Journal of Web Librarianship

ISSN: 1932-2909 (Print) 1932-2917 (Online) Journal homepage: http://www.tandfonline.com/loi/wjwl20

Current Trends and Future Directions in Data Curation Research and Education Nicholas M. Weber , Carole L. Palmer & Tiffany C. Chao To cite this article: Nicholas M. Weber , Carole L. Palmer & Tiffany C. Chao (2012) Current Trends and Future Directions in Data Curation Research and Education, Journal of Web Librarianship, 6:4, 305-320, DOI: 10.1080/19322909.2012.730358 To link to this article: http://dx.doi.org/10.1080/19322909.2012.730358

Published online: 14 Dec 2012.

Submit your article to this journal

Article views: 647

View related articles

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=wjwl20 Download by: [Boise State University]

Date: 22 June 2017, At: 14:54

Journal of Web Librarianship, 6:305–320, 2012 Copyright © Taylor & Francis Group, LLC ISSN: 1932-2909 print / 1932-2917 online DOI: 10.1080/19322909.2012.730358

Current Trends and Future Directions in Data Curation Research and Education NICHOLAS M. WEBER, CAROLE L. PALMER, and TIFFANY C. CHAO Center for Informatics Research in Science and Scholarship, Graduate School of Library and Information Science, University of Illinois at Urbana Champaign, Champaign, Illinois, USA

Digital research data have introduced a new set of collection, preservation, and service demands into the tradition of digital librarianship. Consequently, the role of an information professional has evolved to include the activities of data curation. This new field more specifically addresses the needs of stewarding and preserving digital research data. In this article, the authors offer an overview of data curation research and education in the field of library and information science, focusing specifically on the current state of professional practice, trends in education and workforce development, and future directions for both basic and applied research. Drawing on the proceedings from two data curation summits held in late 2010, the authors highlight and build on the major insights and recommendations that emerged from discussions among more than 50 leading experts from government agencies, data centers, the field of library and information science, and the publishing industry. Specifically, they note the importance of developing interoperable standards for describing datasets, the need for curators to participate in data privacy and ownership policy development, the demand for a workforce to support discipline-specific data practices, and the varied approaches for professional education that will be required by a data-driven research agenda in both the sciences and humanities. The authors conclude with an overview of future directions for research and workforce development in data curation.

Received 17 January 2012; accepted 31 July 2012. Address correspondence to Nicholas M. Weber, Carole L. Palmer, or Tiffany C. Chao, Center for Informatics Research in Science and Scholarship, Graduate School of Library and Information Science, University of Illinois at Urbana Champaign, 501 E. Daniels St., Champaign, IL 61820. E-mail: [email protected]; [email protected]; or [email protected] 305

306

N. M. Weber et al.

KEYWORDS data curation, informatics, scholarly communications, workforce development

BACKGROUND The Emergence of Data Curation in Library and Information Science The preservation, organization, and management of scholarly output have long been core activities of librarians and archivists, and these roles remain central to the profession. However, as scholarly communication has transitioned from paper-based holdings to digitally networked environments, new professional responsibilities and approaches have emerged. These new roles require a considerable amount of retooling in the practice and education of information professionals, first in digital libraries and now in data curation. As with digital library services, and physical library services before that, data curation is about providing access to information to support the needs of user communities (Palmer, Renear, and Cragin 2008). Thus, the essence of librarianship holds—maximizing the “effective use of graphic records” (Shera 1971, 57) by adding value that is aligned with the social structuresof a broader intellectual community (Taylor 1986). Data curation is not, however, an activity that will be isolated in libraries or in any one type of institution or organization. It is a collaborative enterprise that requires the application of a range of data expertise, beginning with research planning and extending through phases of long-term stewardship and the reuse of data for new purposes. Information professionals that specialize in curating research data must be active in many kinds of organizations where data are generated and used, as well as traditional venues like libraries, archives, and data centers. Moreover, knowledge, skills, and principles from information science and archival science, as well as other cognate areas, are critical to the development ofdata curation expertise needed for a research data workforce. The turn toward data curation in library and information science (LIS) has been largely in response to new service demands associated with digital research data. As the essential raw materials of research, data are now recognized as valuable assets that, in digital form, have tremendous potential for integration and reuse. They are also high-risk, fragile materials being produced at a phenomenal rate with few standards of best practice in place to support the development of infrastructure and services needed to accommodate long-term preservation. Care of data is a serious concern in all kinds of organizations, some of which assume that data management can be completely automated through algorithms and software applications. For example, an account of the management of high-energy physics data at CERN notes that “robotic librarians” are capable of managing up to five petabytes of data (Doctorow 2008). However, the data generated by large-scale

Current Trends and Future Directions

307

instruments in fields like physics are considerably easier to handle, understand, and archive than heterogeneous data from small science, which is expected to generate more than twice the amount of data as big science over time (Carlson 2006). Robots will never easily manage complex heterogeneous data, and automated processes will never fully replace the specialized curation skills needed to adequately describe, organize, and preserve data for future use.

