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a few algorithms have been proposed to either convert it to binary linear programming and compute the bounds [13] or seek unbounded suboptimal answers with heuristic techniques [9]. In this paper, we study the graph similarity join problem with graph edit distance constraints, a batch version of the graph similarity selection problem. It takes as input two sets of graphs, and returns pairs of graphs from each set such that their graph edit distances are no more than a given threshold. There are several studies on the graph similarity selection problem with edit distance constraints; i.e., to find the graphs whose edit distances to the query are no larger than a threshold. These methods are either based on trees [28] or star structures [36]. The κ-AT algorithm proposed in [28] borrows the qgram idea from the solution to string similarity problems [10], I. I NTRODUCTION Graphs have a wide range of applications and have been and defines a q-gram as a tree consisting of a vertex along utilized to model complex data in biological and chemical with all those that can be reached in q-hops. A count filtering information systems, multimedia, social networks, etc. There condition on common q-grams is established to qualify the has been considerable interest in many fundamental problems candidate pairs that satisfy the graph edit distance constraint. in analyzing graph data. Various algorithms were devised to However, it suffers from the looseness of the lower bound due solve these problems, including frequent graph mining [32], to the huge impact of edit operations on common q-grams, and [6], graph containment search and indexing [33], [12], [7], therefore is only effective against sparse graphs. The choice of q-gram length is also limited to a very small range, which [38], etc. Due to the existence of noisy and inconsistent data, a usually consists of short q-grams, resulting in poor selectivity recent trend is to study similarity matches among graphs and thus large candidate size. The star structure proposed in [34], [30], [27], [36], [24], [23], [28]. This body of work [36] is exactly the same feature as the 1-gram defined by κ-AT. solves the problem of searching for graphs in a database that Unlike κ-AT, it computes the lower and upper bounds of graph approximately contain or are contained by a query. Among edit distance with a bipartite matching between the star reprethe various graph similarity measures used in these studies, sentations of two graphs. For graph similarity join problem, it pair of graphs. The graph edit distance [4], [22] has been widely accepted for has to invoke bipartite matching for every 3 time complexity will be O(|R||S||V | ), where |R| and |S| are representing distances between graphs. Compared with alterthe dataset sizes, and |V | is the number of vertices in a graph. native distances or similarity measures, graph edit distance has Distinct from the existing approaches, we explore a novel three advantages: (1) it allows changes in both vertices and perspective of utilizing path-based q-grams. We find that edges; (2) it reflects the topological information of graphs; the count filtering condition of path-based q-grams is tighter and (3) it is a metric and can be applied to any type of graphs. Due to these elegant properties, graph edit distance has been than using trees. This enables us to perform similarity join used in the context of classification and clustering tasks in on denser graphs as well as choose longer q-grams for various applications domains [1], [21]. However, the expensive better selectivity. Another novelty is to exploit the valuable computation of graph edit distance poses serious algorithmic information provided by mismatching q-grams that cannot challenges. In order to tackle the NP-hardness of the problem, be matched in a candidate pair. Two filtering conditions are accordingly proposed so that the size of candidates can ∗ Corresponding Author be substantially reduced. In addition, we elaborate how to



Abstract—Graphs are widely used to model complicated data semantics in many applications in bioinformatics, chemistry, social networks, pattern recognition, etc. A recent trend is to tolerate noise arising from various sources, such as erroneous data entry, and find similarity matches. In this paper, we study the graph similarity join problem that returns pairs of graphs such that their edit distances are no larger than a threshold. Inspired by the q-gram idea for string similarity problem, our solution extracts paths from graphs as features for indexing. We establish a lower bound of common features to generate candidates. An efficient algorithm is proposed to exploit both matching and mismatching features to improve the filtering and verification on candidates. We demonstrate the proposed algorithm significantly outperforms existing approaches with extensive experiments on publicly available datasets.



speed up graph edit distance computation by further utilizing the two filtering conditions. The filtering and verification techniques constitute the GSimJoin algorithm. Its superior time efficiency to alternative methods is demonstrated through extensive experimental evaluation. Our contributions can be summarized as follows: •



•



•



We solve the graph similarity join problem by introducing a new notion of q-grams based on paths. We develop the count filtering condition regarding the number of matching q-grams, which is tighter than using tree-based q-grams. We analyze mismatching q-grams and develop two filtering techniques to improve the performance of graph similarity join by optimizing both candidate generation and verification. We propose a new algorithm, GSimJoin, that integrates the proposed filtering and verification methods. We conduct extensive experiments using two publicly available datasets from different application domains. The proposed algorithm has been demonstrated to outperform other approaches.
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s Cyclopropanone and 2-Aminocyclopropanol



Delete an edge from the graph. Change the label of an edge.



The graph edit distance between r and s, denoted by ged(r, s), is the minimum number of edit operations that transform r to a graph isomorphic to s. It is shown that computing the graph edit distance between two graphs is NP-hard [36].



