1

​ ​TEAM​ ​7992  FTC​ ​CASCADE​ ​EFFECT 

ENGINEERING​ ​NOTEBOOK

2

Table​ ​of​ ​Contents About​ ​Us………………………………………………………………………………………….3 Biographies………………………………………………………………………………………4 Engineering​ ​Development​ ​Timeline September……………………………………………………………………………….7 October………………………………………………………………………………….11 November……………………………………………………………………………....14 December……………………………………………………………………………....15 January………………………………………………………………………………….20 February………………………………………………………………………………...22 Robot​ ​Control​ ​Algorithms……………………………………………………………………..23 Service​ ​Outreach………………………………………………………………………………23 Monrovia​ ​FTC​ ​Qualifiers​ ​Reflection………………………………………………………….25 Venice​ ​FTC​ ​Qualifiers​ ​Reflection………………………………………………...................27 Bill​ ​of​ ​Materials………………………………………………………………………………...31

3

About​ ​Us This​ ​year​ ​marks​ ​Lightning​ ​Robotics’​ ​second​ ​year​ ​as​ ​a​ ​FTC​ ​competitor.​ ​ ​We​ ​are happy​ ​to​ ​announce​ ​that​ ​our​ ​team​ ​has​ ​nearly​ ​doubled​ ​in​ ​size​ ​from​ ​the​ ​previous​ ​year​ ​and therefore​ ​we​ ​were​ ​able​ ​to​ ​be​ ​much​ ​more​ ​ambitious​ ​in​ ​our​ ​designs.​ ​ ​This​ ​year​ ​was​ ​a year​ ​of​ ​firsts​ ​for​ ​our​ ​team,​ ​some​ ​notable​ ​events​ ​including​ ​laying​ ​the​ ​foundation​ ​of​ ​a community​ ​outreach​ ​program,​ ​holding​ ​our​ ​first​ ​large​ ​recruitment​ ​event,​ ​and​ ​seeking corporate​ ​sponsorships.​ ​ ​Unfortunately,​ ​as​ ​of​ ​the​ ​time​ ​of​ ​this​ ​writing,​ ​our​ ​team​ ​has undergone​ ​some​ ​growing​ ​pains,​ ​we​ ​have​ ​had​ ​to​ ​establish​ ​a​ ​more​ ​stringent​ ​leadership organization​ ​as​ ​well​ ​as​ ​develop​ ​standardized​ ​policies​ ​for​ ​communication​ ​so​ ​that​ ​every member​ ​of​ ​the​ ​team​ ​is​ ​kept​ ​informed.​ ​ ​We​ ​would​ ​like​ ​to​ ​thank​ ​Mr.​ ​Chris​ ​Vivo​ ​for​ ​his constant​ ​and​ ​wonderful​ ​mentorship​ ​throughout​ ​this​ ​process.​ ​We​ ​would​ ​also​ ​like​ ​to​ ​thank our​ ​Head​ ​of​ ​School,​ ​Mrs.​ ​Patricia​ ​Merz,​ ​and​ ​our​ ​President​ ​of​ ​School,​ ​Mr.​ ​Gordon McNeil,​ ​for​ ​supporting​ ​us​ ​in​ ​our​ ​endeavors.​ ​In​ ​addition,​ ​we​ ​would​ ​like​ ​to​ ​thank​ ​FRC Team​ ​7135,​ ​“El​ ​Diablo”.​ ​ ​Most​ ​of​ ​all,​ ​we​ ​would​ ​like​ ​to​ ​thank​ ​our​ ​friends​ ​and​ ​family​ ​for their​ ​unceasing​ ​support​ ​of​ ​our​ ​team.​ ​ ​So​ ​now,​ ​we​ ​would​ ​like​ ​to​ ​share​ ​with​ ​you​ ​our journey​ ​so​ ​far,​ ​all​ ​of​ ​our​ ​successes​ ​and​ ​setbacks,​ ​and​ ​hope​ ​that​ ​you​ ​will​ ​glimpse​ ​the true​ ​potential​ ​of​ ​this​ ​team.

