

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Towards Abductive Functional Programming Koko Muroya, University of Birmingham

2

Abstract

Abductive computation

Abduction is expressed in programs as a function, written as abd f @x -> u, which takes one argument and uses it as two bound computations in a body expression u: a parameter collection bound to the variable x and a parameterised term bound to the variable f . When applied to some argument t, the abduction abd f @x -> u extracts all the provisional constants from it, turns them into definitive constants, and put them into the parameter collection x. Additionally it “lifts” the abducted term t into a parameterised term f , a function that will plug new arguments back at the sites where provisional constants used to be in the abducted term t. For example, abduction of a term 1 + {0} produces a parameter collection 0 and a parameterised term fun x -> 1 + x. The intended use of abduction is to recompute new values of provisional constants, and to plug them back as definitive ones into the original abducted term. 1 Abduction in programming This is done simply by function application, thanks to the parameterising of the abducted term, like this: In logic, abduction infers a possible cause A of a given ob- abd f @x -> f (t f x) where the term t computes new servation B, knowing an implication A ⇒ B. Informally values using the parameterised term f and the parameter speaking, this is opposite to deduction, which infers a collection x. result B from a cause A—deduction goes along an impliA trivial but useful example of abduction is cation A ⇒ B whereas abduction goes against it. Much abd f @x -> f x, which “deprecates” a given term, i.e. like induction, used carelessly abduction represents a fal- transforms all its provisional constants into definitive lacy, namely that of affirming the consequent. But with ones. For example, a term (abd f @x -> f x) (1 + {0}) is adequate restrictions in place we can show that abduction evaluated to a definitive term 1+0, and further to a result can be both sound and useful. value 1. Abduction also works on functions, for example a Abductive logic programming (see [3, 2] for surveys) term (abd f @x -> f x) (fun w -> w + {0}) is deprecated extends logic programming by allowing a logic program and evaluated to a function value fun w -> w + 0. to contain undefined “abducible” predicates, with applications to artificial intelligence. These predicates are canTypes of collections didates of possible causes of particular observations in the 3 behaviour of a program. Inference in abductive logic programming tells us which abducible predicates of a pro- We have seen so far example terms that contain just one gram should hold to meet given constraints on the pro- provisional constant. If a term t has more than one program. Abductive reasoning has been used in the verifica- visional constants, abduction of it produces a parameter tion of separation logic programs, allowing the improve- collection x that is literally a collection of several definiment of automatic shape analysis [1]. Facebook’s auto- tive constants. Given the collection x, the parameterised term f made out of the abducted one t has to plug them matic verification tool Infer1 is based on this technique. back into the original t, in such a safe way that the appliWe here propose a new use of abduction in functional cation f x yields exactly the deprecation of the abducted programming, aiming at programs that modify specified term t. For example a term (abd f @x -> f x) ({1} − {2}) constants of another program. Programs can contain norshould be evaluated to 1 − 2, not to 2 − 1, which means mal definitive ground-type constants p, as well as provithe parameter collection x has to be ordered. The size sional ground-type constants {p} marked by curly brackof the collection also matters. If the parameter colets. It is these provisional constants that could be changed lection is implemented as a list, one can write a term by abduction. The process of abduction itself detects all (abd f @x -> f (1 :: x)) ({1} + {2}) that tries to plug the provisional constants in a term; it yanks them out of the extended collection 1 :: x back to the abducted term. abducted term, and turns the abducted term into a funcTo ensure the safe restoration of a term after abduction, tion that takes a collection of parameters as an argument. we use the type of a (fixed) field F as the ground type of value, and use “vector types” Va over the ground type F. 1 http://fbinfer.com/ Vectors Va are thus indexed by name a, in the sense of [5]. Abductive reasoning is a form of logical inference which seeks to uncover all possible causes of an observation. We show how abduction has a computational counterpart, like many other proof-theoretic concepts: namely the identification and modification of certain constants in a term. Abductive computation can be used to improve the behaviour of a term in some programmer-defined sense, like a typical workflow of optimisation problems including some machine-learning tasks. The emphasis of this progress report is a type system for abductive computation. It is intended to guarantee observably deterministic behaviour of programs, even though abduction may introduce a degree of computational nondeterminism.

1

They are a type of finite-dimensional vector spaces Fn over the field F with the standard basis. Typing judgements are indexed by sets of names, in addition to the usual sets of typed variables. The rules of the system are those of the simply-typed lambda calculus, plus a new rule for abduction:

implies t f (2, 1) = (4, 3), for example. Usual operations of a vector space should be available, that is, vector additions +a : Va → Va → Va and scalar multiplications ×a : F → Va → Va for any name a. We can additionally equip each vector type Va with inner products ·a : Va → Va → F. 0 What is desired but challenging is access to each co∆, a | Γ, f : Va → T , x : Va ` u : T ordinate of a collection, which naturally occurs in some ∆ | Γ ` abd f @x -> u : T → T 0 optimisation algorithms. An example is numerical gradiwhere ∆ is a set of names and Γ is a set of typed variables ent descent for optimising the behaviour of a term relative xi : Ti . We require the name a in the rule to be fresh, in to identified parameters: particular not to appear in ∆, T or T 0 . abd f @x -> In the rule, the two bound variables f and x share the let g = fun v -> fun e -> same vector type Va . This ensures the parameterised term f is always given a collection that has the same number (1) (f v) − (f (v + (× e))) × e + v in of elements as the parameter collection x. The number of parameters, i.e. the dimension of the vector space Va , let y = foldr g x Ea in f y is determined dynamically at runtime. For example, in a term let y = {2} in (abd f @x -> f x) ({1} + y), the where is a constant. It updates each element of the abducted term {1}+y depends directly on the provisional parameter collection x by folding over the list of standard constant {1} and indirectly on {2} as well. It is only basis Ea = [~e0 ; · · · ; ~en−1]. at runtime when the actual abducted term {1} + {2} is Although the computation foldl g x Ea in (1) is symdetermined. metric, i.e. invariant under permutation of x or Ea , it The (ordered) standard basis of the vector type Va en- turns out that the arbitrary folding over Ea is not symables the parameterised term f to know which element metric (a counterexample is the replacement of g to of a given collection fits to which place of the origi- fun v -> fun e -> (v · e) × v). This motivates us to acnal abducted term. Note that this does not immedi- commodate the following iterated vector operations, inately mean a canonical order in which parameters are dexed by the name a: assigned; any order will do, as long as both the parame+L ter collection x and the parameterised term f respect it. a : (Va → Va) → Va → Va R For example a term (abd f @x -> f x) ({1} − {2}) can +a : Va → (Va → Va) → Va be evaluated to either (fun (p0 , p1) -> p0 − p1) (1, 2) or ×L a : (Va → F) → Va → Va (fun (p0 , p1) -> p1 − p0) (2, 1), informally. The last remark is regarding the freshness requirement which are three restricted versions of folding over the stanof name a in the typing rule. It ensures that two param- dard basis E . a eter collections x and x0 generated by different abductive 0 0 0 functions abd f @x -> u and abd f @x -> u always live in f +L a v0 := foldr (λeλv.f (e) + v) Ea v0 different vector spaces and they are never mixed together. R f +a v0 := foldl (λvλe.v + f (e)) v0 Ea This is crucial because these collections may not have the f ×L same number of elements, or even if they have the same a v0 := foldr (λeλv.f (e) × v) Ea v0 . dimension they may be use a different assignment of paOur limited access to the standard basis via the iterated rameters to coordinates. operations still enables us to implement some optimisation algorithms, e.g. generic combinatorial optimisations such as simulated annealing. The code (1) for numeri4 Operations on collections cal gradient descent is indeed covered by the first iterated As there is no canonical order in which parameters operation +L . are assigned to bases/coordinates, implementation of the language can opt for either a fixed order or a non-deterministic order. In both cases the absence References of canonical order leads to further restrictions on how parameter collections may be used, in other words, [1] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional shape what operations on these collections can be allowed. analysis by means of bi-abduction. J. ACM, The fixed order would be too intimately tied to the 58(6):26:1–26:66, 2011. concrete syntax of a program, and raise difficulty in identifying terms (abd f @x -> f x) ({1} − {2}) and [2] Marc Denecker and Antonis C. Kakas. Abduc(abd f @x -> f x) ((fun y -> y − {2}) {1}), for example. tion in logic programming. In Computational Logic: The non-deterministic order would challenge the deterLogic Programming and Beyond, Essays in Honour of ministic result of program execution. Robert A. Kowalski, Part I, volume 2407 of Lect. Notes The desired restriction of operations on collections apComp. Sci., pages 402–436. Springer, 2002. pears to be the symmetricity, i.e. being invariant under permutation of the standard basis. In our intended form [3] Antonis C. Kakas, Robert A. Kowalski, and Francesca of abduction abd f @x -> f (t f x), the symmetricity apToni. Abductive logic programming. J. Log. Comput., plies to the term t f , meaning that t f (1, 2) = (3, 4) 2(6):719–770, 1992. 2

[4] Koko Muroya and Dan R. Ghica. The dynamic Geometry of Interaction machine: a call-by-need graph rewriter. In CSL 2017, 2017. To appear. [5] Andrew M. Pitts. Nominal sets: names and symmetry in computer science, volume 57 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

A

Operational Semantics

Operational semantics of the language is given by graph rewriting. The use of graphs instead of terms makes it easier to handle shared intermediate evaluation results, especially shared provisional constants, that are raised by multiple occurrences of bound variables. Sharing is simply represented as connection of subgraphs, while its syntactic representation would require introducing names and stores. Since provisional constants are subject to abduction and change, they cannot be freely copied or discarded in evaluation; in particular they should be shared instead of being copied. For instance, a term (fun x -> x + x) {0} should not be evaluated to a term {0} + {0}, as the single provisional constant is “split” into two independent provisional constants. The graph rewriting semantics is defined as an abstract machine that graphically evaluates terms in the strict way, i.e. function arguments are always evaluated before they are passed to a function. The machine is an adaptation of our graph-rewriting abstract machine of call-by-need λcalculus [4], that can deterministically reduce a graphical representation of a term by passing a token on it. An on-line visualiser of the graph-rewriting abstract machine is implemented2 .