Example 1: Figure 1 shows the structure of cyclopropanone (r) and 2-aminocyclopropanol (s) molecules after omitting hydrogen atoms. They have been used in investigations of potential antiviral drugs [8]. For ease of illustration, we add The rest of the paper is organized as follows: Section II subscripts to carbon atoms, while C1 , C2 and C3 correspond presents the problem definition and preliminaries. Section III to the same label in real data. Single and double lines introduces the definition of path-based q-gram on graphs indicate different chemical bonds, represented in edge labels and the corresponding count filter on matching q-grams. in real data. The graph edit distance between r and s is 3. Sections IV and V present the two filtering techniques We formalize the graph similarity join problem as follows. exploiting mismatching q-grams. Section VI elaborates the Given two sets of graphs R and S, a graph similarity verification of candidates. Experimental results and analyses join with edit distance threshold τ returns pairs of graphs are presented in Section VII. Section VIII summarizes related from each set, such that their graph edit distance is no work, and Section IX concludes the paper. larger than τ ; i.e., { hr, si | ged(r, s) ≤ τ, r ∈ R, s ∈ S }. Assuming there is a unique identifier recorded in id for II. P RELIMINARIES each graph, this paper will focus on the self-join case; i.e., A. Problem Definition { hri , rj i | ged(ri , rj ) ≤ τ ∧ ri .id < rj .id, ri ∈ R, rj ∈ R }. For ease of exposition, we focus on simple graphs in this paper. A simple graph is an undirected graph with neither B. Tree-based q-gram Approach self-loops nor multiple edges 1 . A labeled graph r can be The string similarity problem with edit distance constraints represented as quadruple (V, E, lV , lE ), where V is a set of has been extensively studied [10], [31], [14], [15], [35], [37], vertices, and E ⊆ V × V is a set of edges. lV and lE are label [29], [18]. Among them, many prevalent approaches are based functions that assign labels to vertices and edges, respectively. on q-grams [10], [31], [14], [18], namely, substrings of length V (r) denotes the vertex set of r, and E(r) denotes the edge set. q. Since an edit operation will only affect a limited number of |V (r)| and |E(r)| represent the number of vertices and edges q-grams, similar strings will have certain amount of overlap in r, respectively. lV (u) denotes the label of u, and lE (e(u, v)) between their q-gram sets 2 . Based on this observation, these denotes the label of an edge between u and v, u, v ∈ V . approaches essentially relax the edit distance constraint to a A graph r is isomorphic to another graph s if there exists weaker count constraint on the number of common q-grams a bijection f : V (r) → V (s) such that (1) ∀u ∈ V (r), called count filtering. f (u) ∈ V (s) ∧ lV (u) = lV (f (u)), and (2) ∀e(u, v) ∈ E(r), Inspired by the idea of q-gram on string similarity, [28] e(f (u), f (v)) ∈ E(s) ∧ lE (e(u, v)) = lE (e(f (u), f (v))). proposed κ-AT algorithm that defines the q-grams on graphs A graph edit operation is an edit operation to transform based on trees. For each vertex u, a tree-based q-gram is a set one graph to another [4], [22]. It can be one of the following of vertices that can be reached from u in q hops, represented six operations: in a breadth-first-search tree rooted at u. • Insert an isolated vertex into the graph. Example 2: Consider r in Figure 1 and q = 1. There are • Delete an isolated vertex from the graph. four 1-grams of r, as shown in Figure 2. The first 1-gram • Change the label of a vertex. appears twice. • Insert an edge between two disconnected vertices. 1 Without loss of generality, our approach can be easily extended to directed graphs.



2 q-grams in strings are accompanied by their starting positions in the string, and thus there is no duplicate.
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vertex. In the rest of the paper, we use “path-based q-gram” and “q-gram” interchangeably when there is no ambiguity.
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Example 3: Consider the two graphs in Figure 1 and q = 1. There are four 1-grams in r: C=O(×1)



Tree-based q-grams



C-C(×3) The maximum number of q-grams that can be affected by an edit operation is shown as Dtree = 1 + γ ·



and five 1-grams in s: C-N(×1) C-O(×1)



(γ − 1)q − 1 , γ−2



where γ is the maximum vertex degree in the graph. κ-AT algorithm exploits the constraint that two graphs r and s must share at least a number of common q-grams if they are within graph edit distance τ : LBtree = max(|V (r)| − τ · Dtree (r), |V (s)| − τ · Dtree (s)). A pair of graphs that satisfies the lower bound test is called a candidate pair. Note that it does not necessarily satisfy the graph edit distance constraint. Therefore, graph edit distance calculation will be invoked for every candidate pair that survives this count filter. κ-AT algorithm is associated with the drawback that the lower bound of common q-grams is usually loose. It may become equal to or even less than zero if there is a vertex with high degree in the graph, and we call such phenomenon underflowing. This problem results in the following dilemma: We have to use very short q-grams, e.g., 1-grams, to ensure the pairs of graphs to have at least one common q-gram so that the all-pair comparison due to underflowing can be avoided; however, short q-grams suffer from poor performance problems as they are usually frequent and hence yield large candidate size. Consider the two graphs in Figure 1 and τ = 1, the lower bound is only 1 if we use 1-grams, and becomes less than zero when longer q-grams are applied. III. A PATH - BASED q- GRAM M ETHOD Seeing the drawback of the tree-based q-gram approach, we seek a new way of defining q-grams on graphs. Since q-grams defined on strings are sequences, we may choose paths in a graph as its q-grams, as paths are convertible to “sequences”. Next we formally introduce the definition of path-based q-grams on graphs. A. Definition of Path-based q-gram



C-C(×3)



Before developing count filtering condition for path-based q-grams, we first study the effect of an edit operation on a graph’s q-grams. Let Qr denote the multiset of q-grams in r, and Qur denote the multiset of q-grams that contain the vertex u. The following theorem shows how many q-grams in Qr will be affected when an edit operation occurs in r. Theorem 1: An edit operation on r will affect at most (Dpath (r) = maxu∈V (r) |Qur |) q-grams in Qr . Proof: We enumerate the effect of various edit operations: •
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•



•



•



•



Insert an isolated vertex into the graph. No q-gram in Qr will be affected. Delete an isolated vertex from the graph. The number of q-grams affected is either 1 when q = 0, or 0 otherwise. Change the label of a vertex. Suppose u’s label is changed. This will affect |Qur | ≤ maxu∈V (r) |Qur | q-grams. Insert an edge between two disconnected vertices. No q-gram in Qr will be affected. Delete an edge from the graph. Suppose e(u, v) is deleted. The number of affected q-grams is max(|Qur |, |Qvr |) ≤ maxu∈V (r) |Qur |. Change the label of an edge. This will affect the same number of q-grams as deleting an edge from the graph.



