ... desktop, the need for effective text entry on mobile devices has been ...














[image: alt]





The Character, Value, and Management of ... - ACM Digital Library 

the move. Instead we found workers kept large, highly valued paper archives. ..... suggest two general problems in processing data lead to the accumulation.


























×
Report BlueJ Visual Debugger for Learning the ... - ACM Digital Library





Your name




Email




Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint





Description















Close
Save changes















×
Sign In






Email




Password







 Remember Password 
Forgot Password?




Sign In



















Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us





Follow us

	

 Facebook


	

 Twitter


	

 Google Plus







Newsletter























Copyright © 2024 P.PDFKUL.COM. All rights reserved.
















