

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Bottle

Jack Rosenthal 2017-03-23 Mines Linux Users Group

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

HTTP Crash Course

• GET – Your typical “downloads from a web page” HTTP request • Has no support for sending data to the server other than the URL requested

• POST – Your typical “form submission” HTTP request • Sends multipart form data along with the request • Web browsers ask you to “resubmit” when refreshed

• PUT – Ask to put a ﬁle at a location • Not needed as the same data can be sent using POST • No support in older browsers • Simple to use when there’s no web browser involved

Decorators Decorators are a pretty way to wrap functions using functions that return functions. Both the following are equivalent: @logging def foo(bar, baz): return bar + baz - 42 # equivalent to... def foo(bar, baz): return bar + baz - 42 foo = logging(foo) Bottle makes heavy use of decorators to bind into routing.

Decorators Decorators are a pretty way to wrap functions using functions that return functions. Both the following are equivalent: @logging def foo(bar, baz): return bar + baz - 42 # equivalent to... def foo(bar, baz): return bar + baz - 42 foo = logging(foo) Bottle makes heavy use of decorators to bind into routing.

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def hello(name): return 'Hello {name}!
'.format(name) run(host='localhost', port=8080)

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def hello(name): return 'Hello {name}!
'.format(name) run(host='localhost', port=8080)

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def hello(name): return 'Hello {name}!
'.format(name) run(host='localhost', port=8080)

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def hello(name): return 'Hello {name}!
'.format(name) run(host='localhost', port=8080)

Where should I use Bottle?

What Bottle Is • Bottle is a micro-framework • Bottle is only a library • Bottle really small and fast What Bottle Is Not • Bottle is not a MVC framework • Bottle will not generate ﬁles for you • No magic included!

Where should I use Bottle?

What Bottle Is • Bottle is a micro-framework • Bottle is only a library • Bottle really small and fast What Bottle Is Not • Bottle is not a MVC framework • Bottle will not generate ﬁles for you • No magic included!

Where should I use Bottle?

What Bottle Is • Bottle is a micro-framework • Bottle is only a library • Bottle really small and fast What Bottle Is Not • Bottle is not a MVC framework • Bottle will not generate ﬁles for you • No magic included!

Where should I use Bottle?

What Bottle Is • Bottle is a micro-framework • Bottle is only a library • Bottle really small and fast What Bottle Is Not • Bottle is not a MVC framework • Bottle will not generate ﬁles for you • No magic included!

Where should I use Bottle?

What Bottle Is • Bottle is a micro-framework • Bottle is only a library • Bottle really small and fast What Bottle Is Not • Bottle is not a MVC framework • Bottle will not generate ﬁles for you • No magic included!

Where should I use Bottle?

What Bottle Is • Bottle is a micro-framework • Bottle is only a library • Bottle really small and fast What Bottle Is Not • Bottle is not a MVC framework • Bottle will not generate ﬁles for you • No magic included!

Routing Routing is how you let Bottle know which URLs map to which functions. Bottle uses decorators to specify this. @route('/hello/') def hello(name): return 'Hello {name}!
'.format(name) You can specify multiple routes per function, even using default arguments. @route('/') @route('/page/') def wiki_page(pagename='FrontPage'): # ... load page from database and return it

Routing Routing is how you let Bottle know which URLs map to which functions. Bottle uses decorators to specify this. @route('/hello/') def hello(name): return 'Hello {name}!
'.format(name) You can specify multiple routes per function, even using default arguments. @route('/') @route('/page/') def wiki_page(pagename='FrontPage'): # ... load page from database and return it

More Routing URLs match more speciﬁc routes before more generalized. @route('/page/') def wiki_page(pagename='FrontPage'): # ... load up a wiki page @route('//') def user_page(username, pagename): # ... load up a user's personal page So /page/WikiPage will use wiki_page, but /jrosenth/home will use user_page.