According to Theorem 1, the count filtering condition for path-based q-grams can be established as: Lemma 1 (Count Filtering): Consider two graphs r and s. If ged(r, s) ≤ τ , r and s must share at least LBpath = max(|Qr | − τ · Dpath (r), |Qs | − τ · Dpath (s)) (1)



Definition 1 (path-based q-gram): A path-based q-gram in common q-grams. a graph r is a simple path of length q. Example 4: Consider Figure 1, τ = 1, and q = 1. “Simple” means that there is no repeated vertex in the path. Changing the label of C1 gives the maximum |Qur | = 3 for Since a path has two ends, namely, start vertex and end vertex, both graphs. Therefore the lower bound of common q-grams two sequences can be formed by concatenating the vertex and is max(4 − 3, 5 − 3) = 2. Even when q is 2, the lower edge labels from both ends. We only keep the lexicographically bound of common q-grams is still above zero, as given by smaller as a q-gram. Since the length of a path can be zero max(5 − 5, 7 − 6) = 1. for the case of a single vertex, a 0-gram will be a single
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B. Comparison with Tree-based q-grams Now we compare the effect of edit operations on tree-based and path-based q-grams. •



•



For q = 1, consider r in Figure 1. All the tree-based q-grams can be affected by an edit operation on C1 , while the path-based q-gram consisting of C2 and C3 will still be kept. This example showcases that path-based q-grams can preserve more common structural information than tree-based q-grams, excluding the affected part. For longer q-grams, the number of vertices covered by a tree-based q-gram increases exponentially with the length q. Any edit operation resident on these vertices will make this q-gram mismatched. On the contrary, the coverage of a path-based q-gram increases linearly with the length q, and therefore the probability being hit by an edit operation is much decreased.



Compared with tree-based q-grams, path-based q-grams have the advantage of presenting tighter lower bounds, and this will deliver the chance of using longer q-grams in seek of better selectivity and runtime performance.
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Illustration of Prefix Filtering



α, then the (|Qr | − α + 1)-prefix of Qr and the (|Qs | − α + 1)prefix of Qs must have at least one common q-gram. In order to achieve a small candidate size and fast execution speed, rare q-grams are favored in prefixes. Therefore we sort the multiset of q-grams in each graph in ascending order of document frequency, the number of graphs that contain the q-gram. D. Graph Join Algorithm



Combining count filtering for path-based q-grams and prefix filtering, we have the basic GSimJoin algorithm (Algorithm 1). The algorithm takes as input a collection of graphs, and follows an index nested loop join style, maintaining an in-memory inverted index on-the-fly. It C. Prefix Filtering iterates through each graph r ∈ R. For each q-gram w in An efficient way to find the pairs of graphs that satisfy Qr ’s prefix, it probes the inverted index to find other graphs the count filtering condition is to use inverted index [2]. An s that contain w in their prefixes. The candidates will be inverted index maps each q-gram w to a list of identifiers of sent into Verify, and checked by (1) count filtering; and then graphs that contain w. With the inverted index built for all the (2) the expensive graph edit distance computation to tell if graphs in the data collection, we can scan each graph r, probe they are join results. According to Lemma 1 and 2, the prefix the index using every q-gram of r, and produce a set of can- length is τ ·Dpath (r)+1 for each graph r (Line 6). In addition, didates. Merging these candidates gives the actual intersection the numbers of vertices and edges in r and s must have the of q-grams and the graph pairs that meet the lower bound. difference within τ . This size filtering is included in Line 9. The main performance bottleneck in accessing inverted In the next two sections, we will study how to exploit index is that the inverted lists of some q-grams can be very the information provided by mismatching q-grams to gain long. For example, the carbon chain C − C − C exists in most further efficiency. Although the similar property also happens chemical compounds in AIDS dataset. These long inverted for strings and has been investigated in [31], the scenario lists will incur prohibitive overhead when accessed. In on graphs is much more challenging. First, the q-grams on addition, a large number of candidate pairs will be produced strings have starting positions, and hence are easy to locate, if they share such q-grams. Existing approaches to string while the q-grams on graphs do not have such attribute. similarity problem address this bottleneck by employing Second, the minimum edit operation problem on strings is of prefix filtering technique [5], [31], [18] to quickly filter out polynomial time complexity while it is NP-hard on graphs. the candidate pairs that are guaranteed not to meet the count We will propose two non-trivial techniques on graphs to filtering condition. The intuition is that if two multisets of reduce both index and candidate sizes. q-grams meet the lower bound constraint, they must share at IV. M INIMUM E DIT F ILTERING least one common q-gram if we look into part of the q-grams. We first show an illustrative example. Figure 3 illustrates the idea of prefix filtering. Suppose the q-grams in two multisets are sorted in the same ordering. l is Example 5: Consider Figure 1, τ = 1, and q = 1. The the total number of q-grams in both multisets. The unshaded count filtering lower bound is 2, while the two graphs share 3 cells are prefixes. If Qr and Qs have no common q-gram q-grams (see Example 3) and therefore will survive count filterin their prefixes, the number of their common q-grams is no ing. However, if we consider the two mismatching q-grams in more than LBpath − 1. We formally state the prefix filtering s: C-O and C-N, it can be seen that they are disjoint (see the principle for graph similarity joins in Lemma 2. two bounded regions in s). It takes at least two edit operations Lemma 2 (Prefix Filtering): Consider two graphs r, s, their to affect them. Obviously, we can infer a lower bound of the corresponding q-gram multisets Qr , Qs , and a global ordering graph edit distance between r and s to be 2 and hence prune O of the q-gram universe. Let Qr and Qs be sorted in the order this pair. This motivates us to find the minimum number of edit of O, and the p-prefix be their first p elements. If |Qr ∩ Qs | ≥ operations that can cause the observed mismatching q-grams.
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Algorithm 1: GSimJoin (R, τ ) : R is a collection of graphs; τ is a graph edit distance threshold; O is a global ordering of q-grams. Output : S = { hr, si | ged(r, s) ≤ τ }. S ← ∅; Ii ← ∅ (1 ≤ i ≤ |U |) ; /* inverted index */ for each r ∈ R do A ← empty map from id to boolean; Qr ← r’s q-grams sorted in O; pr ← τ · Dpath (r) + 1; for i = 1 to pr do w ← Qr [i]; for each s ∈ Iw such that abs(|V (r)| − |V (s)|) + abs(|E(r)| − |E(s)| ≤ τ and A[s] has not been initialized do A[s] ← true ; /* find a candidate */ Input
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Iw ← Iw ∪ { r } ;
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Example of Minimum Edit Operation



