

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Capability-based Orchestration on Multi-domain Networks Ivano Cerrato∗ , Gabriele Castellano∗ , Fulvio Risso∗ , Roberto Bonafiglia∗ , Antonio Manzalini† ∗ Politecnico

di Torino, Dept. of Computer and Control Engineering, Torino, Italy † TIM, Torino, Italy ∗ {ivano.cerrato,gabriele.castellano,fulvio.risso,roberto.bonafiglia}@polito.it †

Abstract—The arise of Network Functions Virtualization and Software Defined Networking can enable the agile delivering of end-to-end and per-user services across the many technological domains available in a telco network. In this context, we describe an orchestration framework that selects the domains involved in the service setup and creates the proper inter-domain traffic steering thanks to a set of functional and connection capabilities associated with each domain. Particularly, while functional capabilities indicate what network functions are available in a domain (e.g., NAT, firewall), the latter provide information about the possible ways to exchange network traffic between domains. Notably, the presented orchestration framework can execute network functions not only on high-end volume servers available, e.g., in data centers, but also in resource constrained Customer Premise Equipments (CPEs) and in portions of SDN networks, exploiting the available hardware modules and software bundles in SDN controllers. The proposed approach has been validated on the JOLNET, a geographical multi-domain testbed encompassing an SDN network connecting different data centers and multiple CPEs.

I. I NTRODUCTION The arise of new network paradigms such as Software Defined Networking (SDN) and Network Functions Virtualization (NFV) can enable, in the next few years, the agile deployment of end-to-end network services using compute and network virtualization technologies. This represents one of the goals of the future 5G networks, aimed at unifying fixed and mobile infrastructures and at deploying complex services on top of heterogeneous infrastructures. Complex services can be described by means of service chains (or service graphs) that specify the list of the required Network Functions (NFs) and their interconnections (e.g., service order). Figure 1 shows a service chain instantiated across several heterogeneous technological domains, encompassing some NFs instantiated at the very edge of the network, on the Customer Premise Equipment (CPE), while others are deployed on high-end servers available in data centers. Furthermore, a portion of network consisting either of SDN switches or of legacy devices is used to interconnect the above NFs instantiated in different domains. The deployment of service chains in multi-domain environments typically involves two levels of orchestrators [1], [2]. According to Figure 1, the lower layer usually includes one orchestrator per domain, which knows all the details of the domain itself, interacts with the infrastructure-specific

Firewall

Adv. blocker

Private cache

Service chain for user “green”

Telco orchestrator Adv. blocker

Private cache

Firewall Domain orchestrator

OpenStack controller Domain orchestrator

CPE controller Domain orchestrator

SDN controller

Residential gateway

Data center Telco network

Domain orchestrator

Internet

5G access infrastructure

Technological domain

Mobile Access

Fig. 1. Service chain deployed across a multi-domain operator network.

domain controller (e.g., OpenStack in data centers, ONOS or OpenDaylight in SDN networks) in order to implement the requests coming from the telco orchestrator, and exports an abstract view of the domain, thus hiding internal details and making the architecture more scalable. The telco orchestrator, based on the information collected from domain orchestrators, should: (i) select the most suitable domain(s) involved in the service deployment; (ii) create the service subgraphs to be provided to the domain orchestrators responsible of the involved domains; and (iii) configure the inter-domain traffic steering to interconnect the portions of the service chain deployed on different domains. Existing works give little importance to the problem of creating the subgraphs that have to be deployed in each domain, including the proper inter-domain traffic steering primitives required to connect the above subgraphs. Moreover, they identify domains well suited to run NFs based on information such as the amount of available resources (e.g., memory, storage, computation) and supported virtualization technologies (e.g., KVM, Xen, Docker), which may present some limitations

when applied in a scenario with heterogeneous infrastructure domains. In fact, although this information is well suited to understand whether a VM/lightweight container can be scheduled in high-volume servers, a telco infrastructure usually has other ways to execute NFs. For instance, an SDN controller can start NFs running as software bundles that control the underlying (OpenFlow) switches, while CPEs can often leverage their hardware accelerators (e.g., IPsec encryption) to execute other NFs. In both cases, parameters such as available CPU, memory, etc., are not important to understand whether the NF can be executed or not; for instance, an hardware component can be used if it is idle, while the proper bundle must be available in the SDN controller. To address the above limitations, this paper defines a common capability-based data model suitable in case of heterogeneous domains, which enables the telco orchestrator to execute its own tasks based on what we call functional and connection capabilities, namely information about the list of NFs available in a domain (e.g., firewall, NAT), and about the characteristics of the connections between the domain and the external world (e.g., physical layer, supported tunneling technologies, neighbor domain). As detailed in the paper, the first information allows the telco orchestrator to transparently deploy service chains wherever the required NFs are available, even exploiting the potential processing capabilities of SDN domains and hardware components potentially available in CPEs. Connection capabilities are instead used to create the service subgraphs to be instantiated in the selected domains, which must also include information needed to set up the inter-domain traffic steering. The ability to dynamically deploy service graphs spanning across a wide area infrastructure, coupled with the flexibility of the above traffic steering, enables the agile provisioning of end-to-end and fine-grained services, which operate on a subset of traffic that can be frequently updated over time. This enables even per-user services, which can be established on-demand when the user connects to the network, whatever his attaching point is. The remainder of the paper is structured as follows. Section II analyzes the literature on multi-domain orchestration, while the proposed capability-based domain representation is depicted in Section III. Section IV shows how it is exploited by the telco orchestrator to deploy service chains on the underlying multi-domain infrastructure, Section V provides implementation details, while Section VI validates the approach. Finally, Section VII concludes the paper. II. R ELATED WORK The deployment of service chains in heterogeneous domains is considered by ESCAPE [3] and FROG [4], two multilayer orchestration architectures proposed in the context of the FP7 UNIFY project [1]. Similarly, Cloud4NFV [5] is an orchestration framework to deploy network services on different OpenStack and OpenDaylight based environments interconnected through a WAN, while the recently started 5GEx project [2] proposes an architecture to deploy services across multiple administrative domains. However, these proposals do

