Characterization of the Thermal Degradation Product of UR‐144 Paul D. Kennedy, Gregory W. Endres Cayman Chemical Company, Ann Arbor, MI 48108 Anna Deakin United States Army Criminal Investigation Laboratory (USACIL), Gillem Enclave, Forest Park, GA 30297 David Eckre Marshall University Huntington, West Virginia 25755

Part 1: Data provided by Cayman Chemical Company, including: Introduction Figure 1: TIC of GC/MS(EI) of UR-144 with small degradation peak EI Spectra of UR-144 and UR-144 Degradant Figure 2: EI Spectrum of purified UR-144 Degradant Figure 3: EI Spectrum of UR-144 Figure 4:

1

Figure 5:

13

H NMR C NMR and

13

C- APT

Figure 6: APCI MS Figure 7: FTIR-ATR

Part 2: Data provided by the United States Army Criminal Investigation Laboratory (USACIL), including: Figure 8: GC/MS(EI) of UR-144 Degradant Figure 9: ESI MS Full Scan Figure 10: ESI MS/MS Product Ion Scan of m/z = 214 and 312 Figure 11: FTIR spectrum via GC-IR

References:

1 of 16

03/21/13

 

    UR‐144 Degradant Structure:                             CAS Registry No.:      N/A  Formal Name:  3,3,4‐trimethyl‐1‐(1‐pentyl‐1H‐indol‐3‐yl)pent‐4‐en‐1‐one  Synonyms:  UR‐144 Degradant,  MF:  C21H29NO  FW:  311.46  Storage:  ambient  SMILES:  CCCCCN1C2=CC=CC=C2C(C(CC(C)(C)C(C)=C)=O)=C1  InChI Key:  NBJHWTCAQOYUND‐UHFFFAOYSA‐N    InChI:  InChI=1S/C21H29NO/c1‐6‐7‐10‐13‐22‐15‐18(17‐11‐8‐9‐12‐19(17)22)20(23)14‐21(4,5)16(2)3/h8‐9,11‐12,15H,2,6‐ 7,10,13‐14H2,1,3‐5H3 

  Background  UR‐144 is a tetramethylcyclopropyl (TMCP) synthetic cannabinoid analog which has become a popular unregulated replacement for previous  generation synthetic cannabinoids that have been recently regulated in the United States.1     Invented by Abbott Laboratories2 for pharmaceutical  applications, UR‐144 shows higher affinity for the CB2 receptor over the CB1 receptor.3  GCMS spectral data has been presented for UR‐144 as well as  other TMCP cannabinoid analogs such as XLR‐11 and A‐796,260.4  Common to all of these analyses is the presence of an impurity related to the parent  TMCP compound.  In all cases, the impurity possesses a similar spectrum to its parent TMCP compound with the exception that there is a prominent  fragment ion 15amu higher than the parent compound’s Base Peak ion.  Furthermore, published reports demonstrate that pyrolysis of UR‐144 results  in the formation of the major impurity with the proposed structure in Scheme 1 (Compound 2).5    Based on the assumption that the TMCP cannabinoids likely undergo thermal decomposition, and further based on the mass spectrum  showing a prominent fragment ion 15amu higher than the base peak, the working hypothesis was that the tetramethylcyclopropyl ring  undergoes opening upon heating to produce a degradant having the same molecular weight as the parent compound, but with the ability  to undergo a McLafferty rearrangement to produce the observed fragment ion in the GC‐MS.  The mechanism of the rearrangement is  unclear but it is possible that the mechanism is a heterolytic ring cleavage, possibly aided by the presence of trace nucleophiles such as water or  solvents present in the neat sample, and further stabilized by the carbonyl.  Rearrangement of UR‐144 (1) and the proposed structure of the UR‐144  degradant (2) is shown in Scheme 1.  The GCMS data for UR‐144 and the UR‐144 degradant is shown in Figure 1 along with the proposed McLafferty  rearrangement to yield the characteristic fragment ion.    Scheme 1 

Nu   

O

O

H

     

N

N 1

2

           