The Broader Context of Data Curation The understanding of what data curation entails has necessarily evolved since being originally defined as the “. . . activity of managing and promoting the use of data from its point of creation, to ensure it is fit for contemporary purpose, and available for discovery and re-use” (Lord and MacDonald 2003, 12). Current curatorial activities include working with researchers to create effective data management plans needed to meet the grant proposal requirements of national funding agencies such as the National Science Foundation (NSF) and National Institutes of Health (NIH). Data curators are also increasingly involved in development of standards through participation in international organizations like NIST and ISO, as well as the development of domain and discipline-specific ontologies. Curators have evolved from upstream or downstream data managers to active agents in the scientific and scholarly research process; their role sare increasingly vital to the success of individual research projects. More importantly, curators are the human element of a knowledge infrastructure supporting contemporary scholarly practices and are key to developing and sustaining a global system of interoperable digital data and tools across the natural, physical, and social sciences, as well as the humanities. An ecology metaphor is often invoked to describe the system of interdependencies involved in curating, preserving, and providing access to research data (Choudhury 2010, Smith 2010). The ecological account of curation emphasizes the interrelatedness of diverse stakeholders, complex research products, and novel organizational arrangements in a digital environment. For example, domain researchers and informaticists are leading data initiatives within individual research communities; research centers are documenting their unique downstream knowledge of data archiving and service development; and funding agencies and universities are simultaneously promoting competitive data-driven science and scholarshipto a broader public audience. However, as Geoffrey Bowker suggests, ecology is an awkward metaphor for information professionals, since understanding an ecosystem requires a holistic account of all elements within that environment (2001, 144). Presently, there are well-defined and expertly populated niches within the curation ecosystem, but as a whole the field is still negotiating many professional roles and intellectual jurisdictions. Tracking all the complexities

308

N. M. Weber et al.

and relationships within a curation ecology could contribute important insights about the larger system, but current data curation work in libraries and research centers isdrivenby practical demands. As an emerging profession where roles are evolving and maturing, the development of data curation principles and expertise must be drawn from current practice and informed by both the immediate and projected needs of a targeted service community.

Current Discourse on Curation Research and Practice The term data curation started appearing regularly in LIS and archival science literature as early as 2000 and has increased notably since 2004 (see Figures 1 and 2). As can be expected from a new area of specialization, a majority of the literature have been of a descriptive nature, focusing primarily on what the concept of curation means in the context of a specific discipline or offering different opinions on why data curation services are important to the sustainability of computationally driven research methods. A number of papers have suggested priorities for workforce development and related research, including the importance of archival theory (Ross 2007), the applicability of LIS research to data challenges (Palmer, Renear, and Cragin 2008, Gold 2007), and the difficulty in retooling existing library infrastructures (Salo 2010). To advance the field’s understanding of data curation workforce demands and research priorities in LIS, the Center for Informatics Research in Science and Scholarship (CIRSS) led two research summits in conjunction

FIGURE 1 Number of publications with ‘Data Curation’ in title, abstract, or as a keyword over time. (Source: ISI Web of Knowledge)

Current Trends and Future Directions

309

FIGURE 2 Number of times publications with ‘Data Curation’ in title, abstract, or as a keyword were cited over time. (Source: ISI Web of Knowledge)

with the 2010 International Digital Curation Conference. The following sections provide a new synthesis that extends the outcomes of those events. The overview represents the views of more than 50 active data curation leaders in LIS and cognate fields. The first event, the Research Data Workforce Summit, included participants with knowledge of current data curation workforce practices and future needs, focusing specifically on research data centers and the efforts of current education programs for producing information professionals with a curation expertise. The workforce summit was followed by the Data Curation Research Summit, which was convened to build awareness of current research projects, advance a coherent LIS research agenda, and strengthen collaborative ties among diverse stakeholders like publishers and research libraries.

RESEARCH DATA WORKFORCE SUMMIT The Research Data Workforce Summit was sponsored by the Data Conservancy, an NSF-funded DataNet project based at the Sheridan Libraries at Johns Hopkins University. The Workforce Summit invited 29 participants from universities with active data curation and data science education programs as well as schools involved in training information professionals in digital curation, e-science, and related data-intensive areas of scholarship. Additionally, participants from research laboratories, data centers, and federal government agencies provided a comprehensive discussion on future directions in workforce development. A full list of participants is provided in the final report from the summit (Varvel et al. 2011).