not consider which information should be used by the upper layer orchestrator to execute its own tasks, as well as they do not detail how such an orchestrator manipulates the service chain and sets up the inter-domain traffic steering. Finally, they do not aim to exploit hardware modules and SDN controllers to execute NFs. The NFs/links placement in multi-domain networks is studied e.g., in [6], which proposes an abstraction of the physical domains that, similarly to works like [7], is based on: (i) available amount of resources (e.g., CPU, memory and storage); (ii) inter and intra-domain link capacity. However, the paper does not consider the information needed to set up the inter-domain traffic steering, and the deployment of NFs in SDN networks and CPEs equipped with software/hardware modules that can be used to realize the requested service. Proposals like StEERING [8] and FlowFall [9] can be instead considered orthogonal to our work, since they define traffic steering architectures that could be exploited within specific domains. Also the work carried on by the Service Function Chaining Working Group (SFC) [10] in IETF, at the best of our knowledge, mainly focuses on the data plane components. In addition, SFC defines a Network Service Header that identifies the sequence of NFs that have to process a packet, provided that the data plane components understand it. III. C APABILITY- BASED DOMAIN ABSTRACTION This section presents the common data model we designed to represent heterogeneous technological domains, thus enabling the telco orchestrator to: (i) execute NFs by exploiting all the processing resources available in the operator infrastructure (e.g., data centers, CPEs, SDN controllers); (ii) split the requested service chain in subgraphs and realize the interdomain traffic steering. Our data model derives from the YANG templates defined by OpenConfig [11], which are used for traditional network services and that we extended to describe a summary of the computing and networking characteristics of the domain. Particularly, as shown in Figure 2, the data model includes what we call functional capabilities, namely the list of NFs offered by the domain and that can be exploited to create a service chain. In addition, the domain is described as a bigswitch with a set of interfaces connecting the domain itself with the rest of the network, where each interface is associated with some connection capabilities. A. Modeling functional capabilities A functional capability represents the ability of the domain to execute a given NF, no matter how it is actually implemented, and it does not include any information about the resources needed for its execution. For instance, it could be a VM image in a data center, a software bundle in an SDN controller, an hardware module in a CPE, and more. Examples of functional capabilities include firewall and NAT, possibly with some specific attributes such as the number of ports, support for IPv4 or IPv6, and more.

If-1 speed: 10 Gbps IPv4-address: 10.0.0.1 connection-capabilities: neighbor: id: domain-B type: domain labeling-methods: • VLAN - available-labels: { 25, 26 } - preference: 4 • GRE - available-labels: {…} - preference: 10 • VXLAN { . . . } ...

Functional capabilities

NAT

Firewall Data Model leaf ports# { type uint8; value max; } leaf iso/osi level { type uint8 { range “1 .. 7” } ... } leaf dmz { type Boolean; ... }

if-3

NAT Data Model [...]

VPN

Firewall ports#: iso/osi level: dmz:

VPN Data Model [...]

3 4 true

Firewall domain-A abstraction

If-2 ... neighbor: id: internet type: legacy-net ...

domain-A Orchestrator

Domain Data Model

OpenStack Controller

domain-C

NAT A

Domain B Description

Tech: NAT Data Model [...]

domain-B Orchestrator

SDN Controller

domain-B

KVM

[. . .]

Firewall A Tech: RAM: CPU:

KVM 290 MB 2 cores

domain-A

VPN A Tech:

Docker [. . .]

if-3

Image repository

if-1

if-2

Internet

leaf id { ... } list interface { container connection-capabilities { list neighbor { leaf id { ... } leaf type { enumeration { domain; legacy-net; access-net; } } list labeling-method { leaf name { enumeration { VLAN, GRE, … } } list available-labels { ... } leaf preference{ type uint8 { range “0 .. 10” } } } uses openconfig-interface; } list functional-capabilities { type identityref { base “functional-capability”; } }

Fig. 2. Domain abstraction based on functional and connection capabilities.