Algorithm 2 presents the approximate algorithm and it is guaranteed to return a lower bound of the exact answer. Algorithm 2: MinEditLowerBound (Q)



S ← S ∪ Verify(r, A); 1 2



The above example evidences the implication of edit operations occur on disjoint q-grams and the existence of redundancy within prefixes. Since we choose increasing document frequency as the global ordering on q-gram multisets, the rarest q-grams reside in the beginning of prefixes, while the end of prefixes are relatively frequent q-grams. Both index size and the candidates passing prefix filtering can be reduced if we are able to remove the redundancy and avoid frequent q-grams with shortened prefixes.
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/* index for q-gram w */



return S
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Input : Q is a multiset of q-grams. Output : A lower bound of the minimum edit operations that affect all the q-grams in Q. edit ← compute min − edit(Q) with the greedy algorithm; return ln |Q|−lnedit ln |Q|+0.78



Algorithm 3: MinEdit (Q)



1 2



Input : Q is a multiset of q-grams. Output : The exact minimum edit operations that affect all the q-grams in Q. edit ← compute exact min − edit(Q); return edit



Example 6: Figure 4 shows the structure of phenol (r) and toluidine (s) molecules. Suppose q is 2. There are three A. Minimum Graph Edit Operations mismatching q-grams from s to r: C-C-C, C-C-N, and Example 5 illustrates the case where mismatching q-grams C=C-N, as bounded in the figure. At least two minimum edit are disjoint. To handle the general case where q-grams may operations are needed to make these three q-grams mismatch, overlap, we formulate the minimum graph edit operation prob- e.g., changing the vertex label of C1 and C2 . lem: Given a multiset of q-grams Q, find the minimum number It is noteworthy to mention the following two properties, of graph edit operations that can affect all the q-grams in Q. which are essential to the filtering techniques we are going to Theorem 2: The minimum graph edit operation problem is present in the rest of the paper. Let min-edit(Q) denote the NP-hard. minimum graph edit operations for a multiset of q-grams Q. Proposition 1 (Monotonicity): Proof: (sketch) It can be shown the q-grams affected by all the other edit operations are a subset of the q-grams min-edit(Q) ≤ min-edit(Q′ ) ≤ ged(r, s), ∀Q ⊆ Q′ ⊆ Qr \Qs . affected by changing vertex label. The minimum graph edit operation problem can be reduced from the set cover problem Proposition 2 (Disconnectivity): min-edit(Q1 ∪ Q2 ) = by treating q-grams as elements and vertices as sets. Therefore min-edit(Q1 )+min-edit(Q2 ), if ∀qi ∈ Q1 , qj ∈ Q2 , qi ∩qj = ∅. the minimum graph edit operation problem is NP-hard. Despite its NP-hardness, the problem can be solved with an exact algorithm enumerating the positions of edit operations, B. Minimum Prefix Length since we only concern whether the answer is within or Recall Example 5, although the lower bound of common qbeyond τ . The time complexity is O(|V |τ + |Q|), where grams is LBpath , it is likely that the minimum edit operations |V | is the number of vertices contained by the q-grams in that occur on mismatching q-grams have already exceeded Q. To alleviate the problem of large |V |, we may compute τ , and thus the candidate pair should be discarded. Based on 3 an approximate answer using the greedy algorithm with this assumption, our task becomes seeking a minimum prefix an approximation ratio of ln |Q| − ln ln |Q| + 0.78 [25]. such that at least τ + 1 edit operations are needed to affect The time complexity is reduced to O(τ (|V | + |Q|) log |Q|). all the q-grams in the prefix. In this case, r and s will be guaranteed not to meet the graph edit distance constraint if 3 The greedy algorithm for set cover problem chooses the set which contains the largest number of uncovered elements at each stage. all the q-grams in their prefixes are mismatched.
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Input : Qr is a sorted multiset of q-grams of graph r. Output : The minimum prefix length of Q. left ← τ + 1; right ← τ · Dpath (r) + 1; while left < right do mid ← (left + right)/2; edit ← MinEditLowerBound(Qr [1 . . mid]); if edit ≤ τ then left ← mid + 1; else right ← mid;



12



right ← left; left ← τ + 1; while left < right do mid ← (left + right)/2; edit ← MinEdit(Qr [1 . . mid]); if edit ≤ τ then left ← mid + 1; else right ← mid;
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return left
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The monotonicity (Proposition 1) enables us to find the minimum prefix length for a multiset of q-grams Qr with a binary search within the range of [τ +1, τ ·Dpath (r)+1], as presented in Algorithm 4. It performs two rounds of binary search. In the first round, the greedy algorithm is called to find the lower bound of the answer to minimum graph edit operation problem. The result is used as the upper bound of the second round binary search, in which the exact algorithm is applied. Lemma 3 (Minimum Edit Filtering): Denote the minimum prefix length for the q-grams of r and s as pr and ps , respectively. If ged(r, s) ≤ τ , Qr ’s pr -prefix and Qs ’s ps -prefix must have at least one common q-gram. Lemma 3 states the minimum edit filtering. To apply this filtering in the join algorithm, we replace Line 6 in Algorithm 1 with “pr ← MinPrefixLen(Qr )”. Example 7: Consider s in Figure 1 and its five 1-grams sorted according to the order they are listed in Example 3. When τ is 1, the minimum prefix length is 2, while the prefix length before using minimum edit filtering is 4.
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In this section, we introduce another approach of exploiting the labels in mismatching q-grams. A. Exploiting the Labels in Mismatching q-grams Although the minimum edit filtering can estimate a lower bound of graph edit distance, it works in a pessimistic way assuming the edit operations are scattered. However, it is likely that several edit operations are clustered and incurred by the same mismatching q-gram. Example 8: Consider Figure 1, τ = 1, and q = 1. The two mismatching q-grams are bounded in dashed lines. If we compare the labels in the mismatching q-gram in the right bounding box with those in r, they already incur at least one edit operation because there is no nitrogen atom (N) in r. Motivated by this idea, we are able to establish a lower bound of graph edit distance from the labels in mismatching q-grams. Denoting LV (r) the multiset of the vertex labels in
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F s Example of Local Label Filtering



