Data​ ​in​ ​San​ ​Francisco:

Meeting​ ​supply,​ ​spurring​ ​demand

City​ ​and​ ​County​ ​of​ ​San​ ​Francisco Mayor​ ​Edwin​ ​M.​ ​Lee Joy​ ​Bonaguro,​ ​Chief​ ​Data​ ​Officer July​ ​31,​ ​2015

Table​ ​of​ ​Contents 1.​ ​Executive​ ​Summary 2.​ ​Mission,​ ​Vision​ ​and​ ​Approach 3.​ ​Looking​ ​Back:​ ​The​ ​Year​ ​in​ ​Review 4.​ ​Looking​ ​Forward:​ ​Year​ ​2​ ​Goals​ ​and​ ​Strategies Overview​ ​of​ ​Approach​ ​and​ ​Goals Goal​ ​1.​​ ​Make​ ​timely​ ​data​ ​easily​ ​available Goal​ ​2.​​ ​Improve​ ​the​ ​usability,​ ​quality​ ​and​ ​consistency​ ​of​ ​our​ ​data Goal​ ​3.​​ ​Support​ ​increased​ ​use​ ​of​ ​data​ ​in​ ​decision-making Goal​ ​4.​​ ​Identify​ ​and​ ​foster​ ​innovations​ ​in​ ​open​ ​data​ ​and​ ​data​ ​use Goal​ ​5.​​ ​Continuously​ ​improve,​ ​scale,​ ​maintain​ ​and​ ​monitor​ ​our​ ​work 5.​ ​Priority,​ ​Resource​ ​and​ ​Contingency​ ​Analysis 6.​ ​Conclusion Appendices Appendix​ ​A.​ ​Acknowledgements Appendix​ ​B.​ ​Detailed​ ​Accomplishments​ ​in​ ​Year​ ​1 Appendix​ ​C.​ ​Quarterly​ ​Milestones​ ​for​ ​Year​ ​2 Appendix​ ​D.​ ​Crosswalk​ ​between​ ​plan​ ​and​ ​Open​ ​Data​ ​Policy

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

2​ ​of​ ​40

1.​ ​Executive​ ​Summary Our​ ​Mission​ ​and​ ​Vision

At​ ​DataSF,​ ​we​ ​are​ ​working​ ​to​ ​transform​ ​the​ ​way​ ​the​ ​City​ ​works​ ​through​ ​the​ ​use​ ​of​ ​data.​ ​Our mission​ ​is​ ​to​ ​empower​ ​use​ ​of​ ​the​ ​City’s​ ​Data.​ ​Our​ ​vision​ ​is​ ​that​ ​the​ ​City’s​ ​data​ ​is​ ​understood, documented,​ ​and​ ​of​ ​high​ ​quality.​ ​The​ ​data​ ​is​ ​published​ ​so​ ​that​ ​it​ ​is​ ​usable,​ ​timely,​ ​and accessible,​ ​which​ ​supports​ ​broad​ ​and​ ​unanticipated​ ​uses​ ​of​ ​City​ ​data.​ ​City​ ​employees​ ​have​ ​the skills​ ​and​ ​capacity​ ​to​ ​collect,​ ​manage,​ ​and​ ​use​ ​data​ ​effectively​ ​and​ ​efficiently​ ​across​ ​its​ ​lifecycle.

The​ ​Ultimate​ ​Impact​ ​of​ ​Our​ ​Work

Through​ ​the​ ​dissemination​ ​and​ ​use​ ​of​ ​City​ ​data,​ ​we​ ​can: ● ● ●

Improve​ ​City​ ​services​ ​for​ ​residents​ ​and​ ​businesses, Generate​ ​jobs​ ​and​ ​economic​ ​activity​ ​and Increase​ ​resident​ ​engagement​ ​and​ ​empowerment.

These​ ​in​ ​turn​ ​support​ ​increased​ ​quality​ ​of​ ​life​ ​and​ ​work​ ​for​ ​San​ ​Francisco​ ​residents,​ ​employers, and​ ​employees.

Our​ ​Key​ ​Accomplishments​ ​in​ ​Year​ ​1

Below​ ​are​ ​some​ ​of​ ​our​ ​key​ ​accomplishments​ ​in​ ​Year​ ​1.​ ​Section​ ​3​ ​of​ ​this​ ​document​ ​goes​ ​into greater​ ​detail​ ​for​ ​each​ ​goal​ ​area.

Completed​ ​the​ ​dataset​ ​inventory

Our​ ​core​ ​charge​ ​in​ ​Year​ ​1​ ​was​ ​completing​ ​a​ ​dataset​ ​inventory​ ​to​ ​list​ ​all​ ​of​ ​the​ ​datasets​ ​in​ ​each department.​ ​This​ ​was​ ​an​ ​immense​ ​task​ ​and​ ​took​ ​up​ ​a​ ​great​ ​deal​ ​of​ ​our​ ​effort​ ​and​ ​time​ ​in​ ​the​ ​last year.​ ​Our​ ​Department​ ​Data​ ​Coordinators​ ​were​ ​key​ ​to​ ​this​ ​task​ ​and​ ​without​ ​them​ ​it​ ​would​ ​not have​ ​been​ ​possible.​ ​Learn​ ​more​ ​in​ ​our​ ​blog​ ​post​ ​on​ ​the​ ​inventory​.

Relaunched​ ​our​ ​open​ ​data​ ​portal​ ​and​ ​created​ ​a​ ​web​ ​home​ ​for​ ​DataSF

Our​ ​web​ ​presence​ ​needed​ ​a​ ​total​ ​overhaul​ ​to​ ​ensure​ ​that​ ​we​ ​could​ ​better​ ​support​ ​our​ ​users, whether​ ​seeking​ ​data​ ​or​ ​working​ ​to​ ​publish​ ​it.​ ​In​ ​addition​ ​to​ ​the​ ​open​ ​data​ ​portal,​ ​we​ ​needed​ ​to create​ ​enduring​ ​resources​ ​like​ ​our​ ​publishing​ ​and​ ​coordinators​ ​portal​ ​as​ ​well​ ​as​ ​our​ ​resource library​ ​and​ ​blog.​ ​Learn​ ​more​ ​in​ ​our​ ​blog​ ​post​ ​on​ ​the​ ​redesign.

Standardized​ ​publishing​ ​methods​ ​and​ ​metadata​ ​requirements

Standardizing​ ​the​ ​publication​ ​of​ ​datasets​ ​ensures​ ​high​ ​quality​ ​publishing​ ​over​ ​time.​ ​Consistent information​ ​about​ ​published​ ​datasets​ ​makes​ ​the​ ​data​ ​easier​ ​to​ ​use,​ ​fostering​ ​more​ ​and​ ​better use​ ​of​ ​the​ ​data.​ ​We​ ​took​ ​into​ ​account​ ​best​ ​practices​ ​from​ ​around​ ​the​ ​world​ ​and​ ​the​ ​tailored them​ ​to​ ​San​ ​Francisco​ ​to​ ​ensure​ ​quality​ ​publishing.​ ​Learn​ ​more​ ​in​ ​our​ b ​ log​ ​post​ ​on​ ​metadata​.

Established​ ​a​ ​Citywide​ ​open​ ​data​ ​license​ ​for​ ​published​ ​data

The​ ​City​ ​needed​ ​a​ ​licensing​ ​strategy​ ​designed​ ​for​ ​data.​ ​A​ ​single​ ​license​ ​reduces​ ​ambiguity​ ​for users​ ​and​ ​ensures​ ​that​ ​our​ ​data​ ​can​ ​be​ ​fully​ ​leveraged​ ​by​ ​individuals​ ​and​ ​companies​ ​alike.​ ​We officially​ ​adopted​ ​the​ ​Public​ ​Domain​ ​Dedication​ ​License​ ​(PDDL)​ ​to​ ​meet​ ​the​ ​particular​ ​needs​ ​of

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

3​ ​of​ ​40

open​ ​data.​ ​Learn​ ​more​ ​in​ ​our​ ​blog​ ​post​ ​on​ ​PDDL​.

Launched​ ​the​ ​Housing​ ​Data​ ​Hub

The​ ​Housing​ ​Data​ ​Hub,​ ​http://housing.datasf.org/​,​ ​is​ ​a​ ​single​ ​place​ ​to​ ​learn​ ​about​ ​affordable housing​ ​data​ ​programs​ ​in​ ​San​ ​Francisco​ ​and​ ​the​ ​administrative​ ​data​ ​behind​ ​them​ ​-​ ​visualized and​ ​easy​ ​to​ ​use.​ ​This​ ​was​ ​our​ ​first​ ​strategic​ ​release​ ​-​ ​the​ ​bundling​ ​of​ ​open​ ​data​ ​publication​ ​with products​ ​that​ ​put​ ​the​ ​data​ ​to​ ​immediate​ ​use.​ ​Learn​ ​more​ ​in​ ​our​ ​blog​ ​post​ ​on​ ​strategic​ ​releases​.

Launched​ ​the​ ​Data​ ​Academy

Working​ ​in​ ​partnership​ ​with​ ​the​ ​City​ ​Services​ ​Auditor,​ ​we​ ​launched​ ​a​ ​training​ ​program​ ​that covers​ ​the​ ​whole​ ​lifecycle​ ​of​ ​data​ ​-​ ​from​ ​planning,​ ​collection,​ ​management,​ ​analysis​ ​to​ ​design and​ ​publishing.​ ​Classes​ ​are​ ​booked​ ​out​ ​and​ ​demand​ ​is​ ​insatiable.​ R ​ ead​ ​about​ ​Data​ ​Academy​.

Developed​ ​a​ ​strategy​ ​to​ ​improve​ ​confidential​ ​data​ ​sharing

Internal​ ​confidential​ ​data​ ​sharing​ ​is​ ​hampered​ ​by​ ​a​ ​legal​ ​thicket​ ​and​ ​poorly​ ​integrated​ ​technical systems.​ ​Working​ ​in​ ​partnership​ ​with​ ​the​ ​City​ ​Services​ ​Auditor​ ​and​ ​more​ ​than​ ​a​ ​dozen​ ​City departments,​ ​we​ ​put​ ​together​ ​a​ ​strategy​ ​to​ ​promote​ ​data​ ​sharing​ ​that​ ​is​ ​efficient,​ ​effective, consistent,​ ​secure,​ ​and​ ​appropriate.

Advocated​ ​for​ ​and​ ​obtained​ ​additional​ ​resources

Our​ ​resource​ ​strategy​ ​for​ ​Year​ ​1​ ​was​ ​to​ ​1)​ ​seek​ ​institutional​ ​homes​ ​and​ ​partners​ ​for​ ​our​ ​work and​ ​2)​ ​pursue​ ​dedicated​ ​resources​ ​where​ ​appropriate​ ​and​ ​with​ ​good​ ​justification.​ ​This​ ​time​ ​last year,​ ​we​ ​were​ ​a​ ​team​ ​of​ ​one.​ ​We​ ​doubled​ ​our​ ​team​ ​with​ ​the​ ​role​ ​of​ ​the​ ​Open​ ​Data​ ​Program Manager​ ​last​ ​fall.​ ​And​ ​during​ ​the​ ​year,​ ​we​ ​put​ ​together​ ​business​ ​cases​ ​to​ ​double​ ​yet​ ​again​ ​with new​ ​roles​ ​to​ ​support​ ​1)​ ​open​ ​data​ ​services​ ​and​ ​2)​ ​support​ ​execution​ ​of​ ​our​ ​confidential​ ​data sharing​ ​project.​ ​We​ ​will​ ​continue​ ​to​ ​work​ ​closely​ ​with​ ​key​ ​partners​ ​around​ ​the​ ​City​ ​doing​ ​similar work.

Our​ ​Roadmap​ ​for​ ​Year​ ​2:​ ​From​ ​Foundation​ ​to​ ​Use

Our​ ​Year​ ​1​ ​plan1​ ​was​ ​about​ ​building​ ​a​ ​foundation​ ​for​ ​the​ ​future​ ​and​ ​creating​ ​the​ ​institutional support​ ​to​ ​grow​ ​use​ ​and​ ​dissemination​ ​of​ ​data​ ​in​ ​San​ ​Francisco.​ ​In​ ​Year​ ​2,​ ​we​ ​need​ ​to​ ​build upon​ ​that​ ​foundation​ ​and​ ​ensure​ ​a​ ​ready​ ​and​ ​predictable​ ​supply​ ​of​ ​data​ ​that​ ​is​ ​addressing​ ​data gaps​ ​and​ ​needs.​ ​If​ ​last​ ​year​ ​was​ ​about​ ​building​ ​the​ ​house,​ ​this​ ​year​ ​is​ ​about​ ​moving​ ​in​ ​and throwing​ ​a​ ​big​ ​house-warming.

Year​ ​2​ ​Goals​ ​and​ ​Subgoals

For​ ​Year​ ​2,​ ​we​ ​are​ ​structuring​ ​our​ ​work​ ​around​ ​five​ ​core​ ​goals​ ​and​ ​subgoals​ ​as​ ​needed. Goal Goal​ ​1.

1

Make​ ​timely​ ​data​ ​easily available

Subgoals​ ​(where​ ​appropriate) 1. Increase​ ​number​ ​and​ ​timeliness​ ​of datasets​ ​on​ ​SF​ ​OpenData 2. Enable​ ​use​ ​of​ ​private​ ​data,​ ​while appropriately​ ​protecting​ ​it

​ ​Read​ ​“​Open​ ​Data​ ​in​ ​San​ ​Francisco:​ ​Institutionalizing​ ​an​ ​Initiative​”​ ​via​ ​google​ ​docs.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

4​ ​of​ ​40

3. Streamline​ ​internal​ ​data​ ​access Goal​ ​2.

Improve​ ​the​ ​usability,​ ​quality and​ ​consistency​ ​of​ ​our​ ​data

Goal​ ​3.

Support​ ​increased​ ​use​ ​of​ ​data in​ ​decision-making

Goal​ ​4.

Identify​ ​and​ ​foster​ ​innovations in​ ​open​ ​data​ ​and​ ​data​ ​use

Goal​ ​5.

Continuously​ ​improve,​ ​scale, maintain​ ​and​ ​monitor​ ​our​ ​work

1. Increase​ ​internal​ ​capacity 2. Support​ ​public​ ​capacity 3. Foster​ ​and​ ​incent​ ​a​ ​data​ ​culture

As​ ​we​ ​execute​ ​on​ ​these​ ​goals​ ​and​ ​supporting​ ​strategies​ ​we​ ​look​ ​forward​ ​to​ ​reporting​ ​on​ ​key accomplishments​ ​next​ ​year.​ ​Below​ ​are​ ​a​ ​handful​ ​of​ ​accomplishments​ ​we​ ​plan​ ​to​ ​achieve​ ​this year: ● ● ● ● ● ● ● ● ● ●

Fully​ ​deployed​ ​data​ ​automation​ ​as​ ​a​ ​service​ ​to​ ​ease​ ​data​ ​publication Deployed​ ​better,​ ​friendlier​ ​publishing​ ​for​ ​geographic​ ​data Identified​ ​methods​ ​to​ ​crowdsource​ ​collective​ ​intelligence​ ​about​ ​published​ ​datasets Launched​ ​new​ ​transparency​ ​websites Engaged​ ​our​ ​broader​ ​community​ ​around​ ​a​ ​handful​ ​of​ ​key​ ​issues​ ​or​ ​datasets Developed​ ​“Data​ ​Concierge”​ ​to​ ​streamline​ ​internal​ ​data​ ​access​ ​for​ ​City​ ​employees Established​ ​center​ ​to​ ​facilitate​ ​and​ ​standardize​ ​confidential​ ​data​ ​sharing Began​ ​to​ ​systematically​ ​tackle​ ​data​ ​quality Developed​ ​Data​ ​Academy​ ​into​ ​a​ ​professional​ ​development​ ​strategy Enriched​ ​our​ ​data​ ​through​ ​effective​ ​storytelling

We​ ​encourage​ ​you​ ​to​ ​visit​ ​our​ ​website,​ ​at​ ​datasf.org/about​​ ​to​ ​track​ ​our​ ​progress​ ​over​ ​the​ ​next year.​ ​We​ ​will​ ​post​ ​quarterly​ ​reports​ ​on​ ​our​ ​strategic​ ​plan,​ ​including​ ​updates​ ​and​ ​revisions.​ ​You can​ ​also​ ​view​ ​our​ ​publishing​ ​progress​ ​at​ ​datasf.org/progress​.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

5​ ​of​ ​40

2.​ ​Mission,​ ​Vision​ ​and​ ​Approach

Our​ ​mission​ ​is​ ​to​ ​empower​ ​use​ ​of​ ​the​ ​City’s​ ​Data.​ ​Our​ ​vision​ ​is​ ​that​ ​the​ ​City’s​ ​data​ ​is understood,​ ​documented,​ ​and​ ​of​ ​high​ ​quality.​ ​The​ ​data​ ​is​ ​published​ ​so​ ​that​ ​it​ ​is​ ​usable,​ ​timely, and​ ​accessible,​ ​which​ ​supports​ ​broad​ ​and​ ​unanticipated​ ​uses​ ​of​ ​our​ ​data.​ ​City​ ​employees​ ​have the​ ​skills​ ​and​ ​capacity​ ​to​ ​collect,​ ​manage,​ ​and​ ​use​ ​data​ ​effectively​ ​and​ ​efficiently​ ​across​ ​its lifecycle. Like​ ​our​ ​Year​ ​1​ ​plan,​ ​our​ ​Year​ ​2​ ​plan​ ​is​ ​ambitious.​ ​To​ ​execute​ ​on​ ​our​ ​plan​ ​we​ ​will​ ​adhere​ ​to some​ ​core​ ​approaches​ ​for​ ​how​ ​we​ ​manage​ ​our​ ​work: 1. Say​ ​no​ ​to​ ​perfection.​​ ​We​ ​don’t​ ​have​ ​enough​ ​time​ ​for​ ​perfect.​ ​Something​ ​is​ ​better​ ​than nothing​ ​and​ ​you​ ​can​ ​always​ ​improve​ ​it​ ​as​ ​you​ ​learn​ ​more. 2. Fail​ ​early​ ​and​ ​often.​​ ​Failing​ ​is​ ​ok​ ​-​ ​not​ ​learning​ ​from​ ​a​ ​failure​ ​is​ ​not​ ​ok.​ ​Small experiments,​ ​failed​ ​or​ ​successful​ ​inform​ ​our​ ​next​ ​steps. 3. Plan​ ​for​ ​the​ ​future.​​ ​Create​ ​infrastructure​ ​and​ ​systems​ ​for​ ​future​ ​growth​ ​-​ ​but​ ​solve immediate​ ​problems​ ​and​ ​pain​ ​points​ ​along​ ​the​ ​way 4. Use​ ​long​ ​division.​​ ​If​ ​a​ ​problem​ ​seems​ ​too​ ​big,​ ​break​ ​it​ ​into​ ​manageable​ ​bits.​ ​There’s always​ ​a​ ​hook​ ​or​ ​a​ ​starting​ ​point​ ​to​ ​move​ ​something​ ​forward. 5. No​ ​ugly,​ ​old​ ​IT.​​ ​We​ ​leverage​ ​existing,​ ​modern,​ ​and​ ​light-weight​ ​tools​ ​and​ ​we​ ​want​ ​our designs​ ​to​ ​be​ ​beautiful,​ ​inviting​ ​but​ ​also​ ​a​ ​little​ ​fun. 6. Use​ ​storytelling​ ​and​ ​data.​​ ​We​ ​must​ ​work​ ​to​ ​find​ ​the​ ​people​ ​in​ ​the​ ​data​ ​and​ ​tell​ ​their story.​ ​Data​ ​without​ ​people​ ​is​ ​just​ ​academic. 7. Seek​ ​institutional​ ​homes.​​ ​Distribute,​ ​share​ ​and​ ​foster​ ​excellence.​ ​While​ ​we​ ​may incubate​ ​programs,​ ​ideas​ ​or​ ​projects,​ ​we​ ​ultimately​ ​need​ ​to​ ​find​ ​a​ ​full-time​ ​home. 8. Learn​ ​to​ ​infinity​ ​and​ ​listen​ ​with​ ​humility.​​ ​Continuously​ ​learn​ ​from​ ​ourselves​ ​and others​ ​and​ ​build​ ​on​ ​existing​ ​frameworks.​ ​“Not​ ​invented​ ​here”​ ​attitudes​ ​are​ ​strictly prohibited. 9. Start​ ​with​ ​problems,​ ​move​ ​to​ ​opportunities.​​ ​We​ ​start​ ​with​ ​people's​ ​needs​ ​and problems​ ​but​ ​also​ ​use​ ​the​ ​chance​ ​to​ ​show​ ​them​ ​some​ ​cool,​ ​new​ ​stuff​ ​for​ ​the​ ​future. 10. If​ ​we​ ​don’t​ ​start​ ​now,​ ​we’ll​ ​never​ ​get​ ​there.​​ ​We​ ​don’t​ ​want​ ​to​ ​look​ ​back​ ​in​ ​five​ ​years and​ ​think​ ​“if​ ​we​ ​had​ ​just…”.​ ​Every​ ​shady​ ​street​ ​started​ ​with​ ​a​ ​row​ ​of​ ​saplings.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

6​ ​of​ ​40

3.​ ​Looking​ ​Back:​ ​The​ ​Year​ ​in​ ​Review Summary​ ​and​ ​Reflections Building​ ​the​ ​Foundation

In​ ​Year​ ​1​ ​our​ ​focus​ ​was​ ​defining​ ​the​ ​scope​ ​of​ ​the​ ​program,​ ​identifying​ ​and​ ​developing​ ​key partnerships,​ ​and​ ​of​ ​course,​ ​building​ ​out​ ​the​ ​programmatic​ ​infrastructure,​ ​including​ ​core services,​ ​business​ ​processes,​ ​and​ ​roles​ ​and​ ​responsibilities.​ ​The​ ​work​ ​we​ ​completed​ ​in​ ​the​ ​last year​ ​provides​ ​the​ ​foundation​ ​upon​ ​which​ ​we​ ​will​ ​build​ ​our​ ​data​ ​work​ ​for​ ​the​ ​City.​ ​While​ ​the foundation​ ​is​ ​not​ ​yet​ ​complete,​ ​we​ ​have​ ​made​ ​tremendous​ ​progress.

