

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Booting Linux

Jack Rosenthal February 23, 2017 Mines Linux Users Group

Master Boot Record

Floppy Disks

• Floppy disks organized into 512-byte sectors • Intel 8086 originally only allowed booting from ﬂoppy • First sector is the boot sector, 512 bytes of executable x86 machine code which runs in real mode.

Floppy Disks

• Floppy disks organized into 512-byte sectors • Intel 8086 originally only allowed booting from ﬂoppy • First sector is the boot sector, 512 bytes of executable x86 machine code which runs in real mode.

Floppy Disks

• Floppy disks organized into 512-byte sectors • Intel 8086 originally only allowed booting from ﬂoppy • First sector is the boot sector, 512 bytes of executable x86 machine code which runs in real mode.

The 10 MB Hard Disk Came

• IBM wanted a way to boot their systems off their new 10 MB hard disk in 1983 • They added a 4-partition table to the end of the 512-byte boot sector • Boot sectors compatible with older systems because the machine code ends before the partition data • This is called Master Boot Record

The 10 MB Hard Disk Came

• IBM wanted a way to boot their systems off their new 10 MB hard disk in 1983 • They added a 4-partition table to the end of the 512-byte boot sector • Boot sectors compatible with older systems because the machine code ends before the partition data • This is called Master Boot Record

The 10 MB Hard Disk Came

• IBM wanted a way to boot their systems off their new 10 MB hard disk in 1983 • They added a 4-partition table to the end of the 512-byte boot sector • Boot sectors compatible with older systems because the machine code ends before the partition data • This is called Master Boot Record

The 10 MB Hard Disk Came

• IBM wanted a way to boot their systems off their new 10 MB hard disk in 1983 • They added a 4-partition table to the end of the 512-byte boot sector • Boot sectors compatible with older systems because the machine code ends before the partition data • This is called Master Boot Record

Master Boot Record

What does a MBR bootloader do?

1. Determine the partition to boot from 2. Determine where your kernel image is on the partition 3. Load the kernel into memory 4. Enable protected mode 5. Set up the environment for the kernel (stack space, etc.) 6. Call your kernel’s main function You will probably agree, that’s a lot to do in 446 bytes of machine code.

What does a MBR bootloader do?

1. Determine the partition to boot from 2. Determine where your kernel image is on the partition 3. Load the kernel into memory 4. Enable protected mode 5. Set up the environment for the kernel (stack space, etc.) 6. Call your kernel’s main function You will probably agree, that’s a lot to do in 446 bytes of machine code.

What does a MBR bootloader do?

1. Determine the partition to boot from 2. Determine where your kernel image is on the partition 3. Load the kernel into memory 4. Enable protected mode 5. Set up the environment for the kernel (stack space, etc.) 6. Call your kernel’s main function You will probably agree, that’s a lot to do in 446 bytes of machine code.

What does a MBR bootloader do?

1. Determine the partition to boot from 2. Determine where your kernel image is on the partition 3. Load the kernel into memory 4. Enable protected mode 5. Set up the environment for the kernel (stack space, etc.) 6. Call your kernel’s main function You will probably agree, that’s a lot to do in 446 bytes of machine code.

What does a MBR bootloader do?

1. Determine the partition to boot from 2. Determine where your kernel image is on the partition 3. Load the kernel into memory 4. Enable protected mode 5. Set up the environment for the kernel (stack space, etc.) 6. Call your kernel’s main function You will probably agree, that’s a lot to do in 446 bytes of machine code.

What does a MBR bootloader do?

1. Determine the partition to boot from 2. Determine where your kernel image is on the partition 3. Load the kernel into memory 4. Enable protected mode 5. Set up the environment for the kernel (stack space, etc.) 6. Call your kernel’s main function You will probably agree, that’s a lot to do in 446 bytes of machine code.

What does a MBR bootloader do?

1. Determine the partition to boot from 2. Determine where your kernel image is on the partition 3. Load the kernel into memory 4. Enable protected mode 5. Set up the environment for the kernel (stack space, etc.) 6. Call your kernel’s main function You will probably agree, that’s a lot to do in 446 bytes of machine code.