2 of 16

03/21/13

Figure 1: UR‐144 and UR‐144Degradant GC‐MS Data

UR‐144

UR‐144 Degradant

UR‐144 GC‐MS

3 of 16

03/21/13

                                                           

UR‐144 degradant in UR‐144 

    To confirm the structure of the UR‐144 Degradant, neat UR‐144 (Cayman Chemical, Item 11502) was heated under nitrogen atmosphere at  130 C overnight.  The resulting crude mixture consisting of starting material and the ring‐opened degradant were separated by column  chromatography.  Purity was determined to be >98% by HPLC chromatography (90:10:0.1 methanol/water/acetic acid).  As expected, the GC‐ MS matched the degradant detected in the UR‐144 sample (Figure 2). Furthermore, the purified UR‐144 Degradant was fully characterized by  ESI‐MS, GC‐MS, FTIR, 1H NMR, 13C NMR, and 13C‐APT NMR (Figures 3‐7).  All data was consistent with the proposed structure including notably  the 1H NMR spectrum which shows the vinylic CH2 protons, and the 13C APT spectrum which clearly shows 12 quaternary/methylene carbons  as well as 5 aromatic methine carbons and 3 methyl carbons (the gem‐dimethyl carbons are equivalent and appear as a single 13C peak at  27.6ppm).  Figure 2.  GCMS of Purified UR‐144 Degradant.   

                                                     

4 of 16

03/21/13

File :Y:\Forensics\11928-0442099.D Operator : PDK Acquired : 14 Nov 2012 13:36 using AcqMethod CAY_DRUG_CATH.M Instrument : Instrument #1 Sample Name: UR-144 Degradant Misc Info : 30mx0.32mm, 0.5u Rtx-5MS, 50C-30C/min-300C Vial Number: 2 Abundance

TIC: 11928-1.D\data.ms 10.170

1100000 1000000 900000 800000 700000

Figure 3

Instrument: Agilent 6890 GC / 5973 MSD Column: 30mx0.32mm, 0.5um Rtx-5MS Carrier Gas: Helium Flow: 2mL/min Inlet temp: 300C 15:1 split Oven Program: 240C for 1 minute, ramp to 300C at 30C/min, Hold at 30C for 27minutes Transfer Line Temp: 300C

600000 500000 400000 300000 200000 100000 0 Time--> Abundance

4.50

5.00

5.50

6.00

6.50

7.00

130000

7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 Scan 1816 (10.167 min): 11928-1.D\data.ms (-1758) (-) 214

120000 229

110000 100000 90000

296

80000 70000

144

60000 50000 311 40000

130

41 55

30000

172

116 20000

187

83

67

268

200

254

102

10000

156 75

238

91

282

0 m/z-->

40

50

60

70

80

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 5 of 16

03/21/13

\\sulfur\nmrdata\JW7-298-119-144_20121023_\JW7-298-119-144_20121023_01\JW7-298-119-144_20121023_001.fid\fid Oct 23 2012 1H 399.97 Nucleus Frequency (MHz) CHLOROFORM-d Number of Transients 16

1

10

03/21/13

9

8

8.49 8.48 8.47 8.46 8.46 8.45 8.45 8.44

0.92

2.06

7

7.33 7.29 7.28 7.27 7.27 7.26

7.68 1.03

6

5

H NMR (400 MHz, CHLOROFORM-d)  8.40-8.52 (m, 1H), 7.68 (s, 1H), 7.31-7.37 (m, 1H), 7.24-7.31 (m, 2H), 4.80 (s, 1H), 4.76-4.79 (m, 1H), 4.14 (t, J=7.14 Hz, 2H), 2.89 (s, 2H), 1.85-1.93 (m, 2H), 1.84 (s, 3H), 1.27-1.42 (m, 4H), 1.25 (s, 6H), 0.90 (t, J=6.96 Hz, 3H)

File Name Date Solvent

Lot #0442099

Item #11928

4.80 4.78 4.78 4.77 0.96

4.16 4.14 4.12

4

2.13

3

2.05

2.89

1.84 2.89

1.92 1.90 1.88

2

N

O

1.25 0.90

Chemical Shift (ppm)

