

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Distributed Computing Seminar

Lecture 3: Distributed Filesystems

Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet Google, Inc. Summer 2007 Except as otherwise noted, the content of this presentation is © Copyright University of Washington and licensed under the Creative Commons Attribution 2.5 License.

Outline • Filesystems Overview • NFS (Network File System) • GFS (Google File System)

Filesystems Overview • System that permanently stores data • Usually layered on top of a lower-level physical storage medium • Divided into logical units called “files” o o

Addressable by a filename (“foo.txt”) Usually supports hierarchical nesting (directories)

• A file path joins file & directory names into a relative or absolute address to identify a file (“/home/aaron/foo.txt”)

Distributed Filesystems • Support access to files on remote servers • Must support concurrency Make varying guarantees about locking, who “wins” with concurrent writes, etc... o Must gracefully handle dropped connections o

• Can offer support for replication and local caching • Different implementations sit in different places on complexity/feature scale

NFS • First developed in 1980s by Sun • Presented with standard UNIX FS interface • Network drives are mounted into local directory hierarchy

NFS Protocol • Initially completely stateless o o

Operated over UDP; did not use TCP streams File locking, etc., implemented in higher-level protocols

• Modern implementations use TCP/IP & stateful protocols

Server-side Implementation • NFS defines a virtual file system o

Does not actually manage local disk layout on server

• Server instantiates NFS volume on top of local file system Local hard drives managed by concrete file systems (EXT, ReiserFS, ...) o Other networked FS's mounted in by...? o

NFS Locking • NFS v4 supports stateful locking of files Clients inform server of intent to lock Server can notify clients of outstanding lock requests o Locking is lease-based: clients must continually renew locks before a timeout o Loss of contact with server abandons locks o o

NFS Client Caching • NFS Clients are allowed to cache copies of remote files for subsequent accesses • Supports close-to-open cache consistency When client A closes a file, its contents are synchronized with the master, and timestamp is changed o When client B opens the file, it checks that local timestamp agrees with server timestamp. If not, it discards local copy. o Concurrent reader/writers must use flags to disable caching o

NFS: Tradeoffs • NFS Volume managed by single server o o

Higher load on central server Simplifies coherency protocols

• Full POSIX system means it “drops in” very easily, but isn’t “great” for any specific need

The Google File System (Ghemawat, Gobioff, Leung)

Kenneth Chiu http://www.cs.binghamton.edu/~kchiu/cs552-f04/

Introduction • Component failures are the norm. – (Uptime of some supercomputers on the order of hours.)

• Files are huge. – Unwieldy to manage billions of KB-sized files. (What does this really mean?) – Multi GB not uncommon.

• Modification is by appending. • Co-design of application and the file system. – Good or bad?

2. Design Overview

Assumptions • System built from many inexpensive commodity components. • System stores modest number of large files. – Few million, each typically 100 MB. Multi-GB common. – Small files must be supported, but need not optimize.

• Workload is primarily: – Large streaming reads – Small random reads – Many large sequential appends.

• Must efficiently implement concurrent, atomic appends. – Producer-consumer queues. – Many-way merging.

Interface • • • •

POSIX-like User-level Snapshots Record append

Architecture

• Single master, multiple chunkservers, multiple clients. • Files divided into fixed-size chunks. – Each chunk identified by immutable and globally unique chunk handle. (How to create?) – Stored by chunkservers locally as regular files. – Each chunk is replicated.

• Master maintains all metadata. – Namespaces – Access control (What does this say about security?) – Heartbeat

• No client side caching because streaming access. (So?) • What about server side?

Single Master • General disadvantages for distributed systems: – Single point of failure – Bottleneck (scalability)

• Solution? – Clients use master only for metadata, not reading/writing.

• • • • • •

Client translates file name and byte offset to chunk index. Sends request to master. Master replies with chunk handle and location of replicas. Client caches this info. Sends request to a close replica, specifying chunk handle and byte range. Requests to master are typically buffered.

Chunk Size • Key design parameter: chose 64 MB. • Each chunk is a plain Linux file, extended as needed. – Avoids internal fragmentation. (Internal vs. external?)

• Hotspots: Some files may be accessed too much, such as an executable. – Fixed by storing such files with a high replication factor. – Other possible solutions? • Distribute via network.

Metadata • Three types: – File and chunk namespaces – Mapping from files to chunks – Locations of chunk replicas

• All metadata is in memory. – First two use an operations log for recovery. – Second is obtained by querying chunkservers.

In-Memory Data Structures • Metadata stored in memory. • Easy and efficient to periodically scan through state. – Chunk garbage collection – Re-replication in the presence of chunkserver failure. – Chunk migration for load balancing.

• Capacity of system limited by memory of master. • Memory is cheap.

Chunk Locations • Master polls chunkserver at startup. • Initially kept at master, but deemed unnecessary and too complex. (Why?)

