.

.

.

...

.

Curvatures of Tangent Hyperquadric Bundles Takamichi Satoh Tohoku University

August 31, 2010 Joint work with Masami Sekizawa Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

1 / 24

Introducton

Introduction

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

2 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

theorem 1

e g r )(x,u) > 0 if  = 1, Sc(˜ e g r )(x,u) < 0 if  = −1. ... Sc(˜ . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ Tr M. Sc(˜

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

.

. . 1 .Theorem . (M, g), dim M ≥ 3 be a pseudo-Riemannian manifold with bounded sectional curvature. =⇒ For each sufficiently small r > 0,

4 / 24

Introducton

Theorem 2

e g r )(x,u) < 0 if  = 1, Sc(˜ e g r )(x,u) > 0 if  = −1. ... Sc(˜ . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜

.

. . 2 .Theorem . (M, g), dim M ≥ 2 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. =⇒ For each sufficiently large r > 0,

r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

5 / 24

Introducton

Corollary

.

Combining above results, we obtain the following. . . Corollary .. (M, g), dim M ≥ 3 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. e g r ) ≡ c˜. ∀˜ c ∈ R, ∃r > 0 s.t. Sc(˜ ..=⇒ . . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ Tr M. Sc(˜

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

6 / 24

Definition of THB

Definition of THB

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

7 / 24

Definition of THB

THB

where ...

Tr−1 M = ∅ Tr+1 M = ∅

if g is positive definite, if g is negative definite.

.

.

(M, g) : pseudo-Riemannian manifold . . .Definition . Let r > 0. The tangent hyperquadric bundle (THB) of radius r over (M, g) is defined by } { Tr M := (x, u) ∈ T M | gx (u, u) = r2

g is positive definite =⇒ Tr M = Tr M. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

8 / 24

Definition of THB

THB

where ...

Tr−1 M = ∅ Tr+1 M = ∅

if g is positive definite, if g is negative definite.

.

.

(M, g) : pseudo-Riemannian manifold . . .Definition . Let r > 0. The tangent hyperquadric bundle (THB) of radius r over (M, g) is defined by } { Tr M := (x, u) ∈ T M | gx (u, u) = r2

g is positive definite =⇒ Tr M = Tr M. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

8 / 24

Sasaki metric

Sasaki metric

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

9 / 24

Sasaki metric

Splitting subspaces

p : (x, u) ∈ T M 7−→ x ∈ M : projection ∇ : Levi–Civita connection of (M, g) The tangent space (T M )(x,u) at (x, u) ∈ T M splits into the horizontal subspace H(x,u) and the vertical subspace V(x,u) with respect to ∇ : (T M )(x,u) = H(x,u) ⊕ V(x,u) .

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

10 / 24

Sasaki metric

Splitting subspaces

p : (x, u) ∈ T M 7−→ x ∈ M : projection ∇ : Levi–Civita connection of (M, g) The tangent space (T M )(x,u) at (x, u) ∈ T M splits into the horizontal subspace H(x,u) and the vertical subspace V(x,u) with respect to ∇ : (T M )(x,u) = H(x,u) ⊕ V(x,u) .

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

10 / 24

Sasaki metric

Lift

Let X be a vector in a tangent space Mx at x ∈ M. The horizontal lift of X to (x, u) ∈ T M is a vector X h ∈ H(x,u) s.t. p∗ X h = X. The vertical lift of X to (x, u) ∈ T M is a vector X v ∈ V(x,u) s.t. X v ( df ) = Xf for all smooth functions f on M. (Here we consider a 1-form df on M as a function on T M.)

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

11 / 24

Sasaki metric

Lift

Let X be a vector in a tangent space Mx at x ∈ M. The horizontal lift of X to (x, u) ∈ T M is a vector X h ∈ H(x,u) s.t. p∗ X h = X. The vertical lift of X to (x, u) ∈ T M is a vector X v ∈ V(x,u) s.t. X v ( df ) = Xf for all smooth functions f on M. (Here we consider a 1-form df on M as a function on T M.)