It​ ​Takes​ ​a​ ​Village

A​ ​huge​ ​portion​ ​of​ ​that​ ​progress​ ​is​ ​due​ ​to​ ​key​ ​partnerships​ ​with​ ​the​ ​Department​ ​of​ ​Technology (in​ ​particular,​ ​the​ ​DT​ ​GIS​ ​team​ ​for​ ​data​ ​automation​ ​and​ ​services)​ ​and​ ​the​ ​Controller’s​ ​City Services​ ​Auditor​ ​(for​ ​a​ ​variety​ ​of​ ​projects).​ ​These​ ​partnerships​ ​allowed​ ​us​ ​to​ ​execute​ ​on​ ​several components​ ​of​ ​our​ ​strategic​ ​plan​ ​that​ ​were​ ​not​ ​resourced​ ​at​ ​the​ ​start​ ​of​ ​last​ ​year.​ ​We​ ​expect these​ ​partnerships​ ​to​ ​grow​ ​and​ ​strengthen​ ​over​ ​the​ ​next​ ​year​ ​and​ ​we​ ​are​ ​already​ ​exploring​ ​new partnerships​ ​within​ ​and​ ​outside​ ​the​ ​City. Much​ ​of​ ​our​ ​open​ ​data​ ​work​ ​this​ ​year​ ​would​ ​not​ ​have​ ​been​ ​possible​ ​without​ ​our​ ​Data Coordinators.​ ​Our​ ​coordinators​ ​were​ ​essential​ ​in​ ​conducting​ ​major​ ​aspects​ ​of​ ​our​ ​Year​ ​1​ ​plan, including​ ​the​ ​dataset​ ​inventory​ ​that​ ​lists​ ​all​ ​datasets​ ​held​ ​by​ ​the​ ​City​ ​and​ ​County.​ ​The​ ​effort​ ​and quality​ ​of​ ​their​ ​contribution​ ​cannot​ ​be​ ​understated.​ ​Thank​ ​you​ ​Data​ ​Coordinators! We​ ​also​ ​received​ ​a​ ​huge​ ​infusion​ ​of​ ​talent​ ​and​ ​energy​ ​from​ ​our​ ​interns​ ​and​ ​graduate​ ​students throughout​ ​the​ ​year.​ ​And​ ​the​ ​partnership​ ​that​ ​has​ ​emerged​ ​with​ ​our​ ​local​ ​Code​ ​for​ ​America Brigade,​ ​Code​ ​for​ ​San​ ​Francisco,​ ​has​ ​been​ ​invaluable​ ​-​ ​not​ ​only​ ​with​ ​projects​ ​but​ ​as​ ​a​ ​means​ ​of keeping​ ​us​ ​real. Lastly,​ ​we​ ​added​ ​an​ ​incredibly​ ​talented​ ​person​ ​to​ ​the​ ​core​ ​open​ ​data​ ​team​ ​-​ ​Jason​ ​Lally.​ ​His passion,​ ​insight​ ​and​ ​effort​ ​as​ ​our​ ​Open​ ​Data​ ​Program​ ​Manager​ ​has​ ​been​ ​at​ ​the​ ​heart​ ​of​ ​almost every​ ​key​ ​accomplishment​ ​this​ ​year. Appendix​ ​A​ ​includes​ ​a​ ​detailed​ ​list​ ​of​ ​the​ ​many​ ​thanks​ ​we​ ​owe​ ​from​ ​this​ ​last​ ​year.

Program​ ​Highlights

In​ ​the​ ​sections​ ​below,​ ​we​ ​cover​ ​highlights​ ​for​ ​each​ ​goal.​ ​Appendix​ ​B​ ​includes​ ​a​ ​link​ ​to​ ​our​ ​final milestone​ ​report​ ​and​ ​includes​ ​a​ ​summary​ ​table​ ​describing​ ​the​ ​accomplishments​ ​by​ ​strategy​ ​in greater​ ​detail.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

7​ ​of​ ​40

Goal​ ​1.​ ​Increase​ ​number​ ​and​ ​timeliness​ ​of​ ​datasets​ ​on​ ​DataSF Completed​ ​the​ ​dataset​ ​inventory

Our​ ​core​ ​charge​ ​in​ ​Year​ ​1​ ​was completing​ ​a​ ​dataset​ ​inventory​ ​to​ ​list​ ​all of​ ​the​ ​datasets​ ​in​ ​each​ ​department.​ ​This was​ ​an​ ​immense​ ​task​ ​and​ ​took​ ​up​ ​a great​ ​deal​ ​of​ ​our​ ​effort​ ​and​ ​time​ ​in​ ​the last​ ​year. The​ ​full​ ​inventory​ ​is​ ​published​ ​as​ ​a dataset​ ​on​ ​SF​ ​OpenData​​ ​or​ ​you​ ​can view​ ​the​ ​visual​ ​link​​ ​as​ ​shown​ ​in​ ​the screenshot​ ​(this​ ​uses​ ​a​ ​new​ ​feature​ ​on the​ ​data​ ​portal​ ​called​ ​Data​ ​Lens). Our​ ​Data​ ​Coordinators​ ​were​ ​a​ ​key​ ​part of​ ​making​ ​this​ ​successful​ ​and​ ​it​ ​would not​ ​have​ ​been​ ​possible​ ​without​ ​them. They​ ​are​ ​the​ ​true​ ​heroes​ ​in​ ​this​ ​effort. Given​ ​that​ ​we​ ​had​ ​found​ ​little​ ​guidance​ ​on​ ​how​ ​to​ ​conduct​ ​a​ ​comprehensive​ ​data​ ​inventory,​ ​we documented​ ​our​ ​approach​ ​and​ ​reflections​ ​in​ ​a​ ​blog​ ​post​ ​“5 ​ ​ ​Ways​ ​to​ ​Scale​ ​the​ ​Mountain​ ​of​ ​Data in​ ​Your​ ​Organization​.”​ ​Our​ ​hope​ ​is​ ​that​ ​other​ ​open​ ​data​ ​programs​ ​can​ ​learn​ ​from​ ​our experience.​ ​We​ ​also​ ​made​ ​all​ ​of​ ​our​ ​materials​ ​available​ ​in​ ​our​ R ​ esource​ ​Library​. As​ ​of​ ​the​ ​end​ ​of​ ​the​ ​fiscal​ ​year,​ ​75%​ ​or​ ​39​ ​of​ ​52​ ​departments​ ​had​ ​completed​ ​or​ ​partially completed​ ​the​ ​inventory.​ ​We​ ​will​ ​add​ ​additional​ ​departments​ ​on​ ​a​ ​rolling​ ​basis.​ ​In​ ​addition,​ ​we are​ ​building​ ​a​ ​whole​ ​series​ ​of​ ​tools​ ​and​ ​resources​ ​on​ ​top​ ​of​ ​the​ ​data​ ​inventory​ ​-​ ​turning​ ​it​ ​into​ ​a platform.

Developed​ ​three​ ​key​ ​methods​ ​to​ ​prioritize​ ​data​ ​for​ ​publication

Our​ ​dataset​ ​inventory​ ​includes​ ​over​ ​700​ ​datasets​ ​and​ ​counting​ ​and​ ​none​ ​of​ ​them​ ​come​ ​with​ ​a magical​ ​publish​ ​button.​ ​So​ ​we​ ​have​ ​to​ ​prioritize​ ​our​ ​data​ ​for​ ​publication.​ ​We​ ​developed​ ​3​ ​key methods​ ​to​ ​do​ ​so​ ​(and​ ​soon​ ​a​ ​4th): 1. Department​ ​Drip.​ ​As​ ​part​ ​of​ ​the​ ​inventory,​ ​we​ ​asked​ ​departments​ ​to​ ​prioritize​ ​their​ ​data as​ ​a​ ​function​ ​of​ ​value​ ​and​ ​data​ ​classification​ ​and​ ​to​ ​inform​ ​publishing​ ​plans (forthcoming). 2. Endorse​ ​a​ ​Dataset.​ ​The​ ​data​ ​inventory​ ​can​ ​be​ ​used​ ​to​ ​elicit​ ​both​ ​internal​ ​and​ ​external endorsements​ ​to​ ​publish​ ​data.​ ​While​ ​we​ ​haven’t​ ​built​ ​this​ ​yet,​ ​it​ ​is​ ​coming​ ​soon. 3. Strategic​ ​(or​ ​Thematic)​ ​Releases.​ ​One​ ​of​ ​the​ ​challenges​ ​of​ ​open​ ​data​ ​is​ ​that​ ​it​ ​often involves​ ​the​ ​release​ ​of​ ​unrelated​ ​data​ ​in​ ​a​ ​haphazard​ ​manner.​ ​Strategic​ ​releases​ ​are born​ ​out​ ​of​ ​a​ ​belief​ ​that​ ​simply​ ​publishing​ ​data​ ​is​ ​no​ ​longer​ ​sufficient.​ ​Open​ ​data programs​ ​need​ ​to​ ​take​ ​on​ ​the​ ​role​ ​of​ ​adding​ ​value​ ​to​ ​open​ ​data​ ​versus​ ​simply​ ​posting​ ​it and​ ​hoping​ ​for​ ​its​ ​use.​ ​One​ ​way​ ​is​ ​to​ ​release​ ​a​ ​body​ ​of​ ​data​ ​plus​ ​a​ ​product​ ​that​ ​puts​ ​the data​ ​to​ ​use​ ​out​ ​of​ ​the​ ​gate.​ ​This​ ​can​ ​help​ ​open​ ​data​ ​become​ ​more​ ​relevant​ ​to​ ​a​ ​local Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

8​ ​of​ ​40

audience​ ​that​ ​is​ ​focused​ ​on​ ​issues,​ ​not​ ​just​ ​apps,​ ​which​ ​is​ ​what​ ​we​ ​did​ ​with​ ​the​ H ​ ousing Data​ ​Hub​. We​ ​provide​ ​more​ ​details​ ​on​ ​our​ ​approach​ ​in​ ​our​ ​blog​ ​post​ ​“H ​ ow​ ​to​ ​Unstick​ ​Your​ ​Open​ ​Data Publishing​”​ ​and​ ​you​ ​can​ ​view​ ​the​ ​prioritization​ ​grid​ ​for​ ​the​ ​Department​ ​Drip​ ​strategy​ ​below:

Launched​ ​data​ ​automation​ ​as​ ​a​ ​service​ ​in​ ​partnership​ ​with​ ​Department​ ​of Technology One​ ​of​ ​our​ ​key​ ​criteria​ ​under​ ​this​ ​goal​ ​is​ ​the​ ​timely​ ​and​ ​regular​ ​publication​ ​of​ ​data.​ ​If​ ​we​ ​rely​ ​on individuals​ ​to​ ​publish​ ​data,​ ​we​ ​will​ ​not​ ​be​ ​able​ ​to​ ​scale​ ​our​ ​program.​ ​So​ ​we​ ​partnered​ ​closely with​ ​the​ ​Department​ ​of​ ​Technology’s​ ​GIS​ ​team​ ​to​ ​develop​ ​the​ ​business​ ​model​ ​and​ ​supporting processes​ ​and​ ​technology​ ​to​ ​offer​ ​data​ ​automation​ ​as​ ​a​ ​service.​ ​Later​ ​this​ ​year​ ​we’ll​ ​be publishing​ ​our​ ​ETL​ ​Toolkit​ ​that​ ​will​ ​document​ ​our​ ​work​ ​and​ ​serve​ ​as​ ​both​ ​an​ ​internal​ ​and external​ ​reference.

Launched​ ​support​ ​programs​ ​and​ ​portals​ ​for Data​ ​Coordinators​ ​and​ ​Publishers As​ ​part​ ​of​ ​the​ ​dataset​ ​inventory,​ ​we​ ​developed​ ​a program​ ​to​ ​actively​ ​engage​ ​our​ ​Data​ ​Coordinators, including​ ​creating​ ​a​ ​Data​ ​Coordinator​ ​web​ ​portal, workshops,​ ​webinars​ ​and​ ​a​ ​slew​ ​of​ ​online resources.​ ​And​ ​we’ve​ ​started​ ​the​ ​process​ ​of​ ​better supporting​ ​our​ ​publishers​ ​with​ ​the​ ​launch​ ​of​ ​the publishers​ ​portal​ ​at​ ​end​ ​of​ ​year.​ ​We​ ​expect​ ​our support​ ​effort​ ​for​ ​Data​ ​Coordinators​ ​to​ ​decrease and​ ​publishers​ ​to​ ​increase​ ​in​ ​the​ ​next​ ​year.

View​ ​the​ ​Coordinators​ ​Portal​​ ​and​ ​Publishing​ ​Portal​.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

9​ ​of​ ​40

Goal​ ​2.​ ​Improve​ ​the​ ​usability​ ​of​ ​DataSF Launched​ ​the​ ​new​ ​SF​ ​OpenData

Overhauling​ ​the​ ​open​ ​data​ ​platform​ ​was​ ​a​ ​core​ ​deliverable​ ​in​ ​Year​ ​1.​ ​The​ ​image​ ​below​ ​shows the​ ​before​ ​and​ ​after:

Our​ ​blog​ ​post,​ ​The​ ​New​ ​DataSF!​,​ ​details​ ​more​ ​about​ ​the​ ​key​ ​usability​ ​changes​ ​we​ ​made.

Launched​ ​a​ ​new​ ​web​ ​home​ ​for​ ​our overall​ ​program,​ ​DataSF

In​ ​addition​ ​to​ ​the​ ​portal​ ​overhaul,​ ​we needed​ ​a​ ​new​ ​web​ ​presence​ ​to​ ​showcase the​ ​rest​ ​of​ ​our​ ​work.​ ​This​ ​is​ ​also​ ​when​ ​we branded​ ​the​ ​data​ ​portal​ ​to​ ​SF​ ​OpenData and​ ​reserved​ ​DataSF​ ​for​ ​our​ ​overall program. Even​ ​better,​ ​the​ ​code​ ​we​ ​used​ ​to​ ​build​ ​the website​ ​is​ ​freely​ ​available​ ​for​ ​others​ ​to repurpose​ ​and​ ​use​ ​as​ ​you​ ​can​ ​read​ ​in​ ​our blog​ ​post​ ​“​Raising​ ​the​ ​digital​ ​barn​”.

Collaborated​ ​on​ ​new​ ​portal​ ​features

Lastly,​ ​we​ ​partnered​ ​heavily​ ​with​ ​our​ ​vendor​ ​to​ ​introduce​ ​some​ ​new​ ​features​ ​to​ ​the​ ​portal.​ ​While these​ ​are​ ​still​ ​in​ ​the​ ​works,​ ​we​ ​are​ ​excited​ ​about​ ​some​ ​of​ ​the​ ​new​ ​tools​ ​and​ ​features​ ​that​ ​will help​ ​make​ ​open​ ​data​ ​easier​ ​to​ ​use​ ​for​ ​everyone​ ​-​ ​not​ ​just​ ​technical​ ​folks.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

10​ ​of​ ​40

Goal​ ​3.​ ​Improve​ ​the​ ​usability,​ ​quality​ ​and​ ​consistency​ ​of​ ​our​ ​data Created​ ​and​ ​deployed​ ​a​ ​metadata​ ​standard​ ​for​ ​SF OpenData

Ensuring​ ​that​ ​our​ ​data​ ​is​ ​well​ ​documented​ ​prior​ ​to publication​ ​is​ ​a​ ​key​ ​part​ ​of​ ​making​ ​it​ ​usable.​ ​Unfortunately, metadata​ ​(data​ ​about​ ​data)​ ​is​ ​usually​ ​an​ ​afterthought.​ ​We made​ ​it​ ​front​ ​and​ ​center​ ​and​ ​upped​ ​the​ ​documentation requirements​ ​to​ ​ensure​ ​that​ ​our​ ​data​ ​is​ ​not​ ​simply published​ ​-​ ​it​ ​is​ ​published​ ​with​ ​information​ ​that​ ​can​ ​help folks​ ​use​ ​it. You​ ​can​ ​read​ ​more​ ​about​ ​the​ ​process​ ​we​ ​followed​ ​and how​ ​we​ ​elicited​ ​community​ ​and​ ​City​ ​feedback​ ​in​ ​developing​ ​the​ ​standard​ ​in​ ​our​ ​two​ ​blog​ ​posts “​Metadata​ ​&​ ​Dating​ ​-​ ​More​ ​in​ ​Common​ ​than​ ​you​ ​Think…​”​ ​and​ ​“​U​ ​Heart​ ​Metadata​”.​ ​We​ ​also published​ ​all​ ​of​ ​our​ ​metadata​ ​research​ ​and​ ​materials​ ​in​ ​our​ R ​ esource​ ​Library​.

Reset​ ​and​ ​standardized​ ​how​ ​we​ ​publish​ ​data​ ​on​ ​SF OpenData Part​ ​way​ ​through​ ​the​ ​year,​ ​we​ ​realized​ ​we​ ​needed​ ​to dedicate​ ​work​ ​to​ ​resetting​ ​the​ ​published​ ​data​ ​on​ ​DataSF. Much​ ​of​ ​the​ ​data​ ​had​ ​been​ ​published​ ​in​ ​inconsistent​ ​ways, with​ ​varying​ ​standards​ ​and​ ​restrictions.​ ​We​ ​codified publishing​ ​guidelines​ ​and​ ​incorporated​ ​them​ ​into​ ​the Publishing​ ​Portal​. The​ ​reset​ ​work​ ​is​ ​still​ ​underway​ ​but​ ​a​ ​key​ ​visible accomplishment​ ​was​ ​the​ ​relaunch,​ ​in​ ​partnership​ ​with​ ​the Police​ ​Department​ ​and​ ​the​ ​DT​ ​Open​ ​Data​ ​Services​ ​team,​ ​of​ ​police​ ​incidents​ ​as​ ​a​ ​single multi-year​ ​dataset​​ ​natively​ ​hosted​ ​on​ ​SF​ ​OpenData.​ ​Previously,​ ​the​ ​data​ ​had​ ​been​ ​published​ ​as separate​ ​shapefiles​ ​for​ ​each​ ​year​ ​with​ ​only​ ​the​ ​last​ ​30​ ​days​ ​on​ ​SF​ ​OpenData​ ​natively.​ ​Native hosting​ ​allows​ ​you​ ​to​ ​easily​ ​generate​ ​maps​ ​and​ ​other​ ​visuals​ ​as​ ​shown​ ​in​ ​this​ ​map​ ​which​ ​shows all​ ​police​ ​incidents​ ​since​ ​2003​ ​in​ ​a​ ​single​ ​map.