4

Biographies Dustin​ ​Jamner:​​ ​Dustin​ ​is​ ​the​ ​founding​ ​president​ ​of​ ​Lightning​ ​Robotics.​ ​He​ ​works​ ​hard​ ​at keeping​ ​the​ ​team​ ​together​ ​and​ ​working.​ ​He​ ​has​ ​designed​ ​a​ ​large​ ​part​ ​of​ ​the​ ​robot​ ​and​ ​is helpful​ ​with​ ​problems​ ​that​ ​we​ ​encounter​ ​while​ ​building​ ​it.​ ​Unfortunately,​ ​Dustin​ ​is​ ​a senior​ ​and​ ​is​ ​off​ ​to​ ​college​ ​next​ ​year. Michael​ ​Rouleau:​​ ​Michael​ ​heads​ ​the​ ​robot​ ​build​ ​team​ ​and​ ​is​ ​VP​ ​of​ ​the​ ​team.​ ​He assembles​ ​the​ ​actual​ ​robot​ ​and​ ​comes​ ​up​ ​with​ ​new​ ​designs​ ​to​ ​build​ ​and​ ​test.​ ​Michael has​ ​built​ ​a​ ​lot​ ​of​ ​the​ ​robot​ ​and​ ​is​ ​adept​ ​at​ ​quick​ ​and​ ​clean​ ​assembly.​ ​Unfortunately, Michael​ ​is​ ​a​ ​senior​ ​and​ ​will​ ​be​ ​leaving​ ​us​ ​next​ ​year. Theo​ ​Evers:​​ ​Theo​ ​leads​ ​the​ ​practice​ ​field​ ​build​ ​team​ ​and​ ​works​ ​with​ ​Michael​ ​on​ ​the robot.​ ​Theo​ ​has​ ​made​ ​many​ ​repairs​ ​and​ ​additions​ ​to​ ​robot​ ​and​ ​has​ ​begun​ ​assuming more​ ​leadership​ ​responsibilities​ ​from​ ​Michael​ ​and​ ​Dustin​ ​in​ ​preparation​ ​for​ ​next​ ​year. Theo​ ​is​ ​a​ ​sophomore​ ​and​ ​is​ ​looking​ ​forward​ ​to​ ​assuming​ ​the​ ​presidency​ ​next​ ​year. William​ ​(Billy)​ ​Paivine​ ​III:​​ ​Billy​ ​is​ ​our​ ​chief​ ​programmer,​ ​and​ ​has​ ​been​ ​a​ ​huge​ ​asset​ ​to the​ ​team​ ​in​ ​that​ ​respect.​ ​He​ ​has,​ ​in​ ​conjunction​ ​with​ ​Buck,​ ​developed​ ​and​ ​tested​ ​a​ ​large portion​ ​of​ ​the​ ​codebase,​ ​as​ ​well​ ​as​ ​developed​ ​our​ ​motor​ ​calibration​ ​procedures.​ ​He,​ ​a junior,​ ​will​ ​be​ ​returning​ ​next​ ​year. Buck​ ​Bukaty​ ​III:​​ ​Buck​ ​has​ ​worked​ ​with​ ​Billy​ ​on​ ​the​ ​autonomous​ ​period,​ ​primarily​ ​on testing​ ​and​ ​calibration.​ ​He​ ​acts​ ​as​ ​Billy’s​ ​second​ ​brain,​ ​arms,​ ​and​ ​everything​ ​else​ ​really. Being​ ​a​ ​junior,​ ​he​ ​is​ ​happy​ ​to​ ​return​ ​next​ ​year​ ​as​ ​a​ ​senior. Isaac​ ​Collins:​​ ​Isaac​ ​works​ ​with​ ​design​ ​and​ ​build​ ​and​ ​is​ ​a​ ​member​ ​of​ ​the​ ​drive​ ​team.​ ​He designed​ ​portions​ ​of​ ​the​ ​robot​ ​and​ ​helps​ ​the​ ​team​ ​troubleshoot​ ​problems.​ ​He​ ​helped construct​ ​the​ ​ramp,​ ​and​ ​its​ ​many​ ​parts.​ ​In​ ​his​ ​capacity​ ​as​ ​coach,​ ​Isaac​ ​has​ ​facilitated seamless​ ​in-game​ ​communication​ ​between​ ​teams.​ ​He​ ​is​ ​a​ ​junior​ ​and​ ​will​ ​be​ ​returning​ ​to the​ ​team​ ​next​ ​year. Brian​ ​Slaughter:​​ ​Brian​ ​is​ ​a​ ​member​ ​of​ ​the​ ​build​ ​team​ ​while​ ​simultaneously​ ​studying​ ​the coding​ ​process.​ ​He​ ​helps​ ​with​ ​a​ ​variety​ ​of​ ​components,​ ​from​ ​the​ ​chassis​ ​to​ ​the gearings.​ ​He​ ​is​ ​a​ ​senior​ ​and​ ​will​ ​be​ ​leaving​ ​next​ ​year. Ethan​ ​Vovan:​​ ​Ethan​ ​is​ ​a​ ​member​ ​of​ ​the​ ​programming​ ​team,​ ​and​ ​is​ ​new​ ​to​ ​the​ ​Sage​ ​Hill Robotics​ ​team.​ ​He​ ​has​ ​helped​ ​on​ ​building​ ​the​ ​team​ ​website,​ ​currently​ ​under