6.00 2.78

1.37 1.36 1.34 1.34

6 of 16 0.91 0.88

UR-144 Degradant

Figure 4

0

0.05

0.10

0.15

0.20

0.25

0.30

0

4.77 4.78

4.80

0.96

4.5

8.45

8.44 8.43

8.47 8.46 8.46

8.49 8.48

8.5

2.13

4.0

3.5

8.0 2.89

03/21/13

3.0

2.05

7.68 1.03

2.5

7.5

7.35 7.35 1.08 2.06

2.0

2.89

1.92 1.90 1.88

0.92

7.36

7.27 7.26 7.25

7.29 7.29 7.28 7.34 7.34 7.33 7.31 1.84

0.05

Chemical Shift (ppm) 1.25

2.78

Chemical Shift (ppm)

6.00

1.40 1.37 1.36 1.35 1.34 1.30 1.34

0.10

4.14

4.16 4.12

0.90 0.91 0.88

7 of 16

1.25 1.27 1.28 1.29 1.30 1.31 1.32 1.32 1.33 1.34 1.34 1.35 1.36 1.37 1.39 1.39 1.40 1.41 1.84 1.86 1.88 1.90 1.92 2.89 4.12 4.14 4.16 4.77 4.78 4.78 4.80 7.25 7.26 7.27 7.27 7.28 7.29 7.29 7.31 7.32 7.32 7.33 7.34 7.34 7.35 7.35 7.35 7.36 7.68 8.43 8.44 8.45 8.45 8.46 8.46 8.46 8.47

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

8.49

0.91

3

8.48

0.90

2

62

0.88

1

61

(ppm)

No.

(Hz)

3393.9

3389.8

3386.9

3385.4

3382.5

3381.8

3380.3

3378.1

3374.4

3371.9

3072.3

2945.6

2941.6

2939.4

2938.3

2936.8

2933.9

2932.8

2929.5

2925.9

2921.8

2917.1

2915.2

2911.6

2908.3

2906.1

2902.4

2899.1

1919.6

1911.9

1910.4

1909.3

1663.6

1656.3

1649.3

1156.1

766.5

758.8

751.4

744.5

737.2

564.3

560.7

557.4

554.8

547.8

542.0

540.9

537.2

535.4

533.6

529.9

527.7

524.4

520.4

517.1

511.6

509.8

498.4

365.5

358.9

351.6

-

-

-

-

-

-

-

-

-

-

7.68

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

*(ppm)

-

-

-

-

-

-

-

-

-

-

3072.23

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

*(Hz)

Height

0.0020

0.0071

0.0309

0.0251

0.0255

0.0234

0.0234

0.0297

0.0042

0.0005

0.1696

0.0044

0.0212

0.0214

0.0205

0.0223

0.0338

0.0468

0.0106

0.0052

0.0211

0.0628

0.0848

0.0720

0.0535

0.0370

0.0506

0.0035

0.0820

0.0580

0.0742

0.0437

0.0706

0.1256

0.0691

0.3173

0.0130

0.0344

0.0478

0.0338

0.2525

0.0031

0.0049

0.0088

0.0110

0.0243

0.0389

0.0363

0.0422

0.0501

0.0478

0.0400

0.0244

0.0290

0.0186

0.0139

0.0066

0.0094

1.0000

0.0793

0.1869

0.0892

-

-

-

-

-

-

-

-

-

-

0.1690

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

*Height

-

-

-

-

-

-

-

-

-

-

1.09

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

*FWHH

200

180

160

140

120

100

80

60

CHLOROFORM-d

\\sulfur\nmrdata\JW7-298-119-144_20121026_\JW7-298-119-144_20121026_01\JW7-298-119-144_20121026_002.fid\fid Oct 26 2012 13C 100.58 Nucleus Frequency (MHz) CHLOROFORM-d Number of Transients 512

Varian Innova 400MHz NMR with VNMRJ v2.2revD

File Name Date Solvent

152.48

Lot # 0442099

134.53 136.68

122.98 122.32 123.11 126.51

8 of 16 118.03

109.00 109.65

Item #11928

77.32 77.00 76.69

194.58

N

O

38.94

40

27.64

13.87

19.92

22.20

Chemical Shift (ppm)