Some Real Challenges

• Most C compilers won’t compile to real mode code, so booting is on the list of things you can’t even do in C • Real mode uses 16 memory segments of 64K each • To switch segments, you must issue special instructions to the processor • This gives you a total of 1 MiB of memory to use for booting • Does your kernel ﬁt in 1 MiB? Minus the memory you are using for your program to boot?

Some Real Challenges

• Most C compilers won’t compile to real mode code, so booting is on the list of things you can’t even do in C • Real mode uses 16 memory segments of 64K each • To switch segments, you must issue special instructions to the processor • This gives you a total of 1 MiB of memory to use for booting • Does your kernel ﬁt in 1 MiB? Minus the memory you are using for your program to boot?

Some Real Challenges

• Most C compilers won’t compile to real mode code, so booting is on the list of things you can’t even do in C • Real mode uses 16 memory segments of 64K each • To switch segments, you must issue special instructions to the processor • This gives you a total of 1 MiB of memory to use for booting • Does your kernel ﬁt in 1 MiB? Minus the memory you are using for your program to boot?

Some Real Challenges

• Most C compilers won’t compile to real mode code, so booting is on the list of things you can’t even do in C • Real mode uses 16 memory segments of 64K each • To switch segments, you must issue special instructions to the processor • This gives you a total of 1 MiB of memory to use for booting • Does your kernel ﬁt in 1 MiB? Minus the memory you are using for your program to boot?

Some Real Challenges

• Most C compilers won’t compile to real mode code, so booting is on the list of things you can’t even do in C • Real mode uses 16 memory segments of 64K each • To switch segments, you must issue special instructions to the processor • This gives you a total of 1 MiB of memory to use for booting • Does your kernel ﬁt in 1 MiB? Minus the memory you are using for your program to boot?

Approaches to Solving Booting Challenges

• Geek Booting: Do everything your kernel needs to boot in the 512-byte boot sector. You will need your kernel to ﬁt in 1 MiB as well. This is hard. • One-Stage Booting: Write your bootloader in the ﬁrst 1 MiB of your kernel image, then write a 512-byte program that loads that program. The 1 MiB program is responsible for loading the rest of your kernel and booting it. • Two-Stage Booting: Write a separate kernel that ﬁts in 1 MiB called a bootloader. This program is responsible for providing a high level interface to boot other kernels. GRUB is an example.

Approaches to Solving Booting Challenges

• Geek Booting: Do everything your kernel needs to boot in the 512-byte boot sector. You will need your kernel to ﬁt in 1 MiB as well. This is hard. • One-Stage Booting: Write your bootloader in the ﬁrst 1 MiB of your kernel image, then write a 512-byte program that loads that program. The 1 MiB program is responsible for loading the rest of your kernel and booting it. • Two-Stage Booting: Write a separate kernel that ﬁts in 1 MiB called a bootloader. This program is responsible for providing a high level interface to boot other kernels. GRUB is an example.

Approaches to Solving Booting Challenges

• Geek Booting: Do everything your kernel needs to boot in the 512-byte boot sector. You will need your kernel to ﬁt in 1 MiB as well. This is hard. • One-Stage Booting: Write your bootloader in the ﬁrst 1 MiB of your kernel image, then write a 512-byte program that loads that program. The 1 MiB program is responsible for loading the rest of your kernel and booting it. • Two-Stage Booting: Write a separate kernel that ﬁts in 1 MiB called a bootloader. This program is responsible for providing a high level interface to boot other kernels. GRUB is an example.