Deployed​ ​a​ ​help​ ​desk​ ​for​ ​incorporating​ ​and​ ​tracking​ ​user​ ​feedback​ ​and​ ​questions Understanding​ ​what​ ​questions​ ​users​ ​have​ ​about​ ​our​ ​data​ ​helps​ ​us​ ​improve​ ​how​ ​we​ ​publish​ ​it. Our​ ​user​ ​feedback​ ​methods​ ​were​ ​limited​ ​to​ ​a​ ​nomination​ ​form​ ​provided​ ​by​ ​our​ ​vendor.​ ​In​ ​lieu​ ​of this​ ​we​ ​created​ ​our​ ​own​ ​Contact​ ​Us​ ​form​ ​and​ ​are​ ​tracking​ ​data​ ​questions​ ​and​ ​requests​ ​in​ ​a single​ ​place​ ​using​ ​an​ ​enterprise​ ​ticketing​ ​system.​ ​By​ ​codifying​ ​and​ ​quantifying​ ​this,​ ​we​ ​can better​ ​respond​ ​to​ ​user​ ​needs.​ ​ ​In​ ​Year​ ​2,​ ​we’ll​ ​be​ ​expanding​ ​the​ ​number​ ​and​ ​types​ ​of​ ​user feedback​ ​mechanisms​ ​we​ ​use.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

11​ ​of​ ​40

Goal​ ​4.​ ​Enable​ ​use​ ​of​ ​confidential​ ​data,​ ​while​ ​appropriately protecting​ ​it Goal​ ​4​ ​was​ ​largely​ ​dependent​ ​on​ ​resources. Fortunately,​ ​we​ ​were​ ​able​ ​to​ ​partner​ ​in​ ​the​ ​Fall with​ ​the​ ​City​ ​Services​ ​Auditor​ ​and​ ​several​ ​key agencies​ ​to​ ​put​ ​together​ ​a​ ​comprehensive strategy​ ​to​ ​address​ ​this​ ​goal.​ ​This​ ​was​ ​a​ ​key​ ​pivot in​ ​our​ ​approach​ ​to​ ​focus​ ​on​ ​the​ ​use​ ​of​ ​data​ ​in​ ​the context​ ​of​ ​coordinated​ ​care.​ ​The​ ​picture​ ​captures an​ ​activity​ ​from​ ​one​ ​of​ ​our​ ​planning​ ​sessions.

Why​ ​Coordinated​ ​Care?​​ ​Social​ ​service​ ​delivery is​ ​in​ ​the​ ​midst​ ​of​ ​a​ ​migration​ ​from​ ​program​ ​to​ ​people​ ​centric​ ​care.​ ​Our​ ​most​ ​vulnerable individuals​ ​touch​ ​multiple​ ​systems​ ​-​ ​education,​ ​human​ ​services,​ ​and​ ​criminal​ ​justice​ ​-​ ​which have​ ​historically​ ​operated​ ​in​ ​silos.​ ​The​ ​transition​ ​to​ ​coordinated​ ​care​ ​will​ ​better​ ​meet​ ​the​ ​needs of​ ​our​ ​clients​ ​by​ ​tailoring​ ​care​ ​to​ ​meet​ ​the​ ​needs​ ​of​ ​each​ ​individual,​ ​rather​ ​than​ ​administering programs​ ​with​ ​a​ ​one-size-fits-all​ ​approach. A​ ​coordinated​ ​care​ ​approach​ ​is​ ​best​ ​carried​ ​out​ ​when​ ​multiple​ ​jurisdictions​ ​are​ ​able​ ​to​ ​share data​ ​about​ ​the​ ​individuals​ ​they​ ​are​ ​jointly​ ​serving,​ ​so​ ​that​ ​efforts​ ​are​ ​not​ ​duplicated,​ ​and​ ​the dosage​ ​of​ ​services​ ​is​ ​based​ ​on​ ​the​ ​right​ ​mix​ ​of​ ​supports.​ ​Unfortunately,​ ​most​ ​of​ ​our​ ​rules​ ​and laws​ ​regarding​ ​data​ ​sharing​ ​were​ ​made​ ​within​ ​distinct​ ​verticals,​ ​such​ ​as​ ​health​ ​care,​ ​early education,​ ​education,​ ​criminal​ ​justice​ ​etc.​ ​This​ ​legal​ ​thicket​ ​leads​ ​to​ ​an​ ​implementation​ ​thicket. Each​ ​jurisdiction​ ​navigates​ ​this​ ​thicket​ ​afresh,​ ​which​ ​concentrates​ ​risk​ ​on​ ​individuals​ ​and localities​ ​interpreting​ ​the​ ​law.​ ​In​ ​addition,​ ​to​ ​the​ ​legal​ ​work,​ ​we​ ​need​ ​coordinated​ ​policies​ ​and procedures​ ​as​ ​well​ ​as​ ​the​ ​right​ ​mix​ ​of​ ​technology​ ​and​ ​supporting​ ​infrastructure. The​ ​diagram​ ​below​ ​shows​ ​the​ ​focus​ ​of​ ​our​ ​project,​ ​which​ ​will​ ​be​ ​a​ ​multi-year​ ​effort,​ ​in​ ​the context​ ​of​ ​coordinated​ ​care:

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

12​ ​of​ ​40

Goal​ ​5.​ ​Support​ ​increased​ ​use​ ​of​ ​data​ ​in​ ​decision-making Launched​ ​Data​ ​Academy​ ​in​ ​partnership​ ​with​ ​the​ ​City​ ​Services​ ​Auditor

Our​ ​analyst​ ​survey​ ​from​ ​last​ ​year​ ​demonstrated​ ​an​ ​unmet​ ​need​ ​for​ ​more​ ​training​ ​in​ ​data​ ​use, collection,​ ​and​ ​visualization.​ ​Fortunately,​ ​the​ ​team​ ​in​ ​the​ ​City​ ​Services​ ​Auditor​ ​was​ ​offering​ ​a few​ ​classes​ ​and​ ​we​ ​teamed​ ​up​ ​to​ ​expand​ ​the​ ​number,​ ​type​ ​and​ ​frequency.​ ​We​ ​also​ ​launched​ ​a website​ ​for​ ​the​ ​Data​ ​Academy​.​ ​The​ ​demand​ ​has​ ​been​ ​incredible​ ​and​ ​the​ ​feedback​ ​very​ ​positive. Below​ ​is​ ​a​ ​picture​ ​from​ ​our​ ​Basics​ ​of​ ​Information​ ​Design​ ​class.

Developed​ ​the​ ​Stat​ ​Starter​ ​Kit​ ​in​ ​partnership​ ​with​ ​the​ ​City​ ​Services​ ​Auditor

While​ ​the​ ​Data​ ​Academy​ ​targets​ ​individual​ ​skills,​ ​we​ ​also​ ​wanted​ ​to​ ​support​ ​department​ ​skills​ ​in using​ ​data.​ ​A​ ​variety​ ​of​ ​departments​ ​expressed​ ​interest​ ​in​ ​starting​ ​“performance​ ​stat”​ ​programs. To​ ​respond​ ​to​ ​this,​ ​we​ ​partnered​ ​with​ ​the​ ​performance​ ​team​ ​in​ ​the​ ​City​ ​Services​ ​Auditor​ ​who​ ​led the​ ​way​ ​putting​ ​together​ ​a​ ​series​ ​of​ ​resources​ ​to​ ​help​ ​departments​ ​start​ ​“stat”​ ​programs.​ ​We’ll be​ ​launching​ ​the​ ​Stat​ ​Starter​ ​Kit​ ​early​ ​in​ ​Q1​ ​of​ ​Year​ ​2.

Launched​ ​the​ ​Housing​ ​Data​ ​Hub​ ​in​ ​partnership​ ​with​ ​a​ ​village

While​ ​the​ ​previous​ ​programs​ ​support​ ​individual​ ​and​ ​department​ ​skills​ ​in​ ​data,​ ​we​ ​also​ ​wanted​ ​to leverage​ ​open​ ​data​ ​to​ ​improve​ ​public​ ​capacity​ ​to​ ​use​ ​and​ ​understand​ ​City​ ​data.​ ​While​ ​we​ ​are​ ​at the​ ​beginning​ ​of​ ​this​ ​journey,​ ​we​ ​were​ ​excited​ ​to​ ​launch​ ​the​ H ​ ousing​ ​Data​ ​Hub (housing.datasf.org)​ ​this​ ​year. The​ ​Housing​ ​Data​ ​Hub​ ​is​ ​a​ ​single​ ​place​ ​to​ ​learn​ ​about​ ​policies​ ​and​ ​programs​ ​related​ ​to​ ​housing affordability​ ​as​ ​well​ ​as​ ​the​ ​administrative​ ​data​ ​behind​ ​them​ ​-​ ​contextualized​ ​and​ ​visualized​ ​for easy​ ​consumption.​ ​This​ ​is​ ​part​ ​of​ ​a​ ​key​ ​strategy​ ​we​ ​are​ ​pursuing,​ ​which​ ​is​ ​to​ ​publish​ ​our​ ​data​ ​in a​ ​way​ ​that​ ​is​ ​more​ ​meaningful​ ​and​ ​accessible​ ​for​ ​our​ ​local​ ​stakeholders​ ​who​ ​care​ ​about​ ​local issues,​ ​not​ ​just​ ​applications.​ ​Read​ ​more​ ​on​ ​our​ ​thinking​ ​on​ ​what​ ​we​ ​are​ ​calling​ s​ trategic​ ​or thematic​ ​open​ ​data​ ​releases​.​ ​We​ ​think​ ​this​ ​is​ ​a​ ​key​ ​part​ ​of​ ​fostering​ ​a​ ​data-enabled​ ​policy environment. The​ ​screenshot​ ​below​ ​shows​ ​one​ ​of​ ​the​ ​“data​ ​browser”​ ​views​ ​on​ ​the​ ​Housing​ ​Data​ ​Hub​ ​that incorporates​ ​just​ ​in​ ​time​ ​learning​ ​moments​ ​that​ ​help​ ​explain​ ​the​ ​data​ ​visualized​ ​below.​ ​In Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

13​ ​of​ ​40

addition,​ ​users​ ​can​ ​link​ ​back​ ​to​ ​the​ ​original​ ​data​ ​on​ ​SF​ ​OpenData​ ​by​ ​clicking​ ​on​ ​“Get​ ​the​ ​source dataset”. The​ ​Housing​ ​Data​ ​Hub​ ​was​ ​another​ ​great​ ​example​ ​of​ ​“it​ ​takes​ ​a​ ​village”.​ ​We​ ​received​ ​help​ ​from each​ ​of​ ​the​ ​key​ ​departments​ ​but​ ​also​ ​volunteers​ ​from​ C ​ ode​ ​for​ ​San​ ​Francisco​.​ ​You​ ​can​ ​visit​ ​the Hub​​ ​and​ ​read​ ​more​ ​about​ ​all​ ​of​ ​those​ ​who​ ​contributed​.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

14​ ​of​ ​40

Goal​ ​6.​ ​Identify​ ​and​ ​foster​ ​innovations​ ​in​ ​open​ ​data​ ​and​ ​data​ ​use Launched​ ​a​ ​blog​ ​and​ ​reclaimed​ ​our twitter​ ​account

A​ ​key​ ​part​ ​of​ ​fostering​ ​innovation​ ​is engagement​ ​and​ ​communications.​ ​When we​ ​started​ ​last​ ​year,​ ​our​ ​Twitter​ ​account had​ ​been​ ​abandoned​ ​and​ ​we​ ​had​ ​very​ ​few ways​ ​of​ ​engaging​ ​and​ ​reaching​ ​our audiences.​ ​While​ ​we​ ​have​ ​so​ ​much​ ​more work​ ​to​ ​do​ ​here​ ​(and​ ​many​ ​things upcoming),​ ​re-establishing​ ​our​ ​voice​ ​was​ ​a key​ ​first​ ​step.​ ​You​ ​can​ ​read​ ​our​ ​blog​ ​at DataSF​ ​Speaks​​ ​and​ ​follow​ ​us​ ​on​ ​Twitter @DataSF​.

Launched​ ​the​ ​Resource​ ​Library

Another​ ​way​ ​to​ ​foster​ ​innovation​ ​is​ ​to document​ ​and​ ​share​ ​what​ ​we​ ​are​ ​doing​ ​so​ ​that​ ​other​ ​open​ ​data​ ​programs​ ​can​ ​benefit.​ ​We​ ​are finding​ ​that​ ​folks​ ​use​ ​our​ ​online​ ​resources​ ​and​ ​will​ ​follow​ ​up​ ​with​ ​additional​ ​questions​ ​or thoughts.​ ​We​ ​are​ ​also​ ​hearing​ ​from​ ​programs​ ​across​ ​the​ ​country​ ​(and​ ​occasionally​ ​world)​ ​that have​ ​adapted​ ​our​ ​documents​ ​and​ ​resources​ ​for​ ​local​ ​use.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

15​ ​of​ ​40

Adopted​ ​a​ ​licensing​ ​strategy​ ​designed​ ​to​ ​foster open​ ​data​ ​reuse

One​ ​of​ ​the​ ​key​ ​issues​ ​in​ ​publishing​ ​data​ ​is​ ​ensuring​ ​that it​ ​can​ ​be​ ​legally​ ​reused.​ ​Unfortunately,​ ​this​ ​topic​ ​does not​ ​get​ ​enough​ ​attention.​ ​We​ ​surveyed​ ​the​ ​landscape​ ​to come​ ​up​ ​with​ ​a​ ​licensing​ ​strategy​ ​that​ ​would​ ​fit​ ​the unique​ ​needs​ ​of​ ​open​ ​data.​ ​And​ ​then​ ​we​ ​worked​ ​closely with​ ​our​ ​legal​ ​team​ ​to​ ​put​ ​it​ ​in​ ​place.​ ​You​ ​can​ ​read​ ​more about​ ​what​ ​we​ ​did​ ​in​ ​our​ ​blog​ ​post​ ​“​Data​ ​License Liberation​ ​Day​“​ ​and​ ​our​ ​research​ ​and​ ​related documentation​ ​is​ ​available​ ​via​ ​the​ ​Resource​ ​Library​.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

16​ ​of​ ​40

4.​ ​Looking​ ​Forward:​ ​Year​ ​2​ ​Goals​ ​and​ ​Strategies Overview​ ​of​ ​Approach​ ​and​ ​Goals

From​ ​Foundation​ ​to​ ​Meeting​ ​Supply/Spurring​ ​Demand

If​ ​Year​ ​1​ ​was​ ​about​ ​building​ ​the​ ​foundation,​ ​Year​ ​2​ ​is​ ​about​ ​buying​ ​furniture,​ ​painting​ ​the​ ​walls, hanging​ ​photos​ ​and​ ​throwing​ ​a​ ​housewarming​ ​party.​ ​It’s​ ​time​ ​to​ ​open​ ​the​ ​doors​ ​and​ ​not​ ​just​ ​let folks​ ​in,​ ​but​ ​deliver​ ​the​ ​invite​ ​in-person.​ ​That’s​ ​why​ ​the​ ​theme​ ​for​ ​Year​ ​2​ ​is​ ​to​ ​fill​ ​out​ ​the​ ​supply of​ ​data​ ​but​ ​also​ ​ensure​ ​that​ ​it’s​ ​being​ ​used​ ​by​ ​a​ ​broader​ ​range​ ​of​ ​people.

Goal​ ​Shifts​ ​in​ ​Year​ ​2

We​ ​expected​ ​our​ ​Year​ ​1​ ​goals​ ​to​ ​hold​ ​steady​ ​for​ ​the​ ​next​ ​three​ ​years.​ ​While​ ​this​ ​is​ ​generally true,​ ​we​ ​modified​ ​our​ ​goals​ ​to​ ​reflect​ ​some​ ​key​ ​insights: ●



Two​ ​of​ ​our​ ​goals​ ​fit​ ​nicely​ ​under​ ​a​ ​broader​ ​goal​ ​of​ ​making​ ​timely​ ​data​ ​easily​ ​available. As​ ​a​ ​result,​ ​we​ ​consolidated​ ​the​ ​following​ ​two​ ​goals​ ​under​ ​a​ ​broader​ ​goal​ ​of​ ​“make timely​ ​data​ ​easily​ ​available”: ○ Increase​ ​number​ ​and​ ​timeliness​ ​of​ ​datasets​ ​on​ ​SF​ ​OpenData ○ Enable​ ​use​ ​of​ ​private​ ​data,​ ​while​ ​appropriately​ ​protecting​ ​it Our​ ​web​ ​presence​ ​demanded​ ​a​ ​huge​ ​amount​ ​of​ ​effort​ ​and​ ​focus​ ​in​ ​Year​ ​1​ ​to​ ​update​ ​it and​ ​establish​ ​a​ ​new,​ ​comprehensive​ ​presence.​ ​While,​ ​we​ ​will​ ​continuously​ ​improve​ ​our online​ ​tools,​ ​the​ ​goal​ ​now​ ​fits​ ​more​ ​appropriately​ ​under​ ​a​ ​goal​ ​centered​ ​on​ ​continuous improvement​ ​and​ ​organizational​ ​excellence​ ​for​ ​the​ ​program.

Year​ ​2​ ​Goals​ ​and​ ​Subgoals Goal Goal​ ​1.

Make​ ​timely​ ​data​ ​easily available

Goal​ ​2.

Improve​ ​the​ ​usability,​ ​quality and​ ​consistency​ ​of​ ​our​ ​data

Goal​ ​3.

Support​ ​increased​ ​use​ ​of​ ​data in​ ​decision-making

Goal​ ​4.

Identify​ ​and​ ​foster​ ​innovations in​ ​open​ ​data​ ​and​ ​data​ ​use

Goal​ ​5.

Continuously​ ​improve,​ ​scale, maintain​ ​and​ ​monitor​ ​our​ ​work

Subgoals​ ​(where​ ​appropriate) 1. Increase​ ​number​ ​and​ ​timeliness​ ​of datasets​ ​on​ ​SF​ ​OpenData 2. Enable​ ​use​ ​of​ ​private​ ​data,​ ​while appropriately​ ​protecting​ ​it 3. Streamline​ ​internal​ ​data​ ​access

1. Increase​ ​internal​ ​capacity 2. Support​ ​public​ ​capacity 3. Foster​ ​and​ ​incent​ ​a​ ​data​ ​culture

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

17​ ​of​ ​40

These​ ​goals​ ​continue​ ​to​ ​align​ ​with​ ​the​ ​three​ ​core​ ​challenges​ ​we​ ​identified​ ​for​ ​effective​ ​data​ ​use: 1)​ ​knowing​ ​what​ ​data​ ​we​ ​have,​ ​2)​ ​having​ ​effective​ ​and​ ​efficient​ ​means​ ​of​ ​accessing​ ​it​ ​and​ ​3) using​ ​data​ ​effectively. Challenges Knowledge

Access

Ability

Goal​ ​1.​ ​Make​ ​timely​ ​data​ ​easily​ ​available Goal​ ​2.​ ​Improve​ ​the​ ​usability,​ ​quality​ ​and​ ​consistency​ ​of​ ​our data Goal​ ​3.​ ​Support​ ​increased use​ ​of​ ​data​ ​in decision-making Goal​ ​4.​ ​Identify​ ​and​ ​foster​ ​innovations​ ​in​ ​open​ ​data​ ​and​ ​data use Goal​ ​5.​ ​Continuously​ ​improve,​ ​scale,​ ​maintain​ ​and​ ​monitor​ ​our​ ​work The​ ​following​ ​sections​ ​describe​ ​the​ ​strategies​ ​in​ ​support​ ​of​ ​these​ ​goals.​ ​Appendix​ ​C​ ​provides​ ​a link​ ​to​ ​a​ ​quarterly​ ​timeline​ ​and​ ​set​ ​of​ ​milestones​ ​for​ ​Year​ ​2​ ​and​ ​Appendix​ ​D​ ​provides​ ​a​ ​cross walk​ ​with​ ​our​ ​open​ ​data​ ​policy​ ​that​ ​details​ ​how​ ​we​ ​are​ ​meeting​ ​the​ ​provisions​ ​of​ ​the​ ​legislation.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

18​ ​of​ ​40

Goal​ ​1.

