ARTICLE IN PRESS

Applied Mathematics and Computation xxx (2006) xxx–xxx www.elsevier.com/locate/amc

Coefficient bounds for p-valent functions Rosihan M. Ali *, V. Ravichandran, N. Seenivasagan School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Dedicated to Professor H.M. Srivastava on the occasion of his 65th birthday

Abstract Sharp bounds for japþ2  la2pþ1 j and jap+3j are derived for certain p-valent analytic functions. These are applied to obtain Fekete-Szego¨ like inequalities for several classes of functions defined by convolution. Ó 2006 Elsevier Inc. All rights reserved. Keywords: Analytic functions; Starlike functions; Convex functions; p-Valent functions; Subordination; Convolution; Fekete-Szego¨ inequalities

1. Introduction Let Ap be the class of all functions of the form 1 X an z n f ðzÞ ¼ zp þ

ð1Þ

n¼pþ1

which are analytic P1in the open unit disk D :¼ {z : jzj < 1} and let A :¼ A1 . For f(z) given by (1) and g(z) given by gðzÞ ¼ zp þ n¼pþ1 bn zn , their convolution (or Hadamard product), denoted by f * g, is defined by 1 X an bn z n : ðf  gÞðzÞ :¼ zp þ n¼pþ1

The function f(z) is subordinate to the function g(z), written f(z)  g(z), provided there is an analytic function w(z) defined on D with w(0) = 0 and jw(z)j < 1 such that f(z) = g(w(z)). Let u be an analytic function with positive real part in the unit disk D with u(0) = 1 and u 0 (0) > 0 that maps D onto a region starlike with respect to 1 and symmetric with respect to the real axis. We define the class S b;p ðuÞ to be the subclass of Ap consisting of functions f(z) satisfying

*

Corresponding author. E-mail addresses: [email protected] (R.M. Ali), [email protected] (V. Ravichandran), [email protected] (N. Seenivasagan).

0096-3003/$ - see front matter Ó 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2006.08.100

Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS 2

R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

  1 1 zf 0 ðzÞ  1  uðzÞ; 1þ b p f ðzÞ As special cases, let S p ðuÞ :¼ S 1;p ðuÞ;

ðz 2 D and b 2 C n f0gÞ:

S b ðuÞ :¼ S b;1 ðuÞ;

S  ðuÞ :¼ S 1;1 ðuÞ:

For a fixed analytic function g 2 Ap with positive coefficients, define the class S b;p;g ðuÞ to be the class of all functions f 2 Ap satisfying f  g 2 S b;p ðuÞ. ThisPclass includes as special cases several other classes studied 1 in the literature. For example, when gðzÞ ¼ zp þ n¼pþ1 np zn , the class S b;p;g ðuÞ reduces to the class Cb,p(u) consisting of functions f 2 Ap satisfying   1 1 zf 00 ðzÞ 1þ 0 1 þ  uðzÞ; ðz 2 D and b 2 C n f0gÞ: b bp f ðzÞ The classes S*(u) and C(u) :¼ C1,1(u) were introduced and studied by Ma and Minda [9]. Define the class Rb,p(u) to be the class of all functions f 2 Ap satisfying   1 f 0 ðzÞ 1þ  1  uðzÞ; ðz 2 D and b 2 C n f0gÞ; b pzp1 and for a fixed function g with positive coefficients, let Rb,p,g(u) be the class of all functions f 2 Ap satisfying f * g 2 Rb,p(u). Several authors [4,8,10,16,17,12] have studied the classes of analytic functions defined by using the expres0 2 00 ðzÞ sion zff ðzÞ þ a z ffðzÞðzÞ. We shall also consider a class defined by the corresponding quantity for p-valent functions. Define the class S p ða; uÞ to be the class of all functions f 2 Ap satisfying 1 þ að1  pÞ zf 0 ðzÞ a z2 f 00 ðzÞ þ  uðzÞ p f ðzÞ p f ðzÞ

ðz 2 D and a P 0Þ:

Note that S p ð0; uÞ is the class S p ðuÞ. Let S p;g ða; uÞ be the class of all functions f 2 Ap for which f  g 2 S p ða; uÞ. We shall also consider the class LM p ða; uÞ consisting of p-valent a-convex functions with respect to u. These are functions f 2 Ap satisfying   1  a zf 0 ðzÞ a zf 00 ðzÞ þ 1þ 0  uðzÞ ðz 2 D and a P 0Þ: p f ðzÞ p f ðzÞ Further let Mp(a, u) be the class of functions f 2 Ap satisfying  a  1a 1 zf 0 ðzÞ zf 00 ðzÞ 1þ 0  uðzÞ ðz 2 D and a P 0Þ: p f ðzÞ f ðzÞ Functions in this class are called logarithmic p-valent a-convex functions with respect to u. In this paper, we obtain Fekete-Szego¨ inequalities and bounds for the coefficient ap+3 for the classes S p ðuÞ and S p;g ðuÞ. These results are then extended to the other classes defined earlier. See [1–7,9,13,14,18] for FeketeSzego¨ problem for certain related classes of functions. Let X be the class of analytic functions of the form wðzÞ ¼ w1 z þ w2 z2 þ   