r, and LE (r) the multiset of the edge labels in r, we state the local label filtering for graph edit distance: Lemma 4 (Local Label Filtering): If ged(r, s) ≤ τ, |LV (r′ )\LV (s)| + |LE (r′ )\LE (s)| ≤ τ for any subgraph r′ of r. Applying local label filtering on whole graphs immediately yields global label filtering. Lemma 5 (Global Label Filtering): If ged(r, s) ≤ τ , Γ(LV (r), LV (s)) + Γ(LE (r), LE (s)) ≤ τ , where Γ(A, B) = max(|A|, |B|) − |A ∩ B|. B. Implementation of Local Label Filtering Although the local label filtering can be applied on any subgraphs, we choose as a heuristic to use it on the subgraphs containing at least one mismatching q-gram, since mismatching q-grams may imply difference in vertex and edge labels. In addition, we employ minimum edit filtering to enhance the power of local label filtering. Recall the disconnectivity of minimum graph edit operations (Proposition 2), the observed mismatching q-grams can be articulated and form a set of connected components. We may derive the lower bound of graph edit distance in the whole graph by computing that in each component and summing them up. Algorithm 5: LocalLabelFilter(Q, s)
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Input : Q is a multiset of mismatching q-grams from r to s. Output : A lower bound of ged(r, s). C ← the connected components formed by Q; total ← 0; for each ci ∈ C do edit-loc ← MinEdit(ci ); edit-con ← |LV (ci )\LV (s)| + |LE (ci )\LE (s)|; total ← total + max(edit-loc, edit-con);
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return total



1 2
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Algorithm 4: MinPrefixLen (Qr )



3 4 5



Algorithm 5 explains the implementation of the enhanced local label filtering after including minimum edit filtering. For each connected component consisting of one or more mismatching q-grams, we compute the minimum edit operations that can result in these mismatching q-grams using (1) minimum edit filtering; and (2) local label filtering. The larger one is then chosen as the ged lower bound within this component, and added up to the total ged lower bound. The time complexity of the algorithm is O(|V |τ +|Q|+|E|). In case of large V , we may calculate an approximate answer to the minimum edit operation problem with the greedy algorithm, and the time complexity will be O(τ (|V | + |Q|) log |Q| + |E|).



Example 9: Consider the two graphs in Figure 5, τ = 2, exact ged [20], and then see how our mismatch filtering and q = 2. Global label filtering yields a lower bound of techniques can be employed to speed up the algorithm. A* explores the space of all possible vertex mappings 2; count filtering requires the two graphs share at least 2 q-grams, while they do share C-C-C and C-C-C; Minimum between two graphs in a best-first search fashion with a edit filtering only gives a lower bound of 2 for both r and function (denoted f (x)) established to determine the order s. Therefore the pair can pass these three filters. The two in which the search visits vertex mappings. f (x) is a sum bounded regions in the figure show the two components of two functions: (1) the distance from the initial state to the formed by jointing the mismatching q-grams in r. The edit current state (denoted g(x)); and (2) a heuristic estimate of operations on the left component will be 1 (from minimum the distance from the current state to the goal (denoted h(x)). edit filtering), and 2 on the right component (from local label A* maintains states in a priority queue, and guarantees the path to the goal is shortest when the goal is popped from the filtering). Therefore the pair can be pruned. queue, if the h(x) function is admissible; i.e., h(x) is lower VI. V ERIFICATION A LGORITHM than or equal to the real distance from the current to the goal. With no vertex mapped in the initial state, we form a Our verification algorithm consists of two parts: (1) multiple new state in each step by mapping a vertex in r to either a filters that quickly prune unpromising candidates; and vertex in s, or none to imply a vertex deletion. The goal is (2) computation of graph edit distance. We introduce both to map all the vertices in r. g(x) is the graph edit distance parts in detail. between the two partial graphs corresponding to current vertex mapping. For h(x), [20] gives a lower bound of A. Integrating Multiple Filters The verification algorithm for GSimJoin is shown in Al- the graph edit distance between the remaining parts with gorithm 6. The candidates are verified through three filters in bipartite matching. The original algorithm is designed for succession: global label filtering (Lines 3 – 4), count filtering weighted graph edit distance. For our unweighted version, (Lines 5 – 6), and local label filtering (Lines 7 – 9). Those h(x) becomes exactly the result of global label filtering. still survive will be verified through the expensive graph edit distance computation. The CompareQGrams algorithm in Line 5 extracts the mismatching q-grams from both r to s and s to r, returned in Q′r and Q′s respectively. In addition, we carefully compute the numbers of mismatching q-grams in both directions without double-counting, and return them in ǫ2 and ǫ3 . Algorithm 6: Verify(r, A)



12



Input : r is a graph; A is map indicating r’s candidates. Output : S = { hr, si | ged(r, s) ≤ τ }. S ← ∅; for each s such that A[s] = true do ǫ1 ← Γ(LV (r), LV (s)) + Γ(LE (r), LE (s)) ; /* global label filtering if ǫ1 ≤ τ then (Q′r , Q′s , ǫ2 , ǫ3 ) ← CompareQGrams(Qr , Qs ) ; /* count filtering if ǫ2 ≤ τ · Dpath (r) and ǫ3 ≤ τ · Dpath (s) then ǫ4 ← LocalLabelFilter(Q′r , s) ; /* local label filtering ǫ5 ← LocalLabelFilter(Q′s , r) ; /* local label filtering if ǫ4 ≤ τ and ǫ5 ≤ τ then edit ← GraphEditDistance(r, s); if edit ≤ τ then S ← S ∪ { hr, si };
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return S



