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BOUNDS ON ORDERED CODES AND ORTHOGONAL ARRAYS ALEXANDER BARG AND PUNARBASU PURKAYASTHA



Abstract. We derive new estimates of the size of codes and orthogonal arrays in the ordered Hamming space (the Niederreiter–Rosenbloom– Tsfasman space). We also show that the eigenvalues of the ordered Hamming scheme, the association scheme that describes the combinatorics of the space, are given by the multivariate Krawtchouk polynomials, and establish some of their properties. 2000 Math. Subj. Class. Primary: 05E30; Secondary: 94B65. Key words and phrases. Ordered Hamming space, association schemes, multivariate Krawtchouk polynomials, Delsarte method, asymptotic bounds.



1. Introduction 1-A. The Niederreiter–Rosenbloom–Tsfasman metric space. Let Q be a finite alphabet of size q viewed as an additive group mod q. Consider the set Qr,n of vectors of dimension rn over Q. A vector x will be written as a concatenation of n blocks of length r each, x = {x11 , . . . , x1r ; . . . ; xn1 , . . . , xnr }. For a given vector x let ei , i = 1, . . . , r be the number of r-blocks of x whose rightmost nonzero entry is in the ith position counting from the beginning of the block. The r-vector e = (e1 , . . . , er ) will be called the shape of x. For two vectors x, y ∈ Qr,n let us write x ∼e y if shape(x−y) = e. A shape vector e = (e1 , . . . , er ) definesP a partition of a number N 6 n into a sum of r parts. Let ∆r,n = {e ∈ (Z+ ∪ {0})r : i ei 6 n} be the set of all such partitions. For brevity we write X X |e| = ei , |e|0 = iei , e0 = n − |e|. i



i



Let x ∈ Q be a vector of shape e. Define a weight function (norm) on Qr,n by setting w(x) = |e|0 and let dr (x, y) = w(x − y) denote the metric induced by this norm. We call the function dr the ordered weight. The ordered weight was first introduced by Niederreiter [29] in his study of low-discrepancy point sets. Later, Rosenbloom and Tsfasman [34] independently defined the weight w(x) (more precisely, the weight w ¯ defined below), calling it the m-metric, and studied codes in Qr,n with respect to it. The set Qr,n together with this metric will be called → − → − the ordered Hamming space (the NRT space) and denoted by H = H(q, n, r). r,n
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Unless specified otherwise, below by distance (weight) we mean the ordered distance (weight) for some fixed value of r. Note that the case r = 1 corresponds to the usual Hamming distance on Qn . An (nr, M, d) ordered code C ⊂ Qr,n is an arbitrary subset of M vectors in Qr,n such that the ordered distance between any two distinct vectors in C is d or more. If Q is a finite field and C is a linear code of dimension k, we refer to it as an [nr, k, d] code. To define ordered orthogonal arrays, let us call a subset of coordinates I ⊂ {1, . . . , rn} left-adjusted if with any coordinate ir + j, 0 6 i 6 n − 1, 1 6 j 6 r in the ith block it also contains all the coordinates (ir + 1, . . . , ir + j − 1) of the same block. A subset A ⊂ Qr,n , |A| = M is called a (t, n, r, q) ordered orthogonal array (OOA) of strength t if its projection on any left-adjusted set of t coordinates contains all the q t rows an equal number, say θ, of times. The parameter θ is called the index of A. It follows that M = θq t . If C is a linear [nr, k, d] code then the code orthogonal to it with respect to the dot product is a (d − 1, n, r, q) linear OOA of index θ = q nr−k−d+1 . If Q is equipped with the structure of an additive group, then one can construct additive OOAs. If Q is a finite field, it is possible to construct linear OOAs. OOAs (also called hypercubic designs) were introduced in Lawrence [20] and Mullen and Schmid [28] as a combinatorial equivalent of point sets suitable for numerical integration over the cube. Informally this link can be described as follows. Let Cn = [0, 1]n be a unit cube, let f be a continuous function of bounded variation and let N be a set of M = q m points Rin Cn , called aPnet. It is known that the error of quasi-Monte Carlo integration | Cn f dx−q −m x∈N f (x)| can be bounded above by V (f )D(N ) where V (f ) is the total variation of f on Cn and D(N ) is the discrepancy factor of the net. The parameter D(N ) measures the deviation of the net from a uniformly distributed set of points. The study of uniformly distributed point sets was initiated by H. Weyl and E. Hlawka. Sobol [36] developed the notions described above and gave the first constructions of nets with bounded factor D. The study of nearly uniform point sets was taken up in Niederreiter [29] which put forward the notion of (t, m, s)-nets and derived a bound on D(N ) via its parameters. We refer to [23], [31], [30] for detailed background and more references for (t, m, s)-nets and in particular, to the literature on their constructions. The following theorem relates OOAs and (t, m, s)-nets. Below we use its statement as a definition of a (t, m, s)-net. Theorem 1.1 (Lawrence [20], Mullen and Schmid [28]). There exists a (t, m, s)net if and only if there exists an (m − t, s, m − t, q) OOA of index q t and size M = qm . Independently of this line of work, Rosenbloom and Tsfasman [34] considered codes in the ordered Hamming space and derived bounds on their size. It became clear shortly after their work that OOAs and ordered codes are dual types of objects in the sense of Delsarte’s algebraic theory of coding. This link opened up an avenue for applications of coding-theoretic methods to the study of (t, m, s)-nets and motivated the study of ordered codes and OOAs independently of these applications. In particular, Martin [24], [25], [22], [26] has constructed an association scheme that
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→ − describes the combinatorics of the space H, formulated the linear programming bound (LP bound), outlined a construction of orthogonal polynomials that describe the eigenvalues of the scheme and derived Plotkin and Rao bounds on OOAs via linear programming. Much attention was also devoted to relations between the weight enumerators of linear codes and their duals in the ordered Hamming space and its generalizations. In particular, a MacWilliams theorem for the NRT space was derived by Martin [24], see also Skriganov [35], Dougherty and Skriganov [14]. Bierbrauer [8], [9], [10] studied coding constructions of (t, m, s)-nets and bounds for them including the LP bound. Apart from the combinatorial context, ordered codes arise in a number of applied problems such as recent algebraic list decoding algorithms of Reed-Solomon codes [32], a study of linear complexity of sequences [27], and in a problem in communication theory [16]. In this paper, we derive several new bounds on OOAs and ordered codes. We begin with a Bassalygo–Elias bound on codes which improves the known upper bounds on their size. However, the bulk of our results are devoted to code bounds using the approach via association schemes and linear programming. We begin with a study of the eigenvalues of the ordered Hamming scheme, an association scheme → − that describes the combinatorics of the space H. The approach that we follow relies on the orthogonality relation of the eigenvalues. This enables us to identify the eigenvalues as multivariate generalizations of the well-known Krawtchouk polynomials, i.e., a family of real polynomials of r discrete variables orthogonal on ∆r,n with respect to the weight given by the multinomial probability distribution. This is the subject of Section 3. Turning to bounds, in Sect. 5 we derive a new universal estimate of the size of ordered codes and OOAs with a given distance (strength). The asymptotic version of this estimate improves the other results in a certain range of rates. The final section is devoted to the case r = 2 for which the bounds can be further improved relying on a direct approach. → − ← − 1-B. Notation. Together with the space H we will consider the space H(q, n, r) which differs from it in that the vectors are read “from right to left.” Namely, for x ∈ Qr,n let shape(x) = (e1 , . . . , er ), where ej is the number of blocks (xi1 , . . . , xir ) such that xi1 = · · · = xi,r−j = 0 and xi,r−j+1 6= 0. Let w(x) ¯ = |e|0 , ¯ where e = shape(x), and let dr (x, y) = w(x ¯ − y). These metric spaces are identical to each other; the reason for considering them → − both is that if we equip H with the structure of an association scheme then its dual ← − scheme in Delsarte’s sense gives rise to the space H. In particular, if Q is a finite → − ← − field and C is a linear code in H then its dual code C ⊥ lives in H. We elaborate on this below. An easy combinatorial calculation shows that the number of vectors of shape e → − in H is given by   0 n ve = (q − 1)|e| q |e| −|e| (1) e0 , e1 , . . . , er and the number of vectors of weight d equals to X Sd = ve . e : |e|0 =d



(2)
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Let A(z) = (q − 1)z(z r − 1)/(q(z − 1)) and let z0 = z0 (x) satisfy the equation r q−1X i xr(1 + A(z)) = iz . (3) q i=1 Define the function 1 logq (1 + A(z0 )). r In the case r = 1 we write hq (x) instead of Hq,1 (x), where x hq (x) = −x logq − (1 − x) logq (1 − x). q−1 Let r 1 qr − 1 1 X −i q =1− r . δcrit = 1 − r i=1 rq q − 1 → − The asymptotic volume of the sphere in H is given in the next lemma. Hq,r (x) = x(1 − logq z0 ) +