ð2Þ

in the unit disk D satisfying the condition jw(z)j < 1. We need the following lemmas to prove our main results. Lemma 1. If w 2 X, then 8 > < t if t 6 1; 2 jw2  tw1 j 6 1 if  1 6 t 6 1; > : t if t P 1: When t <  1 or t > 1, equality holds if and only if w(z) = z or one of its rotations. If 1 < t < 1, then equality holds if and only if w(z) = z2 or one of its rotations. Equality holds for t = 1 if and only if wðzÞ ¼ Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

3

kþz kþz z 1þkz ð0 6 k 6 1Þ or one of its rotations while for t = 1, equality holds if and only if wðzÞ ¼ z 1þkz ð0 6 k 6 1Þ or one of its rotations. Also the sharp upper bound above can be improved as follows when 1 < t < 1:

jw2  tw21 j þ ðt þ 1Þjw1 j2 6 1 ð1 < t 6 0Þ and jw2  tw21 j þ ð1  tÞjw1 j2 6 1 ð0 < t < 1Þ: Lemma 1 is a reformulation of a Lemma of Ma and Minda [9]. Lemma 2 [5, inequality 7, p. 10]. If w 2 X, then, for any complex number t, jw2  tw21 j 6 maxf1; jtjg: The result is sharp for the functions w(z) = z2 or w(z) = z. Lemma 3 [11]. If w 2 X, then for any real numbers q1 and q2, the following sharp estimate holds: jw3 þ q1 w1 w2 þ q2 w31 j 6 H ðq1 ; q2 Þ;

ð3Þ

where 8 1 > > > > > > > > > jq2 j > > > > > > >  12 < jq1 jþ1 2 H ðq1 ; q2 Þ ¼ 3 ðjq1 j þ 1Þ 3ðjq1 jþ1þq2 Þ > > > >  2  2 12 > > q1 4 q1 4 1 > > q > 3 2 q21 4q2 3ðq2 1Þ > > > > >  12 > > jq1 j1 : 2 ðjq j  1Þ 3

1

3ðjq1 j1q2 Þ

for ðq1 ; q2 Þ 2 D1 [ D2 ; for ðq1 ; q2 Þ 2

7 S

Dk ;

k¼3

for ðq1 ; q2 Þ 2 D8 [ D9 ; for ðq1 ; q2 Þ 2 D10 [ D11  f2; 1g; for ðq1 ; q2 Þ 2 D12 :

The extremal functions, up to rotations, are of the form wðzÞ ¼ z3 ;

wðzÞ ¼ z;

wðzÞ ¼ w1 ðzÞ ¼ je1 j ¼ je2 j ¼ 1;

zðt1  zÞ ; 1  t1 z

wðzÞ ¼ w0 ðzÞ ¼

zð½ð1  kÞe2 þ ke1   e1 e2 zÞ ; 1  ½ð1  kÞe1 þ ke2 z

wðzÞ ¼ w2 ðzÞ ¼ ih0

zðt2 þ zÞ ; 1 þ t2 z ih0

e1 ¼ t0  e 2 ða  bÞ; e2 ¼ e 2 ðia  bÞ; rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h0 h0 ba ; b ¼ 1  t20 sin2 ; k¼ a ¼ t0 cos ; 2b 2 2  1  12 2q2 ðq21 þ 2Þ  3q21 2 jq1 j þ 1 t0 ¼ ; t1 ¼ ; 3ðjq1 j þ 1 þ q2 Þ 3ðq2  1Þðq21  4q2 Þ    12 jq1 j  1 h0 q1 q2 ðq21 þ 8Þ  2ðq21 þ 2Þ t2 ¼ ; cos ¼ : 3ðjq1 j  1  q2 Þ 2 2 2q2 ðq21 þ 2Þ  3q21 Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS 4

R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

The sets Dk, k = 1, 2, . . . , 12, are defined as follows:

1 D1 ¼ ðq1 ; q2 Þ : jq1 j 6 ; jq2 j 6 1 ; 2

1 4 D2 ¼ ðq1 ; q2 Þ : 6 jq1 j 6 2; ðjq1 j þ 1Þ3  ðjq1 j þ 1Þ 6 q2 6 1 ; 2 27

1 D3 ¼ ðq1 ; q2 Þ : jq1 j 6 ; q2 6 1 ; 2

1 2 D4 ¼ ðq1 ; q2 Þ : jq1 j P ; q2 6  ðjq1 j þ 1Þ ; 2 3 D5 ¼ fðq1 ; q2 Þ : jq1 j 6 2; q2 P 1g;

1 D6 ¼ ðq1 ; q2 Þ : 2 6 jq1 j 6 4; q2 P ðq21 þ 8Þ ; 12

2 D7 ¼ ðq1 ; q2 Þ : jq1 j P 4; q2 P ðjq1 j  1Þ ; 3

1 2 4 D8 ¼ ðq1 ; q2 Þ : 6 jq1 j 6 2;  ðjq1 j þ 1Þ 6 q2 6 ðjq1 j þ 1Þ3  ðjq1 j þ 1Þ ; 2 3 27

