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Abstract. In an orthogonal projection of a convex polyhedron P the visibility ratio of a face f (similarly of an edge e) is the ratio of orthogonally projected area of f (length of e) and its actual area (length). In this paper we give algorithms for nice projections of P such that the minimum visibility ratio over all visible faces (over all visible edges) is maximized.
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Introduction



Polyhedra are 3D solid objects. When we view a polyhedron from a view point, our eyes or camera computes its 2D projection, which can be either orthogonal or perspective based on whether the view point is at infinity or not respectively. Projections are important properties of polyhedra and other 3D objects due to its potential application in the field of computer graphics [10], object reconstruction [4, 5], machine vision [1], computational geometry [9, 8], and three dimensional graph drawing [7]. Given a polyhedron or other 3D objects such as a set of line segments, it is a well studied problem to compute its “nice” projections based on different criteria for “niceness”. McKenna and Seidl [11] studied this problem for convex polyhedra. They presented O(n2 )-time algorithms for computing orthogonal projections of a convex polyhedron where the projected area is maximum and minimum. In a similar problem, when a convex polyhedron is orthogonally projected in an arbitrary lower dimension Burger and Gritzmann [6] proved that finding the minimum and maximum volume of the polyhedron is NP-hard, and they gave several approximations algorithms. Bose et al. [3] studied this problem for line segments in 3D. In their algorithms the criteria for niceness includes minimum crossings among line segments, minimum overlapping among line segments and vertices, and monotonicity of polygonal chains. Eades et al. [7] also studied this problem with similar criteria from the view point of three dimensional graph drawing.



Recently Biedl et al. [2] have studied the problem of computing projections of convex polyhedra such that the silhouette (i.e., the projection boundary) meets certain criteria. They have given several algorithms where a given set of vertices, edges and/or faces appear on the silhouette. While finding the projections of a polyhedron, it is usually assumed that the degenerate projections are avoided, where a degenerate projection means the view point is coplanar with one or more faces. In the above-mentioned algorithms for computing nice projections of convex polyhedra the degenerate projections are avoided. But in those algorithms it may be possible that the resulting nice projection is almost degenerate. For example, consider the maximum area projection of a convex polyhedron of Figure 1(a). In this projection the big face is visible almost to its full area but the adjacent tiny faces are almost lost. In other words, for some visible faces the visibility ratio, which is the ratio of projected area and actual area, is very small. Similar situation may happen for some edges too. But in some applications such as visual inspection for quality control of manufacturing 3D objects (like toys), a natural expectation is to find a projection where each visible face or edge is viewed in reasonable “amount” so that they can be inspected comfortably for any anomaly (like air pockets).
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Fig. 1. (a) A maximum area projection, (b) but our algorithm would generate a projection like this. (c) Minimizing the maximum visibility ratio may incur a degenerate projection.
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The problem



In this paper, we give algorithms for finding nice orthogonal projections of a convex polyhedron such that in a particular “view” each of the visible faces and edges is viewed as much as possible. More formally, we give algorithms to find orthogonal projections such that within a particular view the minimum visibility ratio over all visible faces (similarly over all visible edges) is maximized. For example, for the polyhedron of Figure 1(a), our algorithm would prefer a projection like that in Figure 1(b) as a nice projection of faces.



We give separate algorithms for faces and edges. Moreover, for edges we consider line segments in 3D and edges of a polyhedron. We consider convex polyhedra and orthogonal projections only. (So from now on by a polyhedron we mean it to be convex and by a projection we mean it to be an orthogonal projection.) For nice projections of faces and edges in a view V of P we give O(|V| log |V|+ |C|)-time algorithms, where |V| is the number of faces visible in V and |C| is the size of the “view cone” of V and can be as small as or less than |V|. Over all possible views of P , our algorithms take a total of O(n2 log n) time, where n is the number of vertices of P . For a set of line segments E in 3D, we give an O(|E| log |E|)-time algorithm. While delving the case of maximizing the minimum visibility ratio, it is natural to ask “Is it possible to minimize the maximum visibility ratio?” Yes, it is possible, and more interestingly, it is possible by using the same technique that we will use for maximizing the minimum ratio. (By the end of this paper it will be clear to the reader.) However, such a nice projection may incur a degenerate projection, which is against the motivation in this paper, and that’s why in this paper we do not explore that criteria. For example, in Figure 1(c) the top face f is almost at right angles with the side faces and for that the maximum visibility ratio is due to f . To minimize this ratio we can rotate f as long as an adjacent face does not degenerate. Similar may be the case with lines. 1.2



Outline of the paper



Rest of the paper is organized as follows. In Section 2 we define the visibility ratio and give other preliminaries. Then Sections 3 and 4 give algorithms for nice projections of faces and edges respectively. Finally, Section 5 concludes the paper with some future work.
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Preliminaries



A convex polyhedron P is the bounded intersection of a finite number of halfspaces. A face/edge/vertex of P is the maximal connected set of points which belong to exactly one/exactly two/at least three planes that support these half spaces. By Euler’s theorem [14] every convex polyhedron with n vertices has Θ(n) edges and Θ(n) faces. We represent an (orthogonal) view direction d as a unit vector pointing from the origin to the view point (at infinity). The visibility ratio rf of a visible face f of P with respect to d is the ratio of the projected area of f from d and its actual area. More formally, if θ is the angle between d and the outward normal of f and if θf = 90◦ − θ, then rf =



|f | cos θ = sin θf , |f |



where |f | means the area of face f .