(4)



Lemma 1.2 [34]. (a) For 0 < x < 1, equation (3) has a unique positive root z0 (x), z0 ∈ [0, r]. (b) Let r > 1 be fixed, n → ∞, d/n → rδ, then ( d X Hq,r (δ), 0 6 δ 6 δcrit , Si = (5) lim (nr)−1 logq n→∞ 1, δcrit < δ 6 1. i=0 2. Bounds on Ordered Codes and Arrays In general, given the value of the distance or the strength, our goal is to construct as large codes and as small OOAs as possible. The latter will also account for smallsize (t, m, s)-nets with bounded discrepancy. In this section we recall the known bounds on ordered codes and OOAs and derive a new bound on the size of codes. 2-A. Existence bounds. A Gilbert-type bound on ordered codes was derived in [34]. → − Theorem 2.1. There exists an (nr, M, d) code in the space H whose parameters satisfy d−1 X M Si > q nr . i=0



If Q is a finite field, then there exists a linear code with the same parameters. A bound that applies specifically to linear codes was proved in [8]. It is analogous to the Varshamov bound for the Hamming space. Theorem 2.2. Suppose that m and t satisfy the conditions t−τ X i=0



Si,n−1 < q m−(τ −1) ,



τ = 1, . . . , t − 1.



→ − Then there exists an [nr, nr − m] linear code in H of distance > t + 1, and a (t, n, r, q) linear OOA of dimension m.
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2-B. Nonexistence bounds. While in general bounds on codes do not imply lower bounds on OOAs, there are two special cases when these two types of results 0 are equivalent. First, if C is an [nr, k, d] linear code over Fnr q then the code C := Pnr nr {y ∈ Fq : i=1 xi yi = 0 for all x ∈ C} is a (d − 1, n, r, q) linear OOA. Next, if an upper (lower) bound on codes (OOAs) is obtained by linear programming as explained in the next section then the same solution of the LP problem gives a lower (upper) bound on OOAs (codes). We next mention some upper bounds on codes and OOAs. 2-B.1. Singleton bound. The parameters of any (nr, M, d) code satisfy M 6 q nr−d+1 . 2-B.2. Plotkin bound. A Plotkin bound on codes was established in [34]. Namely, the following result holds true. → − Theorem 2.3. Let C ⊂ H be a code of size M and distance d > nrδcrit . Then d . M6 d − nrδcrit A dual Plotkin bound on OOAs was proved by Martin and Visentin [26]. Theorem 2.4 [26]. Let C be a [t, n, r, q] OOA. If t > nrδcrit − 1 then  nrδcrit  |C| > q nr 1 − . t+1 2-B.3. Hamming–Rao bound. According to the Hamming bound, the parameters of any (nr, M, d = 2τ + 1) code satisfy q rn . M 6 Pτ i=0 Si A dual bound in this case is the Rao bound which for the NRT space was established by Martin and Stinson [25]: The size M of any (t = 2τ, n, r, q) OOA satisfies τ X M> Si . i=0



2-B.4. A Bassalygo–Elias bound on codes. The next result is new. Theorem 2.5. Let C be an (nr, M, d) code. Then M 6 q rn dn for any w 6 nrδcrit (1 −



1 Sw (dn − 2wn +



w2 rδcrit )



p 1 − d/(nrδcrit )).



Proof. We will rely upon the next lemma. → − Lemma 2.6. Let C ⊂ H, |C| = M be a code all of whose vectors have weight w and are at least distance d apart. Then for d > 2w − w2 /(nrδcrit ), dn M6 2 . dn − 2wn + rδwcrit



216



A. BARG AND P. PURKAYASTHA



Proof. Let C i be a projection of C on the ith block of coordinates. For a vector z ∈ Qr let z h = (zr−h+1 , . . . , zr ) be its suffix of length h. Given x ∈ C, we denote by xi ∈ C i its ith block and write xi,h to refer to the h-suffix of xi . For i = 1, . . . , n; h = 1, . . . , r; c ∈ Qh let λhi,c = {xi ∈ C i : xi,h = c} . be the number of vectors in the ith block whose h-suffix equals c. We have dr (xi , y i ) = r − =r−



r X



δ(xi,h , y i,h )



h=1 r X



X



h=1



c∈Qh



δ(xi,h , c)δ(y i,h , c).



Compute the sum of all distances in the code as follows: X



dr (x, y) = nrM 2 −



x,y∈C



= nrM 2 −



n X



X



r X X



δ(xi,h , c)δ(y i,h , c)



i=1 xi ,y i ∈C i h=1 c∈Qh r X n X X (λhi,c )2 . i=1 h=1 c∈Qh



(6)



To bound above the right-hand side, we need to find the minimum of the quadratic form r n X n X r X X X (λhi,0 )2 (λhi,c )2 + F = i=1 h=1



i=1 h=1 c∈Qh \{0}



under the constraints n X r X



λhi,0 = M (nr − w),



i=1 h=1



X



λhi,c = M



(1 6 h 6 r, 1 6 i 6 n).



(7)



c∈Qh



Critical points of F in the intersection of these hyperplanes, together with (7), satisfy the equations 2λhi,c + βi,h = 0,



1 6 i 6 n; 1 6 h 6 r; c ∈ Qh \{0}



2λhi,0



1 6 i 6 n; 1 6 h 6 r



+ α + βi,h = 0,



α, βi,h ∈ R.



(8)



The system (7)–(8) has a unique solution for the variables λhi,c , βi,h , α; in particular,  w i h 1 − 1 + 1 , h = 1, . . . , r, i = 1, . . . , n, qh nrδcrit Mw = h , h = 1, . . . , r, i = 1, . . . , n, c ∈ Qh \{0}. q nrδcrit



λhi,0 = M λhi,c



To verify that this critical point is in fact a minimum, observe that the form F is convex because its Hessian matrix is 2I and is positive definite (both globally and
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restricted to the intersection of the hyperplanes P (7) ). Substituting these values of the λs and taking account of the fact that h q −h = r(1 − δcrit ), we get F >



n X r X X i=1 h=1 c6=0



 w i2 M w 2 X X 2 h 1 − 1 + M + 1 q h nrδcrit qh nrδcrit i h



= M 2n







 2w w2 − + r . n2 rδcrit n



Then from (6) we obtain X



dM (M − 1) 6



dr (x, y) 6



x,y∈C



w2  M2  2wn − n rδcrit



which gives the result.







The proof of the theorem is completed as follows. Let Sw ⊂ Qr,n be a sphere of radius w around zero. Clearly, X |C||Sw | = |(C − x) ∩ Sw | 6 q nr Aq (nr, d, w), → − x∈H



where Aq (nr, d, w) is the maximum size of a distance-d code in Sw . With the previous lemma, this finishes the proof.  Remarks. 1. This theorem implies a lower p bound on the size M of a linear OOA (t − 1, n, r, q): for any w 6 nrδcrit (1 − 1 − t/(nrδcrit )), M>



 1 w2  Sw tn − 2wn + tn rδcrit



(9)



and in particular, a lower bound on linear (m − r, m, n)-nets, m = logq M . 2. Caution should be exercised in dealing with codes of a constant weight in → − the NRT space, i.e., codes on the sphere Sw in H. Indeed, the sphere Sw together with the metric dr is not homogeneous: in particular, the number of points in Sw located at a given distance from a point x ∈ Sw depends on x. However, this does not cause problems in the previous theorem. 3. The argument used in the proof of Lemma 2.6 can be also used to give a proof of the Plotkin bound, Theorem 2.3, that is simpler than the ones known in → − the literature. Indeed, let C ⊂ H be a distance-d code. Consider again expression (6) and note that this time there is no restriction on the Pweight of the codewords. Using the Cauchy–Schwarz inequality and the fact that c∈Fh λhi,c = M , we obtain q



M (M − 1)d 6 nrM 2 −



n X r X i=1 h=1



Solving for M concludes the proof.



M2 = nrM 2 δcrit . qh
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2-B.5. Asymptotics. In this section we assume that n → ∞ and r is a constant. For a code of size M let R = logq M/nr be the code rate. Given a sequence of (rni , Mi , di ) codes we will say that its asymptotic rate is R and the asymptotic relative distance is δ if 1 di lim logq Mi = R, lim = δ. i→∞ rni i→∞ rni The Plotkin bound implies that the asymptotic rate and distance of any sequence of codes satisfy δ , 0 6 δ 6 δcrit , R61− δcrit R = 0, δ > δcrit . To state the “sphere packing” or “volume” bounds on ordered codes we rely upon Lemma 1.2. Namely [34], there exists a sequence of [rni , ki , di ] linear codes Ci , i = 1, 2, . . . , such that ni → ∞, ki /(rni ) → R, di /(rni ) → δ and R > 1 − Hq,r (δ),



0 6 δ 6 δcrit



(Gilbert–Varshamov bound).