Extensible Firmware Interface

Apple

• Historically, Macs have booted using a hardware chip on the board called the Macintosh ROM • The Mac ROM provided a miniature operating system (with a mouse cursor and all) capable of booting Mac OS • With the switch to PowerPC from 68K, Apple modiﬁed the ROM to include an Open Firmware Interface capable of extending booting capabilities beyond just classical Mac OS

Apple

• Historically, Macs have booted using a hardware chip on the board called the Macintosh ROM • The Mac ROM provided a miniature operating system (with a mouse cursor and all) capable of booting Mac OS • With the switch to PowerPC from 68K, Apple modiﬁed the ROM to include an Open Firmware Interface capable of extending booting capabilities beyond just classical Mac OS

Apple

• Historically, Macs have booted using a hardware chip on the board called the Macintosh ROM • The Mac ROM provided a miniature operating system (with a mouse cursor and all) capable of booting Mac OS • With the switch to PowerPC from 68K, Apple modiﬁed the ROM to include an Open Firmware Interface capable of extending booting capabilities beyond just classical Mac OS

Apple • With the switch to Intel x86 from PowerPC, Apple looked for a solution to boot Mac OS X from something that didn’t suck as much as MBR • Apple looked at Intel’s long forgotten Extensible Firmware Interface (EFI) • EFI was similar to Apple’s OFI, but it worked on Intel processors and had plenty of more features • Thanks Apple! You popularized EFI and made booting x86 suck less!

Apple • With the switch to Intel x86 from PowerPC, Apple looked for a solution to boot Mac OS X from something that didn’t suck as much as MBR • Apple looked at Intel’s long forgotten Extensible Firmware Interface (EFI) • EFI was similar to Apple’s OFI, but it worked on Intel processors and had plenty of more features • Thanks Apple! You popularized EFI and made booting x86 suck less!

Apple • With the switch to Intel x86 from PowerPC, Apple looked for a solution to boot Mac OS X from something that didn’t suck as much as MBR • Apple looked at Intel’s long forgotten Extensible Firmware Interface (EFI) • EFI was similar to Apple’s OFI, but it worked on Intel processors and had plenty of more features • Thanks Apple! You popularized EFI and made booting x86 suck less!

Apple • With the switch to Intel x86 from PowerPC, Apple looked for a solution to boot Mac OS X from something that didn’t suck as much as MBR • Apple looked at Intel’s long forgotten Extensible Firmware Interface (EFI) • EFI was similar to Apple’s OFI, but it worked on Intel processors and had plenty of more features • Thanks Apple! You popularized EFI and made booting x86 suck less!

UEFI in a Nutshell

• Simply write your bootloader in C and leave a .efi binary on the FAT32 formatted EFI System Partition, the system’s UEFI ﬁrmware takes care of running your program for you • Provides high level interfaces to the graphical console, hardware, disks, memory, and even network • Capable of doing hash checks on your bootloader to ensure it was not tampered with by a computer virus

UEFI in a Nutshell

• Simply write your bootloader in C and leave a .efi binary on the FAT32 formatted EFI System Partition, the system’s UEFI ﬁrmware takes care of running your program for you • Provides high level interfaces to the graphical console, hardware, disks, memory, and even network • Capable of doing hash checks on your bootloader to ensure it was not tampered with by a computer virus

UEFI in a Nutshell

• Simply write your bootloader in C and leave a .efi binary on the FAT32 formatted EFI System Partition, the system’s UEFI ﬁrmware takes care of running your program for you • Provides high level interfaces to the graphical console, hardware, disks, memory, and even network • Capable of doing hash checks on your bootloader to ensure it was not tampered with by a computer virus

Hello World EFI-Style

#include #include EFI_STATUS EFIAPI efi_main (EFI_HANDLE Handle, EFI_SYSTEM_TABLE *Table) { InitializeLib(Handle, Table); Print(L"Hello, world!\n"); return EFI_SUCCESS; }

Booting Linux

So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by the bootloader and started 2. The Linux kernel then loads a ﬁle system called initrd into memory which contains just enough programs to mount your disk and load drivers 3. The kernel ﬂag root speciﬁes where your root partition is located to be mounted 4. Once the root partition is mounted, /etc/fstab is read to determine any other partitions to be mounted 5. /bin/init is called