Routing Modiﬁers You can modify parameters to only match certain types. • • • •

:int – Only match integers :float – Only match real numbers :path – Match path to end of URL (including slashes) :re – Match a regular expression

@route('/user/') def user_by_id(uid): # ... load up a user by id @route('/user/') def user_by_name(username): # ... load up a user by name

Routing Modiﬁers You can modify parameters to only match certain types. • • • •

:int – Only match integers :float – Only match real numbers :path – Match path to end of URL (including slashes) :re – Match a regular expression

@route('/user/') def user_by_id(uid): # ... load up a user by id @route('/user/') def user_by_name(username): # ... load up a user by name

Routing Modiﬁers You can modify parameters to only match certain types. • • • •

:int – Only match integers :float – Only match real numbers :path – Match path to end of URL (including slashes) :re – Match a regular expression

@route('/user/') def user_by_id(uid): # ... load up a user by id @route('/user/') def user_by_name(username): # ... load up a user by name

Routing Modiﬁers You can modify parameters to only match certain types. • • • •

:int – Only match integers :float – Only match real numbers :path – Match path to end of URL (including slashes) :re – Match a regular expression

@route('/user/') def user_by_id(uid): # ... load up a user by id @route('/user/') def user_by_name(username): # ... load up a user by name

Routing Modiﬁers You can modify parameters to only match certain types. • • • •

:int – Only match integers :float – Only match real numbers :path – Match path to end of URL (including slashes) :re – Match a regular expression

@route('/user/') def user_by_id(uid): # ... load up a user by id @route('/user/') def user_by_name(username): # ... load up a user by name

Routing Methods

The route decorator accepts all HTTP methods by default, you can use any of the alternate decorators to accept speciﬁc methods. @get('/login') def login_page(): # ... display the login form @post('/login') def login_user(): # ... process the submitted form

Error Routes The error decorator matches certain HTTP errors. @error(403) def error403(error): return "You're not allowed in here." @error(404) def error404(error): return "It's not my fault." @error(500) def error500(error): return "I made a mistake."

Abort! Abort!

Need to cause an error? abort is your amigo. @route('/pages/') def load_page(pagename): if pagename not in pages: abort(404, "This page does not exist") # ...

Redirect

Perhaps you wanted to redirect them instead? @route('/pages/') def load_page(pagename): if pagename not in pages: redirect('/newpage') # ...

Serving up a static directory

from bottle import route, static_file @route('/static/') def serve_static(filename): return static_file(filename, root='./static')

Accessing POST data The request object gives you access to information about the request, including a dictionary contating form data called forms. @post('/login') def login_user(): username = request.forms.get('username') password = request.forms.get('password') if login_ok(username, password): return 'Congrats! You broke in!' else: return 'Better luck next time.'

Mmm! Cookies!

@route('/introduce/') def introduce(name): response.set_cookie('name', name) return 'Nice to meet you!' @route('/welcomeback') def welcomeback(): name = request.cookies.get('name', 'Stranger') return 'Welcome back, {}!'.format(name)

So what can you return?

• Returning a string will simply show the string for you • You can return a dictionary and it will dump JSON for you • Returning ﬁle objects (or anything with .read()) will show the ﬁle contents for you • You can even return an iterable or yield in your function and it will continually pull and show

So what can you return?

• Returning a string will simply show the string for you • You can return a dictionary and it will dump JSON for you • Returning ﬁle objects (or anything with .read()) will show the ﬁle contents for you • You can even return an iterable or yield in your function and it will continually pull and show

So what can you return?

• Returning a string will simply show the string for you • You can return a dictionary and it will dump JSON for you • Returning ﬁle objects (or anything with .read()) will show the ﬁle contents for you • You can even return an iterable or yield in your function and it will continually pull and show

So what can you return?

• Returning a string will simply show the string for you • You can return a dictionary and it will dump JSON for you • Returning ﬁle objects (or anything with .read()) will show the ﬁle contents for you • You can even return an iterable or yield in your function and it will continually pull and show

Templates

Bottle includes a templating engine called SimpleTemplate. You can use it like this: @route('/hello') @route('/hello/') @view('hello_template') def hello(name='World'): return dict(name=name)

Templates @route('/hello') @route('/hello/') @view('hello_template') def hello(name='World'): return dict(name=name)

views/hello_template.tpl %if name == 'World': Hello {{name}}!
 This is a test.
 %else: Hello {{name.title()}}!
 How are you?
 %end

Applications and Sub-applications @route('/') def home(): # ... # make another bottle app blog = Bottle() @blog.route('/') def blog_home(): # ... # /blog accesses all in the blog app # you can use any WSGI-compatible app here default_app().mount('/blog', blog)

Deploying your application

Bottle has many ways to deploy, here’s the two most common: 1. Using WSGI, simply create an app.wsgi ﬁle that imports your bottle app as application 2. Using CGI (compatible with nearly any web server), just put run(server='cgi') in your CGI script

Questions?