On the other hand, for any such sequence of codes, R + Hq,r (δ/2) 6 1



(Hamming bound).



The asymptotic version of Theorem 2.5 is as follows: Theorem 2.7 (Asymptotic Bassalygo–Elias bound). For 0 6 δ 6 δcrit the asymptotic rate and distance of any sequence of codes satisfy p  R 6 1 − Hq,r δcrit (1 − 1 − δ/δcrit ) . (10) This bound is better than the Hamming bound for all δ ∈ (0, δcrit ]. It is also often better than the Plotkin bound. For instance, for q = 2, r = 2 the bound (10) is better than the Plotkin bound for all δ ∈ (0, δcrit ). For larger q, r the improvement is attained only for low values of δ since the right-hand side of (10) becomes ∩-convex close to δcrit . For instance, for q = 3, r = 4 this range is (0, 0.54), etc. 2-B.6. Asymptotic bounds for digital (t, m, s)-nets. A (t, m, s)-net is called digital if the OOA that corresponds to it forms a linear subspace of Fnr q . Therefore, bounds on linear OOAs apply to the special case of digital (t, m, s)-nets. However, studying asymptotics for this case requires a different normalization since the strength m − t of the OOA that corresponds to the net equals r, and both approach infinity independently of s. Therefore, let R = m/s denote the rate and δ = (m − t)/s denote the relative strength of the OOA that corresponds to the net. To state the bounds, we need to compute the asymptotic behavior of the volume of the sphere, which is different from (5). The next result is due to Bierbrauer and Schmid [9]. Theorem 2.8. There exist families of digital (t, m, s)-nets with s, (m − t) → ∞ for which (R, δ) satisfy the bound R 6 Ψ(δ), where q − 1 + α − δ logq (1 − α), Ψ(δ) = δ − 1 + logq α and α is defined by δα(q − 1 + α) = (q − 1)(1 − α).
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On the other hand, by the Rao bound, any family of (t, m, s)-nets satisfies R > Ψ(δ/2). Observe that Theorem 2.5 in this case gives the same result as the Rao bound because the increase of the packing radius in (9) over δ/2 vanishes asymptotically. Indeed, taking ω = w/n and replacing t with m − t, we obtain from (9) 1 M > (δ − 2ω + o(1))Sωn . δ The tightest bound is obtained if we take ω = δ/2 in this inequality. Remark. We note that in the case that both n → ∞ and r → ∞ while δ = d/nr tends to a constant bounded away from 0 and 1, the lower and upper bounds on codes coincide [34] (the Gilbert–Varshamov bound converges to the Singleton bound). 3. Association Schemes, and the Ordered Hamming Scheme The coding-theoretic notion of duality prompted a study of the association scheme that describes the combinatorics of the NRT space. We briefly recall some elements of Delsarte’s theory of association schemes [13]. A symmetric association scheme with D classes is a finite set X, |X| = N , equipped with a set R = {R0 , R1 , . . . , RD } of symmetric binary relations on X × X such that SD (i) R0 = {(x, x)}, Ri ∩ Rj = ∅, i=0 Ri = X × X; (ii) For each 0 6 i, j, k 6 D the number pki,j = {(x, y) ∈ Ri , (x, z) ∈ Rj given that (y, z) ∈ Rk } depends only on (i, j, k). Moreover, pki,j = pkj,i . The parameters pki,j are called the intersection numbers of the scheme A = (X, R). The numbers vi = p0i,i are called the valencies of A. Let Ai be the adjacency matrix of the relation Ri , i = 0, . . . , D. It is clear that A0 = I,



D X



Ai = J



(all-one matrix),



i=0



and for all 0 6 i, j 6 D the product Ai Aj is contained in the linear span of {A0 , A1 , . . . , AD }. The matrices Ai form a commutative algebra over C with respect to matrix multiplication, called the Bose–Mesner algebra. It is clear that the Bose–Mesner algebra is also closed under the Hadamard (elementwise) multiplication ◦, viz. Ai ◦ Aj = δi,j Aj . With respect to ◦, this algebra has a basis of primitive idempotents {E0 , E1 , . . . , ED } that satisfy E0 =



1 J, N



Ei ◦ Ej =



D 1 X k qi,j Ek , N



0 6 i, j 6 D.



k=0



k The numbers qi,j are nonnegative. They are called the Krein parameters of the 0 association scheme. The quantities µi = qi,i are called multiplicities of the scheme
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A. The matrices P and Q defined by Ai =



D X



Pji Ej ,



0 6 i 6 D,



j=0



and Ej =



D 1 X Qij Ai , N i=0



0 6 j 6 D,



are called the first and second eigenvalues of A, respectively. The eigenvalue matrices satisfy P Q = N I. Further, for 0 6 i, j 6 D the eigenvalues satisfy D X



µi Pij = vj Qji ,



(11)



µk Pki Pkj = N vi δij ,



(12)



k=0



Pij Pik =



D X



plj,k Pil ,



0 6 i 6 D.



(13)



l=0



Two D-class association schemes are called Delsarte duals of each other if the adjacency matrices Ai , the first eigenvalues P , and the intersection numbers pki,j of one scheme are, respectively, the idempotents Ei , the second eigenvalues Q and k the Krein numbers qi,j of the other. The duality also exchanges the role of the matrix and Hadamard multiplication. A scheme is called self-dual if it equals its dual. For instance, the Hamming scheme Hn = (X = Qn , Ri = {(x, y) ∈ X, dH (x, y) = i}, i = 0, . . . , n) is self-dual. One of the manifestations of self-duality in this case, obvious from the definition, is the MacWilliams theorem that relates the weight distribution of an additive code to that of its dual. A scheme is called formally self-dual [11] if there exists some ordering of primitive idempotents under k which P = Q. In a formally self-dual scheme vi = µi and pki,j = qi,j . Following n Delsarte [13, p. 17] a scheme (X , R) is called an extension of an r-class scheme K = (X, D = (D0 , D1 , . . . , Dr )) if its vertex set is the n-fold Cartesian product of X and the relations Re , e ∈ ∆r,n are given by  Re = ((x11 , . . . , x1n ), (x21 , . . . , x2n )) : {j : (x1j , x2j ) ∈ Di } = ei , i = 0, 1, . . . , r . Apart from [13] we refer to [5], [11], [18] for the proofs of these results and more information on association schemes. The association scheme for the NRT space was constructed and studied by Martin and Stinson [24]. Define an r-class “kernel scheme” K(Qr,1 , D = (D0 , D1 , . . . , Dr )) with the relations  Di = (x1 , x2 ) ∈ Qr,1 × Qr,1 : dr (x1 , x2 ) = i , i = 0, 1, . . . , r. Theorem 3.1 [24]. The space X = Qr,n together with the relations Re = {(x, y) ∈ X × X : x ∼e y}



(e ∈ ∆r,n )
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→ − forms a formally self-dual association scheme H, called the r-Hamming scheme. It can be constructed as an n-fold Delsarte extension of K. → − ← − The dual scheme of H is H whose point set is X = Qr,n and the set of relations is given by Re = {(x, y) ∈ X × X : shape(x − y) = e}



(e ∈ ∆r,n ).



4. Multivariate Krawtchouk Polynomials In the conventional case of r = 1, eigenvalues of the Hamming scheme are given by the Krawtchouk polynomials ki (n, x) =



   i X x n−x (−1)l (q − 1)k−l ` k−`



(14)



l=0



which form a family of polynomials of one discrete variable orthogonal on the set {0, 1, . . . , n} with weight α(i) = ni (q − 1)i q −n , i.e., the binomial probability distribution. Here we are interested in their generalization for the r-Hamming scheme. Observe that the valencies ve = p0e,e of the scheme are given by (1). By selfduality and (12), the eigenvalues are orthogonal on the space of partitions ∆r,n with weight ve . Below it will be convenient to normalize the weight. Let V = Vr,n be the space of real polynomials of r discrete variables x = (x1 , x2 , . . . , xr ) defined on ∆r,n . Let us define a bilinear form acting on the space V by X hu1 , u2 i = u1 (e)u2 (e)w(e), (15) e∈∆r,n



where w(e) = q −nr ve . Letting pi = q i−r−1 (q − 1), i = 1, . . . , r; p0 = q −r , we observe that r Y pei i w(e) = n! e! i=0 i forms a multinomial probability distribution on ∆r,n . Therefore, r-variate polynomials orthogonal with respect to this weight form a particular case of multivariate Krawtchouk polynomials. For a partition f ∈ ∆r,n denote by Kf (x) = Kf1 ,...,fr (x1 , . . . , xr ) the Krawtchouk polynomial that corresponds to it. Let κ = |f | be the degree of Kf . Our goal in this section is to derive properties of the polynomials Kf . In their large part, these properties are obtained by specializing to the current case general relations of the previous section. However, some work is needed to transform them to a concrete form which will be used in later calculations. The following relations are useful below.
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Lemma 4.1. hxi , 1i = n(q − 1)q i−r−1 , hxi , xj i = n(n − 1)(q − 1) q



2 i+j−2r−2



hxi , xi i = n(q − 1)q



i−r−1



,



(1 + (n − 1)(q − 1)q



i−r−1



),



i = 1, . . . , r



(16)



1 6 i 6= j 6 r



(17)



i = 1, . . . , r.