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

11 / 24

Sasaki metric

On tangent bundle

. . .Definition . The Sasaki metric g¯ on T M is defined at each fixed point (x, u) ∈ T M by g¯(x,u) (X h , Y h ) = gx (X, Y ), g¯(x,u) (X h , Y v ) = 0,

for ... ∀X, Y ∈ Mx .

.

.

g¯(x,u) (X v , Y v ) = gx (X, Y )

(T M )(x,u) = H(x,u) ⊕ V(x,u) , X h , Y h ∈ H(x,u) , X v , Y v ∈ V(x,u) . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

12 / 24

Sasaki metric

Tangent or not

.

. . .Lemma . v The canonical vertical vector field U (x,u) := u(x,u) is perpendicular to Tr M ⊂ (T M, g¯) at each point u) ∈ T M. ..(x, . . g¯(x,u) (X h , U ) = 0,

g¯(x,u) (X v , U ) = gx (X, u).

=⇒ The horizontal lift X h is always tangent to Tr M. However, in general, the vertical lift X v is not tangent to Tr M.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

13 / 24

Sasaki metric

Tangent or not

.

. . .Lemma . v The canonical vertical vector field U (x,u) := u(x,u) is perpendicular to Tr M ⊂ (T M, g¯) at each point u) ∈ T M. ..(x, . . g¯(x,u) (X h , U ) = 0,

g¯(x,u) (X v , U ) = gx (X, u).

=⇒ The horizontal lift X h is always tangent to Tr M. However, in general, the vertical lift X v is not tangent to Tr M.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

13 / 24

Sasaki metric

Tangential lift

. .Definition . The tangential lift X t of a smooth vector field X on M is a vector field on Tr M defined by X t := X v − 

1 g¯(X v , U )U . 2 r

.

.

.

... . . . .Remark . ut = 0 for ∀(x, u) ∈ Tr M. { h }  t ⊥ (T M ) = X + Y | X ∈ M , Y ∈ {u} (⊂ M ) . x x (x,u) ... r . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

14 / 24

Sasaki metric

Tangential lift

. .Definition . The tangential lift X t of a smooth vector field X on M is a vector field on Tr M defined by X t := X v − 

1 g¯(X v , U )U . 2 r

.

.

.

... . . . .Remark . ut = 0 for ∀(x, u) ∈ Tr M. { h }  t ⊥ (T M ) = X + Y | X ∈ M , Y ∈ {u} (⊂ M ) . x x (x,u) ... r . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

14 / 24

Sasaki metric

On THB

=⇒ We endow the hypersurface Tr M ⊂ (T M, g¯) with the induced pseudo-Riemannian metric g˜r , which is uniquely determined by the following formulae r g˜(x,u) (X h , Y h ) = gx (X, Y ), r g˜(x,u) (X h , Y t ) = 0, r g˜(x,u) (X t , Y t ) = gx (X, Y ) − 

1 gx (X, u)gx (Y, u) r2

for ∀X, Y ∈ Mx . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

15 / 24

Sasaki metric

On tangent bundle

. . .Definition . The Sasaki metric g¯ on T M is defined at each fixed point (x, u) ∈ T M by g¯(x,u) (X h , Y h ) = gx (X, Y ), g¯(x,u) (X h , Y v ) = 0,

for ... ∀X, Y ∈ Mx .

Takamichi Satoh (Tohoku Univ.)

.

Tangent Hyperquadric Bundles

August 31, 2010

.

g¯(x,u) (X v , Y v ) = gx (X, Y )

16 / 24

Proof of Theorems

Proof of Theorems

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

17 / 24

Theorem 1

. 1 .Theorem . (M, g), n = dim M ≥ 3 be a pseudo-Riemannian manifold with bounded sectional curvature. =⇒ For each sufficiently small r > 0,

.

e g r )(x,u) > 0 if  = 1, Sc(˜ e g r )(x,u) < 0 if  = −1. ... Sc(˜ . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ Tr M. Sc(˜

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

.

Proof of Theorems

18 / 24

Proof of Theorems

positive definite

Proof of theorem 1

.

Case (i). g is positive definite. . . Theorem (Kowalski–Sekizawa, 2000) .. (M, g), dim M ≥ 3, be a Riemannian manifold with bounded sectional curvature. e g r )(x,u) > 0. =⇒ ... For each sufficiently small r > 0, Sc(˜ . The theorem 1 is the same as the theorem of Kowalski–Sekizawa.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

19 / 24

Proof of Theorems

positive definite

Proof of theorem 1

.