5

development,​ ​contributing​ ​a​ ​number​ ​of​ ​improvements​ ​to​ ​it.​ ​He​ ​is​ ​a​ ​freshman,​ ​and​ ​will continue​ ​to​ ​be​ ​an​ ​active​ ​member​ ​of​ ​the​ ​team​ ​for​ ​the​ ​next​ ​four​ ​years. Eric​ ​Frankel:​​ ​Eric​ ​is​ ​a​ ​member​ ​of​ ​the​ ​programming​ ​team,​ ​and​ ​is​ ​a​ ​new​ ​member​ ​of​ ​the Sage​ ​Hill​ ​Robotics.​ ​He​ ​has​ ​worked​ ​on​ ​programming​ ​the​ ​autonomous​ ​and​ ​teleop​ ​of​ ​the robot,​ ​as​ ​well​ ​as​ ​the​ ​website.​ ​The​ ​vast​ ​majority​ ​of​ ​the​ ​codebase​ ​is​ ​either​ ​his​ ​work​ ​or Billy’s.​ ​He​ ​is​ ​a​ ​freshman​ ​and​ ​plans​ ​to​ ​continue​ ​to​ ​be​ ​an​ ​active​ ​member​ ​of​ ​the​ ​team​ ​for the​ ​coming​ ​years. Kimberly​ ​Wong:​​ ​ ​Kimberly​ ​is​ ​our​ ​team’s​ ​senior​ ​media​ ​manager.​ ​ ​Besides​ ​working​ ​on​ ​the engineering​ ​notebook​ ​she​ ​also​ ​helps​ ​to​ ​manage​ ​our​ ​presence​ ​in​ ​both​ ​our​ ​school​ ​and the​ ​community.​ ​ ​Sadly,​ ​Kimberly​ ​is​ ​a​ ​senior​ ​this​ ​year​ ​and​ ​will​ ​be​ ​leaving​ ​us,​ ​but​ ​she​ ​will be​ ​leaving​ ​her​ ​position​ ​in​ ​the​ ​competent​ ​hands​ ​of​ ​Tamara​ ​Tsubota. Tamara​ ​Tsubota:​​ ​Tamara​ ​is​ ​also​ ​a​ ​team​ ​media​ ​manager.​ ​ ​A​ ​junior,​ ​she​ ​has​ ​spent​ ​this year​ ​helping​ ​Kimberly​ ​manage​ ​the​ ​engineering​ ​notebook​ ​as​ ​well​ ​as​ ​learning​ ​how​ ​to continue​ ​and​ ​expand​ ​our​ ​outreach​ ​efforts. Daniel​ ​Shi:​​ ​Daniel​ ​is​ ​a​ ​new​ ​member​ ​of​ ​the​ ​robotics​ ​team.​ ​His​ ​favorite​ ​subjects​ ​are​ ​math and​ ​science,​ ​which​ ​may​ ​explain​ ​why​ ​he​ ​comes​ ​occasionally​ ​to​ ​robotics​ ​meetings.​ ​He recently​ ​developed​ ​an​ ​interest​ ​in​ ​working​ ​and​ ​cutting​ ​with​ ​wood,​ ​and​ ​he​ ​works​ ​tirelessly on​ ​the​ ​field​ ​team. Cole​ ​Dunlap:​​ ​Cole​ ​Dunlap​ ​is​ ​a​ ​returning​ ​member​ ​to​ ​the​ ​team,​ ​in​ ​his​ ​second​ ​year​ ​of​ ​both FTC​ ​and​ ​high​ ​school.​ ​His​ ​favorite​ ​subjects​ ​are​ ​the​ ​physical​ ​sciences,​ ​and​ ​he​ ​works mostly​ ​on​ ​field​ ​with​ ​Daniel​ ​Shi.​ ​He​ ​enjoys​ ​the​ ​meetings,​ ​and​ ​is​ ​excited​ ​to​ ​continue working​ ​with​ ​the​ ​team. Jacob​ ​Diaz​:​ ​Jacob​ ​Diaz,​ ​a​ ​returning​ ​team​ ​member,​ ​is​ ​a​ ​junior​ ​who​ ​has​ ​dedicated​ ​many hours​ ​to​ ​this​ ​team.​ ​He​ ​works​ ​with​ ​the​ ​building​ ​and​ ​designing​ ​of​ ​the​ ​robot​ ​as​ ​well​ ​as​ ​the construction​ ​of​ ​the​ ​practice​ ​field.​ ​He​ ​quite​ ​likes​ ​robotics​ ​and​ ​will​ ​continue​ ​to​ ​work​ ​with the​ ​team​ ​in​ ​his​ ​senior​ ​year. Ethan​ ​Ackerman:​​ ​Ethan​ ​is​ ​a​ ​general​ ​handyman​ ​and​ ​will​ ​soon​ ​be​ ​the​ ​website​ ​content manager.​ ​As​ ​a​ ​novice​ ​to​ ​robotics​ ​and​ ​engineering,​ ​he​ ​is​ ​currently​ ​learning​ ​as​ ​much​ ​as he​ ​can​ ​so​ ​that​ ​he​ ​may​ ​help​ ​with​ ​the​ ​robot​ ​directly​ ​in​ ​the​ ​future.​ ​Ethan​ ​is​ ​a​ ​junior​ ​and​ ​will continue​ ​robotics​ ​next​ ​year.

6

Cameron​ ​Hamidi:​​ ​Cameron​ ​is​ ​a​ ​new​ ​recruit​ ​to​ ​the​ ​team.​ ​He​ ​has​ ​some​ ​prior​ ​experience with​ ​robotics​ ​thanks​ ​to​ ​a​ ​school​ ​seminar​ ​with​ ​Mr.​ ​Vivo.​ ​Cameron​ ​is​ ​also​ ​in​ ​charge​ ​of video​ ​scripting,​ ​filming,​ ​and​ ​production​ ​for​ ​future​ ​competition​ ​videos.​ ​As​ ​a​ ​junior,​ ​he plans​ ​to​ ​continue​ ​robotics​ ​next​ ​year. Andrew​ ​Vorrath:​​ ​Andrew​ ​is​ ​a​ ​new​ ​member​ ​of​ ​the​ ​team,​ ​but​ ​has​ ​already​ ​demonstrated his​ ​consistency​ ​and​ ​dedication.​ ​He​ ​has​ ​been​ ​researching​ ​teams​ ​for​ ​this​ ​event,​ ​seeking possible​ ​alliance​ ​partners.​ ​Andrew​ ​is​ ​a​ ​junior​ ​and​ ​will​ ​be​ ​returning​ ​next​ ​year. Archmage​ ​Vivo:​​ ​ ​Some​ ​say​ ​he​ ​can​ ​explain​ ​the​ ​universe​ ​by​ ​asking​ ​a​ ​single​ ​question.​ ​All who​ ​undergo​ ​his​ ​tutelage​ ​agree​ ​that​ ​his​ ​knowledge​ ​of​ ​science​ ​and​ ​engineering​ ​is matched​ ​only​ ​by​ ​his​ ​broadsword​ ​skills.​ ​Mr.​ ​Vivo,​ ​Archmage​ ​of​ ​Physics,​ ​is​ ​a​ ​wonderful mentor​ ​with​ ​the​ ​mystical​ ​ability​ ​to​ ​guide​ ​us​ ​on​ ​the​ ​right​ ​path​ ​without​ ​giving​ ​us​ ​the solutions​ ​before​ ​we​ ​figure​ ​them​ ​out.