(18)



Proof. To prove (16), compute Y  r X  n hxi , 1i = q −nr ei ((q − 1)q j−1 )ej e0 , e1 , . . . , er j=1 e Y r X n−1 −nr = nq ((q − 1)q j−1 )ej . e , e , . . . , e − 1, . . . , e 0 1 i r e j=1 The sum on e on the last line equals (q − 1)q i−1+(n−1)r which finishes the proof. The remaining two identities are proved in a similar way.  4-A. Properties of the polynomials Ke (i) Ke (x) is a polynomial in the variables x1 , . . . , xr of degree κ = |e|. There are κ+r−1 different polynomials of the same degree, each corresponding to a partition r−1 of κ. (ii) (Orthogonality) Equation (12) is rewritten as √ hKf , Kg i = vf δf,g , kKf k = vf . (19) In particular, let Fi = (0i−1 10r−i−1 ), i = 1, . . . , r be a partition with one part. We have kKFi k2 = hKFi , KFi i = n(q − 1)q i−1 , i = 1, . . . , r. (20) Indeed, equality (19) is simply (12) specialized to the case at hand and (20) is obtained from (1). (iii) (Linear polynomials) For i = 1, . . . , r, KFi (x) = q i−1 (q − 1)(n − xr − · · · − xr−i+2 ) − q i xr−i+1 .



(21)



Proof. This is shown by orthogonalizing the set of linear polynomials (1, x1 , x2 , . . . , xr ). We take K0,...,0 = 1. Use Lemma 4.1 to compute KF1 (x) = c1 (xr − hxr , 1i) = c1 (xr − n(q − 1)/q) for some constant c1 . To find c1 , use (20): 



2



n(q − 1) 2



= c21 n(q − 1)q −2 . n(q − 1) = c1 xr −



q Hence c1 = ±q. We take KF1 (x) = n(q − 1) − qxr choosing c1 = −q so that KF1 (0) > 0. Next let us perform the induction step to compute KFi+1 (x):   i X KFi+1 (x) = ci+1 xr−i − kKFj k−2 hxr−i , KFj iKFj (x) , (22) j=0



ORDERED CODES AND ARRAYS



223



where the polynomials KFj , j = 0, . . . , i, have the form (21) by the induction hypothesis. Straightforward calculations using (16)–(18) show that KFi+1 (x) = ci+1 (xr−i − ((q − 1)/q)(n − xr − · · · − xr−i+1 )). Again using (20), we find that ci+1 = ±q i+1 ; as above, we will choose the minus.







(iv) The next property is a special case of (11). (e, f ∈ ∆r,n ).



ve Kf (e) = vf Ke (f ) In particular,



Kf (0) = vf .



(23)



(v) For any f, g ∈ ∆r,n Kf (e)Kg (e) =



X



phf,g Kh (e)



(24)



h∈∆r,n



where the linearization coefficients phf,g = |{z ∈ Qr,n : z ∼f x, z ∼g y; x ∼h y}| are the intersection numbers of the scheme. In particular, phf,g > 0. This is a special case of property (13). (vi) (Three-term relation) Let Kκ be a column vector of the polynomials Kf ordered lexicographically with respect to all f that satisfy |f | = κ. The three-term relation is obtained by expanding a product P (e)Kκ (e) in the basis {Kf }, where P (e) is a first-degree polynomial. By orthogonality, the only nonzero terms in this expansion will be polynomials of degrees κ + 1, κ, κ − 1 [15, p. 75]. We will establish an explicit form of the three-term relation for P (e) = δcrit rn − |e|0 . We have P (e)Kκ (e) = aκ Kκ+1 (e) + bκ Kκ (e) + cκ Kκ−1 (e), (25)   where aκ , bκ , cκ are matrices of order κ+r−1 × κ+s+r−1 and s = 1, 0, −1, rer−1 r−1 spectively. The nonzero elements of these matrices have the following form: aκ [f, h] = Li (fi + 1)



if h = (f1 , . . . , fi + 1, . . . , fr ),



cκ [f, h] = Li (n − κ + 1)q (q − 1) if h = (f1 , . . . , fi − 1, . . . , fr ),   Li fi q i−1 (q − 2) if h = f,    i−1   Li (fk + 1)q (q − 1) if h = (f1 , . . . , fk + 1, . . . , fi − 1, . . . , fr ), bκ [f, h] = 1 6 k < i,   k−1  Li (fi + 1)q (q − 1) if h = (f1 , . . . , fk − 1, . . . , fi + 1, . . . , fr ),     1 6 k < i, (26) i−1



where Li =



q r−i+1 −1 q r (q−1) .



Proof. According to Property (v), the coefficients of the expansion of the product KFi (e)Kf (e) into the basis {Kh } are given by the intersection numbers of the scheme: X KFi (e)Kf (e) = phFi ,f Kh (e). (27) h
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Because the ordered metric is translation-invariant, we can assume that y = 0, so phFi ,f is the number of vectors z ∼f 0 that satisfy z ∼Fi x for a fixed vector x ∼h 0. In other words, z − x = (0r , . . . , 0r , (u1 , . . . , ui−1 , ui , 0, . . . , 0), 0r , . . . , 0r )



(28)



where the nonzero block is located in any of the n possible blocks, uj ∈ Fq , 1 6 j < i, ui 6= 0. The numbers phFi ,f are nonzero only in the three following cases. (1) |h| = |f | + 1. By the above we have that hj = fj for j 6= i and hi = fi + 1. Hence z can be chosen so that its fi blocks of weight i annihilate the corresponding blocks of x, leaving one such block in any of the hi = fi + 1 locations. Thus, ( fi + 1, h = (f1 , . . . , fi + 1, . . . , fr ), h pFi ,f = 0 otherwise. (2) |h| = |f |. The following numbers are easily verified by (28):  fi (q − 2)q i−1 , h = f,    (f + 1)(q − 1)q i−1 , h = (f , . . . , f + 1, . . . , f − 1, . . . , f ), 1 6 k < i, k 1 k i r phFi ,f = k−1  (f + 1)(q − 1)q , h = (f , . . . , f − 1, . . . , f + 1, . . . , f i 1 k i r ), 1 6 k < i,    0 otherwise. Other than these three cases, no other possibilities for h arise. (3) |h| = |f | − 1. Now we should add to x one block of weight i in any of the n − |f | + 1 all-zero blocks. Thus we obtain phFi ,f = (n − |f | + 1)q i−1 (q − 1) h = (f1 , . . . , fi − 1, . . . , fr ) and phFi ,f = 0 for all other h. To prove (25) we now need to represent P (e) as a linear combination of the KFi s. Using (21) we find that |e|0 =



X



iei = δcrit rn −



i



r X



Li KFi (e),



i=1



hence P (e) =



r X



Li KFi (e).



(29)



i=1



The proof is now concluded by using (27) together with the intersection numbers computed above.  ee = Along with the polynomials Ke below we use their normalized version K √ e Ke / ve . The polynomials (Ke , e ∈ ∆r,n ) form an orthonormal basis of V .
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Denote by Aκ , Bκ , Cκ the coefficient matrices of the normalized form of relation (25). The new matrix elements are given by p Aκ [f, h] = Li (fi + 1)(n − κ)q i−1 (q − 1) if h = (f1 , . . . , fi + 1, . . . , fr ), p Cκ [f, h] = Li (n − κ + 1)fi q i−1 (q − 1) if h = (f1 , . . . , fi − 1, . . . , fr ),  i−1  L fi q (q − 2) if h = f,   i q−1 p   k+i (fk + 1)fi q if h = (f1 , . . . , fk + 1, . . . , fi − 1, . . . , fr ),  Li q Bκ [f, h] = 1 6 k < i, p   Li q−1 fk (fi + 1)q k+i if h = (f1 , . . . , fk − 1, . . . , fi + 1, . . . , fr ),  q    1 6 k < i. (30) Let Vκ ⊂ V be the set of polynomials of total degree 6 κ. Let Eκ be the orthogonal projection of V on Vκ . Define the operator Sκ : Vκ → Vκ f 7→ Eκ (P f ). Its matrix in the orthonormal basis has the form   B 0 A0 0 . . . 0 C1 B1 A1 . . . 0    e  Sκ =   0 C2 B2 . . . 0  . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . Cκ Bκ where the Bi s are symmetric and Ci = ATi−1 , i = 1, . . . , κ. On account of property e κ are nonnegative. (v) and (29), the matrix elements of S The matrix of Sκ in the basis {Kf } has the property vh S κ [f, h] = vf S κ [h, f ]



(f, h ∈ ∆r,n ).