310

N. M. Weber et al.

Moderated by Lucy Nowell from the U.S. Department of Energy, the summit program examined current workforce development and discussed many projected changes in the future of educational programs needed to advance data curation expertise in the sciences. The major themes that emerged from this summit are summarized in detail below.

Coordination Across Disciplines Many, if not most, of the data curation workforce challenges are related to the rapid pace at which technological innovation increases the scale and complexity of research data. Summit participants recognized that data professionals must be skilled at integrating and combining information products from different fields of science. Curation work will therefore require a set of combined competencies from domains like information science and computer science, as well as the natural sciences. The concept of a “tridge,” or a three-way bridge that connects these fields, was proposed as a sound model for training future practitioners to work in data-intensive research environments (Wilson 2010, Slide 4–5). The tridge metaphor is complementary to the metascience perspective in information science (Bates 1999) and is inherent in traditional research library operations that have been responsible for providing services to users across a broad range of academic disciplines. Some data professionals will need a balance of specialized expertise and general competencies to effectively work within multi-institutional organizations and interdisciplinary research domains. For example, curation work in research centers will likely require more extensive domain knowledge, related informatics, and computational expertise. In contrast, curators in institutional repositories will likely require a broader, crossdomain understanding of the sciences and a complimentary skill set in cyberinfrastructure development. Successful education programs must provide an integrative, general approach to curation education by initially exposing students to a variety of research domains and simultaneously supporting the development of domain and computational expertise for those students interested in working more directly with scientific research groups.

Advancing Professional Education The lack of a shared, consistent vocabulary for data curation functions and activities is currently hampering a productive discourse in the field. There continues to be disagreement and ambiguity in the application of basic terms, including data curation, digital curation, and data science. Debates about what the field should be called and how the work of data professionals

Current Trends and Future Directions

311

differs from other information professionals are yet to be resolved. To some degree, effective communication is a struggle for any emergent field of study, especially those that must draw on multiple disciplinary knowledge bases. However, establishing a shared data curation vocabulary that can be embraced by both practitioners and theorists will impact many aspects of education, such as recruiting highly qualified students, building collaborative relationships with domain researchers, and producing competitive grant applications to support the development of new programs. Student recruitment has proven difficult for some data curation programs even when funding has been available to transition students from an established domain science to a metascience: data work. The future success of LIS curation programs will require new strategies for attracting promisingstudents from acrosstraditional campus departments. Exposing students in scientific domains to the challenges of sound data management practice and its importance to scientific research may help attract more qualified students. Well-crafted general descriptions of programs and courses may also attract a wider pool of students from various disciplinary backgrounds. Summit participants identified a clear need for expert data curators to be more involved in the development of educational programs. A number of existing curation programs are successfully partnering with data centers to give students exposure to research environments outside of academia and opportunities for hands-on data/management experience (Kim et al. 2011). Practicing curators can also provide a much-needed context for many of the theoretically based curriculum offered by current data curation programs. Unfortunately, many practitioners emphasized the difficulty of sustaining these partnerships, since there are rarely reward structures within a data center that recognize a contribution to education programs.

Priorities for Workforce Development Three priorities for the curation education community were identified at the close of the Workforce Summit. First, differentiating and defining professional roles for data curation and data science would be a major contribution to future work in both education and research. Terminology should be aligned with the job titles and position descriptions of institutions that are actively hiring data professionals, and this vocabulary must be used consistently amongst the various curation programs. Second, existing relationships within the data curation education community must be strengthened, beginning by building broad awareness of ongoing activities in the iSchools and other academic institutions. Coordination could be supported by establishing an informal platform for sharing best practices and identifying new proficiencies required by an emerging workforce. Third, a data curation curriculum should educate students about the differences in research

312

N. M. Weber et al.

processes and curation needs across the sciences, as well as how demands for professional knowledge and skills will differ in various settings, such as research libraries, academic research centers, government agencies, and a more general corporate sector. In this rapidly changing field, keeping curriculum relevant and synchronized with current research trends will be a persistent challenge. For example, many curation programs are not yet capable of teaching contemporary or advanced computing skills, such as parallel programming. In the age of big data, state of the art computational skills will be essential for data professionals in many scientific research centers. A new data curation education consortium was recommended as a way to support active development in this area. Organizing curation programs, even informally, could help to promote the continued integration of expertise across information science, computer science, and domain sciences. Coordinated communication and development would do much to bridge disciplinary divides and educational gaps; however, a more rigorous data curation research agenda would strengthen the existing empirical knowledgebase.