7

Engineering​ ​Development​ ​Timeline September​ ​9​ ​-​ ​Kickoff! Brainstorming:

September​ ​12 Decided​ ​on​ ​scissor​ ​lift​ ​design - Math​ ​works Decided​ ​on​ ​conveyor​ ​belt​ ​to​ ​raise​ ​balls​ ​from​ ​floor​ ​to​ ​top​ ​of​ ​ramp Issue:​ ​motor​ ​count​ ​is​ ​4​ ​for​ ​drive,​ ​2​ ​for​ ​conveyor,​ ​2​ ​for​ ​lift,​ ​1​ ​for​ ​scoop​ ​mechanism - Solution:​ ​conveyor​ ​uses​ ​1​ ​belt​ ​and​ ​1​ ​flat​ ​side September​ ​16 Debated​ ​options​ ​for​ ​scissor​ ​lift​ ​movement - 2​ ​rack​ ​and​ ​pinions,​ ​rack​ ​attached​ ​to​ ​bottom​ ​of​ ​lift - Issue:​ ​extends​ ​beyond​ ​robot​ ​boundaries - Lead​ ​screw

8

-

- Issue:​ ​no​ ​concrete​ ​implementation,​ ​part​ ​fabrication Double​ ​rack​ ​and​ ​pinion: - One​ ​rack​ ​on​ ​top​ ​of​ ​motor,​ ​one​ ​on​ ​bottom - Motor​ ​turns,​ ​racks​ ​pull​ ​the​ ​ends​ ​of​ ​the​ ​scissor​ ​lift​ ​in,​ ​(push​ ​out) - Advantages:​ ​space​ ​compact,​ ​requires​ ​only​ ​1​ ​motor

September​ ​19 Programming: - http://www.robotc.net/download/lego/ - Manual​ ​controls - Drive​ ​train - Tank​ ​style​ ​(L​ ​stick​ ​for​ ​L,​ ​R​ ​stick​ ​for​ ​R)​ ​Driver​ ​1 - Lift​ ​mechanism​ ​(to​ ​raise) - Driver​ ​2 - L​ ​stick​ ​up/down - Automatic​ ​lift/dump​ ​configs​ ​for​ ​30,​ ​60,​ ​90 - Tilt​ ​mechanism​ ​(to​ ​dump) - Driver​ ​2 - Button​ ​controlled​ ​(dump/reset​ ​sequence) - Ziptie​ ​spinner - Driver​ ​2 - R​ ​trigger - Tube​ ​grabber - Driver​ ​1​ ​Trigger - Autonomous - Knock​ ​over​ ​bar - Randomly​ ​positioned - IR​ ​beacon - Ultrasonic? - Drag​ ​tubes - Find​ ​tubes Build: - Currently​ ​debating​ ​multiple​ ​lifting​ ​arm​ ​methods​ ​(scissor​ ​lift​ ​and​ ​rack​ ​and​ ​pinion lift) - Current​ ​indications​ ​leading​ ​towards​ ​rack​ ​and​ ​pinion​ ​due​ ​to​ ​complexity​ ​of​ ​scissor - One​ ​member​ ​believes​ ​to​ ​have​ ​found​ ​scissor​ ​lift​ ​solution​ ​which​ ​will​ ​be​ ​discussed next​ ​meeting​ ​(we​ ​consider​ ​this​ ​to​ ​be​ ​much​ ​more​ ​preferable​ ​if​ ​possible) Field: - Wood​ ​and​ ​PVC​ ​delivered

9

Early​ ​concept​ ​sketch​ ​of​ ​our​ ​original​ ​design

September​ ​22 Field: - All​ ​cut​ ​lines​ ​excluding​ ​the​ ​supports​ ​for​ ​the​ ​ramp​ ​were​ ​outlined​ ​in​ ​preparation​ ​to cutting September​ ​23 Club​ ​Fair​ ​Planning: - Need​ ​to​ ​be​ ​behind​ ​a​ ​column​ ​so​ ​we​ ​can​ ​put​ ​the​ ​poster​ ​above​ ​us - Need​ ​a​ ​picture​ ​of​ ​last​ ​years​ ​robotics​ ​team​ ​on​ ​left​ ​of​ ​the​ ​table​ ​and​ ​the​ ​robot​ ​on​ ​the right - Robotic​ ​pieces​ ​on​ ​the​ ​table

​​​​​​

Initial​ ​Design

​​​​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​Final​ ​Design

10

September​ ​26 Programming: - Created​ ​github​ ​repository​ ​at​ ​https://github.com/lightning-robotics - Began​ ​teaching​ ​programming​ ​team​ ​about​ ​Git Building: - Continued​ ​brainstorming​ ​potential​ ​lifting​ ​systems,​ ​currently​ ​leaning​ ​towards “scissor​ ​lift”​ ​system Field: - Waiting​ ​for​ ​Mr.​ ​Langdale​ ​to​ ​bring​ ​in​ ​cutting​ ​supplies​ ​(no​ ​specifics​ ​on​ ​when​ ​yet)

Initial​ ​designs​ ​of​ ​scissor​ ​lift

September​ ​30 Observed​ ​scissor​ ​lift​ ​design​ ​on​ ​VEX​ ​robot - Figured​ ​out​ ​how​ ​to​ ​move​ ​scissor​ ​lift​ ​arms Calculations: requires​ ​6​ ​levels​ ​of​ ​arms​ ​*​ ​2​ ​arms/level​ ​*​ ​2​ ​lifts​ ​=​ ​24​ ​bars Art: - Finalized​ ​and​ ​printed​ ​the​ ​banner​ ​design​ ​for​ ​club​ ​fair - Began​ ​to​ ​think​ ​about​ ​how​ ​the​ ​new​ ​system​ ​for​ ​raising​ ​the​ ​scissor​ ​lift​ ​should​ ​be implemented - Gear​ ​mounted​ ​to​ ​cross​ ​beam