(31)



(vii) (Explicit expression) Kf (x) = q



|f |0 −|f |



r Y



kfi (ni , xr−i+1 ),



(32)



i=1



Pr−i+1 Pr where kfi is a univariate Krawtchouk polynomial (14), ni = j=0 xj − j=i+1 fj , and f, x ∈ ∆r,n . This form of the polynomial Kf (x) was obtained in [10] (various other forms were found in [24], [14]). We remark that (32) can be proved by performing the Gram–Schmidt procedure (22) for monomials of higher degrees. It is known that the resulting system of polynomials is unique up to a constant factor once the polynomials of degrees 0 and 1 together with the three-term relation (25) have been fixed, see [15, Theorem 3.4.9]. (viii) The matrix elements of the eigenvalue matrices of the association scheme → − H are given by Pf e = Qf e = Kf (e). This follows from the previous property and (12) because the polynomials {Kf } form a unique orthogonal family on ∆r,n with respect to the weight w(e).
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(ix) (Fourier transform representation) Let ω be a qth degree primitive root of unity, e, f ∈ ∆r,n . Then X Kf (e) = ω x·z (33) z : z∼f 0



where shape(x) = e. In [10] this relation is taken as a definition of the polynomials Kf . Under our approach, it follows from the well-known Fourier transform representation of the Krawtchouk polynomials ki (n, x) in the case r = 1 and Theorem 3.1. (x) (Christoffel–Darboux ) Let L ⊂ ∆r,n and define X UL (a, e) , vf−1 Kf (a)Kf (e) (a, e ∈ ∆r,n ). f ∈L



Let S be the matrix of the operator S : Vn → Vn+1 given by f 7→ P f , written in the basis {Kf }. The action of P (e) on UL is described as follows: X X S[f, h](Kh (e)Kf (a) − Kh (a)Kf (e)) (P (e) − P (a))UL (a, e) = vf−1 f ∈L



=



X



h∈∆r,n



X



vf−1



f ∈L



S[f, h](Kh (e)Kf (a) − Kh (a)Kf (e)),



h∈∆r,n \L



the last equality justified by (31) as follows: X vf−1 S[f, h](Kh (e)Kf (a) − Kh (a)Kf (e)) f,h∈L



=



X f,h



r vh e e f (a) − K e f (e)K e h (a)) = 0. (Kh (e)K S[f, h] vf



A particular case of the above is obtained when L = {f : |f | 6 κ}. The kernel UL , κ P e s (e)T K e s (a), and we obtain denoted in this case by Uκ , equals Uκ = K s=0 T e κ+1 (e)T AT K e e e (P (e) − P (a))Uκ (a, e) = K κ κ (a) − Kκ (e) Aκ Kκ+1 (a) X e f (a) − K e f (e)Qf (a), = Qf (e)K



(34)



f : |f |=κ



P e where Qf (e) = |h|=κ+1 Kh (e)Aκ [f, h]. This relation is called the Christoffel– Darboux formula. (xi) The generating function of the polynomials Kf is given by  n−|e| Y er−j+1 j−1 r r  X X X f i−1 k−1 j−1 Kf (e)z = 1+(q−1) q zi 1+(q−1) q zk −q zj . f



i=1



j=1



In particular, X f ∈∆r,n



Kf (e) = q rn δe,0 .



k=1
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Remarks. 1. The polynomials Ke were considered in [24], [14], [10]. However none of these papers constructed them from their definition as eigenvalues of the r-Hamming scheme (to be more precise, Martin and Stinson [24] mention this approach but pursue the path suggested in Theorem 3.1 which makes explicit calculations difficult). Under the approach taken above, many properties of the polynomials Ke follow as special cases of the general combinatorial results of the previous section. 2. Other generalizations of univariate Krawtchouk polynomials were considered earlier in [37], [33]. These papers study biorthogonal polynomials for the weight given by the multinomial probability distribution, resulting in polynomial families different from the one considered above. 3. Property (xi) implies a MacWilliams theorem for NRT codes. It was previously proved in [24], [14] using different means. → − ← − ⊥ Theorem 4.2 (MacWilliams theorem Pnr in the NRT space). Let C ⊂ H and C⊥ ⊂ H be two linear i=1 xi yi = 0 for every x ∈ C, y ∈ C . Let P codes Qrthat satisfy A(z0 , z) = e Ae i=0 ziei be the weight enumerator of C and let A⊥ (z0 , z) be the same for C ⊥ . Then 1 A(u0 , u1 , . . . , ur ) A⊥ (z0 , z1 , . . . , zr ) = |C| where u0 = z0 + (q − 1)



r X



q i−1 zi ,



i=1



ur−j+1 = z0 + (q − 1)



j−1 X



q k−1 zk − q j−1 zj ,



1 6 j 6 r.



k=1



5. A Linear Programming Bound on Codes and OOAs In this section we prove one of our main results, an LP bound on the rate of codes. Let K = (Kf (e))f,e∈∆r,n be the eigenvalue matrix of the r-Hamming scheme, where for definiteness we are assuming the lexicographic order on the partitions. Let A = (Ae ), e ∈ ∆r,n , be a vector of nonnegative real variables, with the same ordering. Define two linear programs, P P (I) : (II) : e6=0 Ae → max e6=0 Ae → min subject to subject to (AK)e > 0, for all e (AK)e = 0, |e|0 6 t 0 Ae = 0 |e| 6 d − 1, (AK)e > 0, |e|0 > t Ae > 0, and let LP (I) and LP (II) be their solutions. Let C(nr, M, d) be a code and C 0 (t, n, r, q) be an OOA of size M 0 . Then it follows from Delsarte’s work [13] that M 6 LP (I), M 0 > LP (II). Replacing the LP problems by their duals, we obtain the following theorem.
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Theorem 5.1. Let F (x) = F0 + F0 > 0,



P



Fe > 0 (e 6= 0);



e6=0



Fe Ke (x) be a polynomial that satisfies



F (e) 6 0 for all e such that |e|0 > d.



(35)



Then any (nr, M, d) code satisfies M 6 F (0)/F0 .



(36)



Any OOA of strength t = d − 1 and size M 0 satisfies M 0 > q nr F0 /F (0).



(37)



This result is essentially due to P. Delsarte. However, for the NRT space it was first stated by Martin [24], [22] and later rederived by Bierbrauer [10]. The fact that the same polynomial gives a bound both on codes and orthogonal arrays is an easy consequence of Delsarte’s theory, first mentioned in Levenshtein’s work [21]. 5-A. The bound. In this section we use Theorem 5.1 to derive a bound on ordered codes and arrays. Its proof uses a “spectral method” first employed in [4] for the Grassmannian space and later used in [6] to prove classical asymptotic bounds of coding theory. The gist of the method can be explained as follows. The polynomial F (e) is sought in the form F (e) = u(e)G2 (e) where u(e) is a linear function that assures that F (e) 6 0 in (35) and G(e) is a function that maximizes the Fourier transform Fb(0). In the univariate case it turns out that a good choice for G is a delta-function at (or near) d. An approximation of the delta-function is given by the (Dirichlet) kernel Uκ which is its projection on Vκ . We therefore seek to modify the operator Sκ so that Uκ becomes its eigenfunction with eigenvalue θκ , express the bound of Theorem 5.1 as a function of θκ and optimize on κ within the limits (35). The reader is referred to [7] for a more detailed discussion of these ideas. Theorem 5.2. Let κ be any degree such that P (e) 6 λκ−1 for all shapes e with |e|0 > d, where λi is the maximum eigenvalue of Si and d > 1 is an integer. → − Let C ⊂ H be an (nr, M, d) code. Then   4rδcrit (n − κ)(q r − 1)κ n . (38) M6 δcrit rn − λκ κ Let C be a (t = d − 1, n, r, q) OOA of size M . Then M>



q nr  n κ



(δcrit rn − λκ ) . 4rδcrit (n − κ)(q r − 1)κ



(39)



Proof. Consider the operator Tκ that equals Sκ on Vκ−1 and acts on a function ϕ ∈ Vκ \Vκ−1 by X ef , Tκ (ϕ) := Sκ ϕ − εf ϕf K f : |f |=κ



where εf > 0 are some constants indexed by the partitions of weight κ (their values will be chosen later). The matrix of Tκ in the orthonormal basis equals   0 0 e e T κ = Sκ − 0 E
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 where E = diag(εf , |f | = κ) is a matrix of order κ+r−1 r−1 . Let m be such that e κ + mI > 0. By Perron–Frobenius [11, p. 80], the spectral radius ρ(Tκ + mI) is T well defined and is an eigenvalue of (algebraic and geometric) multiplicity one of Tκ + mI. Moreover, again using Perron–Frobenius, ρ(Sκ−1 + mI) < ρ(Tκ + mI) < ρ(Sκ + mI). Then λκ−1 < θκ < λκ