Case (i). g is positive definite. . . Theorem (Kowalski–Sekizawa, 2000) .. (M, g), dim M ≥ 3, be a Riemannian manifold with bounded sectional curvature. e g r )(x,u) > 0. =⇒ ... For each sufficiently small r > 0, Sc(˜ . The theorem 1 is the same as the theorem of Kowalski–Sekizawa.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

19 / 24

negative definite

Case (ii). g is negative definite. . .Lemma . Vp,q : vector space of signature (p, q)

...

.

∃φ : (x1 , . . . , xp , xp+1 , . . . , xp+q ) ∈ Vp,q 7−→ (xp+1 , . . . , xp+q , x1 , . . . , xp ) ∈ Vq,p :anti-isometry

.

.

Proof of Theorems

The theorem 1 can be proved from the lemma and the theorem of Kowalski–Sekizawa. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

20 / 24

negative definite

Case (ii). g is negative definite. . .Lemma . Vp,q : vector space of signature (p, q)

...

.

∃φ : (x1 , . . . , xp , xp+1 , . . . , xp+q ) ∈ Vp,q 7−→ (xp+1 , . . . , xp+q , x1 , . . . , xp ) ∈ Vq,p :anti-isometry

.

.

Proof of Theorems

The theorem 1 can be proved from the lemma and the theorem of Kowalski–Sekizawa. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

20 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Theorem 2

. 2 .Theorem . (M, g), n = dim M ≥ 2 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. =⇒ For each sufficiently large r > 0, e g r )(x,u) < 0 if  = 1, ... Sc(˜

.

e g r )(x,u) > 0 if  = −1. Sc(˜

.

.

Proof of Theorems

Proof. e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

22 / 24

Theorem 2

. 2 .Theorem . (M, g), n = dim M ≥ 2 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. =⇒ For each sufficiently large r > 0, e g r )(x,u) < 0 if  = 1, ... Sc(˜

.

e g r )(x,u) > 0 if  = −1. Sc(˜

.

.

Proof of Theorems

Proof. e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

22 / 24

Combining the thorems

. Corollary .. (M, g), n = dim M ≥ 3 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. e g r ) = c˜. =⇒ c ∈ R, ∃r > 0 s.t. Sc(˜ ... ∀˜

.

.

.

Proof of Theorems

Proof. e g r ) = c˜. In the previous equation, we put r2 = R, Sc(˜ Then (n − 1)c2 R2 + 2(˜ c − n(n − 1)c)R − 2(n − 1)(n − 2) = 0 has a positive root. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

23 / 24

Last

Thank You

Thank you for your attention ˇ ´ Dekuji vam

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

24 / 24

Last

Thank You

Thank you for your attention ˇ ´ Dekuji vam

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

24 / 24

Curvatures of Tangent Hyperquadric Bundles

Aug 31, 2010 - of constant sectional curvature c = 0. ... ∀˜c ∈ R, ∃r > 0 s.t. ˜Sc(˜gr) ≡ ˜c. ˜Sc(˜gr)(x,u) : scalar ..... Vp,q : vector space of signature (p, q). ∃φ : (x.

121KB Sizes 3 Downloads 439 Views

Recommend Documents

Curvatures of Tangent Hyperquadric Bundles
on which we induce a pseudo-Riemannian metric from the Sasaki metric. Kowalski-Sekizawa [1] have shown how the geometry of the tangent sphere bundle. TrM over a Riemannian manifold (M,g) depends on the radius r. We generalize a part of their results

Geometry of the tangent bundle and the tangent ...
SASAKI METRIC. On the other hand, since (expx ◦R−u)∗u : TuTxM −→ TxM is isomorphism, dim ImK(x,u) = n. Now, we need only to show V(x,u) ∩ H(x,u) = {0}.

Bundles of Joy Ultimate First Birthday Party Planne Checklist.pdf ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Bundles of Joy ...