Make​ ​timely​ ​data​ ​easily​ ​available

A​ ​precursor​ ​to​ ​using​ ​data​ ​is​ ​access.​ ​Open​ ​data,​ ​published​ ​on​ ​a​ ​shared​ ​platform,​ ​is​ ​one​ ​way​ ​of making​ ​data​ ​available.​ ​In​ ​the​ ​near​ ​term​ ​we​ ​need​ ​to​ ​ensure​ ​that​ ​we​ ​are​ ​publishing​ ​or​ ​plan​ ​to publish​ ​the​ ​City’s​ ​data​ ​when​ ​allowed.​ ​We​ ​should​ ​also​ ​publish​ ​the​ ​data​ ​at​ ​a​ ​frequency​ ​that matches​ ​the​ ​rate​ ​of​ ​data​ ​change.​ ​For​ ​example,​ ​datasets​ ​that​ ​change​ ​daily​ ​should​ ​be​ ​refreshed daily.​ ​Some​ ​data​ ​is​ ​only​ ​allowed​ ​to​ ​be​ ​shared​ ​internally​ ​as​ ​it​ ​may​ ​be​ ​protected​ ​by​ ​law​ ​or​ ​is​ ​not available​ ​to​ ​be​ ​published​ ​in​ ​the​ ​near​ ​term.​ ​For​ ​these​ ​datasets,​ ​we​ ​need​ ​to​ ​ensure​ ​that​ ​we​ ​have effective​ ​and​ ​efficient​ ​means​ ​of​ ​accessing​ ​and​ ​sharing​ ​data​ ​when​ ​it​ ​is​ ​appropriate​ ​to​ ​do​ ​so.

Subgoal​ ​1.1​ ​Increase​ ​number​ ​and​ ​timeliness​ ​of​ ​datasets​ ​on​ ​SF​ ​OpenData Strategy​ ​1.1.​ ​Continue​ ​to​ ​mature​ ​our​ ​program​ ​to​ ​automate​ ​publication​ ​of​ ​data.​​ ​One​ ​of​ ​the key​ ​challenges​ ​in​ ​opening​ ​data​ ​is​ ​extracting​ ​it​ ​from​ ​legacy​ ​systems​ ​and​ ​then​ ​preparing​ ​it​ ​for broader​ ​consumption.​ ​Older​ ​systems​ ​were​ ​not​ ​designed​ ​with​ ​data​ ​exporting​ ​or​ ​sharing​ ​in​ ​mind. Proprietary​ ​data​ ​formats​ ​need​ ​to​ ​be​ ​converted​ ​into​ ​modern,​ ​open​ ​formats,​ ​or​ ​the​ ​data​ ​may​ ​need to​ ​be​ ​reorganized​ ​or​ ​structured​ ​in​ ​a​ ​way​ ​that​ ​supports​ ​public​ ​distribution.​ ​Lastly,​ ​the​ ​processes that​ ​extract,​ ​transform​ ​and​ ​load​ ​data​ ​should​ ​be​ ​automated,​ ​such​ ​that​ ​after​ ​the​ ​initial configuration,​ ​we​ ​have​ ​little​ ​to​ ​no​ ​overhead​ ​other​ ​than​ ​monitoring​ ​the​ ​ongoing​ ​process.​ ​In​ ​sum, our​ ​automation​ ​program​ ​(activities​ ​summarized​ ​as​ ​extract,​ ​transform​ ​and​ ​load​ ​-​ ​ETL)​ ​is​ ​a​ ​critical part​ ​of​ ​our​ ​overall​ ​program​ ​as​ ​it​ ​will​ ​support​ ​the​ ​key​ ​processes​ ​that​ ​ensure​ ​our​ ​data​ ​is​ ​extracted appropriately​ ​and​ ​published​ ​in​ ​a​ ​timely​ ​manner​ ​on​ ​DataSF. While​ ​we​ ​made​ ​excellent​ ​progress​ ​in​ ​Year​ ​1,​ ​we​ ​need​ ​to​ ​ensure​ ​that​ ​our​ ​program​ ​continues​ ​to develop​ ​to​ ​obtain​ ​economies​ ​of​ ​scale​ ​and​ ​to​ ​be​ ​sustainable.​ ​Key​ ​elements​ ​of​ ​this​ ​will​ ​be​ ​to formalize​ ​business​ ​processes​ ​via​ ​automation,​ ​develop​ ​dedicated​ ​resources,​ ​scale​ ​and standardize​ ​our​ ​technical​ ​implementation,​ ​and​ ​track​ ​and​ ​measure​ ​program​ ​performance. Strategy​ ​1.2.​ ​Develop​ ​self-service​ ​model​ ​for​ ​data​ ​automation​ ​for​ ​large​ ​departments. While,​ ​we’ve​ ​committed​ ​to​ ​providing​ ​data​ ​automation​ ​as​ ​a​ ​central​ ​service,​ ​we​ ​recognize​ ​that some​ ​departments​ ​are​ ​capable​ ​of​ ​and​ ​should​ ​have​ ​control​ ​over​ ​their​ ​data​ ​automation​ ​work.​ ​At the​ ​same​ ​time,​ ​we​ ​want​ ​to​ ​ensure​ ​consistency​ ​and​ ​quality​ ​in​ ​the​ ​automation​ ​of​ ​data.​ ​Developing a​ ​self-service​ ​model​ ​will​ ​help​ ​us​ ​obtain​ ​both​ ​goals. Strategy​ ​1.3.​ ​Target​ ​departments​ ​for​ ​wholesale​ ​data​ ​automation.​ D ​ uring​ ​our​ ​data​ ​inventory (when​ ​we​ ​listed​ ​all​ ​datasets​ ​held​ ​across​ ​the​ ​city),​ ​we​ ​included​ ​a​ ​step​ ​that​ ​covered​ ​a​ ​list​ ​of systems.​ ​Our​ ​analysis​ ​of​ ​this​ ​list​ ​suggests​ ​that​ ​some​ ​departments​ ​are​ ​good​ ​candidates​ ​for wholesale​ ​automation​ ​-​ ​that​ ​is,​ ​their​ ​technical​ ​environment​ ​is​ ​homogenous​ ​and​ ​they​ ​have​ ​a​ ​key technical​ ​contact​ ​that​ ​can​ ​streamline​ ​the​ ​work.​ ​For​ ​these​ ​departments,​ ​we​ ​will​ ​seek​ ​to​ ​automate the​ ​publication​ ​of​ ​their​ ​data​ ​as​ ​a​ ​single​ ​project​ ​(versus​ ​relying​ ​on​ ​department​ ​publishing​ ​plans).

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

19​ ​of​ ​40

Strategy​ ​1.4.​ ​Develop​ ​a​ ​geographic​ ​data​ ​access​ ​and​ ​publishing​ ​strategy.​​ ​Our​ ​experience​ ​in Year​ ​1,​ ​suggested​ ​that​ ​we​ ​need​ ​to​ ​have​ ​a​ ​distinct​ ​strategy​ ​for​ ​publishing​ ​geographic​ ​data,​ ​in particular​ ​data​ ​that​ ​consists​ ​of​ ​polygons​ ​(shapes/boundaries​ ​like​ ​police​ ​districts)​ ​and​ ​polylines (lines​ ​like​ ​streets).​ ​The​ ​canonical​ ​geographic​ ​datasets​ ​in​ ​the​ ​City​ ​are​ ​broadly​ ​used​ ​both internally​ ​and​ ​externally​ ​and​ ​have​ ​particular​ ​shared​ ​value​ ​that​ ​requires​ ​a​ ​more​ ​deliberate process​ ​for​ ​publishing​ ​(including​ ​geographic​ ​tools),​ ​data​ ​management,​ ​and​ ​communicating metadata.​ ​The​ ​Department​ ​of​ ​Technology’s​ ​GIS​ ​team​ ​is​ ​a​ ​key​ ​partner​ ​in​ ​this​ ​work. Strategy​ ​1.5.​ ​Establish​ ​methods​ ​to​ ​ensure​ ​SF​ ​licensing​ ​and​ ​publication​ ​of​ ​data​ ​for​ ​new information​ ​systems.​​ ​While​ ​extracting​ ​data​ ​from​ ​legacy​ ​systems​ ​is​ ​painful,​ ​new​ ​systems should​ ​be​ ​built​ ​with​ ​open​ ​data​ ​as​ ​a​ ​standard​ ​output.​ ​Any​ ​new​ ​information​ ​system​ ​should​ ​be required​ ​to​ ​have​ ​automated​ ​outputs​ ​to​ ​support​ ​broader​ ​publication​ ​and​ ​dissemination​ ​of​ ​the city’s​ ​data,​ ​while​ ​retaining​ ​the​ ​appropriate​ ​licensing.​ ​In​ ​Year​ ​1,​ ​we​ ​were​ ​surprised​ ​to​ ​find​ ​little​ ​to no​ ​best​ ​practices​ ​in​ ​this​ ​area.​ ​As​ ​a​ ​result​ ​we​ ​shifted​ ​the​ ​timing​ ​of​ ​this​ ​work​ ​and​ ​will​ ​seek​ ​to complete​ ​it​ ​in​ ​Year​ ​2.

Subgoal​ ​1.2​ ​Enable​ ​use​ ​of​ ​private​ ​data,​ ​while​ ​appropriately​ ​protecting​ ​it Strategy​ ​1.6.​ ​Create​ ​“ShareSF”​ ​hub​ ​and​ ​develop​ ​supporting​ ​resources​ ​and​ ​business processes.​ ​As​ ​mentioned​ ​in​ ​the​ ​looking​ ​back​ ​section,​ ​we​ ​pivoted​ ​to​ ​a​ ​broader​ ​strategy​ ​for confidential​ ​data​ ​sharing​ ​in​ ​Year​ ​1.​ ​As​ ​part​ ​of​ ​that​ ​strategy,​ ​our​ ​office​ ​was​ ​tasked​ ​with developing​ ​a​ ​“ShareSF”​ ​hub​ ​to​ ​facilitate​ ​internal​ ​confidential​ ​data​ ​sharing.​ ​Under​ ​this​ ​strategy, we​ ​will​ ​develop​ ​the​ ​programmatic​ ​components​ ​of​ ​a​ ​hub,​ ​including​ ​standard​ ​business​ ​processes, shared​ ​resources,​ ​legal​ ​frameworks,​ ​and​ ​governance. Strategy​ ​1.7.​ ​Explore​ ​technical​ ​solutions​ ​for​ ​confidential​ ​data​ ​sharing.​ T ​ he​ ​“ShareSF” strategy​ ​also​ ​calls​ ​for​ ​the​ ​exploration​ ​of​ ​technical​ ​solutions​ ​to​ ​confidential​ ​data​ ​sharing.​ ​While we​ ​expect​ ​this​ ​to​ ​have​ ​partial​ ​overlap​ ​with​ ​Strategy​ ​1.11​ ​below,​ ​we​ ​anticipate​ ​specific​ ​needs and​ ​requirements​ ​related​ ​to​ ​implementing​ ​technical​ ​controls​ ​for​ ​legally​ ​protected​ ​data. Strategy​ ​1.8.​ ​Create​ ​a​ ​process​ ​for​ ​accessing​ ​your​ ​individual​ ​data.​ A ​ ​ ​process​ ​for​ ​accessing data​ ​that​ ​the​ ​City​ ​holds​ ​about​ ​you​ ​will​ ​increase​ ​transparency​ ​and​ ​may​ ​help​ ​improve​ ​data​ ​quality. Our​ ​work​ ​in​ ​Year​ ​1​ ​suggested​ ​that​ ​this​ ​is​ ​best​ ​incorporated​ ​into​ ​existing​ ​systems​ ​and​ ​processes for​ ​data​ ​and​ ​information​ ​requests.​ ​As​ ​a​ ​result,​ ​we​ ​expect​ ​to​ ​wrap​ ​this​ ​process​ ​up​ ​in​ ​Year​ ​2​ ​and will​ ​focus​ ​on​ ​guidance​ ​and​ ​outreach​ ​to​ ​educate​ ​departments​ ​on​ ​this​ ​type​ ​of​ ​request.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

20​ ​of​ ​40

Subgoal​ ​1.3​ ​Streamline​ ​internal​ ​data​ ​access Through​ ​our​ ​City​ ​Analyst​ ​survey​ ​we​ ​have​ ​quantified​ ​the​ ​need​ ​for​ ​more​ ​effective​ ​and​ ​efficient means​ ​of​ ​accessing​ ​data​ ​between​ ​departments.​ ​While​ ​the​ ​open​ ​data​ ​portal​ ​is​ ​a​ ​key​ ​repository that​ ​we​ ​expect​ ​to​ ​leverage,​ ​some​ ​data​ ​either​ ​will​ ​not​ ​yet​ ​be​ ​available​ ​on​ ​the​ ​data​ ​portal​ ​or​ ​will​ ​be available​ ​in​ ​a​ ​format​ ​that​ ​is​ ​less​ ​amenable​ ​to​ ​internal​ ​data​ ​work.​ ​In​ ​some​ ​cases,​ ​this​ ​subgoal​ ​will complement​ ​Subgoal​ ​1.2​ ​for​ ​private​ ​data​ ​sharing. Strategy​ ​1.9.​ ​Develop​ ​methods​ ​to​ ​connect​ ​internal​ ​users​ ​to​ ​datasets.​ T ​ he​ ​dataset​ ​inventory we​ ​created​ ​in​ ​Year​ ​1​ ​was​ ​a​ ​major​ ​step​ ​towards​ ​understanding​ ​the​ ​scope​ ​of​ ​the​ ​City’s​ ​data holdings​ ​and​ ​addressing​ ​one​ ​of​ ​the​ ​key​ ​barriers​ ​-​ ​knowledge​ ​of​ ​data.​ ​Now​ ​that​ ​we​ ​have​ ​this​ ​list, not​ ​only​ ​do​ ​we​ ​need​ ​to​ ​maintain​ ​it,​ ​we​ ​need​ ​to​ ​leverage​ ​it​ ​to​ ​support​ ​internal​ ​data​ ​access.​ ​While other​ ​methods​ ​may​ ​emerge,​ ​tools​ ​built​ ​on​ ​top​ ​of​ ​the​ ​data​ ​inventory​ ​can​ ​support​ ​internal​ ​data access​ ​for​ ​datasets​ ​that​ ​are​ ​not​ ​yet​ ​published​ ​(or​ ​not​ ​published​ ​in​ ​the​ ​best​ ​format​ ​for​ ​internal use). Strategy​ ​1.10.​ ​Integrate​ ​internal​ ​data​ ​access​ ​needs​ ​into​ ​emerging​ ​technology​ ​strategies. As​ ​part​ ​of​ ​the​ ​Committee​ ​on​ ​Information​ ​Technology​ ​(COIT),​ ​the​ ​City​ ​has​ ​embarked​ ​on​ ​two​ ​key strategies:​ ​1)​ ​Shared​ ​services​ ​and​ ​2)​ ​Public​ ​experience.​ ​We​ ​will​ ​participate​ ​in​ ​the​ ​development of​ ​these​ ​strategies​ ​to​ ​ensure​ ​that​ ​the​ ​data​ ​access​ ​challenges​ ​we​ ​have​ ​identified​ ​are​ ​addressed in​ ​these​ ​broader,​ ​long-term​ ​strategies. Strategy​ ​1.11.​ ​Explore​ ​options​ ​to​ ​develop​ ​shared​ ​data​ ​systems​ ​for​ ​internal​ ​use.​​ ​The number​ ​and​ ​variety​ ​of​ ​backend​ ​systems​ ​in​ ​the​ ​City​ ​is​ ​vast.​ ​While​ ​the​ ​open​ ​data​ ​portal​ ​may​ ​be one​ ​shared​ ​system,​ ​we​ ​would​ ​like​ ​to​ ​explore​ ​options​ ​related​ ​to​ ​a​ ​more​ ​robust​ ​enterprise​ ​layer for​ ​data​ ​access​ ​and​ ​management.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

21​ ​of​ ​40

Goal​ ​2.

Improve​ ​the​ ​usability,​ ​quality​ ​and​ ​consistency​ ​of​ ​our​ ​data

While​ ​Goal​ ​1​ ​provides​ ​access​ ​to​ ​the​ ​City’s​ ​data,​ ​the​ ​ultimate​ ​value​ ​of​ ​the​ ​data​ ​depends​ ​on​ ​its usability,​ ​quality,​ ​and​ ​consistency.​ ​Usability​ ​helps​ ​us​ ​understand​ ​the​ ​data​ ​-​ ​what​ ​is​ ​it,​ ​how​ ​is​ ​it collected,​ ​when​ ​is​ ​it​ ​published​ ​-​ ​the​ ​basic​ ​documentation​ ​that​ ​supports​ ​use​ ​of​ ​the​ ​data.​ ​Quality speaks​ ​to​ ​how​ ​reliable​ ​and​ ​complete​ ​the​ ​data​ ​is​ ​-​ ​can​ ​we​ ​trust​ ​the​ ​conclusions​ ​or​ ​decisions​ ​we make​ ​based​ ​on​ ​the​ ​data?​ C ​ onsistency​ ​helps​ ​us​ ​combine​ ​data​ ​from​ ​different​ ​systems,​ ​by​ ​using consistent​ ​definitions​ ​across​ ​datasets,​ ​whether​ ​it’s​ ​race​ ​or​ ​ethnicity,​ ​service​ ​categories,​ ​target populations,​ ​location,​ ​etc. Strategy​ ​2.1.​ ​Develop​ ​comprehensive​ ​data​ ​quality​ ​strategy​ ​for​ ​the​ ​City;​ ​implement​ ​via pilots​ ​and​ ​broader​ ​COIT​ ​strategies.​ ​Our​ ​Year​ ​1​ ​experience​ ​suggested​ ​that​ ​the​ ​City​ ​would benefit​ ​from​ ​a​ ​data​ ​quality​ ​framework​ ​and​ ​roadmap.​ ​We​ ​expect​ ​this​ ​to​ ​be​ ​a​ ​multi-year​ ​strategy in​ ​terms​ ​of​ ​development​ ​and​ ​execution.​ ​Over​ ​the​ ​next​ ​year​ ​we​ ​will​ ​identify​ ​motivated​ ​pilots​ ​to roll​ ​out​ ​our​ ​data​ ​quality​ ​strategy.​ ​Research​ ​suggests​ ​that​ ​aligned​ ​pilots​ ​over​ ​time​ ​are​ ​the​ ​most effective​ ​way​ ​to​ ​pursue​ ​a​ ​broader​ ​data​ ​quality​ ​approach.​ ​Pilots​ ​will​ ​likely​ ​include​ ​data consistency​ ​standards,​ ​data​ ​model​ ​alignment,​ ​and​ ​data​ ​management​ ​guidance​ ​and​ ​tools. As​ ​mentioned​ ​in​ ​Strategy​ ​1.10,​ ​the​ ​City​ ​has​ ​embarked​ ​on​ ​two​ ​key​ ​technology​ ​strategies:​ ​1) Shared​ ​services​ ​and​ ​2)​ ​Public​ ​experience.​ ​These​ ​strategies​ ​represent​ ​an​ ​additional​ ​opportunity to​ ​insert​ ​codified​ ​data​ ​quality​ ​practices​ ​and​ ​policies​ ​into​ ​a​ ​broader​ ​strategy. Strategy​ ​2.2.​ ​Conduct​ ​targeted​ ​data​ ​quality​ ​improvements.​​ ​During​ ​the​ ​middle​ ​of​ ​last​ ​year, we​ ​adopted​ ​this​ ​as​ ​a​ ​new​ ​strategy.​ ​Our​ ​central​ ​position​ ​in​ ​the​ ​City​ ​allows​ ​us​ ​to​ ​identify cross-department​ ​data​ ​quality​ ​concerns.​ ​As​ ​a​ ​result,​ ​we​ ​will​ ​occasionally​ ​participate​ ​in​ ​and​ ​even lead,​ ​if​ ​needed,​ ​a​ ​targeted​ ​effort​ ​to​ ​improve​ ​data​ ​quality.​ ​While​ ​this​ ​strategy​ ​is​ ​no​ ​substitute​ ​for​ ​a broader​ ​strategy,​ ​it​ ​can​ ​fill​ ​certain​ ​critical​ ​data​ ​gaps. Strategy​ ​2.3.​ ​Provide​ ​mechanisms​ ​to​ ​elicit​ ​and​ ​track​ ​feedback​ ​and​ ​learnings​ ​from​ ​data users.​​ ​We​ ​discovered​ ​in​ ​Year​ ​1​ ​that​ ​we​ ​had​ ​a​ ​paucity​ ​of​ ​feedback​ ​mechanisms.​ ​While​ ​creating our​ ​help​ ​desk​ ​was​ ​a​ ​first​ ​step,​ ​we​ ​need​ ​richer​ ​and​ ​more​ ​scalable​ ​approaches​ ​for​ ​user​ ​feedback. Some​ ​of​ ​these​ ​we​ ​expect​ ​from​ ​our​ ​vendor,​ ​but​ ​others​ ​may​ ​require​ ​new​ ​tools,​ ​partnerships,​ ​or types​ ​of​ ​engagements.​ ​New​ ​tools​ ​may​ ​include​ ​testing​ ​social​ ​data​ ​dictionaries​ ​or​ ​data​ ​wiki pages.​ ​And​ ​we​ ​must​ ​also​ ​explore​ ​offline​ ​options​ ​for​ ​engagement​ ​(e.g.​ ​working​ ​groups).

