

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Design Patterns Atul Gupta p

Design Patterns Each pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice. – Christopher Alexander A design pattern systematically names, motivates, and explains a ggeneral design g that addresses a recurring g design g pproblem in objectj oriented systems. It describes the problem, the solution, when to apply the solution, and its consequences. It also gives implementation hints and examples examples. The solution is a general arrangement of objects and classes that solve the problem. The solution is customized and implemented to solve the problem in a particular context - GOF

Design Pattern „

„ „ „

general reusable solution to a commonly occurring problem in software design N t a fi Not finished i h d design d i A template that can be used in many different situations Not all software patterns are design patterns „ „ „

Algorithms g Architectural patterns Programming g g constructs

Use Design Patterns? + + + – – –

Speed up development process Robust design Improve code readability Additional level of indirection Reduced performance Increased design complexity

Design Patterns: Classification „ „ „ „

Creational Structure Behavioral Concurrency y

Creational DP Abstract factory

Provide an interface for creating families of related or dependent objects without specifying their concrete classes.

D fi an iinterface Define f for f creating i an object, bj but b let l subclasses b l Factory method decide which class to instantiate. Factory Method lets a class defer instantiation to subclasses. Builder

Separate the construction of a complex object from its representation so that the same construction process can create different representations. p

Prototype

Specify the kinds of objects to create using a prototypical instance, and create new objects by copying this prototype.

Singleton

Ensure a class has only one instance, and provide a global point of access to it.

Structural DP Adapter or Wrapper

Convert the interface of a class into another interface clients expect. Adapter lets classes work together that couldn't otherwise because of incompatible interfaces.

Bridge

Decouple an abstraction from its implementation so that the two can vary independently.

Composite

Compose objects into tree structures to represent part part-whole whole hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.

Decorator

p to an object j dynamically y y keeping p g the same Attach additional responsibilities interface. Decorators provide a flexible alternative to subclassing for extending functionality.

Facade Flyweight Proxy

Provide a unified interface to a set of interfaces in a subsystem. subsystem Facade defines a higher-level interface that makes the subsystem easier to use. Use sharing to support large numbers of fine-grained objects efficiently. Provide a surrogate or placeholder for another object to control access to it.

Behavioral DP (1) Chain of responsibility

Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request. Chain the receiving objects and pass the request along the chain until an object handles it.

Command

Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or log requests, and support undoable operations.

I Interpreter

Given a language, define a representation for its grammar along with an interpreter that uses the representation to interpret sentences in the language.

Iterator

Provide a way to access the elements of an aggregate object sequentially without exposing its underlying representation.

Mediator

Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping objects from referring to each other explicitly, and it lets you vary their interaction independently. independently

Memento

Without violating encapsulation, capture and externalize an object's internal state so that the object can be restored to this state later.

Behavioral DP (2) Null Object Observer or Publish/subscribe Blackboard State

Strategy Specification Template method

Visitor

Designed to act as a default value of an object. Define a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically. Generalized observer, which allows multiple readers and writers. Communicates information system-wide.[12] Allow an object to alter its behavior when its internal state changes. The object will appear to change its class. Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm vary independently from clients that use it. Recombinable business logic in a boolean fashion Define the skeleton of an algorithm g in an operation, p , deferring g some steps p to subclasses. Template Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure. Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new operation without changing the classes of the elements on which it operates.

Concurrency DP A i Obj Active Object

The Active Object design pattern decouples method execution from method invocation that reside in their own thread of control. The goal is to introduce concurrency, by using asynchronous method invocation and a scheduler for handling requests.

Monitor object

A monitor i iis an approachh to synchronize h i two or more computer tasks k that h use a shared resource, usually a hardware device or a set of variables.

Scheduler

Th scheduler The h d l pattern tt is i a software ft design d i pattern. tt It is i a concurrency pattern tt used to explicitly control when threads may execute single-threaded code.

Reactor

The reactor Th t design d i pattern tt is i a concurrentt programming i pattern tt for f handling h dli service requests delivered concurrently to a service handler by one or more inputs. The service handler then demultiplexes the incoming requests and p them synchronously y y to the associated request q handlers. dispatches

Lock Read write lock

One thread puts a "lock" on a resource, preventing other threads from accessing or modifying it. Allows concurrent read access to an object but requires exclusive access for write operations.

Documentation DP Pattern Name and Classification: A descriptive p and unique q name that helps p in identifying y g and referringg to the pattern. Intent: A description of the goal behind the pattern and the reason for using it. Also Known As: Other names for the pattern. p Motivation (Forces): A scenario consisting of a problem and a context in which this pattern can be used. Applicability: Situations in which this pattern is usable; the context for the pattern. Structure: A graphical representation of the pattern. Class diagrams and Interaction diagrams may be used for this purpose. Participants: A listing of the classes and objects used in the pattern and their roles in the design. Collaboration: A description of how classes and objects used in the pattern interact with each other. Consequences: A description of the results, side effects, and trade offs caused by using the pattern. Implementation: A description of an implementation of the pattern; the solution part of the pattern. Sample Code: An illustration of how the pattern can be used in a programming language Known Uses: Examples of real usages of the pattern. Related Patterns: Other patterns that have some relationship with the pattern; discussion of the differences between the pattern and similar patterns. patterns