Tangent Space Calculation.pdf
Tangent Space Calculation http://www.terathon.com/code/tangent.html. 3 de 3 02/10/2012 19:32. Page 3 of 3. Tangent Space Calculation.pdf. Tangent Space ...

10.1 Tangent Ratios.pdf
building does the ladder reach? HOMEWORK: pages 635-636 #13-33 odd. Page 2 of 2. 10.1 Tangent Ratios.pdf. 10.1 Tangent Ratios.pdf. Open. Extract.

Tangent Space Calculation.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Tangent Space ...

Lean manufacturing context, practice bundles, and performance.pdf ...
Page 3 of 21. Lean manufacturing context, practice bundles, and performance.pdf. Lean manufacturing context, practice bundles, and performance.pdf. Open.

Tensor products of tautological bundles under the ...
equality on the Vi,j where Tl(M;u, v;a) = 0 for all {u, v} = {i, j} and thus. Kl = Kl(i, j) := ∩l k=1 kerϕk(i, j) holds. We will assume without loss of generality the case that i = 1 and j = 2. We consider as in the construction of the ϕl an open

Tangent-Corrected Embedding
lying instead on local Euclidean distances that can be mis- leading in image space. .... 0 means the pair is parallel (aligned) and 1 means the pair is orthogonal ...

Characteristic rank of vector bundles over Stiefel ...
The characteristic rank of a vector bundle ξ over a finite con- nected CW-complex X is by definition the largest integer k, 0 ≤ k ≤ dim(X), such that every cohomology class ... for the Z2-cup-length of manifolds (see [1],[3] and [5]). In some si

Bundles of Joy Ultimate First Birthday Party Planne Checklist.pdf ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Bundles of Joy Ultimate First Birthday Party Planne Checklist.pdf. Bundles of Joy Ultimate First Birthday Pa

complex structures on product of circle bundles over ...
Calabi-Eckmann) manifolds. The basic construction involves the notion of standard action by the torus (C∗)n1 on a principal C∗-bundle L1 over a complex manifold X1. See Definition 2.1. Let L = L1 × ...... Conversely, if h satisfies (11), then it

Introduction to graded bundles
Graded bundles of degree n are particular examples of graded ... be studied. If time will allow, we will end up with some applications to geometrical mechanics.

AUTOMORPHIC VECTOR BUNDLES WITH GLOBAL ...
Oct 1, 2017 - example is given to show that our conjecture can fail for zip data not of .... We will say that a reduced scheme S is pseudo-complete if every h ∈ H0(S, OS) ...... Define a Zariski open subset U ⊂ SL2 as the non-vanishing locus.

Fuss' Problem of the Chord-Tangent Quadrilateral Mgr. Barbora Stastna
e-mail: [email protected]. Nicolaus Fuss .... URL 1996. Electronic sources date from ...

Fuss' Problem of the Chord-Tangent Quadrilateral Mgr. Barbora Stastna
formed by tangency chords is designated ω (see figure 2). The lines AB and .... URL 1996.

THE TANGENT BUNDLE OF A MODEL CATEGORY ...
of simplicial sets over the twisted arrow category of C equipped with the covariant model structure. In particular, the underlying ∞-category. TC Cat∞. TC Set. Joy. ∆. ∞ is equivalent to the ∞-category of functors Tw(C) →. Spectra (see [H

pdf-1415\crow-indian-medicine-bundles-by-william-wildschut.pdf ...
pdf-1415\crow-indian-medicine-bundles-by-william-wildschut.pdf. pdf-1415\crow-indian-medicine-bundles-by-william-wildschut.pdf. Open. Extract. Open with.

Saleforce Implementation Bundles (Updated on 4.12.16).pdf ...
Apr 12, 2016 - There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item.Missing:

geometry 6.2 Tangent Properties practice problems ANSWER KEY.pdf ...
geometry 6.2 Tangent Properties practice problems ANSWER KEY.pdf. geometry 6.2 Tangent Properties practice problems ANSWER KEY.pdf. Open. Extract.

Newton's Method and Tangent Line Approx wksht.pdf
Newton's Method and Tangent Line Approx wksht.pdf. Newton's Method and Tangent Line Approx wksht.pdf. Open. Extract. Open with. Sign In. Main menu.