28.95 29.52

UR-144 Degradant

Figure 5

03/21/13

47.04

49.56

9 of 16

7720.4

22.24

27.68

28.98

29.55

38.98

47.07

49.58

76.76

77.07

77.39

109.05

109.70

118.04

122.35

123.00

123.15

126.55

134.62

136.72

152.49

194.63

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

0.2541

-0.1169

-0.1390

-0.1600

0.4444

-0.1824

0.7059

0.5973

0.6977

-0.1595

0.7210

-0.7477

-0.3149

-0.3218

-0.2965

-0.4065

-0.5629

-0.1848

-0.5120

-0.5022

1.0000

-0.3269

\\sulfur\nmrdata\JW7-298_APT.fid\fid 100.58 Solvent

136.72

140

118.04

120

100

Nov 6 2012

76.76 77.07 77.39

80

60

13C Nucleus Number of Transients 256

40

38.98

03/21/13

160

Date

N

27.68

CH0 + CH2

CH + CH3

13.91 19.96

Chemical Shift (ppm)

28.98 29.55

180

CHLOROFORM-d

O

22.24

200

APT PARAMETERS Varian Innova 400MHz NMR with VNMRJ v2.2revD Relax delay 1s 1st pulse 90deg, 2nd pulse 45deg acq. time 1.303s, width 25125.6 Hz Observe C13 100MHz, Decouple H1 400MHz pwr 41dB on during acq WALTZ-16 modulated line broadening 0.5Hz

19576.6

15338.1

13751.4

13540.4

12728.3

12386.3

12371.1

12306.2

11873.0

11034.1

10968.0

7784.1

7752.0

4734.1

3920.9

2972.6

2914.7

2784.4

2236.6

2008.0

Height

0.4330

194.63

13C

4987.2

19.96

2

(Hz)

1

1398.8

(ppm)

13.91

No.

File Name Frequency (MHz)

134.62

Lot # 0442099

123.15

Item #11928

122.35

UR-144 Degradant

Figure 5

49.58 47.07

109.70 109.05

126.55

152.49

Figure 6

10 of 16

03/21/13

11 of 16

03/21/13

0

8

16

24

32

4000

3052.89 3090.5 3106.89

40

2931.39 2959.36

48

3800

3600

3400

3200

3000

2729.86

2871.61

2800

2600

2400

2200

2000

1730.87 1781.01

1800

1613.23

56

1483.05

64

1575.62

72

80

1526.93

1636.85

1600

O

N

1200

684.15 744.42

890.99

Wavenumber (cm-1)

957.04 1013.93 1059.26 1104.09 1134.47 1189.91 1217.88 1306.11 1339.38 1386.63

1465.7

1400

768.53 792.15 830.24

Nicolet iS10 FTIR with iTR Smart Diamond ATR 16 scans background subtracted ATR Corrected and Baseline corrected 4000 - 650 cm-1 4cm-1 resolution

Lot #0442099

Item #11928

UR-144 Degradant

%Transmittance

Figure 7

GC/MS(EI) Data Figure 8:

GC/MS(EI) of UR-144 Degradant

Sample preparation: Instrument: GC Parameters:

MS Parameters:

Extracted solid with methanol to yield a concentration of ~ 1 mg/mL Agilent 7890A gas chromatograph / 5975C mass spectrometer Column: HP-5MS; 30m x 0.250mm x 0.25 micron Carrier gas: He Oven program: 1) 220°C initial temperature for 2.0 minute 2) Ramp to 280°C at 5°C/minute 3) Hold at 280°C for 2 minutes Split ratio: 100:1, 1 microliter injected Flow: 1 mL/minute for 16.0 minutes Temperatures: Injector: 250° C Transfer line: 290° C Source: 230°C Quad: 150°C Mass scan range: 34-550 amu Threshold: 150 Tune file: atune.u

