          

 

                                                                                         

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal conducting plates separated by an electrical insulator such as air.  



Hence the circuit symbol for a capacitor:



 

To charge a capacitor, we connect a battery (or d.c. power supply) across its conducting plates:  When the switch is closed, the capacitor "charges up".  Electric charge is stored on the conducting plates.  A potential difference is created between the conducting plates which becomes equal to the battery/supply voltage. The higher the potential difference (V) between the conducting plates, the greater the charge (Q) stored on the plates.    

α α ∴  ∴ 

 

       



 

    

Note about the Farad The farad is a very large unit - Too large for the practical capacitors used in our household electronic devices (televisions, radios, etc). These practical capacitors have smaller "sub-units":

 µ                

         

         

   µ    

  

  

   

   

       

     

     

  µ

  

  

Experiment to show that the potential difference (V) between the conducting plates of a capacitor is directly proportional to the charge (Q) stored on the plates This circuit can be used to determine the relationship connecting the potential difference between the conducting plates of a capacitor and the charge stored on the plates.

+ variable voltage d.c. power supply -

A B switch

V

resistor

capacitor

C

coulomb meter

                           potential difference between capacitor plates/ V

charge stored on capacitor plates/ x 10-6 C

1.0

2.0

2.0

4.0

3.0

6.0

4.0

8.0

5.0

10.0

6.0

12.0

                

charge stored on capacitor plates/ x 10-6 C



12.0 10.0 8.0 6.0 4.0 2.0 0

1.0 2.0 3.0 4.0 5.0 6.0 potential difference between capacitor plates/ V

Work Done Charging a Capacitor This circuit represents the charging of a capacitor. When the switch is closed, negatively charged electrons flow from the negative terminal of the battery and build up on plate X of the capacitor - So plate X becomes negatively charged. As a result, negatively charged electrons on plate Y of the capacitor are repelled and travel through the wire to the the positive terminal of the battery - So plate Y becomes positively charged.

      

closed switch

battery +

V

high resistance voltmeter

+ + + + Y X capacitor

     

    

This creates a potential difference (V) between the capacitor plates. This potential difference increases until it becomes equal to the battery voltage, when the flow of electrons stops. NO ELECTRONS TRAVEL THROUGH THE INSULATING MATERIAL (AIR) BETWEEN THE CAPACITOR PLATES. To push electrons onto the negatively charged capacitor plate, the battery must do work against the potential difference between the capacitor plates. WORK MUST BE DONE TO CHARGE A CAPACITOR.                          ∴ 

 



  

      

   

   

Work Done Charging a Capacitor = Area Under QV Graph 

    

  

    



  

   

   0



  

    



 

 

  5.0

0

6.0   

0.25

0

12.0   

Energy Stored in a Capacitor Work done by a battery/power supply in "charging" a capacitor is stored as electrical potential energy in an electric field which exists between the charged capacitor plates. This electrical potential energy is released when the capacitor is discharged, e.g., by connecting both plates of the capacitor to a light bulb.

          



    µ

  

  

   

   

   

      

    

   

   

        

      

    

    

  µ

   

  



         

         

         

   

    

   

   

        

    

    

    

   

     

     

    

     

     

     

  µ

  

  

   

  

  

  µ

  

  

        

     

     

  

  

  

Voltage-Time Graphs for a Charging Capacitor   6.0 V +

This electric circuit can be used to investigate the charging of a capacitor.

switch

-

(The resistor is present to set the value of the maximum current which can flow).

A

Current starts to flow immediately the switch is closed.    

  



V

  



V

 

   ∴     ∴     ∴       Time/ seconds 0.0 2.0 4.0 6.0 8.0 10.0 12.0

2.6 4.0 5.0 5.6 6.0

Potential difference (voltage) across capacitor / volts

potential difference (voltage) across capacitor/ V

Potential difference (voltage) across resistor / volts

6.0

6.0

5.0

5.0

4.0

4.0

3.0

3.0

2.0

2.0

1.0 0



potential difference (voltage) across resistor/ V



1.0

2.0

4.0

6.0

8.0

10.0

12.0 time/ s

0

2.0

4.0

6.0

8.0

10.0

12.0 time/ s

Current-Time Graph for a Charging Capacitor The resistor in the circuit sets the value of the maximum current which can flow. At any instant during the charging process, the size of the current flowing depends on the potential difference across the resistor at that instant and the resistance of the resistor.

     Ω Ω      Ω Time/ seconds

0.0

2.0

4.0

6.0

8.0

10.0

12.0

2.6 4.0 5.0 5.6 6.0

Potential difference (voltage) across capacitor / volts Potential difference (voltage) across resistor / volts Circuit current/ amperes

circuit current/ A

   

0.060 0.050 0.040 0.030 0.020 0.010 0

2.0

4.0

6.0

8.0

10.0

12.0 time/ s

        

Current-Time and Voltage-Time Graphs for a Discharging Capacitor This electric circuit can be used to investigate the discharging of a capacitor.