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

22​ ​of​ ​40

Goal​ ​3.

Support​ ​increased​ ​use​ ​of​ ​data​ ​in​ ​decision-making

Once​ ​data​ ​is​ ​available,​ ​we​ ​need​ ​to​ ​use​ ​it.​ ​Effective​ ​use​ ​consists​ ​of​ ​individual​ ​and​ ​department capacity​ ​as​ ​well​ ​as​ ​a​ ​broader​ ​public​ ​capacity​ ​for​ ​using​ ​data​ ​in​ ​decision-making.​ ​Capacity consists​ ​of​ ​shared​ ​data​ ​and​ ​access,​ ​as​ ​well​ ​as​ ​data​ ​literacy,​ ​analytics,​ ​managing​ ​with​ ​data, and​ ​displaying​ ​and​ ​communicating​ ​data.​ ​We​ ​need​ ​to​ ​match​ ​the​ ​availability​ ​of​ ​data​ ​with​ ​the capacity​ ​to​ ​use​ ​data,​ ​both​ ​in​ ​terms​ ​of​ ​people​ ​and​ ​technology.

Subgoal​ ​3.1​ ​Increase​ ​internal​ ​capacity Strategy​ ​3.1.​ ​Grow​ ​Data​ ​Academy​ ​and​ ​explore​ ​methods​ ​to​ ​institutionalize​ ​as​ ​part​ ​of professional​ ​development.​​ ​Last​ ​fall​ ​we​ ​launched​ ​the​ ​Data​ ​Academy​ ​in​ ​partnership​ ​with​ ​the City​ ​Services​ ​Auditor​ ​(CSA).​ ​The​ ​demand​ ​for​ ​courses​ ​has​ ​been​ ​high​ ​with​ ​every​ ​course​ ​at capacity​ ​and​ ​with​ ​a​ ​waitlist.​ ​For​ ​Year​ ​2,​ ​we​ ​want​ ​to​ ​add​ ​classes,​ ​bring​ ​in​ ​external​ ​trainers,​ ​and explore​ ​ways​ ​to​ ​leverage​ ​massive​ ​open​ ​online​ ​courses.​ ​Part​ ​of​ ​the​ ​curriculum​ ​extension​ ​will​ ​be to​ ​incorporate​ ​classes​ ​that​ ​are​ ​targeted​ ​at​ ​managerial​ ​and​ ​leadership​ ​roles.​ ​In​ ​addition,​ ​we​ ​want to​ ​explore​ ​integrating​ ​Data​ ​Academy​ ​courses​ ​into​ ​formal​ ​training​ ​venues​ ​or​ ​as​ ​part​ ​of​ ​job​ ​series. Viewing​ ​data​ ​literacy​ ​as​ ​a​ ​professional​ ​development​ ​strategy​ ​versus​ ​a​ ​series​ ​of​ ​ad​ ​hoc​ ​trainings will​ ​be​ ​key​ ​to​ ​transforming​ ​data​ ​capacity​ ​across​ ​the​ ​City​ ​-​ ​at​ ​both​ ​department​ ​and​ ​individual​ ​staff levels. Strategy​ ​3.2.​ ​Provide​ ​enduring​ ​materials​ ​and​ ​resources​ ​for​ ​data​ ​tools​ ​and​ ​techniques. While​ ​the​ ​Data​ ​Academy​ ​provides​ ​an​ ​opportunity​ ​for​ ​direct​ ​training,​ ​we​ ​want​ ​to​ ​supplement​ ​that with​ ​enduring​ ​resources​ ​that​ ​are​ ​available​ ​outside​ ​of​ ​the​ ​classroom​ ​and​ ​to​ ​serve​ ​a​ ​broader audience.​ ​In​ ​particular,​ ​we​ ​will​ ​explore​ ​how​ ​to​ ​showcase​ ​tools​ ​or​ ​other​ ​resources​ ​and​ ​provide supplementary​ ​materials,​ ​e.g.​ ​guidance​ ​or​ ​tool​ ​guides.​ ​A​ ​particular​ ​focus​ ​will​ ​be​ ​on geographic/mapping​ ​tools​ ​as​ ​well​ ​as​ ​data​ ​quality​ ​tools.​ ​This​ ​could​ ​also​ ​include​ ​exploring​ ​means to​ ​better​ ​distribute​ ​previous​ ​analyses​ ​or​ ​work. Strategy​ ​3.3.​ ​Help​ ​establish​ ​department​ ​stat​ ​programs​ ​based​ ​on​ ​department​ ​readiness. We​ ​will​ ​continue​ ​to​ ​partner​ ​with​ ​the​ ​City​ ​Services​ ​Auditor​ ​and​ ​the​ ​strengthened​ ​Performance Management​ ​team​ ​within​ ​the​ ​office.​ ​We​ ​expect​ ​to​ ​be​ ​in​ ​a​ ​supporting​ ​and​ ​partnering​ ​role​ ​and​ ​will focus​ ​on​ ​enhancing​ ​or​ ​extending​ ​their​ ​work,​ ​not​ ​leading. Strategy​ ​3.4.​ ​Explore​ ​opportunities​ ​to​ ​supplement​ ​analytical​ ​capacity.​ W ​ hile​ ​the​ ​City​ ​has​ ​a great​ ​deal​ ​of​ ​analytical​ ​talent,​ ​we​ ​are​ ​interested​ ​in​ ​enhancing​ ​both​ ​the​ ​amount​ ​and​ ​type​ ​of analytical​ ​capacity.​ ​Opportunities​ ​may​ ​exist​ ​for​ ​partnerships​ ​with​ ​external​ ​organizations,​ ​working with​ ​volunteers,​ ​issuing​ ​challenges​ ​or​ ​enhancing​ ​existing​ ​staff.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

23​ ​of​ ​40

Subgoal​ ​3.2​ ​Support​ ​public​ ​capacity Strategy​ ​3.5.​ ​Continue​ ​to​ ​develop​ ​our​ ​portfolio​ ​of​ ​transparency​ ​tools​ ​and​ ​websites. Transparency​ ​tools​ ​and​ ​websites​ ​go​ ​beyond​ ​simply​ ​publishing​ ​data​ ​to​ ​transforming​ ​the​ ​data​ ​into information​ ​that​ ​can​ ​be​ ​consumed​ ​and​ ​understood​ ​by​ ​the​ ​general​ ​population.​ ​The​ H ​ ousing​ ​Data Hub​​ ​is​ ​one​ ​example.​ ​Each​ ​of​ ​these​ ​tools​ ​provides​ ​policy​ ​makers​ ​and​ ​the​ ​public​ ​with​ ​ready access​ ​to​ ​City​ ​data​ ​contextualized​ ​and​ ​presented​ ​in​ ​a​ ​way​ ​that​ ​informs​ ​decision-making. Typically,​ ​these​ ​sites​ ​are​ ​built​ ​on​ ​open​ ​data.​ ​We​ ​will​ ​continue​ ​to​ ​develop​ ​our​ ​own​ ​sites​ ​as​ ​well as​ ​partner​ ​and/or​ ​promote​ ​sites​ ​being​ ​built​ ​by​ ​City​ ​departments. Strategy​ ​3.6.​ ​Explore​ ​methods​ ​to​ ​increase​ ​public​ ​capacity​ ​for​ ​data​ ​use.​​ ​Transparency websites​ ​are​ ​one​ ​form​ ​of​ ​capacity​ ​building,​ ​but​ ​they​ ​rely​ ​on​ ​a​ ​single​ ​channel,​ ​a​ ​website,​ ​to engage​ ​the​ ​public​ ​about​ ​City​ ​data.​ ​We​ ​are​ ​interested​ ​in​ ​exploring​ ​other​ ​methods,​ ​whether​ ​it​ ​is trainings​ ​at​ ​the​ ​Library,​ ​workshops​ ​at​ ​community​ ​or​ ​neighborhood​ ​events,​ ​or​ ​collaborative problem-solving.​ ​We​ ​expect​ ​any​ ​additional​ ​methods​ ​will​ ​also​ ​increase​ ​our​ ​own​ ​capacity​ ​to present​ ​the​ ​City’s​ ​data​ ​more​ ​effectively​ ​and​ ​to​ ​be​ ​more​ ​responsive​ ​to​ ​the​ ​broader​ ​community.

Subgoal​ ​3.3​ ​Foster​ ​and​ ​incent​ ​a​ ​data​ ​culture Strategy​ ​3.7.​ ​Explore​ ​the​ ​creation​ ​of​ ​shared​ ​frameworks​ ​for​ ​data​ ​and​ ​evaluation.​​ ​A common​ ​language​ ​and​ ​approach​ ​to​ ​data-driven​ ​decision​ ​making​ ​can​ ​help​ ​set​ ​a​ ​roadmap​ ​and ease​ ​the​ ​effort​ ​needed​ ​from​ ​departments.​ ​For​ ​example,​ ​imagine​ ​if​ ​any​ ​new​ ​initiative​ ​included​ ​a data,​ ​evaluation​ ​and​ ​performance​ ​management​ ​strategy.​ ​This​ ​goes​ ​beyond​ ​simply​ ​requiring evaluation​ ​to​ ​the​ ​continuous​ ​measuring​ ​and​ ​retooling​ ​of​ ​policies​ ​and​ ​programs​ ​based​ ​on​ ​a stream​ ​of​ ​real​ ​time​ ​data​ ​and​ ​experimentation​ ​integrated​ ​into​ ​program​ ​management​ ​and processes.​ ​Instead​ ​of​ ​a​ ​pre/post​ ​appendage​ ​-​ ​data​ ​and​ ​evaluation​ ​is​ ​part​ ​of​ ​the​ ​team. We​ ​will​ ​explore​ ​creating​ ​a​ ​shared​ ​framework​ ​to​ ​inform​ ​the​ ​launch​ ​of​ ​new​ ​programs,​ ​including defining​ ​key​ ​outcomes,​ ​the​ ​data​ ​and​ ​evaluation​ ​plan,​ ​and​ ​performance​ ​management​ ​needs.​ ​For example,​ ​a​ ​data​ ​plan​ ​could​ ​address​ ​data​ ​sourcing​ ​and​ ​collection​ ​needs,​ ​data​ ​sharing requirements​ ​and​ ​data​ ​model​ ​creation.​ ​It​ ​could​ ​also​ ​address​ ​how​ ​to​ ​integrate​ ​data​ ​needs​ ​into business​ ​processes​ ​and​ ​technical​ ​systems.​ ​Lastly,​ ​it​ ​could​ ​discuss​ ​how​ ​to​ ​create​ ​management tools,​ ​including​ ​measures,​ ​dashboards,​ ​staffing​ ​and​ ​business​ ​processes. The​ ​framework​ ​could​ ​be​ ​implemented​ ​or​ ​tested​ ​in​ ​a​ ​variety​ ​of​ ​ways​ ​from​ ​pilots​ ​to​ ​training​ ​to policy. Strategy​ ​3.8.​ ​Explore​ ​creation​ ​of​ ​data-related​ ​peer​ ​networks.​​ ​Data-related​ ​peer​ ​networks could​ ​help​ ​foster​ ​cross-department​ ​problem​ ​solving​ ​by​ ​connecting​ ​colleagues​ ​with​ ​related domain​ ​expertise.​ ​Employees​ ​could​ ​share​ ​ideas​ ​for​ ​data​ ​use​ ​and​ ​tools​ ​and​ ​also​ ​identify opportunities​ ​to​ ​collaborate​ ​on​ ​cross-department​ ​data​ ​initiatives. Strategy​ ​3.9.​ ​Communicate​ ​the​ ​benefits​ ​of​ ​data-driven​ ​decision-making.​​ ​Clarifying​ ​the Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

24​ ​of​ ​40

value​ ​of​ ​data-driven​ ​decision-making​ ​and​ ​the​ ​tangible​ ​benefits​ ​requires​ ​storytelling.​ ​And​ ​within the​ ​City,​ ​we’ve​ ​heard​ ​that​ ​one​ ​of​ ​the​ ​primary​ ​drivers​ ​to​ ​adopt​ ​Stat​ ​programs​ ​was​ ​hearing​ ​what other​ ​groups​ ​are​ ​doing.​ ​We​ ​need​ ​to​ ​be​ ​better​ ​at​ ​collecting​ ​and​ ​communicating​ ​stories​ ​about effective​ ​data​ ​use.​ ​Not​ ​only​ ​does​ ​this​ ​spur​ ​new​ ​ideas,​ ​it​ ​showcases​ ​the​ ​teams​ ​that​ ​are​ ​doing good​ ​work,​ ​thereby​ ​encouraging​ ​more.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

25​ ​of​ ​40

Goal​ ​4.

Identify​ ​and​ ​foster​ ​innovations​ ​in​ ​open​ ​data​ ​and​ ​data​ ​use

The​ ​pace​ ​of​ ​change​ ​in​ ​the​ ​open​ ​data,​ ​analytics,​ ​and​ ​visualization​ ​spaces​ ​is​ ​breathtaking.​ ​We need​ ​to​ ​not​ ​only​ ​ensure​ ​we​ ​are​ ​aware​ ​of​ ​innovations,​ ​but​ ​we​ ​need​ ​to​ ​selectively​ ​identify​ ​and nurture​ ​innovation​ ​in​ ​order​ ​to​ ​ensure​ ​that​ ​the​ ​City​ ​and​ ​our​ ​stakeholders​ ​benefit​ ​from​ ​changes in​ ​technology​ ​and​ ​the​ ​experiences​ ​of​ ​others. Strategy​ ​4.1.​ ​Maintain​ ​ongoing​ ​reviews​ ​of​ ​best​ ​practices​ ​and​ ​the​ ​changing​ ​technology landscape.​ ​To​ ​ensure​ ​that​ ​San​ ​Francisco​ ​maintains​ ​its​ ​leadership​ ​position​ ​in​ ​open​ ​data,​ ​we have​ ​to​ ​stay​ ​abreast​ ​of​ ​emerging​ ​best​ ​practices​ ​and​ ​changes​ ​in​ ​technology​ ​that​ ​can​ ​better support​ ​or​ ​even​ ​transform​ ​our​ ​program.​ ​In​ ​part,​ ​this​ ​will​ ​be​ ​a​ ​natural​ ​result​ ​of​ ​our communications​ ​and​ ​engagement​ ​strategy,​ ​but​ ​retaining​ ​it​ ​as​ ​a​ ​specific​ ​strategy​ ​will​ ​help​ ​ensure that​ ​we​ ​are​ ​making​ ​regular​ ​and​ ​conscious​ ​efforts​ ​to​ ​assess​ ​the​ ​rapidly​ ​changing​ ​landscape. This​ ​approach​ ​was​ ​validated​ ​in​ ​Year​ ​1,​ ​as​ ​our​ ​quarterly​ ​technology​ ​landscape​ ​sessions​ ​resulted in​ ​several​ ​pivots​ ​or​ ​technology​ ​changes. Strategy​ ​4.2.​ ​Target​ ​opportunities​ ​to​ ​improve​ ​data-centric​ ​services.​​ ​The​ ​City​ ​provides​ ​a variety​ ​of​ ​services​ ​and​ ​some​ ​of​ ​these​ ​are​ ​heavily​ ​mediated​ ​by​ ​data​ ​and/or​ ​technology​ ​and​ ​may be​ ​cross-departmental.​ ​Our​ ​experience​ ​in​ ​Year​ ​1​ ​showed​ ​that​ ​we​ ​have​ ​a​ ​role​ ​to​ ​play​ ​in​ ​guiding or​ ​informing​ ​these​ ​types​ ​of​ ​projects.​ ​As​ ​this​ ​type​ ​of​ ​work​ ​risks​ ​stretching​ ​our​ ​capacity,​ ​we​ ​will have​ ​criteria​ ​for​ ​participating,​ ​including​ ​expected​ ​impact​ ​and​ ​level​ ​of​ ​departmental​ ​resources and​ ​commitment.​ ​Wherever​ ​possible,​ ​we​ ​will​ ​roll​ ​the​ ​projects​ ​or​ ​the​ ​lessons​ ​learned​ ​into​ ​the larger​ ​shared​ ​services​ ​and​ ​public​ ​experience​ ​strategies​ ​discussed​ ​in​ ​Strategy​ ​1.10. Strategy​ ​4.3.​ ​Selectively​ ​partner​ ​in​ ​or​ ​promote​ ​data-centric​ ​initiatives.​​ ​Through​ ​our engagement​ ​strategy​ ​and​ ​ongoing​ ​reviews​ ​we​ ​hope​ ​to​ ​identify​ ​opportunities​ ​for​ ​targeted​ ​data initiatives​ ​or​ ​partnerships​ ​that​ ​involve​ ​organizations​ ​or​ ​people​ ​outside​ ​of​ ​the​ ​City.​ ​We​ ​believe external​ ​organizations​ ​or​ ​perspectives​ ​may​ ​bring​ ​a​ ​new​ ​approach​ ​to​ ​existing​ ​City​ ​challenges​ ​or help​ ​extend​ ​City​ ​services.​ ​We​ ​will​ ​also​ ​seek​ ​opportunities​ ​to​ ​collaborate​ ​with​ ​other governments.​ ​Part​ ​of​ ​this​ ​work​ ​will​ ​be​ ​to​ ​develop​ ​clear​ ​criteria​ ​on​ ​when​ ​and​ ​how​ ​we​ ​should participate​ ​in​ ​partnerships​ ​as​ ​well​ ​as​ ​methods​ ​to​ ​elicit​ ​external​ ​help.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

26​ ​of​ ​40

Goal​ ​5.