So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by the bootloader and started 2. The Linux kernel then loads a ﬁle system called initrd into memory which contains just enough programs to mount your disk and load drivers 3. The kernel ﬂag root speciﬁes where your root partition is located to be mounted 4. Once the root partition is mounted, /etc/fstab is read to determine any other partitions to be mounted 5. /bin/init is called

So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by the bootloader and started 2. The Linux kernel then loads a ﬁle system called initrd into memory which contains just enough programs to mount your disk and load drivers 3. The kernel ﬂag root speciﬁes where your root partition is located to be mounted 4. Once the root partition is mounted, /etc/fstab is read to determine any other partitions to be mounted 5. /bin/init is called

So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by the bootloader and started 2. The Linux kernel then loads a ﬁle system called initrd into memory which contains just enough programs to mount your disk and load drivers 3. The kernel ﬂag root speciﬁes where your root partition is located to be mounted 4. Once the root partition is mounted, /etc/fstab is read to determine any other partitions to be mounted 5. /bin/init is called

So this is all great, how does Linux boot?

1. First, the compressed Linux kernel (vmlinuz) is loaded by the bootloader and started 2. The Linux kernel then loads a ﬁle system called initrd into memory which contains just enough programs to mount your disk and load drivers 3. The kernel ﬂag root speciﬁes where your root partition is located to be mounted 4. Once the root partition is mounted, /etc/fstab is read to determine any other partitions to be mounted 5. /bin/init is called

So what is /bin/init?

• init is the process with PID 1; it is the super-parent process of every process started on your system • If init were to die, the kernel would panic • Historically, System V style init programs would start a shell script located at /etc/rc that then loads your programs and desktop environment • Most /etc/rc ﬁles use modularized shell scripts under /etc/rc.d or /etc/init.d to start services • Shell scripts are slow, and all sorts of standards exist for how to write these shell scripts

So what is /bin/init?

• init is the process with PID 1; it is the super-parent process of every process started on your system • If init were to die, the kernel would panic • Historically, System V style init programs would start a shell script located at /etc/rc that then loads your programs and desktop environment • Most /etc/rc ﬁles use modularized shell scripts under /etc/rc.d or /etc/init.d to start services • Shell scripts are slow, and all sorts of standards exist for how to write these shell scripts

So what is /bin/init?

• init is the process with PID 1; it is the super-parent process of every process started on your system • If init were to die, the kernel would panic • Historically, System V style init programs would start a shell script located at /etc/rc that then loads your programs and desktop environment • Most /etc/rc ﬁles use modularized shell scripts under /etc/rc.d or /etc/init.d to start services • Shell scripts are slow, and all sorts of standards exist for how to write these shell scripts

So what is /bin/init?

• init is the process with PID 1; it is the super-parent process of every process started on your system • If init were to die, the kernel would panic • Historically, System V style init programs would start a shell script located at /etc/rc that then loads your programs and desktop environment • Most /etc/rc ﬁles use modularized shell scripts under /etc/rc.d or /etc/init.d to start services • Shell scripts are slow, and all sorts of standards exist for how to write these shell scripts

So what is /bin/init?

• init is the process with PID 1; it is the super-parent process of every process started on your system • If init were to die, the kernel would panic • Historically, System V style init programs would start a shell script located at /etc/rc that then loads your programs and desktop environment • Most /etc/rc ﬁles use modularized shell scripts under /etc/rc.d or /etc/init.d to start services • Shell scripts are slow, and all sorts of standards exist for how to write these shell scripts

systemd: An alternative init

• Theory: Shell scripts as a conﬁguration ﬁle is clunky and provides scattered interfaces • Acts as a replacement /bin/init but uses conﬁguration ﬁles rather than shell scripts • This topic kind of deserves a talk of it’s own? Anyone want to do it?

systemd: An alternative init

• Theory: Shell scripts as a conﬁguration ﬁle is clunky and provides scattered interfaces • Acts as a replacement /bin/init but uses conﬁguration ﬁles rather than shell scripts • This topic kind of deserves a talk of it’s own? Anyone want to do it?

systemd: An alternative init

• Theory: Shell scripts as a conﬁguration ﬁle is clunky and provides scattered interfaces • Acts as a replacement /bin/init but uses conﬁguration ﬁles rather than shell scripts • This topic kind of deserves a talk of it’s own? Anyone want to do it?