1 2 3 4 5 6 7 8 9 10 11



*/ */ */ */



B. Graph Edit Distance Computation Most widely used exact approaches for computing graph edit distance are based on A* algorithm [11]. In this section, we briefly review a state-of-the-art approach for computing



g(x) = ged(rp , sp ); h(x) = Γ(LV (rq ), LV (sq )) + Γ(LE (rq ), LE (sq )). rp consists of the vertices that have been mapped and the edges connecting them, while rq consists of the vertices unmapped yet as well as their resident edges. 1) Exploiting Minimum Edit Filtering: Although A* algorithm adopts a best-first search scheme to efficiently compute graph edit distance, it does not discuss the impact of search order on the efficiency of the algorithm. Due to the removal of unpromising candidates with multiple filters, the pairs verified by A* algorithm are very likely to resemble though they may not satisfy the graph edit distance constraint. The isomorphic part of the graphs do not incur any edit operations, and therefore the goal cannot be found until very late stage of the process if we start searching from this part. In contrast, the process ends more quickly if we start with the part that needs edit operations. Recall the mismatching q-grams identified by CompareQGrams algorithm. The mismatching q-grams indeed contribute edit operations and hence should be favored. Algorithms 7 exploits this idea and determines the order of vertices to be mapped by the A* algorithm. The vertices contained by at least one mismatching q-gram are put before the others. In the interest of connectivity, we break tie by mapping vertices in the order of spanning tree, so as to expedite the discovery of edge edit operations. Using such order leverages the connectivity of a graph and can quickly find edge edit operations. E.g., assume in r, u and v are adjacent vertices in the spanning tree, and they are mapped to u′ and v ′ in s, respectively. An edge edit operation will occur if there is no edge between u′ and v ′ in s. 2) Exploiting Local Label Filtering: Any lower bound of graph edit distance can serve as the heuristic estimate h(x)



Algorithm 7: DetermineVertexOrder(r, Q′r ) : r is graph; Q′r is a multiset of mismatching q-grams from r to s. Output : An array of vertices that the A* algorithm will find mapping in order. M ← []; C ← the connected components formed by Q′r ; for each ci ∈ C do Insert vertices in ci into M in the order of spanning tree;



mode. It iterates through the dataset and selects each graph as a query, and the corresponding database contains all the graphs with smaller identifiers. The filtering time for each query is then summed up as the total filtering time. Edge labels in datasets are omitted when comparing with AppFull as the binary code ignores edge labels.



Input
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Insert the vertices not contained by any mismatching q-gram into M in the order of spanning tree; return M



to render the A* algorithm admissible. We consider not only global label filtering but also local label filtering in h(x). The mismatching q-grams in the remaining graphs composed of unmapped vertices are first extracted, and then sent into local label filtering to get lower bounds of graph edit distance between the two remaining graphs. Algorithm 8 provides the pseudocode of the algorithm. Note that we compute mismatching q-grams from both rq to sq and sq to rq , and hence have two lower bounds from local label filtering. The lower bound from global label filtering is also considered, and the maximum of the three is returned as the result of heuristic estimate.



All experiments were carried out on a Quad-Core Intel Xeon Processor [email protected] with 4GB RAM. The operating system is Debian 5.0.6. All algorithms with source codes were coded in C++. We compiled them using GCC 4.3.2 with -O3 flag, and all the algorithms were run in main memory. With respect to q-gram storage, we assume the label of a vertex or an edge takes 1 byte. Since a q-gram is a path of length q, 2q + 1 bytes are needed to store a q-gram if we concatenate the labels of the vertices and edges in the path. In our implementation, we choose to hash a q-gram into a 4-byte integer. This not only controls the index size, but also speeds up equality checking. The only downside is the existence of false positives within candidates due to hash collision. This will not affect correctness but only efficiency. We selected two publicly available real datasets with different data distributions. •



Algorithm 8: EstimateDistance(rq , sq )
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Input : rq and sq are two graphs consist of unmapped vertices Output : A lower bound of ged(rq , sq ) ǫ1 ← Γ(LV (rq ), LV (sq )) + Γ(LE (rq ), LE (sq )); (Q′r , Q′s ) ← CompareQGrams(rq , sq ); ǫ2 ← LocalLabelFilter(Q′r , sq ); ǫ3 ← LocalLabelFilter(Q′s , rq ); h ← max(ǫ1 , ǫ2 , ǫ3 ); return h



VII. E XPERIMENTS In this section, we report experiment results and our analyses.



•



AIDS is the antivirus screen compound dataset from the Developmental Theroapeutics Program in NCI/NIH 4 . It contains 42,687 chemical compounds. We randomly sample 4,000 graphs to make up the dataset used in the experiment. PROTEIN is the protein database from the Protein Data Bank 5 and labeled with their corresponding enzyme class labels. It contains 600 protein structures. Vertices represent secondary structure elements and are labeled with their types (helix, sheet, or loop). Edges are labeled to indicate whether the two elements are neighbors along the amino acid sequence or neighbors in space within the protein structure.



Statistics about the datasets are listed in Table I. AIDS is composed of sparse graphs while those in PROTEIN are denser. TABLE I S TATISTICS OF THE D ATASETS



A. Experiment Setup The following algorithms are used in the experiment. •



•



•



GSimJoin is our proposed algorithm that utilizes path-based q-grams. κ-AT is a state-of-the-art algorithm based on tree-based q-grams [28]. We implemented this algorithm and applied size filtering, prefix filtering, and global label filtering successively to find the candidates that need graph edit distance verification, as they also work for tree-based q-grams. We ran κ-AT algorithm with different q-gram lengths and found q = 1 yields the smallest candidate size as well as the best runtime performance under all our threshold settings, and consequently we choose q = 1 for κ-AT algorithm. AppFull is another state-of-the-art algorithm based on star structure [36]. In order to make it support graph similarity joins, we run the the binary code in a nested loop join



Dataset AIDS PROTEIN



|R| 4,000 600



avg |V | 25.6 32.6



avg |E| 27.5 62.1



avg |lV | 44 3



avg |lE | 3 2



We measure (1) the average length of prefixes for GSimJoin and κ-AT; (2) the index size for GSimJoin and κ-AT; (3) the candidates formed after probing inverted index for GSimJoin and κ-AT (denoted Cand-1); (4) the candidates that need graph edit computation for GSimJoin and κ-AT, and the pairs of graphs that pass both lower bound and upper bound tests of AppFull (denoted Cand-2); and (5) the running time. 4 http://dtp.nci.nih.gov/docs/aids/aids



data.html



5 http://www.iam.unibe.ch/fki/databases/iam-graph-database/
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B. Evaluating Filters
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Experiment Results - I



Label on PROTEIN. The number of real join results is also shown. Local label filtering results in remarkable reduction on Cand-2s, which can be up to 62%.



