Improving Silicon Solar Cells Efficiency with Aluminum Nitride (AlN) thin films

J.Dulanto

1

Outline • Our Material Science Group – Physics • What is photovoltaics? • What is passivation? • State of the art: Silicon Solar Cells • Research on future materials (AlN)

• Our research in cooperation with the Fraunhofer Institute for Solar Energy Systems (ISE) and Techniche Universitat Ilmenau

2

Group of Materials Science (Physics, PUCP) Total: 18 3 Cientists/PhD Roland Weingärtner

Amaru Töfflinger

Andrés Guerra

3 Phd students

10 Master students

1 Bachelor student

1 Assistant

3

Group of Materials Science (Physics, PUCP) Lines of investigation

Latest publications ▪ J. A. Guerra, et al., J. Phys. D: Appl. Phys. 121, 173104. (2016)

▪ Wide band-gap semiconductors doped with rare earths for solar cells and light emitters

▪ N. Preissler, J. A. Töfflinger, et al., Prog. Photovolt., DOI: 10.1002/pip.2852 (2016)

▪ Passivation materials for silicon solar cells

▪ J. A. Guerra, et al., J. Phys. D: Appl. Phys. 49, 375104. (2016)

▪ Characterization of a-SiC:H for the photoelectrochemical production of Hydrogen Deposition

▪ N. Preissler, J. A. Töfflinger, et al., Phys. Status Solidi A 213 (7), 1697 (2016)

Characterization

Magnetron sputtering

Optical properties 1

3

D2

1

H4

G4

5

TEM SiC:H Other: AlN:H, SiN:H, ITO...

CL Intensities [a.u.]

Structural properties

3

H6

Tm3+

7

D4

SiC:Tb3+

Application In cooperation with

Rare earth luminescence

F5

4

Tb3+ 3+

H13/2

Dy

7

Eu3+

6

F9/2 5

D0

F1,2

4

G5/2

6

H7/2

4

200

400

600

LPC-Si

line-shaped laser or ebeam IL (≈ 200 nm)

3+

H9/2Sm

G5/2

6

2

2

F5/2

Thin-film solar cell

3+ F7/2 Yb

800

Wavelength [nm]

1000

liquid Si

a-Si (10 – 20 µm)

glass (1 – 3 mm)

Electrical properties

4

Potential of solar energy

5

•State of the art - commertial solar modules

6

©Fraunhofer ISE: Photovoltaics Report, updated: 6 June 2016 6

Semiconductors

https://www.edx.org/course/solar-energy-delftx-et3034x-0

7

Intrinsic and Extrinsic semiconductors

N-doped Si

P-doped Si

Extrinsic http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html 8

The Photovoltaic effect Standard mc-Si (p) Solar cell efficiency η ≈ 16%

ARC + Front passivation (standard SiNx)

(n+)

+

3.

1. 1. Absorption of light and generation of charge carriers

2. mc-Si (p)

Al-BSF

(p++)

> 200 µm

+

2. Separation of charge carriers (p/n-junction: E-field)

3. Extract photo-voltage and -current -> electric power

9

Diffusion

https://www.edx.org/course/solar-energy-delftx-et3034x-0

10

Chemical Passivation

-

+

Passivation layer: SiO2 http://www.iue.tuwien.ac.at

11

Field Effect Passivation E

Isolator

+ e + e + e + e + + e e + e + + e e + + + e

h h

N-doped Si

h

Fixed charges

12

What is Passivation? Reduction of Recombination rate (carriers) Chemical Passivation

Field Effect

13

Samples from ISE Freiburg

-2

Charge Qiso,eff (cm )

CV Characterization

12

1x10

0

12

-1x10

0

100

200

300

400

500

Anneal T (°C)

Capacitance-Voltage Curve MIS capacitor (metal-insulator-semiconductor)

Dit (1/eVcm2)

Qeff (fixed charge density)

1013

1012

1011

1010 -0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

PHIs (eV)

Dit (interface trap density) 14

The Photovoltaic effect (II)

Standard mc-Si (p) Solar cell efficiency η ≈ 16%

ARC + Front passivation (standard SiNx)

1. Absorption of light and generation of charge carriers

1 .+ +

mc-Si (p)

2. Al-BSF (p++)

> 200 µm

-

3.