Resources

Resources

• OSDev Wiki: Great resource on developing your own OS, including writing bootloaders. http://osdev.org • There’s nothing else. That wiki has about everyting you need.

Resources

• OSDev Wiki: Great resource on developing your own OS, including writing bootloaders. http://osdev.org • There’s nothing else. That wiki has about everyting you need.

Questions?

Copyright Notice

This presentation was from the Mines Linux Users Group. A mostly-complete archive of our presentations can be found online at https://lug.mines.edu. Individual authors may have certain copyright or licensing restrictions on their presentations. Please be certain to contact the original author to obtain permission to reuse or distribute these slides.

[image: Linux Booting Process.pdf]
Linux Booting Process.pdf

[image: Linux Kernel Development - GitHub]
Linux Kernel Development - GitHub

[image: Linux Heap Internals.key - GitHub]
Linux Heap Internals.key - GitHub

[image: Arch Linux - GitHub]
Arch Linux - GitHub

[image: Axxia Linux Changes Linux 1.59 Changes Linux 1.58 ... - GitHub]
Axxia Linux Changes Linux 1.59 Changes Linux 1.58 ... - GitHub

[image: Axxia Linux 3.10 Changes Linux 8.8.1.65 Changes Linux 8.8 ... - GitHub]
Axxia Linux 3.10 Changes Linux 8.8.1.65 Changes Linux 8.8 ... - GitHub

[image: Misconception About GNU/Linux - GitHub]
Misconception About GNU/Linux - GitHub

[image: LSI Axxia Linux Changes - GitHub]
LSI Axxia Linux Changes - GitHub

[image: Dual Booting With Virtual Box.pdf]
Dual Booting With Virtual Box.pdf

[image: Linux Bible 2010 Edition: Boot Up to Ubuntu, Fedora ... - GitHub]
Linux Bible 2010 Edition: Boot Up to Ubuntu, Fedora ... - GitHub

[image: Geoportal Server 1.2.2 Installation Guide For Linux - GitHub]
Geoportal Server 1.2.2 Installation Guide For Linux - GitHub

[image: QoS in Linux with TC and Filters - GitHub]
QoS in Linux with TC and Filters - GitHub

[image: Your Next Linux Notebook for Only $10 - How to Install ... - GitHub]
Your Next Linux Notebook for Only $10 - How to Install ... - GitHub

[image: Red Hat Enterprise Linux Atomic Host 7 Getting Started with ... - GitHub]
Red Hat Enterprise Linux Atomic Host 7 Getting Started with ... - GitHub

[image: GitHub]
GitHub

[image: GitHub]
GitHub

[image: Deploying IBM DB2 Express-C with PHP on Ubuntu Linux - GitHub]
Deploying IBM DB2 Express-C with PHP on Ubuntu Linux - GitHub

[image: Download Comptia Linux+ Powered By Linux ...]
Download Comptia Linux+ Powered By Linux ...

Booting Linux - GitHub

Feb 23, 2017 - off their new 10 MB hard disk in 1983. â€¢ They added a 4-partition table to ... ends before the partition data. â€¢ This is called Master Boot Record ...

 Download PDF

 1MB Sizes
 4 Downloads
 243 Views

 Report

Recommend Documents

[image: alt]

Linux Booting Process.pdf

Sign in. Loadingâ€¦ Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying.

[image: alt]

Linux Kernel Development - GitHub

Page 10 Android's â€œlife of a patchâ€� flowchart. Gerrit is only one tiny part in the middle. Replace that one part with email, and everything still works, and goes ...