Let s be a unit sphere centered at the origin. Each point of s uniquely represents a view direction and let p be the point on s for d. The translated plane of f is the plane that is parallel to f and passes through the origin, and the intersection of this plane with s gives a great circle and let it be g. Since θf ≤ 90◦ (and sin θf ∝ θf for 90◦ ≤ θf ≤ 0◦ ), the ratio rf with respect to d can alternatively be defined as the geodesic distance of p from g on s. Similarly, the visibility ratio re of an edge e in 3D with respect to d is the ratio of the projected length of e from d and its actual length. If the acute angle between d and e (assuming e is translated to the origin) is θe , then re is: re =



|e| sin θe = sin θe , |e|



where |e| means the length of line e. The translated line of an edge e is the line that is parallel to e and passes through the origin, and the intersection of this line with s gives two antipodal points. The ratio re with respect to d can alternatively be defined as the minimum geodesic distance of p on s from these two antipodal points. Among the two half spaces of the translated plane of f one that contains all view directions from which f is visible is called the positive half space of f , and the other one is called the negative half space of f . Consider the set of translated planes for all faces (visible or invisible) of P . Arrangement of these planes divides the 3D space into cones called the view cones. Within a particular view cone, all view directions have a unique combinatorial projection of P called a view of P . It is known that a convex polyhedron with n vertices has Θ(n2 ) different views [13]. Consider a view V of P . The intersection of the view cone of V with s gives a spherical convex polygon called the view polygon of V. Let this view polygon be C. Each point within C now represents a view direction for V.
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Nice projection of faces



Let the set of faces visible in V be F . Consider the positive half spaces for all faces in F . Intersection of these half spaces gives a cone called the face cone of V. Intersection of this face cone with s gives another spherical polygon called the face polygon of V. Let this face polygon be D. Lemma 1. C ⊆ D. Proof. Both C and D are connected set. A view direction outside D does not see at least one face of F . A view direction within D sees all faces of F , but it may also see one or more faces that are not in F . Let f 0 be such a face. Let h be the negative half space of f 0 . Then C ⊆ D ∩ h. Note that if f 0 does not exist, then C = D. u t Let GF be the set of great circles of s that are due to the translated planes of the faces of F . Among GF let GD be the set of those who contribute an



edge in the boundary of D. Then GD ⊆ GF . Of course, all faces in F may not contribute to the face cone of V. For example, in Figure 2 five faces are visible but the corresponding face polygon does not contain any piece of the great circle that is due to the shaded top face. We now have the following obvious lemma. Lemma 2. From any point within D the closest among all great circles in GF must be one in GD .



D s



Fig. 2. The great circle corresponding to the top face of the polyhedron does not contribute to the boundary of the corresponding face polygon D.



After the above two lemmas, our problem of finding an optimum projection for V now reduces to the problem of finding a point p inside C such that the minimum distance of p from the great circles in GD is maximized. In what follows in this section we describe how to do that. 3.1



The optimum projection



We first consider a special case where F has only one face f . Let y be the point on s that represents the outward normal of f . y is called the normal point of f . Then optimum p is y, if y is within C. Otherwise optimum p is a point on C that is closest to y, which can be found trivially in O(|C|) time (by considering only the corner points of C or by considering for each edge x of C a point z such that the segment yz is perpendicular to x.) Now we come to the general case. Medial axis of a polygon Q is the generalized voronoi diagram of Q where the voronoi sites are the vertices and edges of Q. There exists several O(n log n)-time algorithms for computing medial axis on a sphere where the sites are points and segments of great circles [12]. We take the medial axis of D on s and let it be M . Since D is convex and its edges are segments of great circles the edges of M are also segments of great circles. We take the intersection of M and C. This intersection will partition C into small pieces called the voronoi pieces. See Figure 3(a). Consider a particular voronoi piece v. Let the voronoi site of v, which is an edge of D, be a segment of the great circle g. For any point p in v, g is the closest among all great circles in GD . The optimum value of p within v is the
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Fig. 3. (a) Intersection of C and M inside D. (b) Finding the candidate point (the filled circle) of ev from g.