(n+)

2. Separation of charge carriers (p/n-junction: E-field) 3. Extract photo-voltage and -current -> electric power Solar cell efficiency η: η

15

Trend in the silicon wafer based solar cells “Standard” solar cell η ≈ 16%

FS contact (n+)

+

Passivated Emitter and Rear Cell (PERC) η > 18%

ARC +

Absorber

(p++)

(n + )

c-Si (CZ, mc) (p)

Passivation stack

< 150 µm

> 200 µm

Emitter

c-Si (CZ, mc) (p)

Al

RS contact

Heterojunction solar cell (HIT) η > 20% +)

( n

+

c-Si (CZ, mc) (p)

( n +)

TCO a-Si:H (n) a-Si:H (i)

Key technology: high level passivation!!!

Si-Absorber a-Si:H (i) a-Si:H (p) TCO

16

+

Surface passivation of c-Si Passivated Emitter and Rear Cell (PERC) η > 18%

+

Qf

(n + )

+

-

Dit

+

c-Si (CZ, mc) (p)

-

c-Si

-

< 150 µm

SiN:H

+

+

Surface passivation =

Reduction of the recombination of photogenerated charge carriers at surfaces Main recombination parameters: Interface defect state density Dit Fixed charge density Qf

Chemical passivation Field-effect passivation

17

Surface passivation of c-Si

SiNx

Inversion

EF

DB E

c-Si (p)

Si N

qS0

x1

Under illumination c-Si (p) SiO2 or SiNx

x1 (µm)

2. Recombination ↗ in c-Si bulk: Jsc ↘, Voc ↘ Positive charges in SiNx limit p-type c-Si solar cell efficiency

18

•Passivation properties of AlOx:

AlOx (or Al2O3) for passivation of p-type c-Si [1]

n-type c-Si: positive charges in SiNx p-type c-Si: negative charges in AlOx [1] Dingemans and Kessels, J. of Vac. Sc. & Techn. A 30 (4) (2012) [2] Hoex, et al., Appl. Phys. Letters 89 (11) (2006)

19

•Requirements on the passivation system



Surface passivation



Optical match Minimal Reflection at the front side

Reduction of recombination centers at surfaces and interfaces Partial reflection

Incident light

(n+)

Maximal back Reflection at rear side



Volume passivation



Good insulating properties

(p) c-Si (CZ, mc)

+

(n+)

20

•State of the art of commercial Silicon solar cells

2016:

90% market share for crystalline Si

Silicon material:

30-40% of solar module cost

Passivated emitter and rear cell (PERC)

Low efficiency η = 15-16 % Low cost €

High efficiency η > 20 % Higher cost $

> 200 µm

+

ARC & Front passivation SiNx:H

(n+) c-Si (p)

Al-BSF

(p++)

Backside passivation + reflector: AlOx

+

(n+) c-Si (p) (p++) Al

< 150 µm

Commercial solar cell

n-type c-Si: positive charges in SiNx p-type c-Si: negative charges in AlOx 21

•AlN for passivation of PERC solar cells

Passivated emitter and rear cell (PERC), efficiency η > 20%

SiNx

+

(n+)

Replace two standard passivation materials with one: AlN:H[1]

c-Si (p) Samples from ISE Freiburg (p++)

AlN is suitable for passivation of n- and p-type c-Si

12

-2

Al

Charge Qiso,eff (cm )

AlOx

1x10

0

12

-1x10

0

100

200

300

400

500

Anneal T (°C)