[image: alt]

Linux Heap Internals.key - GitHub

BACKGROUND. Linux heap becomes hard to exploit due to the new version of. GLIBC. Hundreds of thousands of assertions there;. ASLR and Non-eXecutable heap. Heap issues are scarce in CTF games. spring up in recent games like HITCON CTF & Hack.LU CTF. 2

[image: alt]

Arch Linux - GitHub

Sep 10, 2015 - Installing software (PDF viewer) on Windows. 1 Open a web browser. 2 Do a web search for Adobe Reader. Jack Rosenthal. Arch Linux ...

[image: alt]

Axxia Linux Changes Linux 1.59 Changes Linux 1.58 ... - GitHub

Add a driver to 5600 and 6700 for OEM function calls to the secure monitor. This driver ... Remove the unused Ethernet interface in 5600 simulation device trees.

[image: alt]

Axxia Linux 3.10 Changes Linux 8.8.1.65 Changes Linux 8.8 ... - GitHub

Support for big endian on ARM (5500). â€¢ MSI support on both PCIe ... when writing to it. â€¢ GPIO Changes. â€“ Remove GPIO platform data, use the device tree. 5 ...

[image: alt]

Misconception About GNU/Linux - GitHub

You don't have to be a Computer geek to Use GNU/Linux. â—‹. Anyone Can Use ... Stable Linux Distributions need no Maintenance at all. â—‹. Since root access ...

[image: alt]

LSI Axxia Linux Changes - GitHub

PCIe inbound mapping support on 3500. 1 ... Added support for DEVTMPFS to the default configurations. â€¢ Removed power of 2 Define AMARILLO_WA in.

[image: alt]

Dual Booting With Virtual Box.pdf

Download. Connect more apps... Try one of the apps below to open or edit this item. Dual Booting With Virtual Box.pdf. Dual Booting With Virtual Box.pdf. Open.

[image: alt]

Linux Bible 2010 Edition: Boot Up to Ubuntu, Fedora ... - GitHub

Chapter 17: Displaying PDF and PostScript Documents how people are adapting Linux to run on handhelds, mini laptops, 32- and The Samsung.

[image: alt]

Geoportal Server 1.2.2 Installation Guide For Linux - GitHub

grants_linuxpg.sh [host] [port] [database] [geoportal schema] [postgresUser]. [geoportal ... [geoportal server] is the name of the geoportal web application server.

[image: alt]

QoS in Linux with TC and Filters - GitHub

packet queues with different priorities for dequeueing to the network driver. ... (i.e. deciding which queue a packet should go into) is typically done based on Type Of Service ... (1) # tc qdisc replace dev eth0 root handle 1: htb default 30.

[image: alt]

Your Next Linux Notebook for Only $10 - How to Install ... - GitHub

Apr 13, 2017 - Your Next Linux Notebook for Only $10 ... You can have another Linux notebook for less than the cost of dinner! ... Mac OS 8.6 or 9. Mac OS 9.

[image: alt]

Red Hat Enterprise Linux Atomic Host 7 Getting Started with ... - GitHub

Jun 17, 2016 - provides a hands-on approach to start using Docker in Red Hat Enterprise Linux 7 and RHEL. Atomic Host by ... Secure: Because a Docker container typically has its own network interfaces, file system, and memory, the ... properly regist

[image: alt]

GitHub

domain = meq.domain(10,20,0,10); cells = meq.cells(domain,num_freq=200, num_time=100); This is now contaminator-free. â€“ Observe the ghosts. Optional ...

[image: alt]

GitHub

data can only be â€œcorrectedâ€� for a single point on the sky. ... sufficient to predict it at the phase center (shifting ... errors (well this is actually good news, isn't it?)

[image: alt]

Deploying IBM DB2 Express-C with PHP on Ubuntu Linux - GitHub

Best practices: Deploying DB2 Express-C with PHP on Ubuntu. Page 2 of 18 the host name or IP address of your web server. If the server ... Page 10 of 18 d.

[image: alt]

Download Comptia Linux+ Powered By Linux ...

Download Comptia Linux+ Powered By Linux. Professional Institute Study Guide, Third Edition,. Exam Lx0-103 and Exam Lx0-104 (Comptia Linux. + Study ...

×
Report Booting Linux - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

