Precision Ultralow Power High Side Current Sense Design Note 1045 Catherine Chang Introduction Precision high side measurement of microamp currents requires a small value sense resistor and a low offset voltage amplifier. The LTC ®2063 zero-drift amplifier has a maximum input offset voltage of just 5µV and draws just 1.4µA making it a great choice for building a complete ultralow-power precision high side current sense circuit, as shown in Figure 1.

Zero Point A critical specification for a current sense solution is the zero point, or equivalent error current at the input for the output produced when no sense current is present. The zero point is generally determined by the input offset voltage of the amplifier divided by RSENSE. The LTC2063’s low input offset voltage, of typical 1µV, maximum 5µV, and low typical input bias and offset currents of 1-3pA, allow for a zero point input-referred error current of only 10µA (1µV/0.1Ω) typically, or 50µA (5µV/0.1Ω) maximum. This low error allows the sense circuit to maintain its linearity down to the lowest current in its specified range (100µA), without plateauing due to loss of resolution, as seen in Figure 2. The resulting input current to output voltage plot is linear over the entire current sense range.

This circuit uses only 2.3µA to 280µA of supply current to sense currents over a wide 100µA to 250mA dynamic range. The exceptionally low offset of the LTC2063 allows this circuit to work with only 100mΩ of shunt resistance, limiting the maximum shunt voltage to only 25mV. This minimizes power loss on the shunt resistor and maximizes power available to the load. The LTC2063’s rail-to-rail input allows this circuit to operate with very small load current where input common mode is almost at the rail. The integrated EMI filter of the LTC2063 protects it from RF interference in noisy conditions.

Another source of zero point error is the output PMOS’s zero gate voltage drain current, or IDSS, a parasitic current that is present for nonzero VDS when the PMOS is nominally turned off (|VGS| = 0). A MOSFET with high IDSS leakage will produce a non-zero positive VOUT with no ISENSE.

The voltage output of this circuit for a given sense current is:

VOUT =

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their respective owners.

RDRIVE • RSENSE ISENSE = 10 •ISENSE RIN VIN 4.5V TO 90V RIN 49.9Ω 0.1%

C1 3.3µF ISENSE 100µA TO 250mA

RSENSE 100mΩ

R1 REF LT1389-4.096 49.9Ω 0.1%

– BSP322P M1

LTC2063

+

D1 1N4148

LOAD

R2 499k

BSP322P M2

10µF (MUST WITHSTAND VOLTAGES UP TO VIN)

C3 100nF

C2 22µF

RDRIVE 5k 0.1%

VOUT = 10 • ISENSE 1mV TO 2.5V

dn1045 F01

Figure 1. Precision High Side Current Sense Circuit Based on the LTC2063 Zero-Drift Amplifier 10/17/1045

Zoom In on Low End, VSUPPLY 4.5V

Voltage Gain for VIN Across RSENSE VSUPPLY 4.5V

9

2.5

8

2.3

7

2.0

6

1.8

5

1.5

VOUT (V)

VOUT (mV)

10

4 3

1.3 1.0

2

0.8

1

0.5

0

VOUT = 100.05V/V • V IN + 200.7μV

12.17mV, 1.215V

0.3 0 100 200 300 400 500 600 700 800 900 1000 ISENSE (μA) dn1045 F02

Figure 2. No Plateau at the Low End, Down to 100µA ISENSE

The transistor used in this design, Infineon’s BSP322P, has an upper-bound IDSS of 1µA at |VDS| = 100V. As a good estimate for the typical IDSS of the BSP322P in this application, at room temperature, with VDS = –7.6V, IDSS is only 0.2nA, resulting in just 1µV error output, or equivalent 100nA input current error, when measuring 0A input current. Architecture The LT1389-4.096 reference, along with the bootstrap circuit composed of M2, R2, and D1, establishes a very low power isolated 3V rail (4.096V + V TH of M2, typically –1V) that protects the LTC2063 from seeing its absolute maximum supply voltage of 5.5V. Although a series resistance could suffice for establishing bias current, using transistor M2 allows for much higher overall supply voltages while also limiting current consumption to a mere 280µA at the high end of the supply range. Precision The LTC2063’s input offset voltage contributes a fixed input-referred current error of 10µA typical. Out of 250mA full-scale input, the offset results in only 0.004% error. At the low end, 10µA out of 100µA is 10% error. Since the offset is constant, it can be calibrated out. Figure 3 shows that total offset from LTC2063, unmatched parasitic thermocouples, and any parasitic series input resistances is only 2µV. The gain shown in Figure 3, 100.05V/V is 1.28 greater than the expected gain given by the actual values of RDRIVE and RIN when built, or 4.978k/50.4 = 98.77V/V.