2 2jq jðjq j þ 1Þ D9 ¼ ðq1 ; q2 Þ : jq1 j P 2;  ðjq1 j þ 1Þ 6 q2 6 2 1 1 ; 3 q1 þ 2jq1 j þ 4

2jq1 jðjq1 j þ 1Þ 1 2 6 q2 6 ðq1 þ 8Þ ; D10 ¼ ðq1 ; q2 Þ : 2 6 jq1 j 6 4; 2 q1 þ 2jq1 j þ 4 12

2jq jðjq j þ 1Þ 2jq jðjq j  1Þ 6 q2 6 2 1 1 D11 ¼ ðq1 ; q2 Þ : jq1 j P 4; 2 1 1 ; q1 þ 2jq1 j þ 4 q1  2jq1 j þ 4

2jq jðjq j  1Þ 2 6 q2 6 ðjq1 j  1Þ : D12 ¼ ðq1 ; q2 Þ : jq1 j P 4; 2 1 1 q1  2jq1 j þ 4 3 2. Coefficient bounds By making use of the Lemmas 1–3, we prove the following bounds for the class S p;g ðuÞ: Theorem 1. Let u(z) = 1 + B1z + B2z2 + B3z3 +   , and r1 :¼

B2  B1 þ pB21 ; 2pB21

r2 :¼

B2 þ B1 þ pB21 ; 2pB21

If f(z) given by (1) belongs to S p ðuÞ, then

8p 2 > < 2 B2 þ ð1  2lÞpB1 apþ2  la2pþ1 6 pB2 1 >

: p  2 B2 þ ð1  2lÞpB21

r3 :¼

B2 þ pB21 : 2pB21

if l 6 r1 ; if r1 6 l 6 r2 ; if l P r2 :

Further, if r1 6 l 6 r3, then   1 B2 pB 2 2 1  þ ð2l  1ÞpB1 japþ1 j 6 1 : apþ2  lapþ1 þ 2pB1 B1 2 If r3 6 l 6 r2, then   1 B2 pB 2 2 1 þ  ð2l  1ÞpB1 japþ1 j 6 1 : apþ2  lapþ1 þ 2pB1 B1 2

ð4Þ

ð5Þ

ð6Þ

Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

For any complex number l,

pB B2 apþ2  la2pþ1 6 1 max 1; þ ð1  2lÞpB1 : 2 B1 Further, pB japþ3 j 6 1 H ðq1 ; q2 Þ; 3 where H(q1, q2) is as defined in Lemma 3, q1 :¼

4B2 þ 3pB21 2B1

and

q2 :¼

5

ð7Þ

ð8Þ

2B3 þ 3pB1 B2 þ p2 B31 : 2B1

These results are sharp. Proof. If f ðzÞ 2 S p ðuÞ; then there is an analytic function w(z) = w1z + w2z2 +    2 X such that zf 0 ðzÞ ¼ uðwðzÞÞ: pf ðzÞ Since zf 0 ðzÞ apþ1 ¼1þ zþ pf ðzÞ p

ð9Þ ! a2pþ1 2apþ2 2  þ z þ p p

! a3pþ1 3 3apþ3 3  apþ1 apþ2 þ z þ ; p p p

we have from (9), apþ1 ¼ pB1 w1 ;  1 pB1 w2 þ pðB2 þ pB21 Þw21 apþ2 ¼ 2 and apþ3

ð10Þ ð11Þ



pB1 4B2 þ 3pB21 2B3 þ 3pB1 B2 þ p2 B31 3 w3 þ ¼ w1 w2 þ w1 : 3 2B1 2B1

ð12Þ

Using (10) and (11), we have  pB  ð13Þ apþ2  la2pþ1 ¼ 1 w2  vw21 ; 2 where   B2 v :¼ pB1 ð2l  1Þ  : B1 The results (4)–(6) are established by an application of Lemma 1, inequality (7) by Lemma 2 and (8) follows from Lemma 3. To show that the bounds in (4)–(6) are sharp, we define the functions Kun (n = 2, 3, . . .) by zK 0un ðzÞ ¼ uðzn1 Þ; pK un ðzÞ

0

K un ð0Þ ¼ 0 ¼ ½K un  ð0Þ  1

and the functions Fk and Gk (0 6 k 6 1) by   zF 0k ðzÞ zðz þ kÞ ¼u ; F k ð0Þ ¼ 0 ¼ F 0k ð0Þ  1 pF k ðzÞ 1 þ kz and   zG0k ðzÞ zðz þ kÞ ¼u  ; Gk ð0Þ ¼ 0 ¼ G0k ð0Þ  1: pGk ðzÞ 1 þ kz Clearly the functions K un ; F k ; Gk 2 S p ðuÞ. We shall also write Ku :¼ Ku2. Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS 6