Continuously​ ​improve,​ ​scale,​ ​maintain​ ​and​ ​monitor​ ​our​ ​work

A​ ​culture​ ​of​ ​continuous​ ​improvement​ ​ensures​ ​that​ ​we​ ​always​ ​work​ ​to​ ​identify​ ​where​ ​and​ ​how we​ ​can​ ​improve.​ ​In​ ​some​ ​cases,​ ​this​ ​may​ ​be​ ​a​ ​deliberate​ ​choice​ ​to​ ​not​ ​improve​ ​if​ ​the​ ​benefits are​ ​less​ ​than​ ​the​ ​effort​ ​required.​ ​In​ ​addition,​ ​due​ ​to​ ​the​ ​small​ ​size​ ​of​ ​our​ ​team,​ ​we​ ​need​ ​to deliberately​ ​seek​ ​ways​ ​to​ ​scale​ ​our​ ​work​ ​both​ ​in​ ​execution​ ​and​ ​impact.​ ​During​ ​each​ ​project​ ​or activity,​ ​we​ ​continuously​ ​ask​ ​ourselves​ ​-​ ​can​ ​we​ ​scale​ ​this?​ ​If​ ​the​ ​answer​ ​is​ ​no,​ ​we​ ​need​ ​to change​ ​or​ ​on​ ​occasion,​ ​limit​ ​our​ ​effort.​ ​Lastly,​ ​any​ ​work​ ​we​ ​have​ ​accomplished​ ​needs​ ​a deliberate​ ​maintenance​ ​strategy​ ​if​ ​we​ ​have​ ​future​ ​need​ ​for​ ​it. Activity​ ​5.1.​ ​Maintain​ ​data​ ​catalogs.​​ ​The​ ​dataset​ ​inventory​ ​that​ ​we​ ​completed​ ​in​ ​Year​ ​1​ ​was an​ ​enormous​ ​undertaking.​ ​We​ ​need​ ​to​ ​maintain​ ​the​ ​resulting​ ​list​ ​so​ ​we​ ​can​ ​use​ ​it​ ​to​ ​broadly facilitate​ ​internal​ ​data​ ​access​ ​and​ ​to​ ​track​ ​data​ ​as​ ​it​ ​changes​ ​over​ ​time. Activity​ ​5.2.​ ​Maintain,​ ​and​ ​iterate​ ​as​ ​needed,​ ​methods​ ​for​ ​prioritizing​ ​datasets.​​ ​We​ ​will need​ ​to​ ​fully​ ​deploy​ ​and​ ​then​ ​maintain​ ​our​ ​various​ ​methods​ ​for​ ​prioritizing​ ​the​ ​publication​ ​of datasets.​ ​If​ ​new​ ​methods​ ​emerge,​ ​we​ ​will​ ​incorporate​ ​them​ ​into​ ​our​ ​plan. Activity​ ​5.3.​ ​Continuously​ ​improve​ ​our​ ​web​ ​presence​ ​and​ ​supporting​ ​processes​ ​and materials​ ​to​ ​better​ ​meet​ ​the​ ​needs​ ​of​ ​our​ ​users.​​ ​While​ ​we​ ​will​ ​seek​ ​to​ ​increase​ ​the​ ​means​ ​in which​ ​we​ ​engage​ ​users,​ ​our​ ​website​ ​and​ ​supporting​ ​tools​ ​will​ ​likely​ ​remain​ ​the​ ​key​ ​point​ ​of interactions.​ ​As​ ​such,​ ​we​ ​must​ ​ensure​ ​that​ ​they​ ​are​ ​meeting​ ​the​ ​needs​ ​of​ ​our​ ​many​ ​users, including​ ​data​ ​publishers,​ ​consumers​ ​and​ ​residents. Activity​ ​5.4.​ ​Continue​ ​to​ ​partner​ ​with​ ​Socrata​ ​to​ ​inform​ ​the​ ​development​ ​of​ ​the​ ​portal.​​ ​SF OpenData,​ ​our​ ​data​ ​portal,​ ​is​ ​a​ ​key​ ​part​ ​of​ ​our​ ​web​ ​presence​ ​and​ ​how​ ​we​ ​meet​ ​the​ ​needs​ ​of​ ​our users.​ ​We​ ​will​ ​continue​ ​to​ ​partner​ ​with​ ​our​ ​open​ ​data​ ​portal​ ​vendor​ ​to​ ​incorporate​ ​our​ ​user’s needs​ ​into​ ​the​ ​portal’s​ ​roadmap. Activity​ ​5.5.​ ​Continuously​ ​improve​ ​outreach​ ​and​ ​support​ ​for​ ​Data​ ​Coordinators​ ​and publishers.​​ ​We​ ​need​ ​to​ ​continue​ ​to​ ​support​ ​our​ ​Data​ ​Coordinators.​ ​We​ ​do​ ​expect​ ​our​ ​support of​ ​data​ ​publishers​ ​to​ ​increase​ ​in​ ​Year​ ​2​ ​both​ ​due​ ​to​ ​the​ ​expected​ ​increase​ ​in​ ​publication​ ​post dataset​ ​inventory​ ​and​ ​to​ ​continuously​ ​improve​ ​the​ ​publishing​ ​process. Activity​ ​5.6.​ ​Grow​ ​and​ ​broaden​ ​communications​ ​and​ ​engagement​ ​activities.​ I​ n​ ​Year​ ​1,​ ​our communications​ ​and​ ​engagement​ ​was​ ​focused​ ​largely​ ​on​ ​completing​ ​the​ ​dataset​ ​inventory​ ​and engaging​ ​our​ ​Data​ ​Coordinators.​ ​In​ ​Year​ ​2,​ ​we​ ​must​ ​grow​ ​the​ ​scope​ ​and​ ​nature​ ​of​ ​our​ ​outreach. Not​ ​only​ ​did​ ​our​ ​survey​ ​suggest​ ​we​ ​are​ ​not​ ​reaching​ ​key​ ​parts​ ​of​ ​City​ ​staff,​ ​we​ ​know​ ​that​ ​we​ ​are not​ ​engaging​ ​most​ ​neighborhoods​ ​and​ ​communities​ ​writ​ ​large.​ ​Now​ ​that​ ​we​ ​have​ ​the​ ​key​ ​digital channels​ ​in​ ​place​ ​(social​ ​media,​ ​blog,​ ​website),​ ​we​ ​can​ ​build​ ​and​ ​extend​ ​our​ ​work.​ ​The​ ​core goal​ ​in​ ​this​ ​strategy​ ​is​ ​to​ ​broaden​ ​awareness​ ​and​ ​then​ ​use​ ​of​ ​the​ ​tools​ ​we​ ​are​ ​providing.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

27​ ​of​ ​40

Activity​ ​5.7.​ ​Track​ ​and​ ​measure​ ​our​ ​progress.​​ ​In​ ​Year​ ​1,​ ​we​ ​established​ ​a​ ​framework​ ​and​ ​set of​ ​metrics​ ​for​ ​tracking​ ​our​ ​work.​ ​We​ ​need​ ​to​ ​maintain​ ​that​ ​work,​ ​automate​ ​reporting​ ​wherever possible,​ ​and​ ​make​ ​changes​ ​as​ ​our​ ​work​ ​evolves.​ ​In​ ​addition,​ ​this​ ​requires​ ​some​ ​level​ ​of conscious​ ​data​ ​collection,​ ​whether​ ​through​ ​surveys,​ ​workshops​ ​or​ ​case​ ​studies. Activity​ ​5.8.​ ​Conduct​ ​ongoing​ ​planning.​ ​To​ ​ensure​ ​our​ ​work​ ​is​ ​on​ ​track,​ ​we​ ​must​ ​conduct ongoing​ ​planning.​ ​Last​ ​year​ ​we​ ​established​ ​monthly​ ​and​ ​quarterly​ ​planning​ ​meetings​ ​that ensured​ ​we​ ​were​ ​meeting​ ​the​ ​goals​ ​of​ ​our​ ​workplan​ ​or​ ​if​ ​needed,​ ​reevaluating​ ​our​ ​approach.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

28​ ​of​ ​40

5.​ ​Priority,​ ​Resource​ ​and​ ​Contingency​ ​Analysis

The​ ​Open​ ​Data​ ​Ordinance​ ​mandates​ ​some​ ​of​ ​our​ ​activities,​ ​while​ ​others​ ​are​ ​either​ ​in​ ​the​ ​critical path​ ​for​ ​broader​ ​work​ ​or​ ​a​ ​key​ ​part​ ​of​ ​setting​ ​a​ ​platform​ ​for​ ​future​ ​success.​ ​As​ ​a​ ​result,​ ​we prioritized​ ​our​ ​strategies​ ​using​ ​the​ ​MoSCow​ ​method​ ​in​ ​the​ ​context​ ​of​ ​what​ ​we​ ​think​ ​we​ ​must accomplish​ ​in​ ​Year​ ​2​ ​(M=Must,​ ​S=Should,​ ​C=Could).2​ ​This​ ​does​ ​not​ ​mean​ ​that​ ​certain​ ​activities will​ ​not​ ​become​ ​“musts”​ ​or​ ​“shoulds”​ ​over​ ​time. We​ ​then​ ​identified​ ​resource​ ​gaps​ ​as​ ​follows: ● ● ●

No​ ​-​ ​no​ ​resource​ ​gap Yes​ ​-​ ​we​ ​do​ ​not​ ​believe​ ​we​ ​can​ ​be​ ​successful​ ​with​ ​existing​ ​resources Partial​ ​-​ ​the​ ​strategy​ ​can​ ​be​ ​supported​ ​at​ ​some​ ​level​ ​with​ ​current​ ​resources,​ ​but​ ​should be​ ​supplemented​ ​to​ ​ensure​ ​success

We​ ​then​ ​characterized​ ​the​ ​gap​ ​based​ ​on​ ​type​ ​of​ ​need: ● ●

Ongoing​ ​-​ ​requires​ ​a​ ​sustainable​ ​resource​ ​plan​ ​as​ ​we​ ​expect​ ​to​ ​be​ ​actively​ ​developing or​ ​maintaining​ ​this​ ​activity​ ​over​ ​the​ ​mid​ ​to​ ​long​ ​term Project​ ​-​ ​requires​ ​a​ ​one​ ​time​ ​solution​ ​to​ ​resource

Lastly,​ ​the​ ​table​ ​includes​ ​a​ ​brief​ ​contingency​ ​strategy​ ​if​ ​we​ ​are​ ​unable​ ​to​ ​close​ ​the​ ​resource gap. Table:​ ​Prioritization,​ ​Gap​ ​Analysis​ ​and​ ​Contingency​ ​Plan Strategy

M

Strategy​ ​1.1.​ ​Continue​ ​to​ ​mature our​ ​program​ ​to​ ​automate publication​ ​of​ ​data.

X

Strategy​ ​1.3.​ ​Target​ ​departments for​ ​wholesale​ ​data​ ​automation.

X

Strategy​ ​1.5.​ ​Establish​ ​methods​ ​to ensure​ ​SF​ ​licensing​ ​and publication​ ​of​ ​data​ ​for​ ​new information​ ​systems

X

Strategy​ ​1.2.​ ​Develop​ ​self-service X model​ ​for​ ​data​ ​automation​ ​for​ ​large departments.

Strategy​ ​1.4.​ ​Develop​ ​a​ ​geographic X data​ ​access​ ​and​ ​publishing strategy.

Strategy​ ​1.6.​ ​Create​ ​“ShareSF” X hub​ ​and​ ​develop​ ​supporting resources​ ​and​ ​business​ ​processes.

S

C Gap

Type​ ​of Need

Contingency​ ​Strategy​ ​if​ ​Unable to​ ​Close​ ​Gap

Partial Ongoing We​ ​plan​ ​to​ ​close​ ​this​ ​gap​ ​by​ ​hiring a​ ​new​ ​role​ ​for​ ​open​ ​data​ ​services. This​ ​gap​ ​will​ ​exist​ ​until​ ​we complete​ ​the​ ​hire​ ​and​ ​onboarding. Partial Ongoing If​ ​we​ ​are​ ​unable​ ​to​ ​hire​ ​the​ ​right mix​ ​of​ ​skills​ ​we​ ​will​ ​plan​ ​to reallocate​ ​responsibility​ ​among Partial Project existing​ ​staff​ ​and​ ​selectively partner​ ​with​ ​a​ ​handful​ ​of Partial Ongoing departments​ ​with​ ​related​ ​expertise.

Partial Project

We​ ​will​ ​seek​ ​external​ ​and​ ​internal partners​ ​for​ ​help​ ​developing​ ​this.

Partial Ongoing We​ ​plan​ ​to​ ​hire​ ​later​ ​this​ ​year​ ​and that​ ​will​ ​partially​ ​close​ ​the​ ​gap;​ ​We will​ ​also​ ​rely​ ​on​ ​key​ ​department partnerships​ ​and​ ​will​ ​seek​ ​external

​ ​MoSCoW​ ​prioritization​ ​is​ ​traditionally​ ​used​ ​in​ ​software​ ​development​ ​to​ ​determine​ ​what​ ​requirements​ ​you Must​ ​have,​ ​Should​ ​have,​ ​Could​ ​have,​ ​and​ ​Won’t​ ​have.​ ​In​ ​our​ ​case,​ ​we​ ​used​ ​it​ ​to​ ​prioritize​ ​our​ ​activities. 2

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

29​ ​of​ ​40

funding. Strategy​ ​1.7.​ ​Explore​ ​technical solutions​ ​for​ ​confidential​ ​data sharing.

X

Partial Ongoing We​ ​will​ ​scale​ ​to​ ​our​ ​capacity​ ​and may​ ​seek​ ​external​ ​funding.

Strategy​ ​1.8.​ ​Create​ ​a​ ​process​ ​for accessing​ ​your​ ​individual​ ​data.

X

Partial Project

We​ ​will​ ​rely​ ​on​ ​interns​ ​and​ ​partner with​ ​the​ ​Public​ ​Information​ ​Officers to​ ​complete​ ​this.

Strategy​ ​1.9.​ ​Develop​ ​methods​ ​to connect​ ​internal​ ​users​ ​to​ ​datasets.

X

Partial TBD

Strategy​ ​1.10.​ ​Integrate​ ​internal data​ ​access​ ​needs​ ​into​ ​emerging technology​ ​strategies.

X

No

X

No

X

Partial Ongoing We​ ​will​ ​seek​ ​department​ ​partners and​ ​we​ ​may​ ​seek​ ​external​ ​funding.

X

Partial Ongoing We​ ​will​ ​only​ ​engage​ ​in​ ​projects with​ ​department​ ​engagement​ ​and resource​ ​commitment.

Strategy​ ​1.11.​ ​Explore​ ​options​ ​to develop​ ​shared​ ​data​ ​systems​ ​for internal​ ​use.

Strategy​ ​2.1.​ ​Develop comprehensive​ ​data​ ​quality strategy​ ​for​ ​the​ ​City;​ ​implement​ ​via pilots​ ​and​ ​broader​ ​COIT​ ​strategies Strategy​ ​2.2.​ ​Conduct​ ​targeted data​ ​quality​ ​improvements.

Strategy​ ​2.3.​ ​Provide​ ​mechanisms to​ ​elicit​ ​and​ ​track​ ​feedback​ ​and learnings​ ​from​ ​data​ ​users. Strategy​ ​3.1.​ ​Grow​ ​Data​ ​Academy and​ ​explore​ ​methods​ ​to institutionalize​ ​as​ ​part​ ​of professional​ ​development. Strategy​ ​3.2.​ ​Provide​ ​enduring materials​ ​and​ ​resources​ ​for​ ​data tools​ ​and​ ​techniques.

We​ ​will​ ​tailor​ ​sub-projects​ ​to​ ​scale to​ ​our​ ​capacity​ ​and​ ​will​ ​reexamine based​ ​on​ ​need.

Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity​ ​and seek​ ​external​ ​partners​ ​to​ ​help frame​ ​and​ ​move​ ​this​ ​forward.

X

X

X

Strategy​ ​3.3.​ ​Help​ ​establish department​ ​stat​ ​programs​ ​based on​ ​department​ ​readiness.

Partial Ongoing We​ ​will​ ​seek​ ​to​ ​expand​ ​our department​ ​partnership​ ​to​ ​HR​ ​and also​ ​explore​ ​bringing​ ​in​ ​external teachers​ ​for​ ​advanced​ ​topic​ ​areas.

Partial Ongoing We​ ​will​ ​scale​ ​subprojects​ ​based​ ​on our​ ​capacity​ ​and​ ​encourage departments​ ​to​ ​contribute. X No

Strategy​ ​3.4.​ ​Explore​ ​opportunities to​ ​supplement​ ​analytical​ ​capacity.

X Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity​ ​and seek​ ​external​ ​funding.

Strategy​ ​3.5.​ ​Continue​ ​to​ ​develop our​ ​portfolio​ ​of​ ​transparency​ ​tools and​ ​websites.

X

Strategy​ ​3.7.​ ​Explore​ ​the​ ​creation of​ ​shared​ ​frameworks​ ​for​ ​data​ ​and

X

Strategy​ ​3.6.​ ​Explore​ ​methods​ ​to increase​ ​public​ ​capacity​ ​for​ ​data use.

Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity,​ ​seek external​ ​funding,​ ​and​ ​require committed​ ​department​ ​partners.

X Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity​ ​and seek​ ​external​ ​funding.

Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity,​ ​seek external​ ​funding,​ ​and​ ​seek

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

30​ ​of​ ​40

department​ ​partners.

evaluation. Strategy​ ​3.8.​ ​Explore​ ​creation​ ​of data-related​ ​peer​ ​networks.

X No

Strategy​ ​3.9.​ ​Communicate​ ​the benefits​ ​of​ ​data-driven decision-making.

Strategy​ ​4.1.​ ​Maintain​ ​ongoing reviews​ ​of​ ​best​ ​practices​ ​and​ ​the changing​ ​technology​ ​landscape.

X

X

Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity​ ​and may​ ​seek​ ​external​ ​funding​ ​or partnerships. No

Strategy​ ​4.2.​ ​Target​ ​opportunities to​ ​improve​ ​data-centric​ ​services.

X Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity​ ​and require​ ​committed​ ​department partners.

Strategy​ ​4.3.​ ​Selectively​ ​partner​ ​in or​ ​promote​ ​data-centric​ ​initiatives

X Partial Ongoing We​ ​will​ ​scale​ ​for​ ​our​ ​capacity​ ​and may​ ​seek​ ​external​ ​funding​ ​or partners.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

31​ ​of​ ​40

6.​ ​Conclusion

Data​ ​can​ ​feel​ ​dry,​ ​boring​ ​and​ ​academic.​ ​At​ ​the​ ​same​ ​time,​ ​everyone​ ​loves​ ​a​ ​good​ ​story.​ ​But every​ ​story​ ​has​ ​a​ ​rich​ ​vein​ ​of​ ​data​ ​threaded​ ​throughout,​ ​describing​ ​a​ ​pattern​ ​and​ ​illuminating​ ​a path​ ​forward.​ ​It’s​ ​only​ ​when​ ​we​ ​link​ ​the​ ​data​ ​narratives​ ​that​ ​underlie​ ​our​ ​stories​ ​that​ ​we​ ​are​ ​able to​ ​make​ ​new​ ​connections​ ​that​ ​lead​ ​to​ ​new​ ​insights​ ​about​ ​what​ ​is​ ​working​ ​or​ ​what​ ​is​ ​possible. This​ ​plan​ ​is​ ​not​ ​about​ ​data​ ​for​ ​data’s​ ​sake.​ ​This​ ​plan​ ​is​ ​about​ ​transforming​ ​how​ ​we​ ​enrich​ ​our understanding,​ ​our​ ​experience​ ​and​ ​our​ ​City​ ​with​ ​data.