As shown in Figure 2, each functional capability is in turn associated with its own YANG-based data model, which may also indicate if a parameter represents a maximum, a minimum or a precise value (e.g., the firewall data model in figure indicates that the NF cannot have more than three ports); this information can be exploited by the telco orchestrator to check whether the domain can be used to implement or not a given NF. B. Modeling connection capabilities Each interface attached to the big-switch represents a connection point between the domain and the external world (e.g., another domain, the Internet). As shown in Figure 2, an interface is associated with a set of connection capabilities such as the following. “Neighbor” indicates what can be directly reached through that specific interface, namely: (i) another domain that can be exploited for traffic steering and/or to execute NFs (if-1 in Figure 2); (ii) a legacy network where packets are delivered according to, e.g., the traditional IP routing, and hence paths cannot be set up by an external controller (if-2 in the figure); (iii) an access network, which represents an entry point for the traffic into the operator network. “Labeling method” indicates the ability of the domain to: (i) classify incoming traffic (i.e., packets entering in the domain through that interface) based on specific patterns (e.g., VLAN ID, GRE tunnel key); (ii) modify traffic that exits from the interface so that it satisfies a specific pattern (e.g., is encapsulated into a specific GRE/VXLAN tunnel, is tagged

with a specific VLAN ID). Notably, other labeling methods can be supported as well in addition to those just mentioned (e.g., MPLS label, Q-in-Q, wavelength), according to the specific interface technology. Each labeling method is associated with the list of “labels” (e.g., VLAN ID, GRE key) that are still available and can be exploited to tag/encapsulate new types of traffic, and with a “preference”. This information, an integer ranging from 0 to 10, can be used to give priority to a labeling method with respect to another and, implicitly, to express the priority of an interface with respect to the others. Our model does not specify how the preference value must be selected; for instance, it may be derived from a combination of the link capacity and of the overhead introduced by a specific technology, but other policies may be considered as well. Other parameters associated with interfaces are inherited by the OpenConfig model, such as the Ethernet and, potentially, the IPv4/IPv6 configuration. As will be shown later, all the above information can be exploited by the orchestration software to define how the traffic exiting from a subgraph in a first domain can be delivered to its next portion, running in a second domain. Finally, additional domain information may be exported as well in addition to functional and connection capabilities, such as the available bandwidth between two domain interfaces, which may be useful to select the best domain(s) for NFs, in case multiple placements options exist, as proposed in [6].

domain: domain-A interface: if-0 Input-traffic: eth-src: aa:bb:cc:dd:ee:ff

Firewall

sap-0

Web cache

web traffic

domain: domain-B interface: if-1

web traffic

NAT

sap-1

other traffic

other traffic

IPv4: 10.0.0.1 VLAN (25,28): preference 5 GRE (0x03,0x04): preference 4

Telco Orchestrator

Access network

VLAN 25, 28 preference 10

domain-A if-0

IPv4: 10.0.0.2 VLAN (25,28): preference 5 GRE (0x03,0x04): preference 4

if-1

web traffic

if-2

GRE 0x03, 0x04 preference 8

backbone legacy network

if-1

Internet Legacy network

interface: if-0 labeling-method: VLAN vlan-id: 28

interface: if-1 labeling-method: VLAN vlan-id: 28 sap-2

if-0

domain-B if-0

Virtual topology

domain-A subgraph

domain-C

if-1

VLAN 28

Web cache

if-0 sap-4

domain-B subgraph web traffic

Virtual channles

NAT

if-0 sap-0

sap-3

Firewall other traffic

if-1

VLAN 25

interface: if-1 labeling-method: VLAN vlan-id: 25

interface: if-0

sap-5 if-0

sap-1

if-1

other traffic

interface: if-1 labeling-method: VLAN vlan-id: 25

interface: if-1

Fig. 3. Service chain deployment involving two domains directly connected.

IV. C APABILITY- BASED ORCHESTRATION This section describes how the capability-based domain abstraction presented in Section III is exploited by the telco orchestrator to deploy service chains on its multi-domain infrastructure. A. Service chain As detailed in [4], service chains consist of a number of Service Access Points (SAPs), NFs (e.g., firewall with 2 ports) and their interconnections. A SAP represents an entry/exit point for the traffic in/from the service chain; hence, as shown at the top of Figure 3, it may be characterized with the traffic that has to enter in the service chain through that access point, which can include traffic specifiers (e.g, IP addresses, VLANs, etc.) and physical specifiers (e.g., the entry point of such a traffic in the operator network). According to the picture, links are instead potentially associated with constraints on the traffic that has to transit on that specific connection. SAPs are very flexible identifiers and can be updated over time; for instance, in case of per-user services, a SAP should receive all the traffic coming from the user’s device, e.g., all the packets matching the MAC address of the device he is currently using, and should correspond to the connection point of such a device to the network (e.g., sap-0 in Figure 3). Since the user can access to the Internet through different devices and from different locations, these parameters must be dynamically derived each time the service chain is going be instantiated (or updated, in case such a graph already exist). To this purpose we can exploit a user location service graph processing all the traffic coming from new devices, which is similar to the service detailed in [4] (Section 6.1.1). B. Virtual topology As shown in Figure 3, the telco orchestrator models the entire network infrastructure with a set of domains characterized