11

October​ ​3 Parts​ ​order​ ​list: 2x​ ​W39271​ ​TETRIX​ ​MAX​ ​Flats​ ​288​ ​mm $9.95​ ​ea. 10x​ ​W39070​ ​TETRIX​ ​MAX​ ​Flat​ ​Bars​ ​288​ ​mm $9.95​ ​ea. 3X​ ​Hi-Tec​ ​Servo,​ ​model​ ​HSR-1425CR​ ​(am-2587)​ ​(andymark) $22​ ​ea 1​ ​set​ ​of​ ​balls 1​ ​set​ ​of​ ​rolling​ ​goals Build: - Figured​ ​out​ ​that​ ​the​ ​ramp​ ​would​ ​be​ ​approximately​ ​9​ ​inches​ ​horizontally​ ​and​ ​9.5 inches​ ​vertical.​ ​Decided​ ​based​ ​on​ ​these​ ​numbers​ ​that​ ​3​ ​for​ ​free​ ​moving​ ​servos. - Currently​ ​planning​ ​on​ ​making​ ​the​ ​basket​ ​8​ ​inches​ ​in​ ​each​ ​direction,​ ​with​ ​the components​ ​that​ ​grip​ ​the​ ​scissor​ ​lift​ ​placed​ ​below​ ​it​ ​and​ ​extending​ ​slightly​ ​over​ ​3 inches​ ​out​ ​to​ ​the​ ​side. - Calculated​ ​that​ ​6​ ​sets​ ​of​ ​cross​ ​braces​ ​would​ ​be​ ​necessary​ ​for​ ​the​ ​scissor​ ​lift​ ​to attain​ ​the​ ​height​ ​needed​ ​to​ ​dump​ ​in​ ​the​ ​120​ ​cm​ ​goal​ ​at​ ​60​ ​degrees​ ​elevation. - Figured​ ​out​ ​that​ ​the​ ​ramp​ ​would​ ​be​ ​approximately​ ​9​ ​inches​ ​horizontally​ ​and​ ​9.5 inches​ ​vertical.​ ​Decided​ ​based​ ​on​ ​these​ ​numbers​ ​that​ ​3​ ​for​ ​free​ ​moving​ ​servos. Field: - Arranged​ ​for​ ​Mr.​ ​Langdale​ ​to​ ​bring​ ​in​ ​supplies​ ​for​ ​construction​ ​on​ ​Tuesday. Planning​ ​to​ ​use​ ​everyone​ ​who​ ​can​ ​be​ ​spared​ ​on​ ​construction​ ​of​ ​the​ ​field, hopefully​ ​it​ ​can​ ​be​ ​reduced​ ​to​ ​a​ ​one​ ​or​ ​two​ ​day​ ​process. October​ ​6​ ​-​ ​Clubs​ ​Fair

12

Brianna​ ​Cupps

Kayla​ ​Gratzer

Cameron​ ​Slater

Chace​ ​Duma

Genesis​ ​Gonzalez

Jake​ ​Choi

Gin​ ​Wang

Keng​ ​Zhang

William​ ​Leong

Eric​ ​Shi

Neal​ ​Srener

Brandon​ ​Wang

Eric​ ​Frankel

Chris​ ​Allen

Ian​ ​Huang

Nishant​ ​Chaturvedi

Alex​ ​Kim

James​ ​Wang

Henry​ ​Ficcidenti

Ethan​ ​Vovan

Dillon​ ​Graveline

October​ ​7 Updated​ ​Parts​ ​Order​ ​List: 2x​ ​W39271​ ​TETRIX​ ​MAX​ ​Flats​ ​288​ ​mm​ ​$9.95​ ​ea. 10x​ ​W39070​ ​TETRIX​ ​MAX​ ​Flat​ ​Bars​ ​288​ ​mm​ ​$9.95​ ​ea. 1​ ​set​ ​of​ ​balls​ ​(andymark)​ ​ ​ ​FTC​ ​2015​ ​Game​ ​Piece​ ​Sets​ ​(am-2968)​ ​$80 1​ ​set​ ​of​ ​rolling​ ​goals​ ​ ​ ​FTC​ ​2015​ ​Rolling​ ​Goal​ ​(am-2832)​ ​$50 2X​ ​TETRIX®​ ​MAX​ ​DC​ ​Gear​ ​Motor​ ​(pitsco​ ​Product​ ​ID:​ ​W39530)​ ​$24.95ea 2X​ ​Tetrix​ ​Max​ ​Gear​ ​Pack​ ​Product​ ​ID:​ ​W31901​ ​$89.95 Field: - Rescheduled​ ​with​ ​Mr.​ ​Langdale​ ​to​ ​have​ ​supplies​ ​in​ ​on​ ​Friday​ ​to​ ​coincide​ ​with​ ​the kids​ ​recruited​ ​from​ ​clubs​ ​fair. Build: - Ran​ ​all​ ​the​ ​leftover​ ​motors​ ​from​ ​last​ ​year,​ ​established​ ​that​ ​they​ ​are​ ​all​ ​functional. Change​ ​ramp​ ​system​ ​to​ ​use​ ​a​ ​motor​ ​and​ ​a​ ​set​ ​of​ ​gears​ ​rather​ ​that​ ​three​ ​free rotating​ ​servos. - October​ ​28:​ ​Built​ ​the​ ​base​ ​frame​ ​for​ ​the​ ​robot. - November​ ​4:​ ​Strengthened​ ​the​ ​body​ ​of​ ​the​ ​robot,​ ​placed​ ​the​ ​motors​ ​and​ ​motor controllers​ ​on​ ​the​ ​robot,​ ​built​ ​holding​ ​mechanisms​ ​for​ ​the​ ​battery​ ​and​ ​the​ ​nxt. Thinking​ ​about​ ​having​ ​the​ ​base​ ​of​ ​the​ ​scissor​ ​lift​ ​anchored​ ​slightly​ ​above​ ​the main​ ​frame.