(The resistor is present to set the value of the maximum current which can flow). The capacitor will discharge and current will start to flow immediately the switch is moved to the right - Electrons will flow from the bottom capacitor plate, through the resistor and ammeter to the top capacitor plate, until the potential difference (voltage) between the plates becomes zero, when no more electrons will flow - The current will be zero.

time/ s

       

       

        

discharge current/ A

0

potential difference (voltage) across capacitor/ V

    

V A

0 potential difference (voltage) across resistor/ V



6.0 V

-

   

V

+

The capacitor is "fully charged" - No current is flowing.





0

time/ s

time/ s

Comparison of Graphs For Charging and Discharging Capacitors

time/ s

potential difference (voltage) across capacitor/ V

0



0

potential difference (voltage) across resistor/ V

potential difference (voltage) across capacitor/ V

0

potential difference (voltage) across resistor/ V



0

time/ s

0

time/ s time/ s

discharge current/ A

charging current/ A

0

time/ s

time/ s

Time For A Capacitor to Charge and Discharge The time taken for a capacitor to charge or discharge depends on the capacitance of the capacitor and the resistance of the resistor connected in series with it.               

 

50 V +

                 

1 kΩ Ω

V

 

switch

-

100 µF

V

A

12 V +

6 kΩ Ω

V

  

switch

-

10 µF

  

A

        

V

     

     µ  Ω 

   



     



V

25 nF

    

+

 

-

6.0 V

V

3.0 kΩ Ω

     

A

             

Download

To push electrons onto the negatively charged capacitor plate, the battery must ... until it becomes equal to the battery voltage, when the flow of electrons stops.

11MB Sizes 45 Downloads 292 Views

Recommend Documents

Download
S. (6) occe \eo ai. 4. (O). S. = O-2. -. Oct 2 s d's -i (. Out. O t . Lt. ace). (C). O A CRC. S. W. O 5 S -. Nox. OCA as duo. A. iNtva is ace. NO w e. S. = 2. At. --. S. t + 2. O. Page 4. ---. (2 = 4tu tsa - CD 43O = tou, +SOa -(2). Sinus\\owocus equ

Download
v = speed (measured in metres per second, ms-1) t = time (measured in seconds, s). I know what “average speed” means. Average speed is the distance an object travels per second. Average speed is usually measured over a certain distance. = ̅

Download
Government accept no responsibility for any fraud or misappropriation in respect of money or draft made over to messenger. 2. When the first item in a bill relates to a halt, the date of commencement of that halt should be stated in the remark column

Download
Apr 29, 2016 - www.mein.yoga-vidya.de/profiles/blogs/meditation-video ..... sich die Zeiten geändert haben und die Technologie vorange- schritten ist, der ...

Download
Page 1. Page 2. (Enclosure to DepEd Memorandum No. 203, s. 2017). Page 3. Page 4. Page 5. Page 6. Page 7. Page 8.

Download
GRADE 9. ENG1Da. CGC1Da. FSF1Da. BTT10. ENG1Db. CGC1Db. PPL10Fa. ALC10a. ENG1La. CGC1Pa. FSF1Pa. TIJ10a. ENG1Pb. CGC1Pb. PPL10Mb.

Download
Page 1. Page 2. (Enclosure to DepEd Memorandum No. 203, s. 2017). Page 3. Page 4. Page 5. Page 6. Page 7. Page 8.

Download
a = acceleration (measured in metres per second squared, ms-2) v = final speed (measured in metres per second, ms-1) u = initial speed (measured in metres per second, ms-1) .... system giving up close, detailed images never seen before. • Spirit an

download
Kinetic theories for hard spheres that interact through uncorrelated ... mean that flow quantities, such as the flow height H perpendicular to the base or ...... spheres. Mech. Mater. 16, 239–247 (1993). 25. Luding, S. in The Physics of Granular Me

Download
Page 1. 1. Page 2. 2. Page 3. 3. Clerk. Supdt. DIO. Page 4. 4.

Download
An acceleration Sui? means the speed is increasing by Sus' every second. a = 3. a = 0. 3= decolo sahig. -0.03t = -13 t= -(3,. -0.03= O-13. 1·L. ܡܚܝܬܐ ܕܘ ܕ݁ܐܝAAܧܧ. 3x1-2 = V - O. V Å 3. OYS. -OOI t= 433s. a = V-U. (O mi vuodes = GODS. S

Download
Application software are used to perform .... Windows and Apple Mac. ... C is well suited to write both commercial applications and system software since it.