Copyright Notice

This presentation was from the Mines Linux Users Group. A mostly-complete archive of our presentations can be found online at https://lug.mines.edu. Individual authors may have certain copyright or licensing restrictions on their presentations. Please be certain to contact the original author to obtain permission to reuse or distribute these slides.

[image: bottle & can drive bottle & can drive bottle & can drive -]
bottle & can drive bottle & can drive bottle & can drive -

[image: Bottle Rocket Packet.pdf]
Bottle Rocket Packet.pdf

[image: Beer Bottle Pdf.pdf]
Beer Bottle Pdf.pdf

[image: Bottle Water and MFDs.pdf]
Bottle Water and MFDs.pdf

[image: Hello Kitty Water Bottle Lables.pdf]
Hello Kitty Water Bottle Lables.pdf

[image: Wine Bottle Tag - Template - CreateMePink.pdf]
Wine Bottle Tag - Template - CreateMePink.pdf

[image: Bee day water bottle labels.pdf]
Bee day water bottle labels.pdf

[image: BTS Water Bottle Labels.pdf]
BTS Water Bottle Labels.pdf

[image: I Spy Bottle labels.pdf]
I Spy Bottle labels.pdf

[image: Hey Hey Hey Pop Another Bottle]
Hey Hey Hey Pop Another Bottle

[image: pdf-14107\message-in-a-bottle-police.pdf]
pdf-14107\message-in-a-bottle-police.pdf

[image: GitHub]
GitHub

Bottle - GitHub

Mar 23, 2017 - Web browsers ask you to â€œresubmitâ€� when refreshed. â€¢ PUT â€“ Ask to run(host='localhost', port=8080) /blog accesses all in the blog app.

 Download PDF

 163KB Sizes
 2 Downloads
 236 Views

 Report

Recommend Documents

[image: alt]

bottle & can drive bottle & can drive bottle & can drive -

Jul 9, 2016 - PLEASE LEAVE CLEAN BOTTLES, CANS, AND WATER BOTTLES IN A BAG AT THE END. OF YOUR DRIVEWAY ON SATURDAY, JULY 9TH ...

[image: alt]

Bottle Rocket Packet.pdf

WITH VINEGAR & BAKING SODA ROCKETS. DATA COLLECTION. PHASE 1. SEND INQUIRY SKILLS SOARING. WITH VINEGAR & BAKING SODA ROCKETS.

[image: alt]

Beer Bottle Pdf.pdf

Sign in. Page. 1. /. 4. Loadingâ€¦ Page 1 of 4. Page 1 of 4. Page 2 of 4. Page 2 of 4. Page 3 of 4. Page 3 of 4. Beer Bottle Pdf.pdf. Beer Bottle Pdf.pdf. Open.

[image: alt]

Bottle Water and MFDs.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Bottle Water and ...

[image: alt]

Hello Kitty Water Bottle Lables.pdf

Page 1 of 1. Page 1 of 1. Hello Kitty Water Bottle Lables.pdf. Hello Kitty Water Bottle Lables.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Hello Kitty Water Bottle Lables.pdf. Page 1 of 1.

[image: alt]

Wine Bottle Tag - Template - CreateMePink.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Wine Bottle Tag ...

[image: alt]

Bee day water bottle labels.pdf

Page 1 of 1. Page 1 of 1. Bee day water bottle labels.pdf. Bee day water bottle labels.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Bee day water bottle labels.pdf. Page 1 of 1.

[image: alt]

BTS Water Bottle Labels.pdf

You're. the apple of. my eye! Be Awesome Today! Back to School Water Bottle Labels. www.CarrieEl le.com. Page 1 of 1. BTS Water Bottle Labels.pdf.

[image: alt]

I Spy Bottle labels.pdf

Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. I Spy Bottle labels.pdf. I Spy Bottle labels.pdf. Open. Extract.

[image: alt]

Hey Hey Hey Pop Another Bottle

Harpers island s01e08.Donmiguelruizfouragreements.HeyHeyHey Pop Another Bottle. ... Jazzmusic pdf.Arwen gold francesca.Doubleviewcasting Ã¢â‚¬â€œmaria.

[image: alt]

pdf-14107\message-in-a-bottle-police.pdf

pdf-14107\message-in-a-bottle-police.pdf. pdf-14107\message-in-a-bottle-police.pdf. Open. Extract. Open with. Sign In. Main menu.

[image: alt]

GitHub

domain = meq.domain(10,20,0,10); cells = meq.cells(domain,num_freq=200, num_time=100); This is now contaminator-free. â€“ Observe the ghosts. Optional ...

×
Report Bottle - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