13

Programming: - Developed​ ​practice​ ​exercise​ ​framework​ ​for​ ​teaching​ ​code - Created​ ​a​ ​virtual​ ​robot​ ​that​ ​is​ ​controllable​ ​using​ ​preliminary​ ​API​ ​methods - Created​ ​a​ ​simple​ ​tutorial/demo​ ​to​ ​using​ ​the​ ​virtual​ ​API Build: - Finalized​ ​dimensions​ ​of​ ​basket​ ​system - Tested​ ​all​ ​motors​ ​on​ ​last​ ​years​ ​robot​ ​to​ ​see​ ​if​ ​any​ ​replacements​ ​were​ ​needed - Preparing​ ​for​ ​deconstruction​ ​with​ ​new​ ​recruits​ ​in​ ​near​ ​future Field: Final​ ​lines​ ​for​ ​the​ ​cutting​ ​were​ ​marked​ ​out.​ ​ ​Some​ ​of​ ​the​ ​drilling​ ​holes​ ​were​ ​also marked​ ​out. Spent​ ​as​ ​of​ ​10.31.14: Parts:​ ​$399.70 30x​ ​LEGO​ ​MINDSTORMS​ ​Perpetual​ ​CLASSROOM​ ​License​ ​=​ ​$599 Total:​ ​$998.7 Sage’s​ ​Budget:​ ​$1000 To-buy: 20​ ​t-shirts​ ​….​ ​17.99​ ​each…​ ​incorporating​ ​BULK​ ​scale​ ​=​ ​279.8 posters​ ​=​ ​20 display​ ​=​ ​50

14

travel​ ​expenses?​ ​=​ ​~150 competition​ ​costs​ ​-​ ​covered​ ​initial extra​ ​parts?​ ​more​ ​than​ ​250 aesthetics​ ​-​ ​~100 side​ ​panels​ ​~50 safe​ ​extra​ ​200 Total​ ​to​ ​buy​ ​all​ ​needed:​ ​$1009.8 How​ ​do​ ​we​ ​raise​ ​~1000​ ​dollars? Corporate​ ​sponsorship. Which​ ​companies​ ​do​ ​we​ ​go​ ​after…. Engineering,​ ​robotic​ ​based​ ​companies. Ideas;​ ​Pimco,​ ​Broadcom,​ ​Tesla,​ ​Google,​ ​Apple,​ ​Day​ ​Software,​ ​Irvine​ ​Company, Intellicloud,​ ​Jazz​ ​Semiconductor,​ ​Michaelson​ ​Robotics,​ ​Gus​ ​Toubia, November​ ​12 Programming: - Began​ ​API​ ​assessment​ ​and​ ​robot​ ​testing Build: - Issue:​ ​gear​ ​scissor​ ​is​ ​misaligned​ ​with​ ​the​ ​rest​ ​of​ ​the​ ​scissor​ ​lift - Possible​ ​solution:​ ​Attach​ ​the​ ​misaligned​ ​screw​ ​to​ ​a​ ​gear,​ ​which​ ​will stabilize​ ​it​ ​and​ ​give​ ​it​ ​mobility.​ ​Below​ ​are​ ​attached​ ​photos​ ​of​ ​this​ ​solution. We​ ​should​ ​investigate​ ​for​ ​a​ ​more​ ​efficient​ ​setup.

Assembled​ ​functional​ ​robot​ ​drive​ ​system

15

November​ ​22 Build: - Assembled​ ​our​ ​two-part​ ​scissor​ ​lift - We​ ​improved​ ​the​ ​functionality​ ​of​ ​the​ ​gatherer.​ ​We​ ​originally​ ​had​ ​an​ ​issue​ ​with​ ​the gatherer​ ​to​ ​the​ ​robot.​ ​Since​ ​it​ ​can​ ​only​ ​attach​ ​to​ ​our​ ​robot​ ​at​ ​a​ ​45​ ​degree​ ​angle, we​ ​began​ ​conceptualizing​ ​how​ ​to​ ​optimize​ ​the​ ​performance​ ​of​ ​our​ ​ramp. - We​ ​also​ ​spent​ ​time​ ​brainstorming​ ​the​ ​issue​ ​of​ ​gear​ ​locations​ ​on​ ​the​ ​bottom​ ​of​ ​the scissor​ ​lift.​ ​We​ ​tested​ ​a​ ​variety​ ​of​ ​gear​ ​ratios,​ ​identifying​ ​what​ ​the​ ​most​ ​ideal​ ​gear ratio​ ​would​ ​be​ ​for​ ​our​ ​robot. - Tinkered​ ​with​ ​the​ ​structure​ ​of​ ​the​ ​scissor​ ​lift​ ​to​ ​ensure​ ​that​ ​friction​ ​did​ ​not​ ​prevent the​ ​gears​ ​from​ ​working November​ ​25 Build: - Changed​ ​the​ ​schedule​ ​of​ ​our​ ​meetings​ ​to​ ​4​ ​p.m.​ ​daily​ ​(originally​ ​X​ ​blocks) - Brainstormed​ ​major​ ​design​ ​changes​ ​with​ ​the​ ​lift - Combined​ ​two​ ​scissor​ ​lifts​ ​into​ ​one​ ​functional​ ​lift - Added​ ​axles​ ​to​ ​the​ ​intersections​ ​of​ ​the​ ​scissor​ ​lift​ ​bars​ ​for​ ​increased stability December​ ​1 Build: - Flipped​ ​the​ ​arrangement​ ​of​ ​the​ ​gatherer​ ​(gatherer​ ​only​ ​attaches​ ​to​ ​the​ ​robot​ ​at​ ​a 45​ ​degree​ ​angle,​ ​but​ ​flipping​ ​the​ ​structure​ ​optimized​ ​its​ ​ability​ ​to​ ​extend​ ​from​ ​the robot. - Added​ ​pipes​ ​to​ ​the​ ​gatherer - Extended​ ​the​ ​length​ ​of​ ​the​ ​gatherer​ ​by​ ​filing​ ​and​ ​attaching​ ​a​ ​metal​ ​sheet - Prepared​ ​to​ ​attach​ ​the​ ​HS-485HB​ ​to​ ​the​ ​robot​ ​(placed​ ​there​ ​in​ ​order​ ​to​ ​hold​ ​onto an​ ​attached​ ​graduated​ ​cylinder) - Started​ ​focusing​ ​increasingly​ ​on​ ​the​ ​structure​ ​of​ ​our​ ​forklift.​ ​We​ ​put​ ​a​ ​temporary hold​ ​on​ ​working​ ​on​ ​our​ ​scissor​ ​lift​ ​to​ ​prepare​ ​for​ ​the​ ​December​ ​6​ ​competition (during​ ​which​ ​we​ ​are​ ​using​ ​our​ ​forklift​ ​design.)