0

0

2.5

5

7.5 10 12.5 15 17.5 20 22.5 25 VIN (mV) dn1045 F03

Figure 3. VIN to VOUT Conversion on Minimum Supply 4.5V for Entire ISENSE Range. Output Offset of 200.7µV, when Divided by 100.05V/V Voltage Gain, Implies RTI Input Offset of 2µV

This error may be due to the different temperature coefficients of RDRIVE and RIN. The main source of uncertainty in the output of this circuit is noise, so filtering with large parallel capacitors is crucial to reduce noise bandwidth and thus the total integrated noise. With a 1.5Hz output filter, the LTC2063 adds about 2µVP-P low frequency, inputreferred noise. Averaging the output over the longest possible duration further reduces error due to noise. Other sources of error in this current sense circuit are parasitic board resistance in series with the RSENSE at the LTC2063 input, tolerance in resistance values of the gain-setting resistors RIN and RDRIVE, mismatched temperature coefficients in the gain-setting resistors, and error voltage at the op amp inputs due to parasitic thermocouples. The first three sources of error can be minimized by using Kelvin sense 4-lead sense resistors for RSENSE, and using 0.1% resistance with similar or low temperature coefficients for the critical gain-set path of RIN and RDRIVE. To cancel out the parasitic thermocouples at the op amp inputs, R1 should have the same metal terminals as RIN. Asymmetric thermal gradients should also be avoided as much as possible at the inputs. The overall contribution of all the error sources discussed in this section is at most 1.4% when referenced against full-scale 2.5V output, as shown in Figure 4.

Percent Error In Output VSUPPLY 4.5V |EXPECTED VOUT – MEASURED VOUT| OVER FULL-SCALE 2.5 V OUTPUT (%)

2.0 1.8

MAX ERROR 1.3794%

1.6

Input Voltage Range In this architecture, the maximum supply is set by the maximum |VDS| that the PMOS output can withstand. The BSP322P is rated for 100V, so 90V is an appropriate operating limit.

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0

0

2.5

5

7.5 10 12.5 15 17.5 20 22.5 25 VIN (mV) dn1045 F04

Figure 4. Percent Error Remains Below 1.4% for Entire Range of Readings

Supply Current The minimum supply current required by the LT1389 and LTC2063 is 2.3µA at the minimum VSUPPLY and ISENSE (4.5V and 100µA), up to 280µA at maximum VSUPPLY and ISENSE (90V and 250mA), as shown in Figure 5. In addition to the current consumed by the active components, an output current IDRIVE through M1 also supplied by VSUPPLY is required, proportional to the output voltage, ranging from 200nA for a 1.0mV output (for 100µA ISENSE) to 500µA for a 2.5V output Quiescent ISUPPLY of Measurement Circuit, No ISENSE and IDRIVE 300 MAX: 279.1μA

270 240

ISUPPLY (μA)

210 180 150 120 90 60 30 0

(for 250mA ISENSE). Thus, the total supply current in addition to ISENSE ranges from 2.5µA to 780µA. RDRIVE is set at 5kΩ for a reasonable ADC drive value.

0

10 20 30 40 50 60 70 80 90 100 VSUPPLY (V) dn1045 F05

Figure 5. Supply Current Increases with Supply Voltage but Never Surpasses 280µA

Data Sheet Download

www.linear.com/LTC2063 DN1045 LT 1017 REV A • PRINTED IN THE USA © LINEAR TECHNOLOGY CORPORATION 2017

Output Range This design can drive a 5kΩ load, which makes it a suitable stage for driving many ADCs. The output voltage range is 0V to 2.5V. Since the LTC2063 has rail-to-rail output, the maximum gate drive is only limited by the LTC2063’s headroom. It is 3V typically in this design, set by the LT1389’s 4.096V plus the –1V typical V TH of M2. Since the output of this circuit is a current, not a voltage, ground or lead offset does not affect accuracy. Thus, long leads can be used between the output PMOS M1 and RDRIVE, allowing RSENSE to be located near the current being sensed while RDRIVE is near an ADC and other subsequent signal chain stages. The drawback of long leads is increased EMI susceptibility. 100nF C3 across RDRIVE shunts away harmful EMI before it reaches the next stage’s input. Speed Limits Since the LTC2063’s gain-bandwidth product is 20kHz, it is recommended to use this circuit to measure signals 20Hz or slower. The 22µF C2 in parallel with the load filters the output noise to 1.5Hz for improved accuracy and protects the subsequent stage from sudden current surges. The trade-off of this filtering is longer settling time, especially at the lowest end of the input current range. Conclusion The LTC2063’s ultralow input offset voltage, low IOFFSET and IBIAS, and rail-to-rail input, provide precise current measurements over the entire range of 100µA to 250mA. Its 2µA maximum supply current enables the circuit to run on far less than 280µA supply current for most of its operating range. Along with LTC2063’s low supply voltage requirements, the low supply current allows it to be powered from a voltage reference with headroom to spare. For applications help, call (408) 432-1900, Ext. 3492

DN1045 - Precision Ultralow Power High Side ... - Linear Technology

UP TO VIN). Precision ... in this application, at room temperature, with VDS = ... the gain-setting resistors RINand RLOAD, mismatched ... Data Sheet Download.