(40)



where θκ = ρ(Tκ ). Let G > 0 be the eigenfunction of Tκ with eigenvalue θκ . Let us write out the product P (e)G in the orthonormal basis: X e κ+1 = θκ G + e κ+1 . e f + Gκ Aκ K P (e)G = Sκ G + Gκ Aκ K εf Gf K f :|f |=κ



where Gκ is a projection of the vector G on the space Vκ \Vκ−1 . This implies the equality P e |f |=κ Gf (εf Kf + Qf ) , G= P (e) − θκ where Qf (x) is defined after (34). Now take F (x) = (P (x) − θκ )G2 (x). Let us verify (35). Since multiplication by a function is a self-adjoint operator, we obtain X  X e f + Qf ), G = F0 = hF, 1i = Gf (εf K G2f εf > 0. |f |=κ



|f |=κ



Using (24) one can easily check that Fe > 0 for all e 6= 0. The assumption of the theorem together with (40) implies that F (f ) 6 0 for |f |0 > d. Hence M6 = 6



F (0) F0 P



 e f (0) + Qf (0)) 2 Gf (εf K P (P (0) − θκ ) |f |=κ G2f εf



|f |=κ



X (εf K e f (0) + Qf (0))2 1 , P (0) − λκ εf |f |=κ



where in the last step we used the Cauchy–Schwarz inequality. Computing the minimum on εf , we obtain M6



X 4 √ Qf (0) vf . P (0) − λκ |f |=κ



Next, X |f |=κ



√ Qf (0) vf =



X √ f : |f |=κ



vf



X h : |h|=κ+1



√ Aκ [f, h] vh .



(41)
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Let h = (f1 , . . . , fi + 1, . . . , fr ) for some i, 1 6 i 6 r. Then using (1) we find p √ √ Aκ [f, h] vh = Li (fi + 1)(n − κ)q i−1 (q − 1) vh s p (n − κ)q i−1 (q − 1) = Li (fi + 1)(n − κ)q i−1 (q − 1) vf fi + 1  1  √ = 1 − r−i+1 (n − κ) vf . q Thus we have X



 r X X √ Qf (0) vf = (n − κ) 1 −



|f |=κ



|f |=κ i=1



= (n − κ)rδcrit







1 q r−i+1 X |f |=κ



vf



  n vf = (n − κ)rδcrit (q r − 1)κ . κ



Substitution of this expression into (41) concludes the proof of (38). The bound (39) follows by (37).  5-B. Spectral radius of S κ . In this section we derive an asymptotic lower bound on the spectral radius of S κ . This estimate will be later used to optimize the bound (38) on the choice of κ. Theorem 5.3. lim



n→∞ κ n →τ



λκ > max n Prτi >0



Λ(τ1 , . . . , τr ),



i=1 τi =τ



where Λ(τ1 , . . . , τr ) =



r X



 p Li 2 (1 − τ )τi (q − 1)q i−1



i=1



+ (q − 2)τi (q r − q i−1 ) + 2



 i−1 (q − 1) X p τk τi q i+k . q



(42)



k=1



To prove this theorem, we will bound below the largest eigenvalue λκ of the e κ . For any real vector y we have matrix S λκ >



e κy yT S . (y, y)



We will construct a suitable (0, 1)-vector y. Its coordinates are indexed by the partitions arranged in the increasing order of their length µ and lexicographically within a block of coordinates for each value of µ, 0 6 µ 6 κ. Let y = (y0 , y1 , . . . , yκ ) where yµ = (yf , |f | = µ). Let f , |f | = µ, be a shape vector. For an integer J consider the set   r X Fµ = Fµ (J, f ) , (f1 +µ−κ+j1 , . . . , fr +jr ) : ji = 0; |ji | 6 J, i = 1, . . . , r i=1
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and denote m = |Fµ |. Next, let (yµ )h = 1(h ∈ Fµ ) for µ = κ + 1 − s, . . . , κ where s will be chosen later, and yµ = 0 otherwise. In the next two lemmas we derive a lower bound on the part of the product e κ y that involves only the rows of S e κ that correspond to the shapes f of length yT S µ. Let Eh = {(h1 , . . . , hk ± 1, . . . , hl ∓ 1, . . . , hr ), 1 6 k < l 6 r} be the index set of the nonzero off-diagonal elements in the row in Bµ which is indexed by h = (h1 , . . . , hr ).  P P Lemma 5.4. Let e = argminh∈Fµ g∈Eh ∪{h} Bµ [h, g] and let ψµ = g Bµ [e, g]. Then yµT Bµ yµ > ψµ m(1 − om (1)). Proof. I. Since |h| = µ for every h ∈ Fµ , the quantity |Fµ | equals the number of ordered partitions of 0 into at most r parts, each part bounded between −J and J, or the number of ordered partitions Jr =



r X



ji ,



0 6 ji 6 2J, i = 1, . . . , r.



i=1



The number of such partitions is given by [17, p. 1037]:    b r2 c X r r + Jr − (2J + 1)i − 1 (−1)i . π(r, 2J, Jr) = i r−1 i=0 Writing this expression as a polynomial in J, we find the coefficient of J r−1 to be   b r2 c X r 1 (−1)i (r − 2i)r−1 . (r − 1)! i=0 i Since this is always positive1, we conclude that m is a degree-(r − 1) polynomial in J; in particular, if J → ∞, then also m → ∞. II. We have X yµT Bµ yµ = Bµ [h, g]. h,g∈Fµ



To bound yµT Bµ yµ below we estimate the difference between the above sum and the sum of all the nonzero elements of Bµ in the rows h ∈ Fµ which is obtained by replacing the range of column indices g above with g ∈ Eh ∪ {h}. Therefore, for a given h ∈ Fµ let us estimate the number |Eh \Fµ | of nonzero entries in Bµ [h, ·] not included in the sum. Let f = (f1 , . . . , fr ) and let h be of the form h = ` ´ Pb r2 c 1To prove positivity, observe that the numbers S i r m satisfy the r,m = i=0 (−1) i (r − 2i) recurrence Sr,m = r2 Sr,m−2 + 4r(r − 1)Sr−2,m−2 ,



3 6 m 6 r − 1,



and then use induction to prove that Sr.m > 0 (< 0) according as r − m ≡ 1 or 3 mod 4.
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(. . . , fk + J, . . . ) ∈ Fµ for some 1 6 k 6 r. Consider the column indices g ∈ Eh given by g = (f1 + µ − κ + j1 , . . . , fk + J + 1, . . . , fl + jl − 1, . . . , fr + jr )



(43)



for any k 6= l ∈ {1, . . . , r}. For any pair h, g of this form, Bµ [h, g] 6= 0 but g ∈ / Fµ . The number of shapes h that result in shapes g of the form (43) equals the number of ordered partitions of −J into at most r − 1 parts of magnitude 6 J; equivalently, this is the number of ordered partitions J(r − 2) = j2 + · · · + jr ,



0 6 ji 6 2J, i = 2, . . . , r,



which equals Π+ , π(r − 1, 2J, J(r − 2)). Next consider the row indices h = (. . . , fk − J, . . . ) ∈ Fµ and column indices g ∈ Eh given by g = (f1 + µ − κ + j1 , . . . , fk − J − 1, . . . , fl + jl + 1, . . . , fr + jr ) which again account for Bµ [h, g] 6= 0 and g ∈ / Fµ . The number of such shapes h equals the number of ordered partitions of Jr into r − 1 or fewer parts 0 6 ji 6 2J. Denote this number by Π− , π(r − 1, 2J, Jr). Note that as J → ∞, both Π+ and Π− grow proportionally to J r−2 . It is easy to verify that Eh \Fµ 6= ∅ if and only if h and g are of the described form. Observe that by (30), |Ef | = r2 − r. We then obtain X Bµ [h, g] > ψµ (m − r(r2 − r)(Π+ + Π− )) = ψµ m(1 − om (1)). h,g∈Fµ



The lemma is proved.