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

32​ ​of​ ​40

Appendices Appendix​ ​A.​ ​Acknowledgements

A​ ​number​ ​of​ ​people,​ ​too​ ​numerous​ ​to​ ​list,​ ​have​ ​contributed​ ​to​ ​our​ ​work,​ ​our​ ​thinking​ ​and​ ​our inspiration.​ ​Below​ ​are​ ​a​ ​handful​ ​of​ ​thanks​ ​-​ ​we​ ​may​ ​have​ ​missed​ ​some,​ ​if​ ​so,​ ​our​ ​apologies! Our​ ​local​ ​brigade,​ ​Code​ ​for​ ​San​ ​Francisco,​ ​has​ ​become​ ​a​ ​fantastic​ ​partner​ ​-​ ​we​ ​learn​ ​from​ ​and with​ ​them​ ​and​ ​value​ ​the​ ​relationships​ ​that​ ​have​ ​developed.​ ​Thank​ ​you​ ​especially​ ​to​ ​Jesse Biroscak,​ ​Maddie​ ​Suda,​ ​Julio​ ​Feliciano,​ ​Judy​ ​van​ ​Soldt,​ ​and​ ​Katherine​ ​Nemacher. Many​ ​thanks​ ​to​ ​my​ ​colleagues​ ​in​ ​other​ ​places​ ​for​ ​sharing​ ​their​ ​worries,​ ​their​ ​challenges​ ​and their​ ​solutions.​ ​I​ ​love​ ​that​ ​we​ ​are​ ​on​ ​this​ ​journey​ ​together!​ ​Barbara​ ​Cohn,​ ​Stuart​ ​Drown,​ ​Laura Meixell,​ ​Abhi​ ​Nemani,​ ​Andrew​ ​Nicklin,​ ​Maksim​ ​Pecherskiy,​ ​Tom​ ​Schenk,​ ​and​ ​Tim​ ​Wisniewski. Our​ ​Internal​ ​Advisory​ ​Group​ ​provided​ ​guidance​ ​and​ ​strategic​ ​direction.​ ​Many​ ​thanks​ ​to​ ​Carmen Chu,​ ​Miguel​ ​Gamiño,​ ​Luis​ ​Herrera,​ ​Kate​ ​Howard,​ ​Steve​ ​Kawa,​ ​Ed​ ​Reiskin,​ ​and​ ​Ben​ ​Rosenfield. The​ ​following​ ​people​ ​have​ ​become​ ​friends​ ​and​ ​thought​ ​partners​ ​throughout​ ​this​ ​process: Anthony​ ​Ababon,​ ​Krista​ ​Canellakis,​ ​Cyndy​ ​Comerford,​ ​Ted​ ​Conrad,​ ​Jason​ ​Cunningham, Rebecca​ ​Foster,​ ​Luke​ ​Fretwell,​ ​Jane​ ​Gong,​ ​Kate​ ​Howard,​ ​Chanda​ ​Ikeda,​ ​Matthias​ ​Jaime,​ ​Lani Kent,​ ​Kelly​ ​Kirkpatrick,​ ​Carol​ ​Lu,​ ​Andy​ ​Maimoni,​ ​Ashley​ ​Meyers,​ ​Jay​ ​Nath,​ ​Tajel​ ​Shah,​ ​Chris Simi,​ ​Peg​ ​Stevenson,​ ​John​ ​Tucker,​ ​Marisa​ ​Pereira​ ​Tully,​ ​and​ ​Melissa​ ​Whitehouse. The​ ​following​ ​folks​ ​have​ ​been​ ​key​ ​parts​ ​of​ ​making​ ​everything​ ​happen.​ ​Their​ ​insight, commitment,​ ​and​ ​persistence​ ​have​ ​helped​ ​all​ ​we​ ​have​ ​done​ ​be​ ​successful​ ​this​ ​year:​ ​Jason Lally,​ ​Jeff​ ​Johnson,​ ​Samuel​ ​Valdez,​ ​Sherman​ ​Luk,​ ​Jessie​ ​Rubin,​ ​Andrew​ ​Ju,​ ​Kyle​ ​Patterson, Laura​ ​Marshall​ ​and​ ​Kyra​ ​Sikora.​ ​Read​ ​more​ ​about​ ​their​ ​contributions​ ​here: http://datasf.org/about/​. And​ ​we’ve​ ​had​ ​an​ ​amazing​ ​stream​ ​of​ ​interns​ ​who​ ​have​ ​been​ ​critical​ ​to​ ​so​ ​many​ ​projects.​ ​Thank you​ ​each​ ​for​ ​your​ ​energy​ ​and​ ​commitment:​ ​Peri​ ​Weisberg,​ ​Erica​ ​Finkle,​ ​Laura​ ​Gerhardt, Christina​ ​Malamut,​ ​Charlotte​ ​Hill,​ ​Dan​ ​Wilcox,​ ​Evgenia​ ​Likhovtseva,​ ​and​ ​Marcelo​ ​Milanello. Read​ ​more​ ​about​ ​their​ ​contributions​ ​here:​ ​http://datasf.org/about/​. Last,​ ​but​ ​so​ ​far​ ​from​ ​least​ ​our​ ​Data​ ​Coordinators​ ​-​ ​our​ ​core​ ​activity​ ​and​ ​output​ ​from​ ​Year​ ​1 would​ ​not​ ​exist​ ​without​ ​the​ ​collective​ ​effort​ ​of​ ​our​ ​Data​ ​Coordinators​ ​and​ ​other​ ​supporting​ ​staff: Mullane​ ​Ahern,​ ​Darrell​ ​Ascano,​ ​Colleen​ ​Burke-Hill,​ ​Carol​ ​Chapman,​ ​Eddy​ ​Ching,​ ​Mike​ ​Choi, Joanne​ ​T.​ ​Chou,​ ​Marina​ ​Coleridge,​ ​Robert​ ​Collins,​ ​Elise​ ​Crane,​ ​Keith​ ​DeMartini,​ ​Matt​ ​Dorsey, Sarah​ ​Duffy,​ ​Tiarra​ ​Earls,​ ​Kevin​ ​Edwards,​ ​Penni​ ​Eigster,​ ​Sandra​ ​Eng,​ ​Cheong-Tseng​ ​Eng, Cynthia​ ​Goldstein,​ ​Zihong​ ​Gorman,​ ​Brandon​ ​Grissom,​ ​Michele​ ​Gutierrez-Canepa,​ ​John​ ​Halpin, David​ ​Hardy​ ​(LT),​ ​Kurian​ ​Joseph,​ ​Jennifer​ ​(Zoey)​ ​Kroll,​ ​Michael​ ​Lambert,​ ​Craig​ ​Lee,​ ​Alexander Levitsky,​ ​Brent​ ​Lewis,​ ​Thomas​ ​Lindman,​ ​Ferry​ ​Lo,​ ​Jose​ ​Luis​ ​Perla,​ ​Andy​ ​Maimoni,​ ​Maria​ ​X Martinez,​ ​Steven​ ​Massey,​ ​Eddie​ ​McCaffrey,​ ​Maria​ ​McKee,​ ​Jesus​ ​Mora,​ ​John​ ​Murray,​ ​Wilson Ng,​ ​Stephanie​ ​Nguyen,​ ​Eric​ ​Pawlowsky,​ ​Jeff​ ​Pera,​ ​Joshua​ ​Raphael,​ ​Stacy​ ​T.​ ​Robson, Guillermo​ ​Rodriquez,​ ​Leah​ ​Rothstein,​ ​Ken​ ​Salmon,​ ​Valeri​ ​Shilov,​ ​Mitch​ ​Sutton,​ ​Marianne Thompson,​ ​Charles​ ​Thompson,​ ​Anne​ ​Trickey,​ ​Alan​ ​Tse,​ ​Tyler​ ​Vu,​ ​Mike​ ​Webster,​ ​Chris Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

33​ ​of​ ​40

Wisniewsky,​ ​Gloria​ ​Woo,​ ​Mike​ ​Wynne,​ ​and​ ​Theresa​ ​Zighera.

Appendix​ ​B.​ ​Detailed​ ​Accomplishments​ ​in​ ​Year​ ​1

For​ ​each​ ​of​ ​our​ ​goals​ ​and​ ​strategies​ ​from​ ​Year​ ​1,​ ​we​ ​highlight​ ​the​ ​key​ ​accomplishments​ ​and status​ ​for​ ​each​ ​strategy.​ ​Our​ ​quarterly​ ​milestones​​ ​(google​ ​doc)​ ​represents​ ​an​ ​accounting​ ​by quarter​ ​of​ ​our​ ​milestones​ ​and​ ​our​ ​progress​ ​on​ ​them​ ​per​ ​our​ ​strategic​ ​plan.​ ​The​ ​quarters​ ​cover Fiscal​ ​Year​ ​2014-2015,​ ​which​ ​started​ ​on​ ​July​ ​1,​ ​2014​ ​and​ ​completed​ ​on​ ​June​ ​30,​ ​2015.​ ​Below is​ ​a​ ​high​ ​level​ ​summary​ ​for​ ​each​ ​strategy​ ​by​ ​goal.

Goal​ ​1:​ ​Increase​ ​number​ ​and​ ​timeliness​ ​of​ ​datasets​ ​on​ ​DataSF Strategy

Strategy​ ​1.1.​ ​Establish​ ​the​ ​role​ ​of​ ​data coordinators​ ​and​ ​support​ ​development​ ​of data​ ​catalogs.

Key​ ​Accomplishments​ ​/​ ​Status ● ● ●

Strategy​ ​1.2.​ ​Develop​ ​methods​ ​to​ ​inform​ ​the prioritization​ ​of​ ​datasets​ ​for​ ​publication.

● ●

Strategy​ ​1.3.​ ​Develop​ ​metrics​ ​to​ ​track​ ​and measure​ ​progress​ ​in​ ​publishing​ ​open​ ​data.

● ● ●

Strategy​ ​1.4.​ ​Develop​ ​our​ ​program​ ​to automate​ ​publication​ ​of​ ​data.

● ● ● ●

Strategy​ ​1.5.​ ​Develop​ ​an​ ​outreach​ ​and support​ ​program​ ​for​ ​data​ ​coordinators​ ​and other​ ​data​ ​publishers.

● ● ● ●

Strategy​ ​1.6.​ ​Establish​ ​methods​ ​to​ ​ensure​ ​SF licensing​ ​and​ ​publication​ ​of​ ​data​ ​for​ ​new information​ ​systems.

Goal​ ​2:​ ​Improve​ ​usability​ ​of​ ​DataSF Strategy

Strategy​ ​2.1.​ ​Better​ ​leverage​ ​existing services​ ​and​ ​features​ ​from​ ​Socrata.

Strategy​ ​2.2.​ ​Partner​ ​closely​ ​with​ ​Socrata​ ​to inform​ ​the​ ​development​ ​of​ ​the​ ​portal.



52​ ​data​ ​coordinators​ ​appointed (75%)​ ​of​ ​department​ ​inventories​ ​complete Inventory​ ​published​ ​on​ ​SF​ ​OpenData

Developed​ ​4​ ​methods​ ​to​ ​prioritize​ ​datasets Streamlined​ ​data​ ​nomination​ ​process​ ​and deployed​ ​help​ ​desk​ ​and​ ​request​ ​tracking

Developed​ ​progress​ ​measures​ ​and​ ​KPIs​ ​to support​ ​quarterly​ ​report Developed​ ​evaluation​ ​framework​ ​for​ ​measuring impact​ ​of​ ​open​ ​data Coming​ ​soon:​ ​Public​ ​launch​ ​of​ ​department publishing​ ​plans​ ​and​ ​automated​ ​reporting

Developed​ ​business​ ​case​ ​in​ ​partnership​ ​with​ ​DT Created​ ​program​ ​and​ ​services​ ​model Established​ ​technology,​ ​business​ ​processes​ ​and support​ ​documents Secured​ ​full​ ​time​ ​resource​ ​for​ ​program Created​ ​Data​ ​Coordinator​ ​Portal​ ​and​ ​supporting tools,​ ​templates​ ​and​ ​training Created​ ​Publisher​ ​Portal​ ​with​ ​standard publication​ ​process​ ​and​ ​training Developed​ ​a​ ​submission​ ​process​ ​and​ ​packet Created​ ​series​ ​of​ ​guidebooks​ ​and​ ​conducted​ ​in person​ ​and​ ​online​ ​trainings In​ ​progress,​ ​project​ ​was​ ​delayed​ ​due​ ​to​ ​lack​ ​of best​ ​practices​ ​and​ ​resource​ ​constraints

Key​ ​Accomplishments​ ​/​ ​Status ●

Conducted​ ​analysis​ ​and​ ​rolled​ ​into​ ​other strategies

● ● ● ●

Joined​ ​customer​ ​advisory​ ​board Participated​ ​in​ ​usability​ ​testing​ ​of​ ​new​ ​key​ ​feature Actively​ ​participate​ ​in​ ​roadmap​ ​and​ ​direction Participate​ ​in​ ​monthly​ ​roadmap​ ​meeting

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

34​ ​of​ ​40

Strategy​ ​2.3.​ ​Redesign​ ​our​ ​web​ ​presence and​ ​supporting​ ​processes​ ​and​ ​materials​ ​to better​ ​meet​ ​the​ ​needs​ ​of​ ​our​ ​users.

● ● ●

Redesigned​ ​and​ ​launched​ ​new​ ​data​ ​portal Launched​ ​new​ ​web​ ​home Early​ ​partner​ ​in​ ​technology​ ​preview​ ​for​ ​new dataset​ ​design

Goal​ ​3:​ ​Improve​ ​the​ ​usability,​ ​quality,​ ​and​ ​consistency​ ​of​ ​our​ ​data Strategy

Strategy​ ​3.1.​ ​Establish​ ​metadata​ ​standards for​ ​published​ ​data.

Key​ ​Accomplishments​ ​/​ ​Status ●

Created​ ​and​ ​implemented​ ​new​ ​standard

Strategy​ ​3.2.​ ​Establish​ ​mechanisms​ ​to​ ​elicit and​ ​track​ ​feedback​ ​and​ ​learnings​ ​from​ ​data users.



Analysis​ ​suggested​ ​gap;​ ​will​ ​deploynew​ ​methods in​ ​Y2

Strategy​ ​3.3.​ ​Explore​ ​the​ ​creation​ ​of​ ​data quality​ ​processes​ ​and​ ​measures.



*NEW*​ ​Strategy​ ​3.4​ ​Conduct​ ​targeted​ ​data quality​ ​improvements

Conducted​ ​research​ ​and​ ​laid​ ​out​ ​approach​ ​for Y2,​ ​including​ ​a​ ​data​ ​playbook​ ​and​ ​identified initial​ ​partners​ ​or​ ​topics​ ​for​ ​pilots



*NEW*​ ​Strategy​ ​3.5​ ​Reset​ ​and​ ​standardize datasets​ ​on​ ​DataSF

● ●

Worked​ ​to​ ​incorporate​ ​inclusionary​ ​housing program​ ​data​ ​needs​ ​into​ ​upstream​ ​planning business​ ​process;​ ​turned​ ​into​ ​broader​ ​housing data​ ​pipeline​ ​project​ ​that​ ​will​ ​extend​ ​into​ ​Y2 Complete​ ​and​ ​in​ ​monitoring​ ​mode Created​ ​standard​ ​guidelines

Goal​ ​4:​ ​Enable​ ​use​ ​of​ ​private​ ​data,​ ​while​ ​appropriately​ ​protecting​ ​it Strategy

Strategy​ ​4.1.​ ​Create​ ​a​ ​data​ ​classification​ ​and sharing​ ​standard. *REVISED*​ ​Develop​ ​a​ ​strategy​ ​to​ ​enable internal​ ​data​ ​sharing Strategy​ ​4.2.​ ​Create​ ​a​ ​process​ ​for​ ​accessing your​ ​individual​ ​data.

Key​ ​Accomplishments​ ​/​ ​Status ● ● ●

In​ ​partnership​ ​with​ ​CSA,​ ​convened​ ​departments in​ ​HSS​ ​and​ ​developed​ ​a​ ​multi-year​ ​strategy Obtained​ ​dedicated​ ​resources​ ​to​ ​support​ ​going forward Modified​ ​strategy​ ​to​ ​leverage​ ​existing​ ​processes; will​ ​deploy​ ​in​ ​Y2

Goal​ ​5:​ ​Support​ ​increased​ ​use​ ​of​ ​data​ ​in​ ​decision-making Strategy

Strategy​ ​5.1.​ ​Establish​ ​a​ ​training​ ​curriculum​ ​to support​ ​increased​ ​use​ ​of​ ​data​ ​in decision-making.

Key​ ​Accomplishments​ ​/​ ​Status ● ●

Strategy​ ​5.2.​ ​Help​ ​establish​ ​department​ ​stat programs​ ​based​ ​on​ ​department​ ​readiness; codify​ ​lessons​ ​learned​ ​and​ ​materials​ ​for broader​ ​use



● ●

In​ ​partnership​ ​with​ ​CSA,​ ​Launched​ ​Data Academy​ ​in​ ​Fall,​ ​all​ ​classes​ ​booked​ ​out​ ​with waiting​ ​lists Done​ ​department​ ​trainings​ ​after​ ​being approached​ ​by​ ​depts

Partnered​ ​with​ ​CSA​ ​to: ○ Develop​ ​2​ ​case​ ​studies​ ​of​ ​department Stat​ ​programs ○ develop​ ​assessment​ ​tool​ ​and​ ​guidebook to​ ​creating​ ​stat​ ​programs Piloted​ ​approach​ ​in​ ​department,​ ​which​ ​is​ ​in progress Will​ ​launch​ ​cumulative​ ​work​ ​as​ ​the​ ​Stat​ ​Starter Kit​ ​in​ ​early​ ​Y2

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

35​ ​of​ ​40

Strategy​ ​5.3.​ ​Continue​ ​to​ ​develop​ ​our​ ​portfolio of​ ​transparency​ ​tools​ ​and​ ​websites.



Developed​ ​the​ ​Housing​ ​Data​ ​Hub​​ ​in​ ​partnership with​ ​multiple​ ​departments

Goal​ ​6:​ ​Identify​ ​and​ ​foster​ ​innovations​ ​in​ ​open​ ​data​ ​and​ ​data​ ​use Strategy

Strategy​ ​6.1.​ ​Develop​ ​and​ ​maintain​ ​a communications​ ​and​ ​engagement​ ​strategy. Strategy​ ​6.2.​ ​Conduct​ ​ongoing​ ​reviews​ ​of​ ​best practices​ ​and​ ​the​ ​changing​ ​technology​ ​landscape.

Key​ ​Accomplishments​ ​/​ ​Status ● ● ● ●

Conducted​ ​analysis​ ​and​ ​plan Increased​ ​twitter​ ​following Established​ ​blog Created​ ​CDO​ ​listservs



Conducted​ ​review​ ​and​ ​codified​ ​quarterly process

Strategy​ ​6.3.​ ​Identify​ ​and​ ​enable​ ​targeted data-centric​ ​initiatives.



Strategy​ ​6.4.​ ​Establish​ ​a​ ​data​ ​licensing​ ​framework and​ ​standard.

Working​ ​to​ ​automate​ ​and​ ​analyze​ ​housing inspections​ ​data​ ​from​ ​3​ ​departments;​ ​will explore​ ​extension​ ​of​ ​work​ ​in​ ​Y2

● ● ●

Completed​ ​analysis​ ​and​ ​made recommendation Obtained​ ​legal​ ​agreement​ ​with recommended​ ​standard Rollout​ ​and​ ​transition​ ​strategy​ ​underway

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

36​ ​of​ ​40

Appendix​ ​C.​ ​Quarterly​ ​Milestones​ ​for​ ​Year​ ​2

For​ ​each​ ​of​ ​our​ ​strategies,​ ​we​ ​outline​ ​a​ ​set​ ​of​ ​quarterly​ ​milestones​ ​and​ ​expected​ ​resources. Adjustments​ ​to​ ​the​ ​milestones​ ​may​ ​occur​ ​based​ ​on​ ​resources​ ​or​ ​other​ ​factors​ ​as​ ​discussed​ ​in Section​ ​5.​ ​You​ ​can​ ​view​ ​the​ ​milestones​ ​and​ ​related​ ​timeline​ ​in​ ​a​ ​google​ ​spreadsheet​.

Appendix​ ​D.​ ​Crosswalk​ ​between​ ​plan​ ​and​ ​Open​ ​Data​ ​Policy Sec.​ ​22D.2.​ ​Chief​ ​Data​ ​Officer​ ​and​ ​City​ ​Departments (a)​ ​Chief​ ​Data​ ​Officer #

Clause

Implementation

(a)

Chief​ ​Data​ ​Officer.​ ​In​ ​order​ ​to​ ​coordinate​ ​implementation,​ ​compliance,​ ​and expansion​ ​of​ ​the​ ​City's​ ​Open​ ​Data​ ​Policy,​ ​the​ ​Mayor​ ​shall​ ​appoint​ ​a​ ​Chief Data​ ​Officer​ ​(CDO)​ ​for​ ​the​ ​City​ ​and​ ​County​ ​of​ ​San​ ​Francisco.​ ​The​ ​CDO shall​ ​be​ ​responsible​ ​for​ ​drafting​ ​rules​ ​and​ ​technical​ ​standards​ ​to​ ​implement the​ ​open​ ​data​ ​policy,​ ​and​ ​determining​ ​within​ ​the​ ​boundaries​ ​of​ ​law​ ​which data​ ​sets​ ​are​ ​appropriate​ ​for​ ​public​ ​disclosure.​ ​In​ ​making​ ​this​ ​determination, the​ ​CDO​ ​shall​ ​balance​ ​the​ ​benefits​ ​of​ ​open​ ​data​ ​set​ ​forth​ ​in​ ​Section​ ​22D.1, with​ ​the​ ​need​ ​to​ ​protect​ ​from​ ​disclosure​ ​information​ ​that​ ​is​ ​proprietary​ ​or confidential​ ​and​ ​that​ ​may​ ​be​ ​protected​ ​from​ ​disclosure​ ​in​ ​accordance​ ​with law.​ ​Nothing​ ​in​ ​the​ ​rules​ ​and​ ​technical​ ​standards​ ​shall​ ​compel​ ​or​ ​authorize the​ ​disclosure​ ​of​ ​privileged​ ​information,​ ​law​ ​enforcement​ ​information, national​ ​security​ ​information,​ ​personal​ ​information,​ ​unless​ ​required​ ​by​ ​law. Nothing​ ​in​ ​the​ ​rules​ ​or​ ​technical​ ​standards​ ​shall​ ​compel​ ​or​ ​authorize​ ​the disclosure​ ​of​ ​information​ ​which​ ​is​ ​prohibited​ ​by​ ​law.

This​ ​document​ ​serves​ ​to meet​ ​the​ ​general expectations.​ ​Subgoal​ ​1.2 will​ ​protect​ ​proprietary​ ​or confidential​ ​information.