383KB Sizes 1 Downloads 231 Views

Recommend Documents

LT1534 Ultralow Noise Switching Regulator ... - Linear Technology
noise performance—noisy switching regulators call for filtering, shielding and .... data sheets and Linear Technology's Application Note 70. 5μs/DIV. VOUT.

Low Noise, Precision Op Amp Drives High ... - Linear Technology
performance. The best way to create a differential signal while maintaining linearity is by using the ... Page 3 ... call (978) 656-3757 higher above its bandwidth ...

Low Power, Precision Op Amp Simplifies Driving ... - Linear Technology
data sheet SNR, THD and offset performance with very low power dissipation if the input .... A simple driver for the LTC2372‑18 18‑bit, 500ksps,. 8‑channel SAR ...

Design Note 1034: Low Power, Precision Op Amp ... - Linear Technology
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear ... data sheet SNR, THD and offset performance with very low power ...

42V High Power Density Buck Regulators in a ... - Linear Technology
Introduction. Power dissipation is a significant problem facing the designers of DC/DC converters in industrial and auto- motive applications, where high currents ...

Versatile Industrial Power Supply Takes High ... - Linear Technology
Master/slave channels are enabled via the master's enable pin and regulate to the master's feedback network. Output current can be increased to 3A or 4A by ...

High Performance Power Solutions for AMD ... - Linear Technology
L, LT, LTC, LTM, Linear Technology, the Linear logo PolyPhase, Burst Mode are registered trademarks .... design can achieve high efficiency, small size and low.

Precision Op Amp Enables Fast Multiplexing at ... - Linear Technology
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of ... steps are processed just as fast as small input steps. Figures 2a and 2b ...

DN1031 - Interfacing to High Performance ... - Linear Technology
charge to the driver than would a smaller sampling ... The interface filter, between the driver and ADC, .... deterioration to the LTC2270's data sheet specifica-.

High Frequency Active Antialiasing Filters - Linear Technology
order lowpass filter in a surface mount SO-8 package. (Figure 1). Two external ... example, a component sensitivity analysis of Figure 2 shows that in order to ...

High Efficiency 100mA Synchronous Buck ... - Linear Technology
Design Note 532. Charlie Zhao. 11/14/ ... the cost of design and manufacture. The LTC3639 ... Figure 3 shows an application example of a 24V output,. 100mA ...

DN1037 - Power Supply Sequencing - Linear Technology
in position 2. Multiple LTC2937s can share sequence position information, so that sequence position N happens at the same time for all LTC2937 chips, and.

DN561 High Voltage, High Efficiency Positive to ... - Linear Technology
The –12V Output Converter (U1) Provides 5A to the Load in the Input Voltage ... ment tools, testing systems, LED drivers and battery ... For applications help,.

Supercapacitor-Based Power Backup System ... - Linear Technology
PowerPath™ controller that simplifies the design of backup systems. ... Backup Power Application. Figure 1 ... Designing a power backup system is easy with the.

Linduino for Power System Management - Linear Technology
erences selection on the menu bar as shown in Figure 3. Finding Preferences ... libraries have a predefined main() that calls setup() and an infinite loop calling ...

Wireless Power User Guide - Linear Technology
Figure 9 shows a typical charge profile with this wireless power configuration. Actual data will vary with component tolerance and specific setup. Demo Board ...

DN489 - High Efficiency, High Density 3-Phase ... - Linear Technology
Introduction. The LTC®3829 is a feature-rich single output 3-phase synchronous buck controller that meets the power den- sity demands of modern high speed, ...

DN489 - High Efficiency, High Density 3-Phase ... - Linear Technology
Design Note 489. Jian Li and Kerry Holliday ... S3P. S2N. S2P. S1N. S1P. 9. 47pF. DIFFOUT. 20.0k. 30.1k. 100pF. CSS. 0.1μF. 0.1μF. 2.2Ω. 0.1μF. 1nF. 5. 6. 7.

Monolithic Converter Delivers High Output Voltages - Linear Technology
Design Note 545. Jesus Rosales ... tive rails. When the designer is faced with producing ... This application can output 120V at 25mA to 80mA in a straight boost ...

DN326 - 3-Phase LTC3733 Provides High ... - Linear Technology
cost of the solution is minimized. The LTC3733 comes in a 36-Lead SSOP ... mobile CPU applications. 3-Phase, 65A AMD VRM Design. Figure 1 shows a ...

60V 2MHz Buck-Boost Controllers Regulate High ... - Linear Technology
more than 45°C above room temperature. At 7V input, the hottest component rises less than 55°C with a. Figure 1. 2MHz 12V, 4A Buck-Boost Voltage Regulator ...

Complete Battery Charger Solution for High ... - Linear Technology
Electronics. 3.5A Charger for Li-Ion/LiFePO4 Batteries Multiplexes USB and Wall Inputs. Design Note 496. George H. Barbehenn. Figure 1. Typical Application ...

DN517 - High Performance Single Phase DC/DC ... - Linear Technology
for digital control and monitoring of key regulator parameters. It has integrated ... application that features inductor DCR current sensing. To improve the accuracy ...