16

December​ ​2 Build: - Unassembled​ ​our​ ​previous​ ​HS-485HB​ ​attachment​ ​set​ ​up​ ​and​ ​decided​ ​to​ ​set each​ ​of​ ​the​ ​pieces​ ​with​ ​a​ ​mirror​ ​symmetry. - continued​ ​filing​ ​and​ ​optimizing​ ​the​ ​metal​ ​sheet​ ​of​ ​the​ ​gatherer​ ​and​ ​the​ ​ramp - We​ ​are​ ​disassembling​ ​parts​ ​of​ ​our​ ​main​ ​forklift​ ​assembly​ ​to​ ​provide​ ​more​ ​parts for​ ​the​ ​gatherer/ramp - Began​ ​observing​ ​test​ ​drives​ ​of​ ​the​ ​robot - We​ ​have​ ​been​ ​adding​ ​a​ ​series​ ​of​ ​gears​ ​and​ ​supports​ ​above​ ​the​ ​ramp/gatherer​ ​to prepare​ ​to​ ​attach​ ​zip​ ​ties​ ​to.​ ​We​ ​plan​ ​to​ ​gather​ ​the​ ​whiffle​ ​balls​ ​by​ ​utilizing​ ​our gear​ ​mechanism​ ​in​ ​such​ ​a​ ​way​ ​that​ ​we​ ​can​ ​cause​ ​zip​ ​ties​ ​to​ ​spin,​ ​pushing​ ​the balls​ ​higher​ ​onto​ ​our​ ​ramp​ ​and​ ​closer​ ​to​ ​the​ ​robot/lift. Programming: - Tested​ ​tracking​ ​system - Achieved​ ​IR​ ​tracking​ ​from​ ​the​ ​robot - Began​ ​ultrasonic​ ​code - Ongoing:​ ​Develop​ ​autonomous​ ​ConOps

17

​​ December​ ​3 Build: - Completed​ ​the​ ​build​ ​of​ ​our​ ​modified​ ​ramp​ ​system​ ​for​ ​abbreviated​ ​competition build - Mated​ ​the​ ​ramp​ ​and​ ​lift​ ​onto​ ​the​ ​robot​ ​body Programming: - Calibrated​ ​the​ ​IR​ ​sensor - Took​ ​magnitude​ ​reading​ ​and​ ​converted​ ​into​ ​physical​ ​distances December​ ​6 Build: - Final​ ​integration​ ​of​ ​modified​ ​ramp - Experienced​ ​over-torquing​ ​of​ ​ramp​ ​motor,​ ​resulting​ ​in​ ​a​ ​near instantaneous​ ​blowout - Did​ ​not​ ​have​ ​enough​ ​time​ ​to​ ​sufficiently​ ​correct​ ​stresses​ ​on​ ​gear​ ​system, had​ ​to​ ​modify - Changed​ ​ConOps​ ​to​ ​focus​ ​on​ ​autonomous​ ​scoring,​ ​had​ ​to​ ​sacrifice​ ​much​ ​of​ ​the manual​ ​versatility,​ ​can​ ​now​ ​only​ ​score​ ​in​ ​endgame

18

Programming: - Finished​ ​and​ ​tested​ ​autonomous​ ​tracking​ ​code - Altered​ ​autonomous​ ​Conops​ ​to​ ​accommodate​ ​modified​ ​build Bill​ ​of​ ​Materials Part​ ​name Quantity TETRIX​ ​flats 2 TERTIX​ ​Resource​ ​Set 1 HiTechnic​ ​DC​ ​Motor Controller​ ​for​ ​TETRIX 4 TETRIX​ ​DC​ ​Gear​ ​Motor​ ​2 5 TETRIX​ ​Servo​ ​controller 1 TETRIX​ ​Motor​ ​Encoder Pack 2 TETRIX​ ​Motor​ ​Shaft​ ​Hubs 5 TETRIX​ ​DC​ ​Motor​ ​Mount​ ​37​ ​mm 2 Zip​ ​Ties 15 Rubber​ ​Bands 30 TETRIX​ ​MAX​ ​gear​ ​pack 2 December​ ​8 Build: - We​ ​brainstormed​ ​the​ ​remodelling​ ​of​ ​our​ ​robot’s​ ​structure​ ​in​ ​order​ ​to​ ​improve​ ​our endgame​ ​strategy​ ​by​ ​lifting​ ​balls​ ​via​ ​a​ ​rack​ ​and​ ​pinion​ ​mechanism.​ ​We​ ​are attempting​ ​to​ ​improve​ ​our​ ​functionality​ ​by​ ​creating​ ​an​ ​apparatus​ ​that​ ​carries​ ​a ball​ ​into​ ​the​ ​120cm​ ​goal.​ ​We​ ​plan​ ​on​ ​doing​ ​so​ ​by​ ​connecting​ ​three​ ​smaller beams​ ​to​ ​a​ ​larger​ ​16.5in​ ​beam.​ ​Our​ ​three-part​ ​rack​ ​and​ ​pinion​ ​system​ ​will function​ ​by​ ​extending​ ​upwards,​ ​pushing​ ​the​ ​ball​ ​closer​ ​to​ ​the​ ​goal.​ ​We​ ​plan​ ​on scoring​ ​our​ ​pre-set​ ​balls​ ​by​ ​lifting​ ​them​ ​with​ ​a​ ​rotating​ ​mechanism​ ​that​ ​will​ ​be attached​ ​to​ ​a​ ​servo. - In​ ​addition,​ ​we​ ​plan​ ​on​ ​implementing​ ​a​ ​sliding​ ​device​ ​on​ ​our​ ​robot.​ ​We​ ​are​ ​going to​ ​make​ ​room​ ​on​ ​the​ ​robot​ ​by​ ​removing​ ​our​ ​original​ ​gathering​ ​device,​ ​thus creating​ ​available​ ​space​ ​in​ ​the​ ​middle​ ​of​ ​the​ ​robot​ ​to​ ​add​ ​additional​ ​beams​ ​to​ ​the robot’s​ ​framework​ ​in​ ​order​ ​to​ ​increase​ ​stability. - Since​ ​the​ ​maximum​ ​height​ ​our​ ​robot​ ​can​ ​reach​ ​is​ ​18​ ​inches​ ​(and​ ​our​ ​primary beam​ ​is​ ​already​ ​16.5​ ​inches),​ ​one​ ​of​ ​our​ ​primary​ ​issues​ ​while​ ​creating​ ​the mechanism​ ​is​ ​to​ ​optimize​ ​the​ ​space​ ​that​ ​we​ ​are​ ​given.​ ​Tomorrow​ ​we​ ​are planning​ ​on​ ​removing​ ​our​ ​previous​ ​ramp​ ​so​ ​we​ ​can​ ​implement​ ​our​ ​new​ ​ideas.