12 of 16

03/21/13

LC-MS/MS(ESI) Data Experiment Parameters: Standard ~ 100 ug/mL in methanol, 1 uL injection INSTRUMENT: Thermo TSQ Quantum Access MAX in ESI Mode (HESI II Ion Source) equipped with an Accela Autosampler and Quaternary Pump. LC GRADIENT: Ammonium Acetate Buffer (15mM) (A) and Acetonitrile (B) Time %A %B Flow 0 50 50 300 uL/min 2 25 75 300 uL/min 4 25 75 300 uL/min 5 50 50 300 uL/min MS EXPERIMENTS FULL SCAN (ESI): 100  650 m/z PRODUCT SCANS: Ions 214 and 312 at varying Collision Energies (CE) and resulting product spectra (mass range 50  350) were collected. Both discreet energy levels and an energy ramp (RER) were employed. Argon was the collision gas used. INSTRUMENT SETTINGS Spray Voltage: Vaporizer Temp: Sheath Gas Pressure: Ion Sweep Gas Pressure: Aux Gas Pressure: Capillary Temperature: Tube Lens Offset: Skimmer Offset: Capillary Offset:

Figure 9:

3500 150 10 10 10 270 101 0 35

ESI MS (Full Scan)

13 of 16

03/21/13

Figure 10:

ESI MS/MS Product Ion Scan of m/z = 214 and 312

14 of 16

03/21/13

GC-IR Data Figure 11:

FTIR spectrum

Instrument: Parameters:

Spectra Analysis Discover IR-GC Transfer line: 250° C Disk speed: 3mm/minute Oven: 250° C FTIR Detector: 4000-650 cm-1 MCT; 4 cm-1 resolution Restrictor: 250° C -40° C Disk:

15 of 16

03/21/13

            References  1. Food and Drug Administration Safety and Innovation Act, Subtitle D‐Synthetic Drugs, Sections 1151‐1153.   2. WO application 2006069196, Pace JM, Tietje K, Dart MJ, Meyer MD, "3‐Cycloalkylcarbonyl indoles as cannabinoid receptor ligands",  published 2006‐06‐29.  3. Frost, Jennifer M.; Dart, Michael J.; Tietje, Karin R.; Garrison, Tiffany R.; Grayson, George K.; Daza, Anthony V.; El‐Kouhen, Odile F.; Yao,  Betty B. et al. (January 2010). "Indol‐3‐ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid  receptor activity". J. Med. Chem. 53 (1): 295–315.  4. http://forendexforum.southernforensic.org/viewtopic.php?f=4&t=86&p=462&hilit=bp+311#p338  5. Kavanaugh, P.; Grigoryev, A.; Savcuck, S.; Mikhura, I.; Formanovsky, A. Drug Testing and Analysis, published online in Wiley Online  Library Jan 2013.      

                                     

16 of 16

03/21/13

Characterization of the Thermal Degradation Product of ...

Jun 29, 2006 - rad an t. Item. #11928. L o t #0442099. Chemical Shift (ppm). 10. 9 ..... 4. http://forendexforum.southernforensic.org/viewtopic.php?f=4&t=86&p= ...

5MB Sizes 0 Downloads 273 Views

Recommend Documents

Photoacoustic Thermal Characterization of Porous ... - Springer Link
C·min. −1 and soaked for 3h. The thickness of the sample is further reduced to ..... Tsagareishvili, G. G. Gvelesiani, V. P. Orlovskii, T. V. Belyaevskaya, and V. P..

Aging and thermal degradation of poly(N-methylaniline)
doped polymer [10]. For example, the methane sulphonate doped polyaniline was more stable (523K) than the chlo- ride and sulphate doped polymers (433 and 473 K, respec- tively). Polyaniline doped with p-toluenesulphonate ion [13] showed a two-step we

Thermal characterization of doped polyaniline and its ...
Analysis of the data shows that the effective thermal diffusivity value can be tuned by varying the ... terials, viz., conducting polymers, has created a new area of.

Photoacoustic Thermal Characterization of Porous Rare-Earth ... - Dyuthi
The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition freq

Characterization of human CRB gene product by the ...
html). Subcellular localization of human CRB1 protein was indicated by PSORT. ... NCBI (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) .... Wu C, Macleod I, Su AI:.