In order to evaluate the effectiveness of our filtering techniques, we use the term “Basic GSimJoin ” for the GSimJoin algorithm without minimum edit or local label C. Evaluating Graph Edit Distance Computation filtering. “+ MinEdit” denotes applying minimum edit filtering To evaluate the optimization in graph edit distance computo compute the prefix length, and “+ Local Label” denotes tation, we choose the candidate pairs generated by + Local further applying local label filtering; i.e., the complete Label with the parameters q = 4, τ = 4, and verify them GSimJoin algorithm. with different algorithms. The A* algorithm proposed in [20] We first study the effect of minimum edit filtering. is labeled as “A*”. Minimum edit filtering is exploited to Figure 6(a) shows the average prefix lengths of Basic improve the search order, and the result algorithm is labeled “+ GSimJoin and + MinEdit on PROTEIN dataset with q = 3 Improved Order”. Local label filtering is further applied to imand varying edit distance threshold. + Local Label has the prove heuristic estimate h(x) and labeled “+ Improved h(x)”. same prefix length of + MinEdit, so we do not show it in this Figure 6(e) reports the graph edit distance computation time figure. The prefix lengths from both algorithms grow steadily for the three algorithms with varying τ . We observe that the when the threshold increases. The prefix length has been optimizations can enhance the time efficiency of the ged comsubstantially reduced after applying minimum edit filtering, putation, and the margin is more significant with larger τ ’s. and the reduction is more significant when τ is small. When Combining the filtering algorithms and ged computation τ = 1, the prefix length can be reduced by 95%. As index algorithms according to the techniques employed, we show size is influenced by prefix length, we plot the memory the total running time and decompose it into different phases consumed for indexing by the two algorithms in Figure 6(b). in Figure 6(f). The notations in the figure denote the following Both algorithms need small amount of memory and exhibit a combinations: similar trend as on prefix length. The memory consumed by + MinEdit is only 76.6k when τ is as large as 4. The number • BG: Basic GSimJoin / A*; of Cand-1’s is also influenced by prefix length, as plotted • ME: + MinEdit / + Improved Order; in Figure 6(c) in logarithmic scale. The Cand-1 size can be • LL: + Local Label / + Improved h(x). reduced by as much as 88% when τ is 1. BG has smaller index construction and candidate generation As for local label filtering, figure 6(d) compares the time, but becomes less competitive for large τ ’s in terms number of Cand-2s produced by + MinEdit and + Local of total running time due to its large Cand-2 size and less



efficient ged computation. LL can be up to 2.1 times faster than ME and 31.4 times faster than BG.