by a set of functional capabilities and associated with bigswitches possibly connected. The virtual topology is created based on the connection capabilities associated with domain interfaces, as described in the following. First, the “neighbor” parameter indicates whether a connection between two interfaces (of different domains) may exist or not. Then, a virtual channel is actually established between two interfaces per each pair they have in common1 ; as shown in Figure 3, each virtual channel is then associated with such an information and with a “preference” that derives from the preference value of the labeling method in the two interfaces. For instance, a virtual channel may represent all the traffic exchanged between two interfaces and that is encapsulated into a particular GRE tunnel, or that belongs to a specific VLAN, and more. Referring to the picture, VLAN IDs 25, 28 and GRE keys 0x03, 0x04 are available in both interfaces domain-A/if-1 and domain-B/if-0, then four virtual channels are established between them. As described in the remainder of this section, virtual channels play a primary role in the set up of the interdomain traffic steering. Figure 3 also shows that domains may be connected through a legacy network; as this network does not have any orchestrator and implements the legacy IP forwarding, virtual channels based on tunneling protocols can be established directly between interfaces connected to it. As a final remark, other information may be available as well in the virtual topology (e.g., inter-domain bandwidth, intra-domain bandwidth, path latency), in case it is advertised by domain orchestrators in addition to functional and connection capabilities. C. Service chain placement and subgraphs generation To deploy a service chain in the virtual topology, the best domain(s) that will actually implement the required NFs, links and SAPs must be identified. To this purpose, different algorithms may be defined/exploited. Inspired by the hierarchical/multi-domain routing, this paper proposes a greedy approach that minimizes the distance between two NFs/SAPs directly connected in the service chain, by taking into account the number of domains to be traversed to realize the connection and the following constraints. First, some SAPs are forced to be mapped to specific domain interfaces e.g., because they represent the entry point of the user traffic into the network, as mentioned in Section IV-A. Second, a NF must be executed in a domain that advertises the corresponding functional capability; notably, to check whether a domain is candidate or not to execute a certain NF, the description of the functional capability and the associated data model must be considered. Third, links between NFs/SAPs deployed on different domains require the exploitation of 1 In case two interfaces do not have any common , no link is established in the virtual topology, although they are physically connected as indicated by the “neighbor” parameter.

domain: domain-A interface: if-0 Input-traffic: eth-src: aa:bb:cc:dd:ee:ff sap-0

Firewall

domain: domain-C interface: if-1

Web cache

web traffic

other traffic

web traffic

other traffic

NAT

sap-1

IPv4: 10.0.0.2 VLAN (25,28): preference 5 GRE (0x03,0x04): preference 4

IPv4: 10.0.0.1 VLAN (25,28): preference 5 GRE (0x03,0x04): preference 4

VLAN 25, 28 preference 10

domain-A Access network

if-0

domain-A subgraph if-1

domain-C

interface: if-0 labeling-method: VLAN vlan-id: 28 VLAN 28

if-0 sap-4

if-0

IPv4: 10.0.1.1 GRE (0x01,0xA3): preference 6

Virtual topology

if-1 sap-2

if-1

if-1

GRE 0x03, 0x04 preference 8

Telco Orchestrator

interface: if-1 labeling-method: VLAN vlan-id: 28

domain-B

if-1

if-0

Internet legacy network

interface: if-1 labeling-method: GRE local IP: 10.0.1.1 remote IP: 10.0.1.2 key: 0x01

domain-B subgraph Sap-6 if-1

IPv4: 10.0.1.2 GRE (0x01,0xA3): preference 6

interface: if-0 labeling-method: GRE local IP: 10.0.1.2 remote IP: 10.0.1.1 key: 0x01

GRE 0x01

Web cache

sap-8 if-0

web traffic

domain-C subgraph

web traffic

NAT sap-0

Firewall other traffic

sap-5 sap-3 if-1 VLAN 25 if-0

interface: if-0 interface: if-1 labeling-method: VLAN vlan-id: 25

interface: if-0 labeling-method: VLAN vlan-id: 25

sap-7 if-1

GRE 0x03

if-0 sap-9

sap-1

if-1

other traffic

interface: if-1 interface: if-1 labeling-method: GRE local: IP 10.0.1.1 remote IP: 10.0.1.2 key: 0x03

interface: if-0 labeling-method: GRE local IP: 10.0.1.2 remote IP: 10.0.1.1 key: 0x03

Fig. 4. Service chain deployment involving three domains: domain-A and domain-C execute NFs, while domain-B just implements network connections.

virtual channels to move packets from one domain to another; each virtual channel can be used to set up a single link of the service chain. Fourth, available virtual channels with higher preference value are used first. However, more sophisticated algorithms may be exploited as well, according to the information exported by each domain in addition to the capabilities defined in Section III, and then available in the virtual topology. A possible placement of the service chain at the top of Figure 3 on the virtual topology shown in the cloud is depicted at the bottom of the picture, which has been possible because domain-A and domain-B: (i) offered the requested functional capabilities, and (ii) at least two virtual channels were available between them, one needed to set up the connection between the firewall and the NAT, the other to implement the link between the firewall and the web cache. As shown in the picture, the output of the placement algorithm is one subgraph per each domain involved in the service chain deployment, which includes the NFs assigned to that domain and, possibly, new SAPs. These SAPs are originated by links of the service chain that have been split because connecting NFs/SAPs mapped to different domains; then, the two SAPs originated by the same link are connected through a virtual channel that terminates in two interfaces of the involved domains, in order to recreate the original link. An example is given by the link between the firewall and the NAT