DATA CURATION RESEARCH SUMMIT The Data Curation Research Summit was sponsored by the Institute of Museum and Library Services. The Research Summit convened 35 invited participants active in data curation research and related aspects of digital curation from iSchools, research libraries, academic publishers, and funding agencies. The final Research Summit report includes a full list of participants (Weber et al. 2011). An important feature of the Research Summit was the inclusion of representatives from research libraries and the publishing industry. These communities valuably provided policy and applied research perspectives to balance the more basic research emphasis of academic faculty. Clifford Lynch, director of the Coalition of Networked Information, provided closing remarks that included comments on important basic research problems in the field. As with other areas in LIS and archival science, there is a necessary tension between basic and applied research. Basic research produces new knowledge or understanding and may not have a direct or immediately recognizable application to practice. Applied research is primarily concerned with a specific application of a finding, often in a particular setting, such as studies of information behavior that investigate the context of data use within a specific academic discipline. The dynamic between basic and applied research exists in many fields of study, especially those that depend on external funding sources like LIS. However, most domains recognize a cross-cutting relationship between research undertaken to understand basic

Current Trends and Future Directions

313

phenomena and the technologies, methods, and services that are developed in applying the knowledge gained from basic research results (Stokes 1997). As a nascent field, research in data curation will necessarily require a strong foundation of basic research, and as more local problems are solved on an ad hoc basis, there will emerge a more thorough understanding of approaches to conducting applied research.

The LIS Knowledge Base While there was limited overlap in attendees of the two summits, a number of the topics discussed in the Workforce Summit were also raised in the Research Summit discussions, including difficulties recruiting qualified students and crafting effective curriculum. The focus among academic researchers, however, was primarily on the need for new research to build an information science knowledge base specific to the demands of curating research data. In particular, metadata expertise will need to include current formal modeling techniques, since LIS principles for representation and metadata creation are applicable but not directly transferrable to complex scientific research data. Skills in RDF encoding and a firm understanding of the semantic Web and principles of the linked data community will be needed to develop a sophisticated research agenda that explores these topics in relation to large-scale research data.

Governance and Policy Obtaining the necessary conditions for open data in interoperable repositories will require both well-developed data governance and clear and consistent language applied to guidelines for data sharing in private and public sectors. While it is anticipated that standards for data attribution will enable sharing in academia, many problems remain unsolved in promoting data citation practices and incorporating recognition for data sharing into the academic reward system. Moreover, requirements for licenses and contracts for data, as well as for software, code, and statistical packages needed to reproduce findings, are not yet well understood and may impose serious barriers to the sharing and reuse of research data. Other obstacles in the governance and policy realm include developing best practices for the application of identifiers that are persistent over time and approaches to capturing and preserving accurate provenance information. While many policy issues are assumed to require a technical solution, much of the implementation and use of these technologies will require people to negotiate and work together to articulate gaps in technological development and compliance. Many participants noted that this intersection of the socio-technical dimensions of

314

N. M. Weber et al.

policy and guidance will continue to be an important research avenue for data curation in the immediate future.

Data Representation and Interoperability One of the central aims of curation is to preserve the natural connections between data and other related information objects, especially journal articles and other publications that report research results. In the sciences, many approaches for preserving these links have been developed, including the Ecological Society of America’s data registry model, Data Dryad’s journal archive agreement policies, and a collaboration between the ArXiv pre-print service and the Data Conservancy data repository. At the same time, metadata standards for research data are proliferating at a prodigious rate, often duplicating efforts of previous projects or related schemas in other disciplines. There is an urgent need for the profession to review, compare, and evaluate these standards in terms of their application to specific disciplinary settings and, most importantly, their adequacy to support basic curation functions like discovery and reuse. The coordination of standards reviews might best be managed by professional societies in information science or data curation that could disseminate findings and promote awareness broadly within the community and perhaps develop systems that reward compliance. Many of the challenges of coordinating data services between repositories and publishers are heightened in large, cross-institutional storage and access systems, especially those that manage extensive, complex data sets. As networks of repositories scale and increase their stores of heterogeneous data, curation will be of central importance to functionality and interoperability. It was repeatedly recognized in both summits that professional curators will need deep knowledge of local systems, individual research teams and projects, as well as an understanding of the extended cyber infrastructure that connects these various knowledge bases. Echoing the Workforce Summit, participants acknowledged that these types of meta-skills are best developed through mentorship programs and by publishing case studies that offer guidelines for best practices in data curation.