Singleton: CDP Pattern Name and Classification: Singleton (Creational) Intent: Ensure a class only has one instance, and provide a global point of access to it Also Known As: Motivation (Forces): central management of a resource Applicability: Structure: Participants: Collaboration: Consequences: Implementation: S Sample C Code: Known Uses: Related Patterns:

Singleton static uniqueInstance singletonData static Instance() SingletonOperation() GetSingletonData()

return uniqueInstance

Adapter: p SDP Pattern Name and Classification: Adapter (Structural) Intent: To map an available interface for a class to another interface clients expect Also Known As: Wrapper Motivation (Forces): Reuse and Mapping Applicability: Structure:

Client

T argett

Ad t Adaptee

reques t()

specificRequest()

Participants: Collaboration: Consequences: Implementation: Sample Code:

Adapter adaptee->specificRequest()

Known Uses: reques t()

Related Patterns:

Observer: BDP Pattern Name and Classification: Observer (Behavioral) Intent: Allows objects to dynamically register dependencies between objects Also Known As: Publish-Subscribe Motivation (Forces): Applicability: Structure: Participants:

Subject Attach(Observer) Detach(Observer) Notify()

+observers

Observer

for all observers o->update

Update()

Collaboration: Consequences: Implementation: Sample Code: Known Uses: Related Patterns:

ConcreteSubject subjectState GetState() SetState()

+subject return subjectState

ConcreteObserver observerState Update()

observerState= observerState subject->GetState()

Observer: BDP Pattern Name and Classification: Observer (Behavioral) I t t Allows Intent: All objects bj t to t dynamically d i ll register i t dependencies d d i between b t objects bj t Also Known As: Publish-Subscribe Motivation (Forces): Applicability:

aConcreteSubject

Structure: P ti i Participants: t Collaboration: Consequences: Implementation: Sample Code:

aConcreteObserver

bConcreteObserver

SetState() notify() Update() GetState() Update() GetState()

K Known Uses: U Related Patterns:

Summary „

„

„

Design patterns are common solution to common recurring problems Id tif i proper context Identifying t t off their th i Successful S f l (re)use () i is necessary Category: Creational, Structural, Behavioral, and Concurrency

[image: design patterns - cs164]
design patterns - cs164

[image: [PDF-Download] Service Design Patterns: Fundamental Design ...]
[PDF-Download] Service Design Patterns: Fundamental Design ...

[image: Architecture patterns for safe design]
Architecture patterns for safe design

[image: Reactive Design Patterns]
Reactive Design Patterns

[image: Design Patterns CD]
Design Patterns CD

[image: Design Patterns CD]
Design Patterns CD

[image: 1.2. What is Design Patterns]
1.2. What is Design Patterns

[image: Call For Paper GPU Design Patterns - Teratec]
Call For Paper GPU Design Patterns - Teratec

[image: Call For Paper GPU Design Patterns - Teratec]
Call For Paper GPU Design Patterns - Teratec

Design Patterns Design Patterns

concurrency, by using asynchronous method invocation and a scheduler for ... The reactor design pattern is a concurrent programming pattern for handling.

 Download PDF

 113KB Sizes
 4 Downloads
 275 Views

 Report

Recommend Documents

[image: alt]

design patterns - cs164

sections labs design reviews, code reviews, office hours alphas new release cycle. Page 5. new release cycle. Page 6. workload. Page 7. project 1. Page 8 ...

[image: alt]

[PDF-Download] Service Design Patterns: Fundamental Design ...

and RESTful Web Services (Addison-Wesley. Signature) Full ... Clean Architecture: A Craftsman's Guide to Software Structure and Design (Robert C. Martin).

[image: alt]

Architecture patterns for safe design

We have been inspired by computer science studies where design patterns have been introduced to ease software development process by allowing the reuse ...

[image: alt]

Reactive Design Patterns

Click the button below to register a free account and download the file. Books Synopsis : ... About the Book. Reactive Design Patterns presents the principles, patterns, and best practices of Reactive ... Fault tolerance and recovery patterns. 15.

[image: alt]

Design Patterns CD

Addison Wesley Longman maintains a web page for the Design Patterns CD at Because Lexi is a WYSIWYG editor, an important trade-off to consider is the ...

[image: alt]

Design Patterns CD

q Spelling Checking and Hyphenation q Summary. Design Pattern Catalog. Creational Patterns q Abstract Factory q Builder q Factory Method q Prototype q Singleton q Discussion of Creational ... applet under Communicator 4.0 on Windows 95 will always re

[image: alt]

1.2. What is Design Patterns

Oct 16, 2016 - The benefit of naming all patterns is that we have, on How to sum of all even number inside the string? def __str__(self): return "Apple".

[image: alt]

Call For Paper GPU Design Patterns - Teratec

Page 1. Call For Paper. GPU Design Patterns. The Open GPU aims at building OpenCL and CUDA tools for CPU /GPU hybrid computing through ... Web sites :.

[image: alt]

Call For Paper GPU Design Patterns - Teratec

GPU Design Patterns. The Open GPU aims at ... Designing the appropriate hardware and software architectures for the exploitation of these ... Web sites :.

×
Report Design Patterns Design Patterns

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