in Figure 3, which has been split causing the generation of sap-3 in domain-A and sap-5 in domain-B, connected through the virtual channel corresponding to traffic tagged with the VLAN ID 25. Figure 4 shows instead the case in which NFs are assigned to two domains connected by means of the intermediate domain-B, which is only used to forward traffic between its boundary interfaces. As shown, a subgraph is generated for this domain as well, which just includes connections between SAPs. As in the example above, SAPs of this subgraph are then connected with SAPs of other domains through virtual channels, in order to create the connection described in the service chain. Finally, traffic steering between two domains connected through the legacy network is managed as those domains were directly connected (in fact virtual channels cross the legacy network, which does not receive any subgraph). D. Inter-domain traffic steering Both Figure 3 and Figure 4 show that, before pushing subgraphs to the proper domain orchestrators, each SAP is enriched with information associated with the virtual channel connected to the SAP itself, thus enabling those orchestrators to properly set up the inter-domain traffic steering. As highlighted in Figure 5, this information allows each domain orchestrator to configure the domain so that packets sent through a specific SAP are properly tagged/encapsulated

interface: if-0 technology: VLAN vlan-id: 28

interface: if-1 technology: VLAN vlan-id: 28

pkt

pkt sap-2

vlan 28 pkt

if-0

if-1

pkt sap-3

sap-4

vlan 25 pkt

pkt

physical connection

interface: if-1 technology: VLAN vlan-id: 25

sap-5

interface: if-0 technology: VLAN vlan-id: 25

domain-B

domain-A

Fig. 5. Inter-domain traffic steering based on information associated with SAPs.

before being delivered to the next domain through a specific interface. Similarly, since a domain typically receives through the same interface traffic to be delivered to different SAPs, the information associated with each SAP allows the domain orchestrator to known that receiving traffic with a certain tag/encapsulation from a specific interface means receiving it through a certain SAP. The figure also shows how information associated with SAPs should only be used to implement the inter-domain traffic steering; packets should be tagged/encapsulated just before being sent out of the domain, while the tag/encapsulation should be removed just after the packet classification in the next domain. The definition of the intra-domain traffic steering (i.e., how to implement links between SAPs/NFs deployed in the same domain) is instead a task of the specific domain orchestrator, and depends on the specific domain infrastructure. Moreover, in case the inter-domain traffic steering is done through a tunneling protocol (such as between sap6 and sap8 in Figure 4), the specific tunnel must be set up by the involved domain orchestrators.

bundle, the telco orchestrator must provide to the application information about SAPs that are part of the subgraphs. In fact, since bundles are software modules running in the controller and that insert rules in the underlying switches, they must also take care of inserting the rules to properly tag/untag outgoing/incoming packets as indicated by SAPs. Notably, as neither ONOS nor OpenDaylight support the parallel execution of multiple instances of the same bundle, applications must also manage multitenancy by themselves (it may happen in fact that two service chains deployed at the same time require the same bundle). Finally, the creation of a chain of bundles is not trivial; hence, the current prototype supports only subgraphs that include at most one chained NF in this domain, while the support for more complex services is left to our future work. B. OpenStack domain orchestrator This domain orchestrator takes care of deploying subgraphs in OpenStack-based data centers (OpenStack release: Mikata, OpenDaylight release: Beryllium). As described in Section IV-D, to set up the inter-domain traffic steering, it is necessary for example to create a GRE tunnel between two boundary interfaces of the involved domains. Unfortunately, this is not supported by the vanilla OpenStack software, which does not allow a fine control of the network traffic coming from the external world. Then, as shown in Figure 6(a), the OpenStack domain orchestrator sends part of the subgraph to be deployed to the OpenStack controller (that takes care of starting the NFs and creating connections among them), while it directly interacts with the SDN controller to set up the inter-domain traffic steering (e.g., create a GRE tunnel terminated in another domain). Finally, the OpenStack domain orchestrator creates the list of functional capabilities based on the content of the OpenStack image repository.

V. I MPLEMENTATION DETAILS We implemented the capability-based orchestration logic in the open source FROG orchestrator2 . Each domain orchestrator has been implemented as a module that interacts with the controller specific of the underlying domain by exploiting the API exposed by the controller itself. Hence vanilla controllers, then domains, can be integrated in our framework without any modification; it is just necessary to write the proper domain orchestrator on top of them, as detailed in the remainder of this section. A. SDN domain orchestrator In order to exploit SDN domains, we implemented a domain orchestrator that supports both the ONOS (Falcon release) and OpenDaylight (Hydrogen, Helium, Lithium releases) controllers. As functional capabilities, this orchestrator exports the software bundles available in the controller, so that the domain can also be exploited to execute NFs. Moreover, while starting a 2 https://github.com/netgroup-polito/frog4.