Scientific Data Practices As with other types of information services, data curation must be fully informed by an understanding of the everyday practices and needs of researchers who generate and use data. Disciplinary cultures and institutional contexts govern how data are produced, shared, and reused, and curation must be responsive to differing norms, expectations, and needs of researchers. The curation research community has not yet cultivated a strong body of research in this area, and the research questions asked by other fields

Current Trends and Future Directions

315

that conduct social studies of science are often limited in their discussion of concepts of central importance to data curation, like data sharing. To support and add value to ongoing research processes, curators will need a sophisticated understanding of current data practices, as well as an awareness of the potential for data to be reused in new settings. Current LIS studies of data practices include broad survey work of data sharing and comparative analysis of data use across disciplines and the creation of institution and project specific data profiles in research libraries. Over time, the field should be able to extend its methods of socio-cultural and behavioral studies to better understand how data are produced, used, transferred, appraised and reused in a variety of research contexts.

Publishing, Publishers, and Data Curation Much of the value publishers contribute to scholarly information lies in the quality assurance they provide for journal publication typically achieved through convening editorial boards and the coordination of peer review for journal articles. However, publishers have yet to expand these roles to data products, and most publishers currently do not have the resources for publishing and providing access to dataor adequate access to the expertise needed for systematic, expert review of data. Publishers are gradually beginning to take on some responsibilities for curating data, but have not yet come to terms with the impact these activities will have on their operational workflows and the costs of disseminating this type of content. For example, complications arise with journals that accept supplementary data but lack appropriate policies for archiving various multimedia formats, and many publishers lack a clear commitment for sustainably preserving this material (Smit, Van Der Hoeven, and Giaretta 2011). Additionally, many scholarly societies and scientists are growing increasingly reluctant to participate in traditional, formal publishing with for-profit publishers, especially in the wake of legislative efforts to restrict access to publically funded research, like the failed H.R. 3699 Research Works Act. Supporting the deposit and publication of data will likely require a number of novel approaches that differ based on a particular discipline’s culture and research needs. Formal data publications are expected to be an important dissemination approach, but publishers are cautious about serving as an outlet for research data. Areas in need of research include how to improve the inefficiencies of the current resource-intensive publishing system for academic journals, understand expectations for peer review and quality control, develop options for dissemination formats, and organize reliable estimates of the costs associated with data publication and distribution. More recently, the utility of a data publication metaphor has become a topic of debate in the data curation community (Parsons and Fox, forthcoming).

316

N. M. Weber et al.

The current discourse on data curation and data sharing implies what some publishers perceive as a publisher-free zone, where publishers will end up with a more limited role in the scholarly communication process than they have anticipated. Part of this dynamic is related to a shift in the market, with universities and research centers aiming to deposit data of value directly into archives they control rather than transferring rights to private vendors. Libraries have been the primary market for traditional scholarly and scientific publications, but publishers are recognizing that research data will likely circulate among research communities with much less intermediation. In the short term, publishers are most likely to begin hosting primary data in unique cases where there is a clear user market. This being the case, at the Research Summit there was strong interest in publishers and the data curation community working together on issues related to metadata and identifier problems associated with linking data and publications.

Directions for Future Research and Development Clifford Lynch closed the summit with observations based on the day’s discussions and his perspectives on important future research avenues for both publishers and data curation researchers. First, accountability to funding agencies will be a major force in how data are treated by scientists and scholars in the immediate future and will be increasingly important to data curation work. While the practices of scientists and scholars have traditionally evolved based on disciplinary expectations and research trends, the data management and open access directives from funders like NSF and NIH are aimed at changing current conduct to improve data preservation and access to federally funded research. This shift in accountability will be a unique opportunity for the data curation community to study the effectiveness of these policies and how domain practices adapt to new requirements. Future efforts to use archived data for reproducing research will provide an important benchmark for the value of data curation; Lynch emphasized the need for curatorial metadata and preservation practices to be extended to code and software as integral components of research data (Stodden 2010).