R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

If l < r1 or l > r2, then equality holds if and only if f is Ku or one of its rotations. When r1 < l < r2, then equality holds if and only if f is Ku3 or one of its rotations. If l = r1 then equality holds if and only if f is Fk or one of its rotations. Equality holds for l = r2 if and only if f is Gk or one of its rotations. h Corollary 1. Let u(z) = 1 + B1z + B2z2 + B3z3 +   , and let r1 :¼

g2pþ1 B2  B1 þ pB21 ; gpþ2 2pB21

r2 :¼

g2pþ1 B2 þ B1 þ pB21 ; gpþ2 2pB21

If f(z) given by (1) belongs to S p;g ðuÞ, then 8     gpþ2 > p 2 > > > 2gpþ2 B2 þ 1  2 g2pþ1 l B1 > > < pB1 apþ2  la2pþ1 6 2gpþ2 >     > > > gpþ2 > p >  B þ 1  2 l B21 : 2gpþ2 2 g2

r3 :¼

g2pþ1 B2 þ pB21 : gpþ2 2pB21

if l 6 r1 ; if r1 6 l 6 r2 ; if l P r2 :

pþ1

Further, if r1 6 l 6 r3, then apþ2  la2pþ1 þ

g2pþ1 2gpþ2 pB1

B2 1 þ B1

! ! gpþ2 pB1 2 2 2 l  1 B1 japþ1 j 6 : gpþ1 2gpþ2

If r3 6 l 6 r2, then apþ2  la2pþ1 þ

g2pþ1 2gpþ2 pB1

B2 1þ  B1

! ! gpþ2 pB1 2 2 2 l  1 B1 japþ1 j 6 : gpþ1 2gpþ2

For any complex number l, ( B pB 2 1 max 1; þ apþ2  la2pþ1 6 B1 2gpþ2

! ) gpþ2 1  2 2 l B1 : gpþ1

Further, japþ3 j 6

pB1 H ðq1 ; q2 Þ; 3gpþ3

ð14Þ

where H(q1, q2) is as defined in Lemma 3, q1 :¼

4B2 þ 3pB21 2B1

and

q2 :¼

2B3 þ 3pB1 B2 þ p2 B31 : 2B1

These results are sharp. Theorem 2. Let u be as in Theorem 1. If f(z) given by (1) belongs to S b;p;g ðuÞ, then, for any complex number l, we have ( ! ) B pjbjB g2pþ1 2 1 2 max 1; þ bp 1  2 l B1 : apþ2  lapþ1 6 B1 2gpþ2 gpþ2 The result is sharp. Proof. The proof is similar to the proof of Theorem 1. h Proceeding similarly, we now obtain coefficient bounds for the class Rb,p,g(u). Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

7

Theorem 3. Let u(z) = 1 + B1z + B2z2 + B3z3 +    If f(z) given by (1) belongs to Rb,p(u), then for any complex number l, ð15Þ apþ2  la2pþ1 6 jcj max f1; jvjg; where v :¼ l

pbB1 ðp þ 2Þ ðp þ 1Þ

2



B2 B1

and

c :¼

bpB1 : 2þp

Further, japþ3 j 6

jbjpB1 H ðq1 ; q2 Þ; 3þp

ð16Þ

where H(q1, q2) is as defined in Lemma 3, q1 :¼

2B2 B1

and

q2 :¼

B3 : B1

These results are sharp. Proof. A computation shows that   1 f 0 ðzÞ pþ1 pþ2 pþ3 1þ apþ1 z þ apþ2 z2 þ apþ3 z3 þ    : 1 ¼1þ p1 b pz bp bp bp Thus    bpB1  apþ2  la2pþ1 ¼ w2  vw21 ¼ c w2  vw21 ; pþ2 h i 1 lð2þpÞ 1 where v :¼ bpBðpþ1Þ  BB21 and c :¼ bpB . The result now follows from Lemmas 2 and 3. 2 pþ2

ð17Þ h

Remark 1. When p = 1 and uðzÞ ¼

1 þ Az 1 þ Bz

ð1 6 B 6 A 6 1Þ;

inequality (15) reduces to give the inequality [3, Theorem 4, p. 894]. For the class Rb,p,g(u), we have the following result. Theorem 4. Let u(z) = 1 + B1z + B2z2 + B3z3 +   . If f(z) given by (1) belongs to Rb,p(u), then for any complex number l, apþ2  la2pþ1 6 jcj max f1; jvjg; where v :¼

lg2pþ1 pbB1 ðp þ 2Þ B2  gpþ2 ðp þ 1Þ2 B1

and

c :¼

bpB1 : gpþ2 ð2 þ pÞ

Further, japþ3 j 6

jbjpB1 H ðq1 ; q2 Þ; ð3 þ pÞgpþ3

ð18Þ

where H(q1, q2) is as defined in Lemma 3, q1 :¼

2B2 B1

and

q2 :¼

B3 : B1

Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS 8

R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

These results are sharp. We now prove the coefficient bounds for S p;g ða; uÞ. Theorem 5. Let u(z) = 1 + B1z + B2z2 + B3z3 +    Further let r1 :¼