(b)

The​ ​CDO's​ ​duties​ ​shall​ ​include,​ ​but​ ​are​ ​not​ ​limited​ ​to​ ​the​ ​following:

-

(b)(1)

Draft​ ​rules​ ​and​ ​technical​ ​standards​ ​to​ ​implement​ ​the​ ​open​ ​data​ ​policy ensuring​ ​the​ ​policy​ ​incorporates​ ​the​ ​following​ ​principles:

(b)(1)(A)

(A)​ ​ ​ ​Data​ ​prioritized​ ​for​ ​publication​ ​should​ ​be​ ​of​ ​likely​ ​interest​ ​to​ ​the​ ​public;

(b)(1)(B)

(B)​ ​ ​ ​Data​ ​sets​ ​should​ ​be​ ​free​ ​of​ ​charge​ ​to​ ​the​ ​public​ ​through​ ​the​ ​web​ ​portal; Existing​ ​practice

(b)(1)(C)

(C)​ ​ ​ ​Data​ ​sets​ ​shall​ ​not​ ​include​ ​privileged​ ​or​ ​confidential​ ​information,​ ​law Managed​ ​via​ ​publication enforcement​ ​information,​ ​national​ ​security​ ​information,​ ​personal​ ​information, process​ ​and​ ​Subgoal​ ​1.2. proprietary​ ​information​ ​or​ ​information​ ​the​ ​disclosure​ ​of​ ​which​ ​is​ ​prohibited by​ ​law;​ ​and

(b)(1)(D)

​ ​(D)​ ​ ​ ​Data​ ​sets​ ​shall​ ​include,​ ​to​ ​the​ ​extent​ ​possible,​ ​metadata​ ​descriptions, Complete​ ​and​ ​managed API​ ​documentation,​ ​and​ ​the​ ​description​ ​of​ ​licensing​ ​requirements.​ ​Common via​ ​publication​ ​process. core​ ​metadata​ ​shall,​ ​at​ ​a​ ​minimum,​ ​include​ ​fields​ ​for​ ​every​ ​dataset's​ ​title, description,​ ​tags,​ ​last​ ​update,​ ​publisher,​ ​contact​ ​information,​ ​unique identifier,​ ​and​ ​public​ ​access​ ​level​ ​as​ ​defined​ ​by​ ​the​ ​CDO.

(b)(2)

(2)​ ​ ​ ​Coordinate,​ ​maintain,​ ​and​ ​update​ ​the​ ​City's​ ​Open​ ​Data​ ​website, currently​ ​known​ ​as​ ​"DataSF";

(b)(3)

​ ​(3)​ ​ ​ ​Present​ ​the​ ​Open​ ​Data​ ​rules​ ​and​ ​technical​ ​standards​ ​to​ ​the​ ​Committee COIT​ ​is​ ​the​ ​forum​ ​used​ ​to pass​ r​ ules​ ​and​ ​technical on​ ​Information​ ​Technology​ ​(COIT)​ ​for​ ​adoption; standards.

(b)(4)

(4)​ ​ ​ ​Provide​ ​education​ ​and​ ​analytic​ ​tools​ ​for​ ​City​ ​departments​ ​to​ ​improve and​ ​assist​ ​with​ ​the​ ​release​ ​of​ ​open​ ​data​ ​to​ ​the​ ​public;

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

Deployed​ ​via​ ​Strategy​ ​1.2 in​ ​FY14-15;​ ​Maintained via​ ​Activity​ ​5.2​ ​in FY15-16.

See​ ​Activity​ ​5.3.

See​ ​Strategies​ ​1.1,​ ​1.2, 1.3,​ ​1.4,​ ​and​ ​Activity​ ​5.5.

37​ ​of​ ​40

(b)(5)

(5)​ ​ ​ ​Assist​ ​departments​ ​by​ ​collecting​ ​and​ ​reviewing​ ​each​ ​department's open​ ​data​ ​implementation​ ​plans​ ​and​ ​creating​ ​a​ ​template​ ​for​ ​the departmental​ ​quarterly​ ​progress​ ​reports;

(b)(6)

(6)​ ​ ​ ​Present​ ​an​ ​annual​ ​citywide​ ​implementation​ ​plan​ ​to​ ​COIT,​ ​the​ ​Mayor, This​ ​plan​ ​will​ ​be and​ ​Board​ ​of​ ​Supervisors​ ​and​ ​respond,​ ​as​ ​necessary,​ ​to​ ​inquiries​ ​regarding presented​ ​to​ ​all​ ​of​ ​these groups. the​ ​implementation​ ​of​ ​the​ ​open​ ​data​ ​policy​ ​and​ ​the​ ​compliance​ ​of departments​ ​with​ ​the​ ​deadlines​ ​established​ ​in​ ​this​ ​section.

(b)(7)

(7)​ ​ ​ ​Help​ ​establish​ ​data​ ​standards​ ​within​ ​and​ ​outside​ ​the​ ​City​ ​through collaboration​ ​with​ ​external​ ​organizations;

New​ ​standards​ ​will​ ​be developed​ ​as​ ​needed.

(b)(8)

(8)​ ​ ​ ​Assist​ ​City​ ​departments​ ​with​ ​analysis​ ​of​ ​City​ ​data​ ​sets​ ​to​ ​improve decision​ ​making;

See​ ​Goal​ ​3

(b)(9)

(9)​ ​ ​ ​Establish​ ​a​ ​process​ ​for​ ​providing​ ​citizens​ ​with​ ​secure​ ​access​ ​to​ ​their private​ ​data​ ​held​ ​by​ ​the​ ​City;

See​ ​Strategy​ ​1.8

(b)(10)

(10)​ ​ ​ ​Establish​ ​guidelines​ ​for​ ​licensing​ ​open​ ​data​ ​sets​ ​released​ ​by​ ​the​ ​City Complete,​ ​will​ ​formalize via​ ​COIT​ ​standard. and​ ​evaluate​ ​the​ ​merits​ ​and​ ​feasibility​ ​of​ ​making​ ​City​ ​data​ ​sets​ ​available pursuant​ ​to​ ​a​ ​generic​ ​license,​ ​such​ ​as​ ​those​ ​offered​ ​by​ ​"Creative Commons."​ ​Such​ ​a​ ​license​ ​could​ ​grant​ ​any​ ​user​ ​the​ ​right​ ​to​ ​copy,​ ​distribute, display​ ​and​ ​create​ ​derivative​ ​works​ ​at​ ​no​ ​cost​ ​and​ ​with​ ​a​ ​minimum​ ​level​ ​of conditions​ ​placed​ ​on​ ​the​ ​use;​ ​and,

(b)(11)

(11)​ ​ ​ ​Prior​ ​to​ ​issuing​ ​universally​ ​significant​ ​and​ ​substantial​ ​changes​ ​to​ ​rules and​ ​standards,​ ​solicit​ ​comments​ ​from​ ​the​ ​public,​ ​including​ ​from​ ​individuals and​ ​firms​ ​who​ ​have​ ​successfully​ ​developed​ ​applications​ ​using​ ​open​ ​data sets.

(b)​ ​City​ ​Departments

Complete​ ​and​ ​maintained via​ ​Activity​ ​5.5.

Standard​ ​practice;​ ​Rules and​ ​standards​ ​will​ ​also​ ​be presented​ ​to​ ​COIT,​ ​a public​ ​forum

#

Clause

Implementation

(b)

Each​ ​City​ ​department,​ ​board,​ ​commission,​ ​and​ ​agency​ ​("Department") shall:

-

(b)(1)

Make​ ​reasonable​ ​efforts​ ​to​ ​make​ ​publicly​ ​available​ ​all​ ​data​ ​sets​ ​under​ ​the Department's​ ​control,​ ​provided​ ​however,​ ​that​ ​such​ ​disclosure​ ​shall​ ​be consistent​ ​with​ ​the​ ​rules​ ​and​ ​technical​ ​standards​ ​drafted​ ​by​ ​the​ ​CDO​ ​and adopted​ ​by​ ​COIT​ ​and​ ​with​ ​applicable​ ​law,​ ​including​ ​laws​ ​related​ ​to​ ​privacy;

Supported​ ​by​ ​Strategies 1.1-1.4​ ​and​ ​Activity​ ​5.5.

(b)(2)

Review​ ​department​ ​data​ ​sets​ ​for​ ​potential​ ​inclusion​ ​on​ ​DataSF​ ​and​ ​ensure they​ ​comply​ ​with​ ​the​ ​rules​ ​and​ ​technical​ ​standards​ ​adopted​ ​by​ ​COIT;

Complete​ ​and​ ​maintained by​ ​Activity​ ​5.5.

(b)(3)

Designate​ ​a​ ​Data​ ​Coordinator​ ​(DC)​ ​no​ ​later​ ​than​ ​three​ ​months​ ​after​ ​the Complete effective​ ​date​ ​of​ ​Ordinance​ ​No.​ ​285-13,​ ​who​ ​will​ ​oversee​ ​implementation and​ ​compliance​ ​with​ ​the​ ​Open​ ​Data​ ​Policy​ ​within​ ​his/her​ ​respective department.​ ​Each​ ​DC​ ​shall​ ​work​ ​with​ ​the​ ​CDO​ ​to​ ​implement​ ​the​ ​City's​ ​open data​ ​policies​ ​and​ ​standards.​ ​The​ ​DC​ ​shall​ ​prepare​ ​an​ ​Open​ ​Data​ ​plan​ ​for the​ ​Department​ ​which​ ​shall​ ​include:

(b)(3)(A)

A​ ​timeline​ ​for​ ​the​ ​publication​ ​of​ ​the​ ​Department's​ ​open​ ​data​ ​and​ ​a​ ​summary Publication​ ​plans​ ​are publicly​ ​available​ ​and of​ ​open​ ​data​ ​efforts​ ​planned​ ​and/or​ ​underway​ ​in​ ​the​ ​Department; updated​ ​bi-annually.

(b)(3)(B)

A​ ​summary​ ​description​ ​of​ ​all​ ​data​ ​sets​ ​under​ ​the​ ​control​ ​of​ ​each​ ​Department Complete​ ​other​ ​than​ ​rolling

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

38​ ​of​ ​40

(including​ ​data​ ​contained​ ​in​ ​already-operating​ ​information​ ​technology systems);

acceptances​ ​from departments;​ ​Data Inventory​ ​available​ ​on​ ​SF Open​ ​Data.

(b)(3)(C)

All​ ​public​ ​data​ ​sets​ ​proposed​ ​for​ ​inclusion​ ​on​ ​DataSF;

See​ ​previous

(b)(3)(D)

Quarterly​ ​updates​ ​of​ ​data​ ​sets​ ​available​ ​for​ ​publication.

Centralized​ ​through publishing​ ​program

(b)(4)

The​ ​DC's​ ​duties​ ​shall​ ​include,​ ​but​ ​are​ ​not​ ​limited​ ​to​ ​the​ ​following:

(b)(4)(A)

No​ ​later​ ​than​ ​six​ ​months​ ​after​ ​the​ ​effective​ ​date​ ​of​ ​Ordinance​ ​No.285-13, Complete,​ ​though publish​ ​on​ ​DataSF,​ ​a​ ​catalogue​ ​of​ ​the​ ​Department's​ ​data​ ​that​ ​can​ ​be​ ​made accepting​ r​ olling public,​ ​including​ ​both​ ​raw​ ​data​ ​sets​ ​and​ ​application​ ​programming​ ​interfaces submissions ("API's").

(b)(4)(B)

Appear​ ​before​ ​COIT​ ​and​ ​respond​ ​to​ ​questions​ ​regarding​ ​the​ ​Department's compliance​ ​with​ ​the​ ​City's​ ​Open​ ​Data​ ​policies​ ​and​ ​standards;

Will​ ​be​ ​done​ ​as​ ​needed

(b)(4)(C)

Conspicuously​ ​display​ ​his/her​ ​contact​ ​information​ ​(including​ ​name,​ ​phone number​ ​or​ ​email​ ​address)​ ​on​ ​DataSF​ ​with​ ​his/her​ ​department's​ ​data​ ​sets;

Supported​ ​by​ ​central​ ​help desk​ ​to​ ​facilitate​ ​tracking and​ ​formalized​ ​via Strategy​ ​2.3.

(b)(4)(D)

Monitor​ ​comments​ ​and​ ​public​ ​feedback​ ​on​ ​the​ ​Department's​ ​data​ ​sets​ ​on​ ​a timely​ ​basis​ ​and​ ​provide​ ​a​ ​prompt​ ​response;

See​ ​previous

(b)(4)(E)

Notify​ ​the​ ​Department​ ​of​ ​Technology​ ​upon​ ​publication​ ​of​ ​any​ ​updates​ ​or corrective​ ​action;

Existing​ ​practice

(b)(4)(F)

Work​ ​with​ ​the​ ​CDO​ ​to​ ​provide​ ​citizens​ ​with​ ​secure​ ​access​ ​to​ ​their​ ​own private​ ​data​ ​by​ ​outlining​ ​the​ ​types​ ​of​ ​relevant​ ​information​ ​that​ ​can​ ​be​ ​made available​ ​to​ ​individuals​ ​who​ ​request​ ​such​ ​information;

See​ ​Strategy​ ​1.8

(b)(4)(G)

Implement​ ​the​ ​privacy​ ​protection​ ​guidelines​ ​established​ ​by​ ​the​ ​CDO​ ​and hold​ ​primary​ ​responsibility​ ​for​ ​ensuring​ ​that​ ​each​ ​published​ ​data​ ​set​ ​does not​ ​include​ ​information​ ​that​ ​is​ ​private,​ ​confidential,​ ​or​ ​proprietary;​ ​and

Supported​ ​by​ ​publication process​ ​and​ ​Strategies 1.1-1.4​ ​and​ ​Activity​ ​5.5.

(b)(4)(H)

Make​ ​reasonable​ ​efforts​ ​to​ ​minimize​ ​restrictions​ ​or​ ​license-related​ ​barriers on​ ​the​ ​reuse​ ​of​ ​published​ ​open​ ​data.

City​ ​wide​ ​license​ ​adopted in​ ​FY14-15.

(c)​ ​Department​ ​of​ ​Technology #

Clause

(c)

The​ ​Department​ ​of​ ​Technology​ ​(DT)​ ​shall​ ​provide​ ​and​ ​manage​ ​a​ ​single Current​ ​practice;​ ​Managed Internet​ ​site​ ​(web​ ​portal)​ ​for​ ​the​ ​City's​ ​public​ ​data​ ​sets​ ​(http://data.sfgov.org by​ ​OCDO. or​ ​successor​ ​site),​ ​called​ ​"DataSF."​ ​In​ ​managing​ ​the​ ​site,​ ​DT​ ​shall:

(c)(1)

Publish​ ​data​ ​sets​ ​with​ ​reasonable,​ ​user-friendly​ ​registration​ ​requirements, Current​ ​practice license​ ​requirements,​ ​or​ ​restrictions​ ​that​ ​comply​ ​with​ ​the​ ​rules​ ​and​ ​technical standards​ ​drafted​ ​by​ ​the​ ​CDO​ ​and​ ​adopted​ ​by​ ​COIT;

(c)(2)

Provide​ ​mechanisms​ ​for​ ​departments​ ​to​ ​indicate​ ​data​ ​sets​ ​that​ ​have​ ​been recently​ ​updated;

Current​ ​practice

(c)(3)

Include​ ​an​ ​on-line​ ​forum​ ​to​ ​solicit​ ​feedback​ ​from​ ​the​ ​public​ ​and​ ​to encourage​ ​public​ ​discussion​ ​on​ ​Open​ ​Data​ ​policies​ ​and​ ​public​ ​data​ ​set availability;

Current​ ​practice

(c)(4)

Forward​ ​open​ ​data​ ​requests​ ​to​ ​the​ ​assigned​ ​DC;​ ​and,

Current​ ​practice

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

Implementation

39​ ​of​ ​40

(c)(5)

Take​ ​measures​ ​to​ ​ensure​ ​access​ ​to​ ​public​ ​data​ ​sets​ ​while​ ​protecting DataSF​ ​from​ ​unlawful​ ​abuse​ ​or​ ​attempts​ ​to​ ​damage​ ​or​ ​impair​ ​use​ ​of​ ​the website.

Sec.​ ​22D.3.​ ​Standards​ ​and​ ​Compliance

Current​ ​practice,​ ​though​ ​in practice​ ​this​ ​is​ ​managed by​ ​our​ ​vendor,​ ​Socrata

#

Clause

(a)

The​ ​CDO​ ​and​ ​COIT​ ​shall​ ​work​ ​with​ ​the​ ​Purchaser​ ​to​ ​develop​ ​contract See​ ​Strategy​ ​1.5 provisions​ ​to​ ​promote​ ​Open​ ​Data​ ​policies.​ ​The​ ​provisions​ ​shall​ ​include​ ​rules for​ ​including​ ​open​ ​data​ ​requirements​ ​in​ ​applicable​ ​City​ ​contracts​ ​and standard​ ​contract​ ​provisions​ ​that​ ​promote​ ​the​ ​City's​ ​open​ ​data​ ​policies, including,​ ​where​ ​appropriate,​ ​provisions​ ​to​ ​ensure​ ​that​ ​the​ ​City​ ​retains ownership​ ​of​ ​City​ ​data​ ​and​ ​the​ ​ability​ ​to​ ​post​ ​the​ ​data​ ​on​ ​data.sfgov.org​ ​or make​ ​it​ ​available​ ​through​ ​other​ ​means.

(b)

The​ ​following​ ​Open​ ​Data​ ​Policy​ ​deadlines​ ​are​ ​measured​ ​from​ ​effective​ ​date During​ ​the​ ​passage​ ​of​ ​this policy,​ t​ he​ ​deadlines​ ​were of​ ​Ordinance​ ​No.​ ​285-13: made​ ​dependent​ ​on​ ​the CDO​ ​hire

(b)(1)

Within​ ​three​ ​months,​ ​department​ ​heads​ ​designate​ ​Department​ ​Data Coordinators​ ​to​ ​oversee​ ​implementation​ ​and​ ​compliance​ ​with​ ​the​ ​Open Data​ ​Policy​ ​within​ ​his/her​ ​respective​ ​department;

Complete

(b)(2)

Within​ ​six​ ​months,​ ​each​ ​Department​ ​shall​ ​begin​ ​conducting​ ​quarterly reviews​ ​of​ ​their​ ​progress​ ​on​ ​providing​ ​access​ ​to​ ​data​ ​sets​ ​requested​ ​by​ ​the public​ ​through​ ​the​ ​designated​ ​web​ ​portal;

1/4ly​ ​reviews​ ​are automated​ ​via​ ​public publishing​ ​plans​ ​available online

(b)(3)

Within​ ​six​ ​months,​ ​each​ ​Department​ ​shall​ ​publish​ ​on​ ​DataSF​ ​a​ ​catalogue​ ​of Complete​ ​per​ ​extended timelines​ ​requested​ ​by their​ ​Department's​ ​data​ ​that​ ​can​ ​be​ ​made​ ​public,​ ​including​ ​both​ ​raw OCDO;​ ​~25%​ ​of datasets​ ​and​ ​APIs;​ ​and departments​ ​have​ ​not completed​ ​inventory​ ​as​ ​of June​ ​30,​ ​2015

(b)(4)

Within​ ​one​ ​year,​ ​the​ ​CDO​ ​shall​ ​present​ ​updated​ ​citywide​ ​Open​ ​Data implementation​ ​plan​ ​to​ ​COIT,​ ​the​ ​Mayor​ ​and​ ​Board​ ​of​ ​Supervisors.

The​ ​Open​ ​Data​ ​plan​ ​will​ ​be presented​ ​per​ ​COIT meeting​ ​timeline

(b)(5)

The​ ​CDO​ ​may​ ​propose​ ​a​ ​modification,​ ​for​ ​adoption​ ​by​ ​COIT,​ ​of​ ​the timelines​ ​set​ ​forth​ ​in​ ​the​ ​legislation.

Was​ ​requested​ ​and approved​ ​for​ ​data inventory

Data​ ​in​ ​San​ ​Francisco:​ ​Meeting​ ​supply,​ ​spurring​ ​demand​ ​-​ ​Return​ ​to​ ​Top

Implementation

40​ ​of​ ​40

Data in San Francisco

Jul 31, 2015 - covers the whole lifecycle of data - from planning, collection, management, analysis to design and publishing. Classes are booked out and ...

2MB Sizes 4 Downloads 303 Views

Recommend Documents

No documents