Thermal characterization of nanofluids using laser ...
A laser induced thermal lens technique has been employed to evaluate the dynamic thermal parameter, the thermal diffusivity, of gold ... thermal lens obtained by fitting the experimental curve to the theoretical model of the mode-matched thermal lens

Thermal characterization of intrinsic and extrinsic InP ...
Apr 2, 2003 - attention in the context of fabrication of electronic and optoelectronic devices .... Introduction of a foreign atom into the host lattice creates more ...

Microstructural characterization and thermal stability.pdf
4-Electrodeposited nanocrystalline Co–P alloys - Microstructural characterization and thermal stability.pdf. 4-Electrodeposited nanocrystalline Co–P alloys ...

Regulation of proline biosynthesis, degradation, uptake ... - iisc.ernet.in
Feb 10, 2005 - Dramatic accumulation of proline due to increased synthesis and decreased degradation under a variety of stress conditions such as salt, drought and metal has been documented in many plants. Similarly, a decrease in the level of accumu

The degradation of the insecticide Imidacloprid in ...
A liquid chromatographic (LC) method using UV detection was used to study the degradation of imidacloprid in tomatoes grown in greenhouses. A liquid-liquid extraction with acetonitrile/methanol (60/40, v/v) and a cleanup step with Florisil were combi

DEGRADATION OF NATURAL ENVIRONMENT.pdf
explain the meaning of fossil fuels and the impact of their use on the environment; ... low usage across the service area? ... ©STEMhero, LLC 2014-2018 | STEMhero Curriculum Outline | [email protected] | 414-540-8788 | Activity 1 p. 2.

APPLIED CHEMISTRY Photocatalytic Degradation of Phenol and ...
Fe(III) show normally high absorption bands in the ... Phone: +55 19 7883073. .... Figure 3. MIMS-SIM on-line monitoring of phenol photocatalytic degradation by ...

Degradation of the pharmaceutical Metronidazole via ...
The quantum yields for direct photolysis, measured at 254 nm and 200–. 400 nm, were 0.0033 and ..... The highest hydroxyl radical yields are obtained when ...

RESERVOIR CHARACTERIZATION OF THE JERIBE FORMATION ...
RESERVOIR CHARACTERIZATION OF THE JERIBE F ... LLS IN HAMRIN OIL FIELD, NORTHERN IRAQ.pdf. RESERVOIR CHARACTERIZATION OF THE ...

Characterization of the Psychological, Physiological and ... - CiteSeerX
Aug 31, 2011 - inhibitors [8], acetylcholine esterase inhibitors [9] and metabolites ...... Data was stored on a dedicated windows XP laptop PC for post.

Characterization of the Psychological, Physiological ... - ScienceOpen
Aug 31, 2011 - accuracy in a two choice scenario in 8 subjects were not affected by betel quid intoxication. ..... P,0.001 doi:10.1371/journal.pone.0023874.t003.

ON THE CHARACTERIZATION OF FLOWERING ...
principal component analysis conducted on a set of reblooming indicators, and a subclassification is made using a ... mixture models, Longitudinal k-means algorithm, Principal component analysis, Characterization of curves .... anism of Gaussian mixt

Characterization of the Psychological, Physiological and ... - CiteSeerX
Aug 31, 2011 - free thinking when eyes were closed and significantly altered the global and ... comfortably at a desk facing a computer screen. Eight subjects ..... application into Chinese and loan of two choice reaction testing software,.

Optimizing the thickness of the thermal insulation of ...
annual energy losses through a 1 m2 of roof construction. In analyses are taken ... authors [2,3,8,9,10,17,19,23] the alternative pathway which allowing to find ...

NMR Characterization of the Energy Landscape of ...
constant (KT(app)) and the free energy changes. (ΔGT. 0) as a function of ...... using automated experiment manager application of. JASCO software.

Regulation of proline biosynthesis, degradation, uptake ...
plants and also the alternate pathway of proline production via ornithine are ...... proposed that proline might act as an energy source during stress conditions ...

MOISTURE INDUCED DEGRADATION OF POROUS LOW-K ... - Lirias
Degree and depth of such damages increase with pore size and degree of their interconnectivity. Therefore, ultra low-k materials, which have high porosity and ...