ð1 þ aðp þ 1ÞÞ½ð1 þ aðp þ 1ÞÞðB2  B1 Þ þ pB21  ; 2pB21

r2 :¼

ð1 þ aðp þ 1ÞÞ½ð1 þ aðp þ 1ÞÞðB2 þ B1 Þ þ pB21  ; 2pB21

ð1 þ aðp þ 1ÞÞ½ð1 þ aðp þ 1ÞÞB2 þ pB21  ; 2pB21 2lpB1 ðpa þ 2a þ 1Þ pB1 B2  ;  v :¼ 2 1 þ aðp þ 1Þ B1 ð1 þ aðp þ 1ÞÞ

r3 :¼

If f(z) given by (1) belongs to 8 > < cv 2 a c  la 6 pþ2 pþ1 > : cv

c :¼

pB1 : 2ð1 þ aðp þ 2ÞÞ

S p ða; uÞ, then if l 6 r1 ; if r1 6 l 6 r2 ;

ð19Þ

if l P r2 :

Further, if r1 6 l 6 r3, then ð1 þ aðp þ 1ÞÞ2 c 2 ðv þ 1Þjapþ1 j 6 c: apþ2  la2pþ1 þ p2 B21 If r3 6 l 6 r2, then ð1 þ aðp þ 1ÞÞ2 c 2 ð1  vÞjapþ1 j 6 c: apþ2  la2pþ1 þ 2 2 p B1 For any complex number l, apþ2  la2pþ1 6 c maxf1; jvjg:

ð20Þ

Further, pB1 H ðq1 ; q2 Þ; að5  p  p2 Þ þ 3 where H(q1, q2) is as defined in Lemma 3,   2B2 B21 pðað3p þ 5Þ þ 3Þ q1 :¼ þ 2ðaðp þ 1Þ þ 1Þðaðp þ 2Þ þ 1Þ B1 and   B3 B2 pðað3p þ 5Þ þ 3Þ þ p2 B21 ðpa þ a þ 1Þ þ : q2 :¼ 2ðaðp þ 1Þ þ 1Þðaðp þ 2Þ þ 1Þ B1 These results are sharp. japþ3 j 6

ð21Þ

Proof. If f ðzÞ 2 S p ða; uÞ. It is easily shown that   1 þ að1  pÞ zf 0 ðzÞ a z2 f 00 ðzÞ ð1 þ aðp þ 1ÞÞ ð1 þ aðp þ 2ÞÞ ð1 þ aðp þ 1ÞÞ 2 þ :¼ 1 þ apþ1 z þ 2apþ2  apþ1 z2 p f ðzÞ p f ðzÞ p p p   ð3 þ að5  p  p2 ÞÞ ð3 þ að3p þ 5ÞÞ ð1 þ aðp þ 1ÞÞ 3 apþ3  apþ1 apþ2 þ apþ1 z3 þ p p p þ 

ð22Þ

Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

The proof can now be completed as in the proof of Theorem 1. For the class

S p;g ða; uÞ,

9

h

we have the following result.

Theorem 6. Let u(z) = 1 + B1z + B2z2 + B3z3 +   , and let r1 :¼ r2 :¼ r3 :¼ v :¼

g2pþ1 ð1 þ aðp þ 1ÞÞ½ð1 þ aðp þ 1ÞÞðB2  B1 Þ þ pB21  2pB21 gpþ2 g2pþ1 ð1 þ aðp þ 1ÞÞ½ð1 þ aðp þ 1ÞÞðB2 þ B1 Þ þ pB21  2pB21 gpþ2 g2pþ1 ð1 þ aðp þ 1ÞÞ½ð1 þ aðp þ 1ÞÞB2 þ pB21  2pB21 gpþ2

2gpþ2 lpB1 ðpa þ 2a þ 1Þ g2pþ1 ð1

þ aðp þ 1ÞÞ

If f(z) given by (1) belongs to 8 > < cv apþ2  la2pþ1 6 c > : cv

2



; ;

;

pB1 B2  ; 1 þ aðp þ 1Þ B1

c :¼

pB1 : 2gpþ2 ð1 þ aðp þ 2ÞÞ

S p;g ða; uÞ, then if l 6 r1 ; if r1 6 l 6 r2 ; if l P r2 :

Further, if r1 6 l 6 r3, then ð1 þ aðp þ 1ÞÞ2 g2 c pþ1 2 ðv þ 1Þjapþ1 j 6 c: apþ2  la2pþ1 þ p2 B21 If r3 6 l 6 r2, then ð1 þ aðp þ 1ÞÞ2 g2 c pþ1 ð1  vÞjapþ1 j2 6 c: apþ2  la2pþ1 þ p2 B21 For any complex number l, apþ2  la2pþ1 6 c maxf1; jvjg: Further, japþ3 j 6

pB1 H ðq1 ; q2 Þ; gpþ3 ½að5  p  p2 Þ þ 3

ð23Þ

where H(q1, q2) is as defined in Lemma 3,   2B2 B21 pðað3p þ 5Þ þ 3Þ q1 :¼ þ 2ðaðp þ 1Þ þ 1Þðaðp þ 2Þ þ 1Þ B1 and  q2 :¼

 B3 B2 pðað3p þ 5Þ þ 3Þ þ p2 B21 ðpa þ a þ 1Þ þ : 2ðaðp þ 1Þ þ 1Þðaðp þ 2Þ þ 1Þ B1