C. Universal node domain orchestrator The Universal Node (UN) [12] orchestrator handles the orchestration of compute and network resources within a single physical node, such as a standalone server or a CPE. The latter devices typically include a number of software modules (e.g., iptables) and some hardware components (e.g., crypto hardware accelerator, integrated L2 switch) that can be exploited to implement NFs with reduced overhead compared to VMs and containers. The UN domain orchestrator then enables the exploitation of these resources in the realization of service chains. VI. VALIDATION To validate both our approach to implement inter-domain traffic steering and the advantages brought by the idea of exposing, per each domain, its functional capabilities, we executed some tests over JOLNET [13], an Italian geographical testbed consisting of an SDN domain that connects an access network encompassing a set of UNs to emulate residential

Firewall

NAT 3)

2)

3)

Firewall

Telco Orchestrator

1) Functional Capabilities

1) Functional Capabilities

3)

3)

1)

Firewall

NAT

Firewall UN

image repository

Compute NAT nodes

Domain Orchestrator SDN Network

Firewall

SDN Controller UN

Domain Orchestrator

NAT

Domain Orchestrator

Domain not involved in the service chain deployment

VLAN 11

VLAN 14

U

Turin

VLAN 15

Milan

U

Venice – Data Center

H Internet

No network functions: Case a): Case b):

a)

Functional Capabilities

Functional Capabilities

1)

OS Controller

1)

1)

Functional Capabilities

VLAN 11

Telco Orchestrator

NAT

Domain Orchestrator SDN Network

3)

Firewall

Functional Capabilities

Domain Orchestrator

Domain Orchestrator

2)

NAT

Milan

Venice – Data Center

H

Turin

Internet

TCP throughput: 88.59 Mbit/s | latency: 10.96 ms TCP throughput: 67.04 Mbit/s | latency: 27.10 ms TCP throughput: 81.34 Mbit/s | latency: 14.99 ms

b)

intra-domain traffic steering inter-domain ts SAP (VLAN 11) inter-domain ts SAP (VLAN 14) inter-domain ts SAP (VLAN 15)

Fig. 6. Validation scenario: (a) service chain split across three domains; (b) service chain deployed in two domains.

gateways, an OpenStack domain and the Internet, as shown in Figure 63 . As shown at the top of the picture, the deployed service chain operates between the green user U and the host H on the Internet4 . Particularly the firewall is deployed in the UN, since this domain represents the entry point of the user’s traffic into the network and has the firewall functional capability. Then, in the first test (Figure 6(a)), no functional capability is exported by the SDN domain, which is then used just to implement network paths, while the NAT is deployed inside the data center in Venice, which is the only domain advertising such a functional capability. Notably, VLANs are used for the set up of the inter-domain traffic steering. In the second test (Figure 6(b)), the SDN domain orchestrator exports the NAT functional capability, then the telco orchestrator selects this domain for the execution of this NF, thus reducing the distance between chained NFs. In both cases, we measured the end-to-end latency introduced by the service (using the ping command) and the throughput (using iperf generating TCP traffic) between U and H. As shown in Figure 6, performance results better when the NAT is executed in the SDN domain (case (b)), with respect to the case in which such a NF is deployed in the data center (case (a)), and it is very close to the case in which no network functions are present (baseline), which is limited by the speed of the geographical connections (100Mbps). This is because (i) traffic does not need to be forwarded to the far away data center before being actually delivered to H, and (ii) the NAT is actually implemented as a set of Openflow rules installed by the NAT bundle into the switches (only the 3A simplified demonstration [14] is available at https://www.youtube.com/watch?v=N6SBo2f6Lyc. 4 NFs implementations: firewall: iptables executed in the host; NAT in the SDN domain: ONOS bundle; NAT in data center: iptables executed in a KVM-based VM.

first packet of a flow is processed in the software bundle, while the following packets are directly processed in hardware by the switches). Finally, the figure also reports performance measured when no NF is instantiated between U and H, in order to give an insight of how JOLNET performs when only used to forward network packets. VII. C ONCLUSION This paper presents an orchestration framework that can deploy service chains across the heterogeneous resources available in a multi-domain network. Particularly, the contribution of the paper is twofold. First, it proposes a common capability-based representation of heterogeneous domains, where each domain is exposed to the telco orchestrator as: (i) a set of functional capabilities indicating which NFs it is able to implement; (ii) a big switch whose interfaces (representing boundary interfaces of the domain) are associated with connection capabilities (e.g., next domain, support to GRE tunnels). Second, the paper shows how this information can be used by the telco orchestrator to select domains involved in the deployment of the service chain (some domains can be used to execute NFs, while other may just be exploited to realize network connections) and to create the subgraphs to be deployed in those domains. Notably, each subgraph contains also information needed to set up the inter-domain traffic steering, namely to create links connecting NFs/service access points deployed on different domains. Moreover, functional capabilities enable the telco orchestrator to also exploit, for the execution of NFs, software bundles available in SDN controllers as well as hardware accelerators/software components available, e.g., in CPEs. The proposed capability-based orchestration framework has been validated over JOLNET, an Italian geographical testbed.