contribute to GSimJoin’s advantage on Cand-2 numbers. The running time of both algorithms are shown in Figures 7(i) and 7(j) (“AT” and “GS” are short for κ-AT and GSimJoin D. Evaluating q-gram Length respectively). κ-AT shows better index construction time and We ran GSimJoin algorithm on AIDS dataset with q-gram candidate generation time as GSimJoin needs minimum edit length varying in the range [2, 6], and plot the Cand-1, and local label filtering to build index and prune candidates. Cand-2, and running time in Figures 6(g) –6(i). However, GSimJoin is always better than κ-AT in terms With respect to Cand-1 and Cand-2, the general trend is of total running time, and the gap is more substantial under that the candidate size first drops with an increasing q-gram large τ settings. The speed-up on AIDS is 6.6x and 80.6x length, reaches the bottom at a q of 3 or 4, and then rebounds. on PROTEIN. The latter one showcases the superior time There are several factors contributing to this trend: (1) Small advantage of GSimJoin on denser graphs. q indicates a small q-gram domain, and hence the inverted list of a q-gram can be fairly long. This will lead to a large F. Comparing with AppFull candidate size, especially when q is 2. (2) Large q indicates a We compare GSimJoin with AppFull on both datasets and long prefix length. We have to probe more inverted lists and plot the number of Cand-2s and running time in Figures 7(k) hence it will increase the candidate size. The second factor – 7(n) (“AF” and “GS” are short for AppFull and GSimJoin explains why the candidate size rebounds for long q-grams. respectively). Since the released binary code from the authors It can be seen when q is 6, the candidate size is the actually of [36] reports only the number of candidates and and filtering the largest for most threshold settings. time, we cannot conduct the graph edit distance computation The trend of candidate size reflects the running time under for AppFull. Its filtering time will be used as a lower bound varying q. As can be expected from candidate size, q = 3 of total running time and compared with GSimJoin’s total or 4 will be the most competitive in total running time. The running time. figure shows the best runtime performance is achieved when AppFull’s Cand-2 size is smaller than GSimJoin. The main q is 4 for τ ∈ [2, 4]. The only exception is, when τ = 1, reason is that its bipartite matching can get tight lower/upper q = 2 is the most time-efficient setting. This is because the bounds of graph edit distance. AppFull exhibits almost generation of q-grams and index construction take most of constant filtering time under different τ settings due to the allrunning time for this threshold setting. pair bipartite matching and lack of index. Although the running In the rest of the experiment, we use q = 4 on AIDS and time of GSimJoin grows when we move towards larger τ ’s, it is still always faster than AppFull on AIDS. For threshold q = 3 on PROTEIN as they are the most time-efficient. settings in [1, 3] on PROTEIN, GSimJoin is also more timeE. Comparing with κ-AT efficient. AppFull spends less time on PROTEIN when τ is 4, We compare GSimJoin with κ-AT algorithm on both however, GSimJoin can output all the answers while AppFull datasets. generates a set of candidates that still need verification. The average prefix lengths of both algorithms are shown in Figures 7(a) and 7(b). In spite of a longer prefix on AIDS, G. Varying Dataset Sizes We compare the scalability of GSimJoin and κ-AT GSimJoin has more average number of q-grams in a graph. For example, κ-AT’s prefix length is 8.2 when τ is 1 and algorithms on AIDS dataset with a fixed τ of 2. We randomly the average number of q-grams in a graph is 25.6, while sampled about 20% to 100% from the 4,000 graphs so that GSimJoin’s prefix length is 8.9 and the average number of the data and result distribution remain approximately the q-grams is 71.5. This means κ-AT requires two graphs have same with the whole dataset. We show the square root of the an average of 25.6 − 8.2 + 1 = 18.4 common q-grams to running time in Figure 7(o). become a candidate, while GSimJoin needs an average of It is not surprising to notice that the running time of both 71.5 − 8.9 + 1 = 63.6 common q-grams. Note that the q-gram algorithms grow quadratically, given the fact that the real length is 1 for κ-AT; i.e., the count filtering of κ-AT is the join result size has a quadratic growth. The numbers of real tightest among all its q settings. On PROTEIN, the prefix join results are 5, 24, 41, 79, and 129 for the five scales, length of GSimJoin is even shorter than κ-AT under some respectively. Our GSimJoin also demonstrates advantage parameter settings. Both algorithms are competitive in index over the κ-AT as its growth rate is slower. sizes, as shown in Figures 7(c) and 7(d). VIII. R ELATED W ORK Figures 7(e) – 7(h) give the Cand-1 and Cand-2 sizes of the two algorithms. GSimJoin performs better than κ-AT on Similarity join has been extensively studied due to both Cand-1 and Cand-2 sizes. There are three main factors: its importance in many applications domains, including (1) 4-grams based on paths are more selective than 1-grams record linkage, data cleaning, multimedia applications, and based on trees. This results in a less number of Cand-1s phenomena detection on sensor networks. As a consequence, for GSimJoin. (2) GSimJoin’s count filtering constraint similarity joins on various data types become the research is stricter than κ-AT’s. (3) GSimJoin employs local label theme of many recent literature on text data [10], probabilistic filtering to further prune candidates. The last two factors data [17], stream data [16] and so forth.
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Similarity join on strings with edit distance constraints most nearly isomorphic to the query graph [12]. To formalize is well-studied by database communities. q-gram technique a general definition of structure similarity, graph edit distance is widely used for string similarity matching, especially is employed as a metric of the difference between graphs [36]. for edit distance constraints [10], [31]. Apart from fixed- Latest advance in graph similarity selection is from the length q-grams, variable length grams (VGRAMs) are also idea of using κ-AT [28] to prune the false positive graphs, adopted [15], [35]. where the similarity definition based on edit distance is followed. Inspired by q-gram technique, it builds index by To our best knowledge, there is no research literature decomposing each data graph into κ-ATs, and filters data directly targeting similarity join on graph data. Nonetheless, graphs by comparing the threshold with the lower bound of a closely related topic is structure similarity selection over the edit distance derived from the index. graphs, which keeps receiving considerable attention recently. Closure-Tree is put forward to identify k data graphs that are Subgraph similarity search is to retrieve graphs that approx-



imately contain a query graph. To facilitate such queries, a DAG-structured index incorporating a hash table is introduced to solve the problem with strong constraints [30]. Grafil [34] develops a feature based pruning technique to conduct subgraph similarity search, and the similarity is defined as the number of missing edges with respect to the maximum common subgraph. Concerning the particular interest on connected subgraphs, GrafD-index [23] exploits a set of effective pruning and validation rules to tackle the problem of searching for connected structures that are similar to the maximum connected common subgraph. As the counterpart, supergraph similarity search is also investigated; i.e. to retrieve graphs that are approximately contained by a given query graph [24]. Another line of related research focuses on graph edit distance computation. So far the fastest exact solution is credited to an A*-based algorithm incorporating a bipartite heuristic [20]. To render the matching process less computationally demanding, a number of approximate methods are proposed to find suboptimal answer [26], [3], [9], [19]. Another type of solution is to convert it to binary linear programming and compute the bounds of the answer [13]. IX. C ONCLUSION In this paper, we study the problem of graph similarity join with edit distance constraints. Unlike previous methods which use trees or star structures to find candidates, we propose a method exploiting the number of common fixed-length paths between pairs of graphs. An algorithm, GSimJoin, is designed to find answers to graph similarity join. Two additional filtering techniques are developed to deal with both scattered and clustered edit operations as well as facilitate the graph edit distance computation. Finally, comprehensive experiments performed on real datasets demonstrate that the new algorithm outperforms alternatives. Acknowledgement. This work was partially done at East China Normal University when the corresponding author was taking a Chinese academic program and the first author was visiting there, and supported by NSFC61021004. The work was partially supported by ARC DP120104168, DP110102937, and DP0987557. The fourth author was also supported in partial by ARC DP0987273 and DP0881779. R EFERENCES [1] R. Ambauen, S. Fischer, and H. Bunke. Graph edit distance with node splitting and merging, and its application to diatom idenfication. In GbRPR, pages 95–106, 2003. [2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1st edition edition, May 1999. [3] M. C. Boeres, C. C. Ribeiro, and I. Bloch. A randomized heuristic for scene recognition by graph matching. In WEA, pages 100–113, 2004. [4] H. Bunke and G. Allermann. Inexact graph matching for structural pattern recognition. Pattern Recognition Letters, 1(4):245 – 253, 1983. [5] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data cleaning. In ICDE, 2006. [6] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han. Mining graph patterns efficiently via randomized summaries. PVLDB, 2(1):742–753, 2009. [7] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu. Towards graph containment search and indexing. In VLDB, pages 926–937, 2007.
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