These results are sharp. Remark 2. When p = 1 and uðzÞ ¼

1 þ zð1  2bÞ 1z

ða P 0; 0 6 b < 1Þ;

(19) and (20) of Theorem 5 reduces to [4, Theorem 4 and 3, p. 95]. Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS 10

R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

For the class LM p ða; uÞ, we now get the following coefficient bounds: Theorem 7. Let u(z) = 1 + B1z + B2z2 + B3z3 +    . Let c3 ðB2  B1 Þ þ c2 B21 ; c1 B21

r1 :¼

c1 :¼ 4p2 ðp þ 2  2aÞ; v :¼

c 1 l  c 2 B2  ; c3 B1

T 2 :¼

r2 :¼

c3 ðB2 þ B1 Þ þ c2 B21 ; c1 B21 2

r3 :¼

c2 :¼ ð1  aÞ½2pðp þ 1Þ þ a þ 2ap3 ; T 1 :¼ 

c3 B2 þ c2 B21 ; c1 B21 2

c3 :¼ 2ðp þ 1  aÞ ;

3ðp2 þ ð1  aÞð3p þ 2ÞÞ ; p3

1a a ½ðp þ 1Þ3 ½6pðp þ aÞ þ aða þ 1Þ  pa½6p3 þ p2 ð1 þ 7aÞ þ 3pð1 þ 3aÞ þ 3a þ : 6p6 p

If f(z) given by (1) belongs to LM p ða; uÞ, then 8 p2 B1 v > > > 2ðpþ22aÞ if l 6 r1 ; < p2 B1 if r1 6 l 6 r2 ; apþ2  la2pþ1 6 2ðpþ22aÞ > > > 2 : p B1 v if l P r2 : 2ðpþ22aÞ Further, if r1 6 l 6 r3, then c p 2 B1 2 : apþ2  la2pþ1 þ 3 ð1 þ vÞjapþ1 j 6 B 1 c1 2ðp þ 2  2aÞ If r3 6 l 6 r2, then c p 2 B1 2 : apþ2  la2pþ1 þ 3 ð1  vÞjapþ1 j 6 B 1 c1 2ðp þ 2  2aÞ For any complex number l, p 2 B1 max f1; jvjg: apþ2  la2pþ1 6 2ðp þ 2  2aÞ

ð24Þ

ð25Þ

ð26Þ

ð27Þ

Further, japþ3 j 6

p 2 B1 H ðq1 ; q2 Þ; 3ðp  3a þ 3Þ

where H(q1, q2) is as defined in Lemma 3, q1 :¼

2B2 T 1 p 4 B1  B1 2ðp  a þ 1Þðp  2a þ 2Þ

q2 :¼

B3 T 1 p4 ðc3 B2 þ c2 B21 Þ T 2 p6 B21   : B1 2c3 ðp  a þ 1Þðp  2a þ 2Þ ðp  a þ 1Þ3

and

These results are sharp. Proof. The proof is similar to the proof of Theorem 1. h Remark 3. As special cases, we note that for p = 1, inequalities (24)–(27) in Theorem 7 are those found in [15, Theorems 2.1 and 2.2, p. 3]. Additionally, if a = 1, then inequalities (24)–(26) are the results established in [14, Theorem 2.1, Remark 2.2, p. 3]. Our final result is on the coefficient bounds for Mp(a, u). Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

11

Theorem 8. Let u(z) = 1 + B1z + B2z2 + B3z3 +    Let r1 :¼

c1 ðB2  B1 Þ þ c2 B21 ; c3 B21

r2 :¼

c1 ðB2 þ B1 Þ þ c2 B21 ; c3 B21

2

c2 :¼ a þ pðp þ 2aÞ; c1 :¼ pð1 þ paÞ ; ½pðp þ 2aÞð2l  1Þ  aB1 B2  : v :¼ c3 B1

r3 :¼

c1 B2 þ c2 B21 ; c3 B21

c3 :¼ 2pðp þ 2aÞ;

If f(z) given by (1) belongs to Mp(a, u), then 8 2 p B1 v > > > 2ðpþ2aÞ if l 6 r1 ; < p2 B1 if r1 6 l 6 r2 ; apþ2  la2pþ1 6 2ðpþ2aÞ > > > 2 : p B1 v if l P r : 2 2ðpþ2aÞ

ð28Þ

Further, if r1 6 l 6 r3, then c p 2 B1 2 : apþ2  la2pþ1 þ 1 ð1 þ vÞjapþ1 j 6 B1 c 3 2ðp þ 2aÞ

ð29Þ

If r3 6 l 6 r2, then c p 2 B1 2 : apþ2  la2pþ1 þ 1 ð1  vÞjapþ1 j 6 B1 c 3 2ðp þ 2aÞ