Notably, the proposed orchestration model is suitable also for the deployment of service chains across different administrative domains, since it does not mandate to export information that can be considered confidential in such a scenario (e.g., amount of available resources, links capacity). Finally, sensors (e.g., thermometer, camera) may be represented as functional capabilities, thus offering the possibility to integrate FOG computing nodes in our orchestration framework, and then allowing the deployment of service chains that go beyond the traditional network services. This integration is in fact part of our future work. R EFERENCES [1] (2013) Unify: unifying cloud and carrier network. Accessed on: 2017-02-06. [Online]. Available: http://www.fp7-unify.eu/ [2] (2015) 5g exchange. Accessed on: 2017-02-06. [Online]. Available: http://www.5gex.eu [3] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf, W. Tavernier, and F. Risso, “Multi-domain service orchestration over networks and clouds: a unified approach,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 377–378, 2015. [4] I. Cerrato, A. Palesandro, F. Risso, M. Su˜ne´ , V. Vercellone, and H. Woesner, “Toward dynamic virtualized network services in telecom operator networks,” Computer Networks, vol. 92, Part 2, pp. 380 – 395, 2015, software Defined Networks and Virtualization. [5] J. Soares, C. Gonc¸alves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca, R. L. Aguiar, and S. Sargento, “Toward a telco cloud environment for service functions,” IEEE Communications Magazine, vol. 53, no. 2, pp. 98–106, 2015. [6] I. Vaishnavi, R. Guerzoni, and R. Trivisonno, “Recursive, hierarchical embedding of virtual infrastructure in multi-domain substrates,” in Network Softwarization (NetSoft), 2015 1st IEEE Conference on. IEEE, 2015, pp. 1–9. [7] T. Soenen, S. S. Sahhaf, W. Tavernier, P. Sk¨oldstr¨om, D. Colle, and M. Pickavet, “A model to select the right infrastructure abstraction for service function chaining,” in IEEE NFV-SDN2016, the IEEE Conference on Network Function Virtualization and Software Defined Networks, 2016, pp. 1–7. [8] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan et al., “Steering: A software-defined networking for inline service chaining,” in 2013 21st IEEE International Conference on Network Protocols (ICNP). IEEE, 2013, pp. 1–10. [9] R. Nakamura, K. Okada, S. Saito, H. Tanahashi, and Y. Sekiya, “Flowfall: A service chaining architecture with commodity technologies,” in 2015 IEEE 23rd International Conference on Network Protocols (ICNP). IEEE, 2015, pp. 425–431. [10] Internet Engineering Task Force (IETF). (2014) Service Functions Chaining (SFC) working group. Accessed on: 2017-02-06. [Online]. Available: https://datatracker.ietf.org/wg/sfc/documents/ [11] Openconfig. Accessed on: 2017-02-06. [Online]. Available: http: //www.openconfig.net [12] R. Bonafiglia, S. Miano, S. Nuccio, F. Risso, and A. Sapio, “Enabling nfv services on resource-constrained cpes,” in 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), Oct 2016, pp. 83–88. [13] Jolnet: a geographical sdn network testbed. Accessed on: 2017-02-06. [Online]. Available: https://www.softfire.eu/jolnet/ [14] A. Manzalini, G. Castellano, and F. Risso, “5G Operating Platform: Infrastructure-agnostic orchestration,” in IMT2020 Workshop and Demo Day: Technology Enablers for 5G. ITU, 2016.

[image: Capability-based Orchestration on Multi-domain Networks - Fulvio Risso]
Capability-based Orchestration on Multi-domain Networks - Fulvio Risso

[image: A Unifying Orchestration Operating Platform for 5G - Fulvio Risso]
A Unifying Orchestration Operating Platform for 5G - Fulvio Risso

[image: End-to-End Service Orchestration across SDN and ... - Fulvio Risso]
End-to-End Service Orchestration across SDN and ... - Fulvio Risso

[image: End-to-End Service Orchestration across SDN and ... - Fulvio Risso]
End-to-End Service Orchestration across SDN and ... - Fulvio Risso

[image: Filtering Network Traffic Based on Protocol ... - Fulvio Risso]
Filtering Network Traffic Based on Protocol ... - Fulvio Risso

[image: User-specific Network Service Functions in an SDN ... - Fulvio Risso]
User-specific Network Service Functions in an SDN ... - Fulvio Risso

[image: Partial Offloading of OpenFlow Rules on a Traditional ... - Fulvio Risso]
Partial Offloading of OpenFlow Rules on a Traditional ... - Fulvio Risso

[image: NFV Service Dynamicity with a DevOps Approach - Fulvio Risso]
NFV Service Dynamicity with a DevOps Approach - Fulvio Risso

[image: Per-User NFV Services with Mobility Support - Fulvio Risso]
Per-User NFV Services with Mobility Support - Fulvio Risso

[image: NFV Service Dynamicity with a DevOps Approach - Fulvio Risso]
NFV Service Dynamicity with a DevOps Approach - Fulvio Risso

[image: User-specific Network Service Functions in an SDN ... - Fulvio Risso]
User-specific Network Service Functions in an SDN ... - Fulvio Risso

[image: Per-User NFV Services with Mobility Support - Fulvio Risso]
Per-User NFV Services with Mobility Support - Fulvio Risso

[image: Risso&Risso-Epapterus chaquensis nsp.pdf]
Risso&Risso-Epapterus chaquensis nsp.pdf

[image: Mixing navigation on networks]
Mixing navigation on networks

[image: berlioz orchestration pdf]
berlioz orchestration pdf

[image: Coordination on Networks]
Coordination on Networks

[image: Coordination on Networks]
Coordination on Networks

[image: The multidomain protein Brpf1 binds histones and is ... - CiteSeerX]
The multidomain protein Brpf1 binds histones and is ... - CiteSeerX

[image: cecil forsyth orchestration pdf]
cecil forsyth orchestration pdf

[image: Tour Recommendation on Location-based Social Networks]
Tour Recommendation on Location-based Social Networks

Capability-based Orchestration on Multi-domain Networks - Fulvio Risso

V. IMPLEMENTATION DETAILS. We implemented the capability-based orchestration logic in the open source FROG orchestrator2. Each domain orchestra-.