A FUTURE FOR DATA CURATION RESEARCH Charles Gillispie claimed that formation of any new scientific profession would require two conditions: (1) the custody and development of a unique body of knowledge, and (2) the provision of economically viable careers (1980, 84–85). As a field of study and a profession, data curation is just beginning to establish a unique research agenda that is capable of publishing

Current Trends and Future Directions

317

robust findings and sustainably attracting research funding from external private and federal agencies. As institutions begin to scale up their data services to meet the needs of researchers, LIS programs will need to have well-trained graduates ready to fill these positions. Projects that illustrate notable progress in establishing a stable career track for data curation include efforts to develop data management skills among a variety of stakeholders, including undergraduate and graduate students in medical and health programs (Piorun et al. 2012), a CLIR/DLF post-doctoral program aimed at developing data curation experts that hold a PhD from a domain science, and a group of university libraries collaborating on data literacy training for engineering and science graduate students (Carlson et al. 2011). Professional organizations such as the Federation of Earth Science Information Partners and the American Geophysical Union have also begun to hold workshops and short courses for disseminating data management best practices. Initiatives within the NSF DataNet program have provided data management curriculum modules (DataONE 2012) as well as a database of programs and courses related to data curation (Varvel, Bammerlin, and Palmer 2012). As the range of these efforts expands and matures and a more general data curation literacy takes hold, we can expect data curation positions and career paths to stabilize in a variety of academic settings. As noted by participants in the Research Summit, there remains a need to examine and resolve many issues around interoperability between existing publishing workflows and the academic or institutionally based archiving of research data. Clifford Lynch, in particular, noted that continued research on linking published results and raw data is imperative for advancing data curation. However, one model will likely not fit all disciplines (Lawrence et al. 2011). Educational programs and professional development efforts can be expected to address data curation challenges through continued partnerships with national laboratories and by developing accessible curriculums, but metrics for evaluating the success of these efforts remain largely underdeveloped (EU-HEGSD 2010). As a unique body of theory and research is established, a consistent vocabulary—identified as a need in both the Workforce Summit and the Research Summit—should form around the methods and concepts of data curation principles and practices. Until then, the meanings of foundational concepts in data curation, such as a definition of what exactly is meant by the term “data set,” will remain the object of logic-based inquiry (Renear, Sacchi, and Wickett 2010). In other areas of basic curation research, priorities that will require significant attention are becoming more apparent. For example, determining and representing provenance for a complex digital object remains an acute research problem that is critical for progress in data preservation and reuse. The “Interactive Knowledge Capture” Research Group has conducted notable socio-technical provenance tracking on the Web (Groth

318

N. M. Weber et al.

et al. 2012), and other research has shown this type of work will be exceptionally important to understanding workflows and processes in distributed collaborative work (DeRoure et al. 2008). The bit-curator program is another important area of basic research aimed at applying digital forensic methods to problems of emerging importance to data curation (Lee et al. 2012). Progress on these fundamental problems will significantly impact future success in this field in two ways. First, as core concepts stabilize through a more coordinated research agenda, it will become easier for investigators to develop compelling, fundable research projects. Second, progress on basic research problems will inform more efficient studies of key phenomena and lead to the testing of local solutions. Applied research findings will also begin to cross traditional, institutional, or organizational arrangements and will allow ideas and innovations to more easily spread throughout the curation community. As noted in the introduction, data curation is a collaborative enterprise that will begin at the point of research planning and extend through longterm stewardship and reuse of data resources. Information professionals must be active in the many types of organizations involved in this enterprise. By specializing in the curation of research data, librarians and LIS researchers will continue to be vital contributors to information processes integral to the generation of new knowledge.

REFERENCES Bates, Marcia J. 1999. “The Invisible Substrate of Information Science.” Journal of the American Society for Information Science 50 (12):1043–50. Bowker, Geoffrey. 2001. “Book Review: Bonnie Nardi and Vicki O’Day, Information Ecologies: Using Technology with Heart.” Computer Supported Cooperative Work 10 (1):143–5. doi:10.1023/A:1011277819050. Carlson, Jacob, M. Fosmire, C. Miller, and M. Sapp Nelson. 2011. “Determining Data Information Literacy Needs: A Study of Students and Research Faculty.” Libraries and the Academy 11(2):629–57. Carlson, Scott. 2006. “Lost in a Sea of Science Data.” Chronicle of Higher Education, June 23. http://chronicle.com/free/v52/i42/42a03501.htm. Choudhury, Sayeed. 2010. “Data Curation: An Ecological Perspective.” College &Research Library News 71 (4):194–6. http://crln.acrl.org/content/71/4/194.full. DataONE. 2012. “Education Modules for Data Management.” Accessed January 1, 2012. http://www.dataone.org/education-modules. DeRoure, David, Carol Goble, Jiten Bhagat, Don Cruickshank, Antoon Goderis, Danius Michaelides, and David Newman. 2008. “my Experiment: Defining the Social Virtual Research Environment.” Paper presented at the 4th IEEE International Conference on e-Science, Indianapolis, Indiana, December 8. Doctorow, Corey. 2008. “Big Data: Welcome to the Petacentre.” Nature 455:6–21. doi:10.1038/455016a.