ð30Þ

For any complex number l, p 2 B1 max f1; jvjg: apþ2  la2pþ1 6 2ðp þ 2aÞ

ð31Þ

Further, japþ3 j 6

p 2 B1 H ðq1 ; q2 Þ; 3ðp þ 3aÞ

where H(q1, q2) is as defined in Lemma 3, 2B2 3ðp2 þ 3pa þ 2aÞ B1 ; þ 2ð1 þ paÞðp þ 2aÞ B1 B3 3ðp2 þ 3pa þ 2aÞ ðp4 þ 5ap3 þ 3p2 að2a þ 1Þ þ pað9a  2Þ þ 2a2 Þ 2 B2 þ q2 :¼ þ B1 : 3 B1 2ð1 þ paÞðp þ 2aÞ 2pð1 þ paÞ ðp þ 2aÞ

q1 :¼

These results are sharp. Proof. For f(z) 2 Mp(a, u), a computation shows that !   ðp2 þ 2pa þ aÞa2pþ1 2ðp þ 2aÞapþ2 2 1  a zf 0 ðzÞ a zf 00 ðzÞ ð1 þ paÞapþ1 þ ¼1þ zþ  z þ 1þ 0 p p3 p2 p f ðzÞ p f ðzÞ   3ðp þ 3aÞ 3ðp2 þ 3pa þ 2aÞ p3 þ 3p2 a þ 3pa þ a 3 þ apþ3  apþ1 apþ2 þ apþ1 z3 p2 p3 p4 þ 

The remaining part of the proof is similar to the proof of Theorem 1.

h

b

1þz Remark 4. When p = 1 and uðzÞ ¼ ð1z Þ ða P 0; 0 < b 6 1Þ; (28) and (31) of Theorem 8 reduce to [2, Theorems 2.1 and 2.2, p. 23]. When p = 1 and a = 1, (28)–(30) of Theorem 8 reduce to [9, Theorem 3 and Remark, p. 7].

Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

ARTICLE IN PRESS 12

R.M. Ali et al. / Applied Mathematics and Computation xxx (2006) xxx–xxx

Acknowledgement The authors gratefully acknowledged support from the research grant IRPA 09-02-05-00020 EAR. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

S. Abdul Halim, On a class of functions of complex order, Tamkang J. Math. 30 (2) (1999) 147–153. N.E. Cho, S. Owa, On the Fekete-Szego¨ problem for strongly a-quasiconvex functions, Tamkang J. Math. 34 (1) (2003) 21–28. K.K. Dixit, S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math. 26 (9) (1995) 889–896. A. Janteng, M. Darus, Coefficient problems for certain classes of analytic functions, J. Inst. Math. Comput. Sci. Math. Ser. 13 (1) (2000) 91–96. F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969) 8–12. K. Kiepiela, M. Pietrzyk, J. Szynal, The sharp bound for some coefficient functional within the class of holomorphic bounded functions and its applications, Rocky Mountain J. Math. 31 (1) (2001) 313–326. O.S. Kwon, N.E. Cho, On the Fekete-Szego¨ problem for certain analytic functions, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 10 (4) (2003) 265–271. J.-L. Li, S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math. 33 (3) (2002) 313–318. W.C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Internat. Press, Cambridge, MA, pp. 157–169. K.S. Padmanabhan, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math. 32 (4) (2001) 543–550. D.V. Prokhorov, J. Szynal, Inverse coefficients for (a, b)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 35 (1981) 125–143, 1984. C. Ramesha, S. Kumar, K.S. Padmanabhan, A sufficient condition for starlikeness, Chinese J. Math. 23 (2) (1995) 167–171. V. Ravichandran, Y. Polatoglu, M. Bolcal, A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34 (2005) 9–15. V. Ravichandran, A. Gangadharan, M. Darus, Fekete-Szego¨ inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15 (2) (2004) 171–180. V. Ravichandran, M. Darus, M. Hussain Khan, K.G. Subramanian, Differential subordination associated with linear operators defined for multivalent functions, Acta Math. Vietnam. 30 (2) (2005) 113–121. V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math. Sci. 12 (1) (2004) 41–51. V. Ravichandran, C. Selvaraj, R. Rajalaksmi, Sufficient conditions for starlike functions of order a, J. Inequal. Pure Appl. Math. 3 (5) (2002). Article 81, 6 pp. (electronic). D.G. Yang, The Fekete-Szego¨ problem for Bazilevicˇ functions of type a and order b, J. Math. Res. Expos. 18 (1) (1998) 99–104.

Please cite this article in press as: R.M. Ali et al., Coefficient bounds for p-valent functions, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.100

Coefficient bounds for p-valent functions

Keywords: Analytic functions; Starlike functions; Convex functions; p-Valent ... to the function g(z), written f(z) 0 g(z), provided there is an analytic function.

214KB Sizes 2 Downloads 25 Views

Recommend Documents

FORMULAS FOR EXAM 1 1) Coefficient of variation ...
FORMULAS FOR EXAM 1. 1) Coefficient of variation (CV): CV= %100 . ∙ mean dev std. 2) Mid-range= 2 max min value value+. 3) Range= value value min max.

RESONANCES AND DENSITY BOUNDS FOR CONVEX CO ...
Abstract. Let Γ be a convex co-compact subgroup of SL2(Z), and let Γ(q) be the sequence of ”congruence” subgroups of Γ. Let. Rq ⊂ C be the resonances of the ...