[1] G. Krugel, et. al., Energy Procedia 55, 797–804 (2014) [2] L. Montañez, J. A. Töfflinger, et al., Proceedings of 31st EU-PVSEC, 969 (2015) [3] L. Montañez, J. A. Töfflinger, et al., submitted to Materials Today Proceedings EDS2016

22

•AlN for passivation of PERC solar cells

AlN (as-deposited) compared to AlOx (fired) and SiO2 (FGA): Chemical passivation Interface: c-Si/AlOx (PECVD)

11

10

47 cm/s

c-Si/SiO2 (thermal)

AlN

SiO2

sputtering) (thermal)

-1 -2 -3 -4 -5

10

10

0 -2

Valence Band

-1

-2

Dit (eV cm )

12

10

c-Si/AlN (sputtering)

12

13

10

1

Qfix (10 cm )

9 cm/s

(c)

14

10

Conduction Band

(b)

Field-effect passivation

0.0

0.2

0.4

0.6

E-EV (eV)

0.8

1.0

1.2

AlOx

AlN

SiO2

(PECVD) (sputtering) (thermal)

Next steps: Optimize AlN passivation properties through thermal treatments [1] G. Krugel, et. al., Energy Procedia 55, 797–804 (2014) [2] L. Montañez, J. A. Töfflinger, et al., Proceedings of 31st EU-PVSEC, 969 (2015) [3] L. Montañez, J. A. Töfflinger, et al., submitted to Materials Today Proceedings EDS2016 23

AlN samples (ISE)

Negative fixed charges

? ? ? ? ------------------------------------------------------------xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Dit (defects)

24

AlN: C-V characterization 50nm thin film of sputtered AlN over p-type silicon wafer give 4 samples: • Sample A9: as deposited

• Sample A10: treated thermally at 200℃ • Sample A11: treated thermally at 300℃ • Sample A8: treated thermally at 500℃ 25

Results’ summary: Sample + thermal treatment

Dit @ mid gap

Qiso,eff @ mid gap

A9:

N/A (leakage)

Fixed (0.5x1012cm-2)

A10: 200°C

Low Dit (1.4x1011 eV-1cm-2)

Unstable

A11: 300°C

Low Dit (1.5x1011 eV-1cm-2)

Unstable

A8 : 500°C

Low Dit (1.4x1011 eV-1cm-2)

Fixed (-1.0x1012cm-2) Negative charge!!

as-deposited

Fixed charge

? ?

??

----------------xxxxxxxxxxxxxxxxxxxxxxxxxxx

Dit (defects)

26

Summary • AlN is a promising material as a passivation layer: • Excellent chemical passivator • Good field effect passivator for n-type and p-type silicon • Optically, it serves as a anti-reflection coating layer. • All in a one material, reduces production cost!

27

References: • [1] S.M. Sze, Physics of Semiconductor Devices. Third edition, Chapter 4 (2007). • [2] G. Krugel, et al., Study of hydrogenated AlN as an antireflective coating and for the effective surface passivation of silicon, Phys. Status Solidi RRL 7, No. 7, 457–460 (2013). • [3] G. Krugel, et al., Passivation of solar cell emitters using aluminum nitride, Proc. 39th IEEE PV Specialists Conf., Tampa, Florida, USA, 2013. • [4] G. Krugel, et al., Investigations on the Passivation Mechanism of AlN:H and AlN:H-SiN:H Stacks, Energy Procedia 55, 797–804 (2014). • [5] J. A. Toefflinger, Interface investigations of passivating oxides and functional materials on crystalline silicon, PhD Thesis, Technischen Universität Berlin (2014) 28

Acknowledgements

Materials Science group, Sección Física Roland Weingärtner, Amaru Töfflinger

Rolf Grieseler PNICP contract No 274-PNICP-BRI-2015

29

coloquio-2017-05-18-Dulanto.pdf

Whoops! There was a problem loading this page. Retrying... Whoops! There was a problem loading this page. Whoops! There was a problem loading this page.

3MB Sizes 2 Downloads 172 Views

Recommend Documents

No documents