e κ y that involves the matrix Cµ , We now consider the part of the product y T S µ = κ − s + 2, . . . , κ. For a shape h let Dh = {(h1 , . . . , hk − 1, . . . , hr ), 1 6 k 6 r}. The proof of the next lemma is very similar to the above proof and will therefore be omitted.  P P Lemma 5.5. Let e = argminh∈Fµ g∈Dh Cµ [h, g] and let φµ = g Cµ [e, g]. yµT Cµ yµ−1 > φµ m(1 − om (1)). To complete the proof of Theorem 5.3, compute 1 T y Sκ y λκ > ms  X  κ κ X 1 T T = y Bµ yµ + 2 yµ Cµ yµ−1 ms µ=κ+1−s µ µ=κ+2−s  X  κ κ X 1 > ψµ + 2 φµ (1 − om (1)) s µ=κ+1−s µ=κ+2−s > ψ∗ + 2



s−1 ∗ φ (1 − om (1)), s
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where ψ ∗ (φ∗ ) is the smallest of the numbers ψµ (φµ ) above. Note that both ψ ∗ and φ∗ are nonzero. Now let n → ∞, κ = τ n, and let us choose f in the definition of Fµ to be of the form f = (f1 , . . . , fr ), fi = nτi , 1 6 i 6 r. We assume that none of the τi ’s approach 0 as n grows. Take s = o(n), s → ∞. Using (30), and letting J = o(n), J → ∞ we get   i−1 r X ψ∗ (q − 1) X p r i−1 i+k = τk τi q lim Li (q − 2)τi (q − q ) + 2 n→∞ n q i=1 k=1



∗



lim



n→∞



φ = n



r X



p Li (1 − τ )τi (q − 1)q i−1 .



i=1



Then since κ/n → τ , λκ y T Sκ y > lim > Λ(τ1 , . . . , τr ). n→∞ n n→∞ msn The theorem is proved. lim



5-C. Asymptotic estimate for codes and OOAs. Theorems 5.2 and 5.3 together enable us to prove one of the main results of the paper. Theorem 5.6. Let RLP (δ) be the function defined parametrically by the relations   1 qr − 1 R(τ ) = hq (τ ) + τ logq (44) r q−1 1 δ(τ ) = δcrit − (45) max Λ(τ1 , . . . , τr ), 0 6 τ 6 1. r Prτi >0 i=1



τi =τ



Then the asymptotic rate of any code family of relative distance δ satisfies R 6 RLP (δ) and the rate of any family of OOAs of relative strength δ satisfies R > 1 − RLP (δ). To prove this theorem, take the logarithms in (38) and pass to the limit as n → ∞. Using the standard asymptotics for the binomial coefficient, we find that the code rate is bounded above by the right-hand side of (44). The condition P (e) 6 λκ−1 of the Theorem 5.2 will be satisfied for large n if λτ n δcrit − δ 6 . rn This defines the function in (45). Thus, the proof is complete. Remark. For r = 1 this bound reduces to the linear programming bound on the rate of codes in [2]. Just as that result, the bound of this theorem improves upon the asymptotic Plotkin bound for large values of the code distance. 6. The Case r = 2 In this section we prove a bound for codes in Q2,n which improves upon the general result of the previous section. The improvement is due to the fact that in the case r = 2 it is possible to work with the polynomials Kf (e) in their explicit form, and base the bound on the behavior of their zeros instead of the spectral
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radius of the operator Sκ . Namely, let f = (f1 , f2 ), e = (e1 , e2 ). From (32) we have Kf (e) = q f2 kf2 (n − e2 , e1 )kf1 (n − f2 , e2 ). We also have



 q + 1 − e1 − 2e2 . P (e) = n 2 − 2 q We will use the following properties of the polynomials ks whose proofs are found for instance in [21]. Let xi (n, s), i = 1, . . . , s be the roots of ks in the ascending order. Then xi (n − 1, s) < xi (n, s) < xi (n − 1, s − 1) < xi (n, s − 1) < xi+1 (n, s),



(46)



1 < s < n, i = 1, . . . , s − 1. Let n → ∞, s/n → y. Then x1 (n, s) q−1 q−2 2p = γ(y) , − y− (q − 1)y(1 − y). n→∞ n q q q The Krawtchouk polynomials satisfy the recurrence lim



ks (n, x) = ks (n − 1, x) + (q − 1)ks−1 (n − 1, x)



(47)



(48)



and a Christoffel–Darboux formula of the form (34) q(x − y)



h X ks (x)ks (y) s=0



ks (0)



=



h+1 (kh+1 (y)kh (x) − kh+1 (x)kh (y)). kh (0)



(49)



Remark. Properties (46)–(49) are usually stated for integer n. This is related to the fact that the polynomials ks (n, x) represent the eigenvalues of the Hamming association scheme. As pointed out to us by M. Aaltonen [3], it is possible to prove these properties for any n ∈ R+ relying on the generating function of the Krawtchouk polynomials. The main result of this section is given in the following theorem. Theorem 6.1. The asymptotic rate of any family of codes of relative distance δ satisfies R 6 Φ(δ), where    τ2 Φ(δ) = min 1/2 τ2 + hq (τ1 ) + (1 − τ1 )hq , τ1 ,τ2 1 − τ1 where the minimum is taken over all τ1 , τ2 that satisfy 0 6 τ1 6 (q − 1)/q 2 ,



0 6 τ2 6 (q − 1)/q,



γ(τ2 ) + (2 − γ(τ2 ))(1 − τ2 )γ(τ1 ) 6 2δ. The asymptotic rate of any family of OOAs of relative strength δ satisfies R > 1 − Φ(δ). The remainder of the section is devoted to the proof of this result. We note that the polynomials Kf (e) are formed as products of two Krawtchouk polynomials. A similar situation arose in [1] which dealt with the Johnson association scheme whose (second) eigenvalues are equal to a product of a Krawtchouk and a Hahn
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polynomial. Therefore, we adopt some elements of the analysis in [1] in our proof below. In quest of an LP bound, we require a polynomial F (e) = F (e1 , e2 ) that satisfies conditions (35). Consider the polynomial of the form F (e) = (P (e) − P (a))(UL (a, e))2



(50)



for some a = (α, β) and a subset L. For brevity below we write Sf h instead of ¯ = ∆2,n \L. We find S κ [f, h] and denote L F0 = hF, 1i = h(P (e) − P (a))UL (a, e), UL (a, e)i  X 1 X Sf h (−Kh (a))Kf (e), UL = vf ¯ f ∈L



=−



h∈L



XX



Sf h Kh (a)



¯ f ∈L h∈L



Kf (a) . vf



In order to ensure that F0 > 0 we will choose L and a so that ¯ Kh (a) 6 0 if h ∈ L; Kf (a) > 0 if f ∈ L.



(51)



Let s = (s1 −1, s2 ) ∈ ∆2,n be a shape that satisfies {(s1 −1, s2 +1), (s1 , s2 )} ⊂ ∆2,n . Let a = (α, β) satisfy β = x1 (n − s2 , s1 ),



x1 (n − β, s2 + 1) < α < x1 (n − β, s2 ),



α + 2β 6 d. (52)



For any f2 , 0 6 f2 6 s2 + 1 denote by φ(f2 ) the degree such that x1 (n − f2 , φ(f2 ) + 1) 6 β < x1 (n − f2 , φ(f2 )).



(53)



By (46), φ(·) is well defined and implies the following: [(x1 (n − u, w) > β) ⇒ (w 6 φ(u))],



[(x1 (n − u, w) 6 β) ⇒ (w > φ(u) + 1)].



We choose the region L to be given by L = (f1 , f2 : f2 = 0, . . . , s2 ; f1 = 0, . . . , φ(f2 )). For the moment this choice is not unique because there are many possibilities for s. This ambiguity will be later removed by optimizing the bound on the choice of s. To argue about the sign of F0 we need to establish some properties of the region L. First, we claim that for a fixed f2 , φ(f2 ) − 1 6 φ(f2 + 1) 6 φ(f2 ).



(54)



Indeed, by (46), β < x1 (n − f2 , φ(f2 )) < x1 (n − f2 − 1, φ(f2 ) − 1) which implies the left-hand side of (54). On the other hand, β > x1 (n − f2 , φ(f2 ) + 1) > x1 (n − f2 − 1, φ(f2 ) + 1) which implies the right-hand side. The values of f, h for which Sf h 6= 0 are given in (30). In particular, if f ∈ L, then the set H of the shape vectors h that index the nonzero matrix elements of S and that lie outside the region L is as follows: H = {(φ(f2 ) + 1, f2 ), f2 = 0, 1, . . . , s2 } ∪ {(f1 , s2 + 1), f1 = 0, 1, . . . , s1 − 1}.
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The region L and the corresponding set H are shown in Fig. 1. By our choice of the parameters, kf2 (n − β, α) > 0



(0 6 f2 6 s2 ),



ks2 +1 (n − β, α) < 0, kf1 (n − f2 , β) > 0 kφ(f2 )+1 (n − f2 , β) 6 0



f1



(0 6 f1 6 φ(f2 ), 0 6 f2 6 s2 + 1), (0 6 f2 6 s2 + 1).