Learning Bounds for Domain Adaptation - Alex Kulesza
data to different target domain with very little training data. .... the triangle inequality in which the sides of the triangle represent errors between different decision.

Improved Competitive Performance Bounds for ... - Semantic Scholar
Email: [email protected]. 3 Communication Systems ... Email: [email protected]. Abstract. .... the packet to be sent on the output link. Since Internet traffic is ...

EFFICIENCY BOUNDS FOR SEMIPARAMETRIC ...
Nov 1, 2016 - real-valued functions on Rk. Assume that we are given a function ψ which maps Rp ×Rk into Rq with ..... rt = Λft + ut,. (6) with Λ = (λ1,λ2) ∈ R2, ft a common factor that is a R-valued process such that E(ft|Ft−1) = 0 and. Var

Rademacher Complexity Bounds for Non-I.I.D. Processes
Department of Computer Science. Courant Institute of Mathematical Sciences. 251 Mercer Street. New York, NY 10012 [email protected]. Abstract.

BOUNDS FOR TAIL PROBABILITIES OF ...
E Xk = 0 and EX2 k = σ2 k for all k. Hoeffding 1963, Theorem 3, proved that. P{Mn ≥ nt} ≤ Hn(t, p), H(t, p) = `1 + qt/p´ p+qt`1 − t´q−qt with q = 1. 1 + σ2 , p = 1 − q, ...

Searching for Activation Functions - arXiv
Oct 27, 2017 - Practically, Swish can be implemented with a single line code change in most deep learning libraries, such as TensorFlow (Abadi et al., 2016) (e.g., x * tf.sigmoid(beta * x) or tf.nn.swish(x) if using a version of TensorFlow released a

Tight Bounds for HTN Planning
Proceedings of the 4th European Conference on Planning: Recent Advances in AI Planning (ECP), 221–233. Springer-. Verlag. Geier, T., and Bercher, P. 2011. On the decidability of HTN planning with task insertion. In Proceedings of the 22nd. Internat

Beating the Bounds - Esri
Feb 20, 2016 - Sapelli is an open-source Android app that is driven by pictogram decision trees. The application is named after the large Sapelli mahogany ...

Cloud Functions for Firebase & ​Wuu
Company. Designer and entrepreneur Paul Budnitz is well known for his iconoclastic approach towards redesigning everyday objects and technologies.

Cloud Functions for Firebase & Auger Labs
Artists receive their own beautifully designed, custom-branded Android and iOS apps tailored with their own content and featuring advanced technologies such ...

Cloud Functions for Firebase & ​Wuu
for Wuu to build our app on the fly, three times as fast and at 15% the cost of traditional development.” — Paul Budnitz, CEO. Learn more at: http://g.co/fireb.

Cloud Functions for Firebase & Auger Labs
a service that easily integrates with our front-end web app, our realtime cloud database, and our cloud storage services;. ○ a service that scales on-demand;.

Cloud Functions for Firebase & ​Smash.gg
Cloud Functions for Firebase & ​Smash.gg. SMASH.GG. “Firebase makes possible entirely new functionalities that would have been too time-consuming to ...

Multivariate Correlation Coefficient Decomposition ...
simulation and real Visual Evoked Potentials(VEP ) test show that, compared to traditional power mapping, the presented .... from real EEG data by MVCCD.

Spatial-Polarizational Correlation-Coefficient Function ...
spatial-correlation-coefficient functions across the basestation ... channels, spatial correlation. ..... The 2×2 spatio-polarizational cross-correlation matrix thus.

Projection Functions for Eye Detection
Building automatic face recognition system has been a hot topic of computer ..... About the Author – Xin Geng received his B.Sc. degree in Computer Science ...

Motion Feature and Hadamard Coefficient-Based Fast ...
the computation saving performance of the proposed algorithm ... Color versions of one or more of the figures in this paper are available online ... algorithm, the best reference frame of current block is deter- .... The high frequency signal power a

Improved Unicast Capacity Bounds for General Multi ...
to the interfaces tuned to channel 2, a bit-meters/sec of s1 s2 s3 s4 d1 d2 d3 d4 s d. (a) ... of the 11th annual international conference on mobile computing and.

LOWER BOUNDS FOR RESONANCES OF INFINITE ...
D(z) of resonances at high energy i.e. when |Re(z)| → +∞. The second ...... few basic facts about arithmetic group. Instead of detailing the ..... An alternative way to contruct similar convex co-compact subgroups of. PSL2(Z) with δ close to 1 i

Entropy-Based Bounds for Online Algorithms
operating system to dynamically allocate resources to online protocols such .... generated by a discrete memoryless source with probability distribution D [1, 18].

On Distortion Bounds for Dependent Sources Over ...
multiple access channel (MAC) or a 2-user broadcast channel .... Receiver j ∈ J is interested in lossy ... Receiver j ∈ J receives Yj = (Yj,1,Yj,2,...,Yj,n), and.

Cramer-Rao Lower Bounds for Time Delay and ...
ZHANG Weiqiang and TAO Ran. (Department of Electronic ... searches are not system atic and exten