Operation Log • Historical record of metadata changes. • Replicated on remote machines, operations are logged synchronously. • Checkpoints used to bound startup time. • Checkpoints created in background.

Consistency Model • Metadata is atomic. – Relatively simple, since just a single master.

• Consider a set of data modifications, and a set of reads all executed by different clients. Furthermore, assume that the reads are executed a “sufficient” time after the writes. – Consistent if all clients see the same thing. – Defined if all clients see the modification in its entirety (atomic).

Write Serial success

Defined

Failure

Inconsistent

Record Append

Defined, but interspersed with Concurrent success Consistent but undefined inconsistent

Reading Concurrently • Apparently all bets are off. • Clients cache chunk locations. • Seems to not be a problem since most of their modifications are record appends.

Implications for Applications • Some of the work that might normally be done by the file system has been moved into the application. – Self-validating, self-identifying records. – Idempotency through unique serial numbers.

3. System Interactions

Leases and Mutation Order • Each modification is performed at all replicas. • Maintain consistent order by having a single primary chunkserver specify the order. • Primary chunkservers are maintained with leases (60 s default).

1. 2. 3. 4. 5. 6. 7.

Client asks master for all replicas. Master replies. Client caches. Client pre-pushes data to all replicas. After all replicas acknowledge, client sends write request to primary. Primary forwards write request to all replicas. Secondaries signal completion. Primary replies to client. Errors handled by retrying.

• If write straddles chunks, broken down into multiple writes, which causes undefined states.

Data Flow • To conserve bandwidth, data flows linearly. • Pipelining is used to minimize latency and maximize throughput. • What’s the elapsed time? • Is this the best? What about non-switched?

Atomic Record Appends 1. Client pushes data to all replicas. 2. Sends request to primary. Primary • •

Pads current chunk if necessary, telling client to retry. Writes data, tells replicas to do the same.

3. Failures may cause record to be duplicated. These are handled by the client. •

Data may be different at each replica.

O_APPEND • “This is similar to writing a file opened in O_APPEND mode in UNIX without the race conditions when multiple writers do so concurrently”. • Contradicted by Stevens (APU).

Snapshot • A “snapshot” is a copy of a system at a moment in time. – When are snapshots useful? – Does “cp –r” generate snapshots?

• Handled using copy-on-write (COW). – First revoke all leases. – Then duplicate the metadata, but point to the same chunks. – When a client requests a write, the master allocates a new chunk handle.

4. Master Operation

Namespace Management and Locking • Need locking to prevent: – Two clients from trying to create the same file at the same time. – Changes to a directory tree during snapshotting.

• What does the above really mean? • Solution: – Lock intervening directories in read mode. – Lock final file or directory in write mode. – For snapshot lock source and target in write mode.

Replica Placement • Maximize data reliability • Maximize bandwidth utilization

Creation, Re-replication, and Rebalancing • Replicas created for three reasons: – Chunk creation – Re-replication – Load balancing

• Creation – Balance disk utilization – Balance creation events • After a creation, lots of traffic

– Spread replicas across racks

• Re-replication – Occurs when number of replicas falls below a watermark. • Replica corrupted, chunkserver down, watermark increased.

– Replicas prioritized, then rate-limited. – Placement heuristics similar to that for creation.

• Rebalancing – Periodically examines distribution and moves replicas around.

Garbage Collection • • • •

Storage reclaimed lazily by GC. File first renamed to a hidden name. Hidden files removes if more than three days old. When hidden file removed, in-memory metadata is removed. • Regularly scans chunk namespace, identifying orphaned chunks. These are removed. • Chunkservers periodically report chunks they have. If not “live”, master replies.

Stale Replica Detection • Whenever new lease granted, chunk version number is incremented. • A chunkserver that is down will not get the chunk version incremented. • What happens if it goes down after the chunk version is incremented?

5. Fault Tolerance and Diagnosis

High Availability (HA) • Fast recovery, start-up time is in seconds.

• Chunk replication – Also investigating erasure codes.

• Master replication – Master state synchronously replicated. – For simplicity, only one master process. Restart is fast. – Shadow masters for read-only. They may lag behind.

Data Integrity • Protect against OS bugs. • Each chunk broken up into 64 KB blocks. • Stored separately at each chunkserver. – Due to semantics, data of each chunkserver may vary.

• On read error, error is reported. Master will rereplicate the chunk.

6. Measurements

Microbenchmarks • GFS cluster consisting of: – One master • Two master replicas

– 16 chunkservers – 16 clients

• Machines were: – – – – –

Dual 1.4 GHz PIII 2 GB of RAM 2 80 GB 5400 RPM disks 100 Mbps full-duplex Ethernet to switch Servers to one switch, clients to another. Switches connected via gigabit Ethernet.

Reads

• N clients reading 4 MB region from 320 GB file set. • Read rate slightly lower as clients go up due to probability reading from same chunkserver.