Current Trends and Future Directions

319

EU-HEGSD. 2010. “Riding the Wave: How Europe Can Gain from the Rising Tide of Scientific Data.” Final report of the High Level Expert Group on Scientific Data. http://www.cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report. pdf. Gillispie, Charles C. 1980. Science and Polity in France at the End of the Old Regime. Princeton, NJ: Princeton University Press. Gold, Anna. 2007. “Cyberinfrastructure, Data, and Libraries, Part 2. Libraries and the Data Challenge: Roles and Actions for Libraries.” D-Lib Magazine 13 (9). http://www.dlib.org/dlib/september07/gold/09gold-pt2.html. Groth, Paul, Yolanda Gil, James Cheney, and Simon Miles. 2012. “Requirements for Provenance on the Web.” International Journal of Digital Curation 7 (1):39–56. doi:10.2218/ijdc.v7i1.213. Kim, Youngseek, Benjamin K. Addom, and Jeffrey M. Stanton. 2011. “Education for eScience Professionals: Integrating Data Curation and Cyberinfrastructure.” International Journal of Digital Curation 6 (1). http://www.ijdc.net/ index.php/ijdc/article/view/168. Lawrence, Bryan, Sam Pepler, Catherine Jones, Brian Matthews, and Sarah Callaghan. 2011. “Citation and Peer Review of Data: Moving Towards Formal Data Publication.” International Journal of Digital Curation 6 (2). http://www. ijdc.net/index.php/ijdc/article/view/181. Lee, Christopher, Alexandra Chassanoff, Kam Woods, Matthew Kirschenbaum, and Porter Olsen. 2012. “BitCurator: Tools and Techniques for Digital Forensics in Collecting Institutions.” D-Lib Magazine 18 (5/6):14–21. doi:10.1045/may2012lee. Lord, Philip, and Alison MacDonald. 2003. “Data Curation for e-Science in the UK: An Audit to Establish Requirements for Future Curation and Provision.” Prepared for The JISC Committee for the Support of Research. http://www.jisc.ac.uk/uploaded_documents/e-scienceReportFinal.pdf. Palmer, Carole L., Allen H. Renear, and Melissa H. Cragin. 2008. “Purposeful Curation: Research and Education for a Future with Working Data.” Proceedings of the 4th International Digital Curation Conference, Edinburgh, Scotland, December 1–3. Parsons, Mark, and Peter Fox. Forthcoming. “Is Data Publication the Right Metaphor?” Data Science Journal. http://dl.dropbox.com/u/546900/parsons _fox_metaphor_dsj_open.docx. Piorun, Mary, Donna Kafel, Tracey Leger-Hornby, Siamak Najafi, Elaine Martin, Paul Colombo, and Nancy LaPelle. 2012.” Teaching Research Data Management: An Undergraduate/Graduate Curriculum.” The Journal of eScience Librarianship 1 (1):46–50. doi:10.7191/jeslib.2012.1003. Renear, Allen H., Simone Sacchi, and Karen Wickett. 2010. “Definitions of Dataset in the Scientific and Technical Literature.”Proceedings of the American Society for Information Science and Technology 47:1–4. doi:10.1002/meet.14504701240. Ross, Seamus. 2007. “Digital Preservation, Archival Science and Methodological Foundations for Digital Libraries.” Research and Advanced Technology for Digital 24:1–19. http://eprints.erpanet.org/131/. Salo, Dorothea. 2010. “Retooling Libraries for the Data Challenge.” Ariadne 64. http://www.ariadne.ac.uk/issue64/salo/.