point of v that is furthest from g. We call this point the candidate point of v and its geodesic distance from g as its value. Finding a candidate point is not obvious and needs some exploration. Let ev be a boundary edge of v. We will find the point of ev that is furthest from g, we again call this point the candidate point of ev . Then the candidate point of v is the maximum among them for all boundary edges of v. Remember that ev is also a segment of a great circle. Let y be the middle point of the half circle that contains ev and is bounded by g. If y is in ev , then the candidate point of ev is y. Otherwise it is a corner point of ev . See Figure 3(b). Finally, the resulting p is the maximum among all candidate points. We now see the time complexity of our algorithm. Each edge of M intersects C into at most two points. So the total number of intersection points of M and C is O(|M |+|C|). Thus the intersection of M and C has a total size of O(|M |+|C|). Moreover, this intersection can be found in O(|M |+|C|) time by first finding one intersection point and then always moving to the other adjacent voronoi region of the currently intersected voronoi edge of M . Since P the voronoi pieces are the connected regions of C due to this intersection, |v| = O(|M | + |C|). The candidate point of ev can be found in constant time. Thus the candidate point of v can be found in O(|v|) time. So over all v finding optimum p takes O(|M | + |C|) time. Computing M can be done in O(|D| log |D|) time [12]. Thus the total time taken by the algorithm is O(|D| log |D| + |M | + |C|). Since |M | is O(|D|) and O(|D|) is O(|V|), where O(|V|) is the number of faces visible in V, this time complexity becomes O(|V| log |V| + |C|). The following theorem summarizes the above result. Theorem 1. For a view V of P the projection in which the minimum visibility ratio of the visible faces is maximized can be found in O(|V| log |V| + |C|) time, where |V| is the number of faces visible in V and |C| is the size of the view cone of V.



Corollary 1. Optimum projections for all views of P can be found in O(n2 log n) time. Proof. Remember that all of O(n2 ) views of P are the result of the arrangement of O(n) planes parallel to O(n) faces of P . So the complexity of the arrangement is also O(n2 ). Between any two adjacent view P cones the only P difference is the common face of the cones. P So over all views V O(|V|) and V O(|C|) is O(n2 ) and thus the total time is V O(|V| log |V|) = O(n2 log n). u t
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Nice projection of line segments



Let E be the set of line segments. We take the corresponding translated lines for E and then take their intersections with s. Thus we get |E| pairs of antipodal points, whose set we denote by S. 4.1



Line segments in 3D



Here we do not have any constraint of views and the problem of finding an optimum projection reduces to finding a point p on s such that the minimum distance of p on s from the points of S is maximized. To do that we take the voronoi diagram V of S on s. If E contains only one edge, then V is simply a great circle and p is any point of V . For E containing more than one edge, V contains at least two voronoi vertices and in that case p is clearly one of those voronoi vertices. By the algorithm of [12] we can find V in O(|E| log |E|) time. Since the size of V is O(|E|), total time required for finding an optimum p is O(|E| log |E|). Theorem 2. Given a set of line segments E, a projection in which the minimum visibility ratio over all segments is maximized can be found in O(|E| log |E|) time. 4.2



Line segments of a polyhedron



Let V be a particular view of P with visible edge set E, view polygon C, and the corresponding set of antipodal points S. Then the problem of finding an optimum projection reduces to the the problem of finding a point p within C such that the minimum distance from p on s to the points of S is maximized. Since in a view of a polyhedron it is not possible to see only one edge, V is not simply a great circle and has voronoi vertices. We take the intersection of V and C. As before, for each voronoi piece v (created by the intersection) we find the candidate point of v. Since the voronoi edges of V are segments of great circles this point is a corner point of v. Resulting p is the maximum among all candidate points in C. As before, time complexity of the above algorithm is O(|V| log |V| + |C|). Theorem 3. For a view V of P the projection in which the minimum visibility ratio of a line is maximized can be found in O(|V| log |V| + |C|) time, where |V| is the number of faces visible in V and |C| is the size of the view cone of V. Moreover, for all views of P these projections can be found in O(n2 log n) time.
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Conclusion



In this paper, we studied several nice projections of convex polyhedra. We have shown how to find an orthogonal projection for a particular view such that the minimum visibility ratio over the visible faces is maximized. For lines in 3D we have shown a similar result. An alternative approach of computing nice projection of faces would be as follows. Remember that rf for a face f increases if the angle θ between the view direction and the normal of f decreases. So finding nice projections of faces is equivalent to finding p on s such that its maximum geodesic distance from the normal points is as small as possible. This can be done by considering the furthest site voronoi diagram M 0 of the normal points, taking the intersection of C and M 0 , then computing the candidate point for each voronoi piece as the point whose distance is the minimum from the corresponding normal point, and finally finding an optimum p as the minimum among all candidate points. However, we found this approach less convenient and avoided for clarity’s shake. As indicated at the begining of the paper, now it should be clear that our algorithm can be easily modified, in conjunction with the above idea of using furthest site voronoi diagram, to find nice projections where the maximum visibility ratio of the faces or edges is minimized. The time complexity should also remain the same. Finally, we find the following open problem interesting for future work: Is there any way to find a projection such that sum of the projected length of the visible edges is maximum or minimum?
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