Writes

• N clients write simultaneousl y to N files. each client writes 1 GB to a new file in a series. • Low performance is due to network stack.

Record Appends • N clients appending to a single file.

Real World Clusters • Results are favorable.

Experiences • Corruption due to buggy drive firmware. • fsync() cost in 2.2 kernel. • lock on address space and paging in was bottleneck.

[image: Distributed Computing Seminar]
Distributed Computing Seminar

[image: Efficient Distributed Quantum Computing]
Efficient Distributed Quantum Computing

[image: Efficient Distributed Quantum Computing]
Efficient Distributed Quantum Computing

[image: Prediction Services for Distributed Computing - CiteSeerX]
Prediction Services for Distributed Computing - CiteSeerX

[image: Distributed Computing - Principles, Algorithms, and Systems.pdf ...]
Distributed Computing - Principles, Algorithms, and Systems.pdf ...

[image: Programming-Distributed-Computing-Systems-A-Foundational ...]
Programming-Distributed-Computing-Systems-A-Foundational ...

[image: iOverbook - Distributed Object Computing - Vanderbilt University]
iOverbook - Distributed Object Computing - Vanderbilt University

[image: Prediction Services for Distributed Computing - Semantic Scholar]
Prediction Services for Distributed Computing - Semantic Scholar

[image: Prediction Services for Distributed Computing]
Prediction Services for Distributed Computing

[image: Distributed Computing: MapReduce and Beyond!]
Distributed Computing: MapReduce and Beyond!

[image: seminar report on cloud computing pdf file]
seminar report on cloud computing pdf file

[image: CSC 487 - Topics in Parallel and Distributed Computing]
CSC 487 - Topics in Parallel and Distributed Computing

Distributed Computing Seminar

System that permanently stores data. â€¢ Usually ... o Local hard drives managed by concrete file systems. (EXT First two use an operations log for recovery.

 Download PDF

 334KB Sizes
 2 Downloads
 305 Views

 Report

Recommend Documents

[image: alt]

Distributed Computing Seminar

Server instantiates NFS volume on top of local file ... (Uptime of some supercomputers on the order of hours.) A chunkserver that is down will not get the.

[image: alt]

Efficient Distributed Quantum Computing

Nov 16, 2012 - tum circuit to a distributed quantum computer in which each ... Additionally, we prove that this is the best you can do; a 1D nearest neighbour machine Of course there is a price to pay: the overhead depends on the topology ...

[image: alt]

Efficient Distributed Quantum Computing

Nov 16, 2012 - 3Dept. of Computer Science & Engineering, University of Washington, fixed low-degree graph (see Tab. 2 ... With degree O(log N) the over-.

[image: alt]

Prediction Services for Distributed Computing - CiteSeerX

Users of distributed systems such as the TeraGrid and ... file transfer time, 115 percent for mean queue wait time, The disadvantages are that it requires detailed knowledge of ing more experience managing these deployed services. We.

[image: alt]

Distributed Computing - Principles, Algorithms, and Systems.pdf ...

Distributed Computing - Principles, Algorithms, and Systems.pdf. Distributed Computing - Principles, Algorithms, and Systems.pdf. Open. Extract. Open with.

[image: alt]

Programming-Distributed-Computing-Systems-A-Foundational ...

... more apps... Try one of the apps below to open or edit this item. Programming-Distributed-Computing-Systems-A-Foundational-Approach-MIT-Press.pdf.

[image: alt]

iOverbook - Distributed Object Computing - Vanderbilt University

A 16:1 CPU overbooking ratio means that one physical CPU. (pCPU) core can be demand when flash crowds occur by refining itself through learning new ...

[image: alt]

Prediction Services for Distributed Computing - Semantic Scholar

In recent years, large distributed systems have been de- ployed to support in the same domain will have similar network performance to a remote system.

[image: alt]

Prediction Services for Distributed Computing

the accounting logs: A training workload consisting of data simple and allows a client to get a list of predictors, get Globus Toolkit Version 4: Software for.

[image: alt]

Distributed Computing: MapReduce and Beyond!

14 Jan 2008 - 7. Example Distributed System: Google File System. â€¢ GFS is a distributed file system written at Google for Google's needs. (lots of data, lots of cheap computers, need for speed). â€¢ We use it to store the data from our web crawl, b

[image: alt]

seminar report on cloud computing pdf file

seminar report on cloud computing pdf file. seminar report on cloud computing pdf file. Open. Extract. Open with. Sign In. Main menu.

[image: alt]

CSC 487 - Topics in Parallel and Distributed Computing

Fikret Ercal - Office: CS 314, Phone: 341-4857. E-mail & URL : ercal@mst. ... Course Description: Introduction of parallel and distributed computing fundamentals.

×
Report Distributed Computing Seminar

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