2 Link to on-line visualiser: http://www.cs.bham.ac.uk/ drg/ ~ goa/visualiser/index.html

3

[image: Journal of Functional Programming A representation ... - CiteSeerX]
Journal of Functional Programming A representation ... - CiteSeerX

[image: Journal of Functional Programming A representation ... - CiteSeerX]
Journal of Functional Programming A representation ... - CiteSeerX

[image: Functional Programming in Scala - GitHub]
Functional Programming in Scala - GitHub

[image: Adaptive Functional Programming]
Adaptive Functional Programming

[image: Adaptive Functional Programming]
Adaptive Functional Programming

[image: ePUB Functional Programming in Java: How functional ...]
ePUB Functional Programming in Java: How functional ...

[image: Towards a Verified Artificial Pancreas ... - Computer Science]
Towards a Verified Artificial Pancreas ... - Computer Science

[image: Towards a 3D Virtual Programming Language to Increase Number of ...]
Towards a 3D Virtual Programming Language to Increase Number of ...

[image: Towards a High Level Approach for the Programming of ... - HUCAA]
Towards a High Level Approach for the Programming of ... - HUCAA

[image: Towards a High Level Approach for the Programming of ... - HUCAA]
Towards a High Level Approach for the Programming of ... - HUCAA

[image: Towards a 3D Virtual Programming Language to Increase Number of ...]
Towards a 3D Virtual Programming Language to Increase Number of ...

[image: Functional Programming Lecture notes.pdf]
Functional Programming Lecture notes.pdf

Towards Abductive Functional Programming - School of Computer ...

at runtime when the actual abducted term {1} + {2} is determined. The (ordered) standard basis of the vector type Va en- ables the parameterised term f to know ...

 Download PDF

 178KB Sizes
 5 Downloads
 225 Views

 Report

Recommend Documents

[image: alt]

Journal of Functional Programming A representation ... - CiteSeerX

Sep 8, 2015 - programmers and computer scientists, providing and connecting (n, bs, f)). Furthermore, given a traversal of T, a coalgebra for UR. âˆ—.

[image: alt]

Journal of Functional Programming A representation ... - CiteSeerX

DOI: 10.1017/S0956796815000088, Published online: 08 September 2015 ... programmers and computer scientists, providing and connecting different views on ... over a class of functors, such as monads or applicative functors. In order to make the

[image: alt]

Functional Programming in Scala - GitHub

Page 1 ... MADRID Â· NOV 21-22 Â· 2014. The category design pattern · The functor design pattern â€¦ Play! âˆ˜ Why Play? âˆ˜ Introduction. Web Dictionary.

[image: alt]

Adaptive Functional Programming

dependences in the execution in the form of a dynamic dependence graph. When the input to the program changes, a change ... Languages and Systems, Vol. 28, No. 6, November 2006, Pages 990â€“1034. ... and re-executing code where necessary. The input c

[image: alt]

Adaptive Functional Programming

type system of AFL enforces correct usage of the adaptiv- ity mechanism, which can only be ... This establishes a data dependency between the in Section 5 enforces all these restrictions statically using a modal type system. to as the target des

[image: alt]

ePUB Functional Programming in Java: How functional ...

... performance and parallelization and it will show you how to structure your application so that it will ... a better Java developer. ... building enterprise software.

[image: alt]

Towards a Verified Artificial Pancreas ... - Computer Science

robustness metric can be used as an objective function to guide the system towards property violations in a systematic manner by seeking trajectories of ever decreasing ro- bustness [49,1,3]. This is usually achieved inside a global optimization tech

[image: alt]

Towards a 3D Virtual Programming Language to Increase Number of ...

twofold: (1) provide an early-stage Virtual Reality 3D BBP proto- ... In the year 1983/1984, 37% of CS degrees ... The CS degrees awarded to women have.

[image: alt]

Towards a High Level Approach for the Programming of ... - HUCAA

... except in the data parallel operations. â–« Implementation based on C++ and MPI. â–« http://polaris.cs.uiuc.edu/hta/. HUCAA 2016. 6 double result = hta_A.reduce(plus());. Matrix A Matrix B Programmability versus. MPI+OpenCL.

[image: alt]

Towards a High Level Approach for the Programming of ... - HUCAA

Page 1 Build HPL Arrays so that their host-side memory is the one of the HTA tile ... Build an HTA with a column on N tiles of size 100x100. (each tile is placed ...

[image: alt]

Towards a 3D Virtual Programming Language to Increase Number of ...

in CS, such as the study performed at Georgia Tech [19]. Our work shows one available ... stages (high school and freshmen college students). Once students Mom, let me play more computer games: They improve my mental rotation skills.

[image: alt]

Functional Programming Lecture notes.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Functional ...

×
Report Towards Abductive Functional Programming - School of Computer ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