 Download PDF

 2MB Sizes
 0 Downloads
 224 Views

 Report

Recommend Documents

[image: alt]

Capability-based Orchestration on Multi-domain Networks - Fulvio Risso

Internet. Fig. 1. Service chain deployed across a multi-domain operator network. domain controller (e.g., OpenStack in data centers, ONOS or. OpenDaylight in leaf iso/osi level { type uint8 { range â€œ1 .. 7â€� } ... } leaf dmz { type Boolean; .

[image: alt]

A Unifying Orchestration Operating Platform for 5G - Fulvio Risso

services, allocated and executed in network slices, will require orchestration ca- pabilities, a ... 5G-OP does not intend to develop one more control-orchestration.

[image: alt]

End-to-End Service Orchestration across SDN and ... - Fulvio Risso

can actually host many applications (e.g., firewall, NAT) that ... the best domain(s) that have to be involved in the service Source code is available at [10].

[image: alt]

End-to-End Service Orchestration across SDN and ... - Fulvio Risso

End-to-end service deployment of Network Functions Vir- ... 1. Service graph deployment in a multi-domain environment. the proper network parameters, thus ...

[image: alt]

Filtering Network Traffic Based on Protocol ... - Fulvio Risso

Let's put the two together and create a new automaton that models our filter tcp in ip* in ipv6 in ethernet startproto ethernet ip ipv6 tcp http udp dns. Q0. Q3. Q1.

[image: alt]

User-specific Network Service Functions in an SDN ... - Fulvio Risso

Abstractâ€”Network Functions Virtualization can enable each user (tenant) to define his desired set of network services, called (network) service graph. For instance, a User1 may want his traffic to traverse a firewall before reaching his terminal, w

[image: alt]

Partial Offloading of OpenFlow Rules on a Traditional ... - Fulvio Risso

level view depicted in Figure 2. When a packet arrives at CPU load. RAM (MB). CPU load. RAM (MB). 64. 3.61 / 4. 540. 0.21 / 4. 360. 128. 3.52 / 4. 532. 0.13 / ...

[image: alt]

NFV Service Dynamicity with a DevOps Approach - Fulvio Risso

Plane compoentâ€”the Ctrl App on Fig. 1, implemented by a Ryu OpenFlow controllerâ€”and a single Data Plane componentâ€”the ovs, implemented by Open ...

[image: alt]

Per-User NFV Services with Mobility Support - Fulvio Risso

Network Automation. TIM. Torino ... Particularly, in our proposal, a service platform dynamically ... the VPNPP service platform to authenticate users and to keep.

[image: alt]

NFV Service Dynamicity with a DevOps Approach - Fulvio Risso

I. INTRODUCTION. New network services demand higher levels of automation and optimized resource usage [1]. Our demo supports NFV service dynamicity by ...

[image: alt]

User-specific Network Service Functions in an SDN ... - Fulvio Risso

User-specific Network Service Functions in an SDN-enabled Network Node. Ivano Cerrato, Alex ... full network and service virtualization to enable rich and.

[image: alt]

Per-User NFV Services with Mobility Support - Fulvio Risso

user services that are automatically reconfigured when the use mobile terminal (MT) moves from one network site to another. At the service bootstrap, the ...

[image: alt]

Risso&Risso-Epapterus chaquensis nsp.pdf

Sign in. Page. 1. /. 7. Loadingâ€¦ Page 1 of 7. Page 1 of 7. Page 2 of 7. Page 2 of 7. Page 3 of 7. Page 3 of 7. Risso&Risso-Epapterus chaquensis nsp.pdf. Risso&Risso-Epapterus chaquensis nsp.pdf. Open. Extract. Open with. Sign In. Main menu. Display

[image: alt]

Mixing navigation on networks

file-sharing system, such as GNUTELLA and FREENET, files are found by (color online) The time-correlated hitting probability ps and pd as a function of time ...

[image: alt]

berlioz orchestration pdf

Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. berlioz orchestration pdf. berlioz orchestration pdf. Open. Extract.

[image: alt]

Coordination on Networks

Dec 1, 2017 - â€ Monash University, Australia, IFN and CEPR. Email: ... limit equilibrium cutoffs for the center and the peripheral agents must lie within each others' noise supports. Therefore, in the limit, (2013) data,

[image: alt]

Coordination on Networks

Oct 23, 2017 - â€ Monash University, Australia, IFN and CEPR. 10For the sake of the exposition, we use the example of technology adoption but, of course, any {0, 1} the marketing literature, network effects are especially pronounced ...

[image: alt]

The multidomain protein Brpf1 binds histones and is ... - CiteSeerX

This is the first demonstration of histone binding for PWWP domains. Mutant analyses further show that the PWWP domain is absolutely essential for Brpf1 ...

[image: alt]

cecil forsyth orchestration pdf

Sign in. Loadingâ€¦ Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying.

[image: alt]

Tour Recommendation on Location-based Social Networks

INTRODUCTION. For a visitor in a foreign city, it is a challenging ... Intl. Joint Conf. on Artificial Intelligence (IJCAI'15), 2015. [3] T. Tsiligirides. Heuristic methods ...

×
Report Capability-based Orchestration on Multi-domain Networks - Fulvio Risso

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