All points × belong to the set H All points • belong to the boundary of L ¯ L



φ(0)



L



s1 s1 − 1



s2 s2 + 1



0



f2



Figure 1. The region L Then K(f1 ,f2 ) (a) = q f2 kf2 (n − β, α)kf1 (n − f2 , β) > 0, K(φ(f2 )+1,f2 ) (a) = q f2 kf2 (n − β, α)kφ(f2 )+1 (n − f2 , β) 6 0, K(f1 ,s2 +1) (a) = q



s2 +1



ks2 +1 (n − β, α)kf1 (n − s2 − 1, β) < 0,



f ∈ L,



(55)



0 6 f2 6 s2 ,



(56)



0 6 f1 6 s1 − 1. (57)



Thus, Kf (a) 6 0 This proves that F0 > 0.



¯ (f ∈ L),



Kf (a) > 0



(f ∈ L).



(58)
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Let us show that Fe > 0 for all e. For this rewrite F as follows: F (e) = ((P (e) − P (a))UL (a, e)2 X Kg (a)Kg (e) X 1 X Sf h (Kh (e)Kf (a) − Kh (a)Kf (e)) = vf vg ¯ g∈L f ∈L h∈L X X Sf h Kf (a) X X Kh (a)Sf h  X Kg (a)Kg (e) Kh (e) = − Kf (e) vf vf vg ¯ ¯ f ∈L



h∈L



=



X ¯ g∈L h∈L,



f ∈L



g∈L



h∈L



X Sf h Kf (a) Kg (a) Kh (e)Kg (e) vg vf f ∈L



X Kg (a) X Kh (a)Sf h − Kf (e)Kg (e) . vg vf ¯ f,g∈L



h∈L



By (24), the products Kh Kg and Kf Kg are expanded in the basis {Kf } with nonnegative coefficients. Moreover, the other terms in the above formula also have the needed signs on account of (55)–(57). This establishes our claim. Finally, because of the third condition in (52), F (e) 6 0 for all e with |e|0 > d. We are now able to formulate the bound on codes and OOAs. → − Theorem 6.2. Let C be an (2n, M, d) code C ⊂ H(q, n, 2). Then M6



4(n − β − s2 )(n − s2 − s1 + 1)2 (q − 1)3 (α + 2β) vs , q 3 α2 β 2



(59)



where s = (s1 − 1, s2 ) satisfies {(s1 − 1, s2 + 1), (s1 , s2 )} ⊂ ∆2,n and a = (α, β) is chosen to fulfill conditions (52). Let C be a (t = d − 1, n, 2, q) OOA of size M . Then M>



q nr q 3 α2 β 2 . vs 4(n − β − s2 )(n − s2 − s1 + 1)2 (q − 1)3 (α + 2β)



(60)



Proof. Let us compute F0 = hF, 1i. Denote σ1 = (s1 −1, s2 +1), σ2 = (s1 −2, s2 +1). By (58) and (26) we have X Kf (a) X F0 = − Sf h Kh (a) vf ¯ f ∈L



h∈L



 Ks (a) Ss,σ1 Kσ1 (a) + Ss,σ2 Kσ2 (a) + Ss,(s1 ,s2 ) K(s1 ,s2 ) (a) >− vs  Ks (a) =− 2 (s2 + 1)Kσ1 (a) + (s2 + 1)(q − 1)Kσ2 (a) + s1 (q + 1)K(s1 ,s2 ) (a) q vs Ks (a)(s2 + 1)q s2 +1 =− ks2 +1 (n − β, α)ks1 −1 (n − s2 , β). (61) q 2 vs Let us now evaluate UL (a, 0). UL (a, 0) =



X f ∈L



Kf (a) =



s2 X f2 =0



φ(f2 )



q f2 kf2 (n − β, α)



X f1 =0



kf1 (n − f2 , β).
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Let us bound above the last sum. We shall prove that φ(f2 )



X



φ(s2 )



kf1 (n − f2 , β) 6 q s2 −f2



f1 =0



X



kf1 (n − s2 , β).



(62)



f1 =0



Indeed, using (48), we obtain φ(f2 )



X



φ(f2 )



X



kf1 (n − f2 , β) =



f1 =0



(kf1 (n − f2 − 1, β) + (q − 1)kf1 −1 (n − f2 − 1, β))



f1 =0 φ(f2 )−1



= kφ(f2 ) (n − f2 − 1, β) + q



X



kf1 (n − f2 − 1, β).



f1 =0



Recall that φ(f2 + 1) = φ(f2 ) or φ(f2 + 1) = φ(f2 ) − 1. In the former case, φ(f2 +1)



φ(f2 )−1



kφ(f2 ) (n − f2 − 1, β) + q



X



kf1 (n − f2 − 1, β) 6 q



X



kf1 (n − f2 − 1, β);



f1 =0



f1 =0



in the latter, kφ(f2 ) (n − f2 − 1, β) = kφ(f2 +1)+1 (n − f2 − 1, β) 6 0 on account of (53) and (46). Repeating this procedure s2 − f2 times, we arrive at (62). Note that φ(s2 ) = s1 − 1. Therefore UL (a, 0) 6 q s2



s2 X



kf2 (n − β, α)



f2 =0



sX 1 −1



kf1 (n − s2 , β).



f1 =0



By (49), (52), and (23) we have sX 1 −1



kf1 (n − s2 , β) =



f1 =0 s2 X



kf2 (n0 , α) =



f2 =0



=



s1



n−s2 (q − s1  n−s2 qβ s1 −1







1)



ks1 −1 (n − s2 , β),



(s2 + 1)(ks2 +1 (n0 , 0)ks2 (n0 , α) − ks2 +1 (n0 , α)ks2 (n0 , 0)) qαks2 (n0 , 0) s2 + 1 ks2 (n0 , α)(W (0) − W (α)), qα



where n0 = n − β and W (x) = ks2 +1 (n0 , x)/ks2 (n0 , x). Using these expressions, we can bound UL (a, 0) as UL (a, 0) 6



(s2 + 1)(n − s2 − s1 + 1)(q − 1) Ks (a)(W (0) − W (α)). q 2 αβ



Hence using (36), (50), and (61) we can write M 6 vs



(s2 + 1)(n − s2 − s1 + 1)2 (q − 1)2 (α + 2β) (W (0) − W (α))2 . q 3 α2 β 2 −W (α)



Since W (0) = (q − 1)(n0 − s2 )/(s2 + 1) > 0 > W (α) > −∞ as α ranges in between the bounds in (52), it is possible to find α such that W (α) = −W (0). With this choice and (1) the last expression turns into (59). The estimate (60) follows from (37). 
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The proof of Theorem 6.1 is obtained by passing to asymptotics in (59). Namely, let n → ∞, d/nr → δ, s1 /n → τ1 , s2 /n → τ2 . By (47), β α lim sup = γ(τ1 )(1 − τ2 ), lim sup = γ(τ2 )(1 − γ(τ1 )(1 − τ2 )). n→∞ n n→∞ n Computing the logarithm on the right-hand side of (59), we observe that the only term of exponential growth arises from vs . Using standard estimates we obtain    n n − s1 + 1 s2 logq vs = logq q (q − 1)s1 +s2 −1 s1 − 1 s2    τ2 6 n τ2 + hq (τ1 ) + (1 − τ1 )hq . 1 − τ1 The tightest bound is obtained by computing the minimum of this expression on τ1 , τ2 . The range of the variables τ1 , τ2 is obtained on observing that n(q − 1)/q 2 and n(q−1)/q are the maximizing values of s1 , s2 for large n (by a direct calculation from the above expression; or, specializing from a general result in [34]). The third restriction in the statement of the theorem is implied by α+2β 6 d. This completes the proof. Asymptotic bounds for ordered codes are shown in several plots in Fig. 2. Remark. The NRT metric is an example of a wide class of metrics on the set QN termed poset metrics following Brualdi et al. [12]. To define a poset metric, consider a partial order P≺ on the set [1, 2, . . . , N ]. An ideal in the order is a subset closed under the ≺ relation. The P≺ -weight of a vector x ∈ QN is the size of the smallest ideal that contains the nonzero entries of x. For instance, for the NRT weight, the relation ≺ can be defined as (i1 , j1 ) ≺ (i2 , j2 ) iff i1 = i2 , j1 < j2 , where i1 , i2 are the indices of the block. A dual order P is formed of the same set of chains as the order P≺ but with the signs reversed within each chain. In [24], [35], [14], and → − ← − in our paper, the poset duality is realized as the C ⊂ H, C ⊥ ⊂ H convention. One of the main questions that arises in this context is to characterise the association scheme that arises from the order and in particular, to derive the MacWilliams-type relations. Partial orders that give rise to a univariate MacWilliams relation have been described by Kim and Oh [19]. On the other hand, rather little is known about the multivariate case of which the NRT space is an instance. Acknowledgment. A.B. is grateful to William Martin for calling his attention to the problem of code bounds for the NRT space. The authors are also grateful to M. Aaltonen for a useful discussion of his work [1].
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Figure 2. Bounds for codes
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Figure 2 (continued). Bounds for codes
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