320

N. M. Weber et al.

Shera, Jesse H. 1971. “The Compleat Librarian” and Other Essays. Cleveland: Press of Case Western Reserve University. Smit, Eefke, Jeffrey van der Hoeven, and David Giaretta. 2011. “Avoiding a Digital Dark Age for Data: Why Publishers Should Care about Digital Preservation.” Learned Publishing 24 (1):35–49. Smith, MacKenzie. 2010. “Managing Research Data at MIT: Growing the Curation Community One Institution at a Time.” Presentation given at the 6th International Digital Curation Conference, Chicago, Illinois, December 8. Stodden, Victoria. 2010. “Reproducible Research: Addressing the Need for Data and Code Sharing in Computational Science.” Computing in Science and Engineering 12 (5):8–13. doi:10.1109/MCSE.2010.113. Stokes, Donald E. 1997. Pasteur’s Quadrant: Basic Science and Technological Innovation. Washington, DC: Brookings Institution Press. Taylor, Robert S. 1986. Value-Added Processes in Information Systems. Norwood, NJ: Ablex. Varvel, Virgil, Carole L. Palmer, Tiffany C. Chao, and Simone Sacchi. 2011. “Report from the Research Data Workforce Summit.” Center for Informatics Research in Science and Scholarship. http://hdl.handle.net/2142/25830. Varvel, Virgil E. Jr., Ellen Bammerlin, and Carole L. Palmer. 2012. “Education for Data Professionals: A Study of Current Courses and Programs.” Proceedings of the 2012 iConference, Toronto, ON, Canada, February 7–10. Weber, Nicholas, Tiffany C. Chao, Carole L. Palmer, and Virgil Varvel. 2011. “Report on the Data Curation Research Summit.” Center for Informatics Research in Science and Scholarship. http://hdl.handle.net/2142/28355. Wilson, Bruce. 2010. “Finding and Making Bridge Builders for Research Informatics.” Presentation given at the Research Data Workforce Summit, Chicago, Illinois, December 6.

Current Trends and Future Directions in Data Curation Research ...

Current Trends and Future Directions in Data Curation Research and Education.pdf. Current Trends and Future Directions in Data Curation Research and ...

292KB Sizes 5 Downloads 321 Views

Recommend Documents

Reflecting on Current Challenges and Future Directions ...
Controversies related to the strengths and limitations of the controlled clinical trials ... Moreover, because the National Institute of Mental Health has been ... allow therapists to master the therapy in an artful manner (B. Arnow, J. Clarkin). ...

Current developments and future directions of bio ... - Semantic Scholar
The com- plexity of an expression is measured by the length of the ...... multiple classifiers is actually a very common practice in machine .... Information Fusion 6,.

Current developments and future directions of bio ... - Semantic Scholar
require close collaboration between computer scientists and ecologists. The rest of .... long as the maximum number of hits (i.e., 50 in this study) is achievable in ...

Current developments and future directions of bio ...
(1)–(3) could be potentially generated by GP. The fitness function determines how well an individual expression fits an observational galaxy profile. The overall.

Data Mining: Current and Future Applications - IJRIT
Language. (SQL). Oracle, Sybase,. Informix, IBM,. Microsoft. Retrospective, dynamic data delivery at record level. Data Warehousing. &. Decision Support. (1990s). "What were unit sales in. New England last. March? Drill down to. Boston. On-line analy

Data Mining: Current and Future Applications - IJRIT
Artificial neural networks: Non-linear predictive models that learn through training ..... Semi-supervised learning and social network analysis are other methods ...

Data Mining: Current and Future Applications - IJRIT
(KDD), often called data mining, aims at the discovery of useful information from ..... Advanced analysis of data for extracting useful knowledge is the next natural ...

Current Trends in Childhood Obesity Research - Springer Link
Aug 23, 2012 - Springer Science+Business Media, LLC 2012. Abstract Childhood .... 1 Distribution of childhood obesity research papers by domain and theme ...

pdf-0940\caffeine-and-behavior-current-views-and-research-trends ...
Whoops! There was a problem loading more pages. Retrying... pdf-0940\caffeine-and-behavior-current-views-and-research-trends-from-brand-crc-press.pdf.

Current Trends in Childhood Obesity Research - Springer Link
Aug 23, 2012 - intervention in Australia included health education combined with changes to ... tal contexts [49, 50]. Lastly, the Basic Law on Shokuiku was.

Current Trends in the Integration of Searching ... - Research at Google
school argues that guided navigation is superfluous since free form search has ... school advocates the use of meta-data for narrowing large sets of results, and ...

Science Current Directions in Psychological
doing one thing at home and getting distracted into doing some- thing else'' (a ... a new Internet dating service) or the sight of your spouse hover- ing around, or .... ''disexecutive syndrome,'' being unable to plan or maintain behavior in line ...

Current Directions In Psychological Science - Semantic Scholar
Feb 4, 2014 - chology; the image of an infant peering into a checker- board-patterned abyss is among the most famous icons in developmental science. Furthermore, the basic find- ings are well known to the thousands of students who have sat through in

implications and future directions
advantages the result of the underlying individuals' abilities to make astute resource- ..... at differing levels of analysis, including industry, corporate, and business ...... been done looking at the turnover of key scientists in technology-motiva

implications and future directions
phone: (404) 727-6379 fax: (404) 727-6313 email: [email protected]. William S. Hesterly. David Eccles School of Business ...... (Boudon, 1998a, b) and answering the theoretical and causal question of why ..... between large and small companie