19

December​ ​9 - Discussed​ ​Materials​ ​Needed: - 24​ ​1-length​ ​U-beam - 3+?​ ​LONG​ ​U-beams - andymark​ ​field​ ​mat - We​ ​continued​ ​to​ ​brainstorm​ ​about​ ​the​ ​rack​ ​and​ ​pinion​ ​idea.​ ​The​ ​scissor​ ​lift​ ​idea is​ ​officially​ ​scrapped,​ ​as​ ​we​ ​could​ ​not​ ​find​ ​a​ ​gear​ ​ratio​ ​strong​ ​enough​ ​to​ ​support the​ ​lift.​ ​We​ ​took​ ​the​ ​scissor​ ​lift​ ​prototype​ ​apart​ ​for​ ​the​ ​parts. - We​ ​reviewed​ ​videos​ ​of​ ​the​ ​competition​ ​on​ ​sunday,​ ​and​ ​have​ ​decided​ ​to​ ​use​ ​our tactic​ ​of​ ​dragging​ ​the​ ​tubes​ ​onto​ ​the​ ​ramp​ ​to​ ​the​ ​fullest. - We​ ​designed​ ​a​ ​new​ ​base​ ​to​ ​add​ ​more​ ​support​ ​and​ ​more​ ​connections​ ​to​ ​the robot.​ ​Here​ ​is​ ​the​ ​new​ ​design: - We​ ​worked​ ​on​ ​building​ ​the​ ​tower​ ​in​ ​the​ ​center​ ​of​ ​the​ ​field​ ​so​ ​as​ ​to​ ​place​ ​the​ ​I-R beacon,​ ​but​ ​we​ ​had​ ​a​ ​large​ ​setback​ ​and​ ​could​ ​not​ ​get​ ​much​ ​done​ ​today.

December​ ​11 Website: - Set​ ​up​ ​on​ ​GitHub​ ​pages - Researched​ ​Jekyll - Determined​ ​that​ ​Jekyll​ ​would​ ​suit​ ​our​ ​needs

20

-

Transferred​ ​website​ ​to​ ​Jekyll Added​ ​engineering​ ​notebook​ ​to​ ​website

December​ ​18​ ​to​ ​January​ ​5​ ​-​ ​Winter​ ​Break​ ​No​ ​Classes January​ ​7 - Beginning​ ​the​ ​process​ ​of​ ​rebuilding​ ​our​ ​robot’s​ ​base,​ ​still​ ​waiting​ ​certain​ ​parts, moved​ ​the​ ​NXT​ ​to​ ​the​ ​center​ ​of​ ​the​ ​robot​ ​in​ ​a​ ​more​ ​stable​ ​position. - More​ ​brainstorming​ ​on​ ​possible​ ​designs​ ​for​ ​a​ ​rack​ ​and​ ​pinion​ ​system​ ​that​ ​can reach​ ​120’​ ​goal. - Programming​ ​team​ ​working​ ​on​ ​a​ ​drive​ ​program​ ​that​ ​detects​ ​error​ ​produced​ ​by motors​ ​and​ ​corrects​ ​it,​ ​should​ ​allow​ ​the​ ​robot​ ​to​ ​drive​ ​straight​ ​consistently January​ ​9 - Parts​ ​arrived​ ​from​ ​shipment,​ ​Team​ ​fully​ ​completed​ ​robot​ ​base January​ ​14 - Finished​ ​lifting​ ​mechanism​ ​for​ ​the​ ​robot,​ ​rewiring​ ​robot​ ​to​ ​fit​ ​the​ ​mechanism. - Began​ ​to​ ​build​ ​dropper​ ​mechanism - Began​ ​drafting​ ​of​ ​lift​ ​axle​ ​holder

Version​ ​1​ ​-​ ​This​ ​iteration​ ​had​ ​numerous​ ​sizing​ ​issues​ ​and​ ​was​ ​almost​ ​entirely​ ​reworked.

Version​ ​2​ ​-​ ​This​ ​version​ ​was​ ​correctly​ ​sized​ ​for​ ​the​ ​axles​ ​and​ ​screws​ ​diameters,​ ​but​ ​the​ ​screws​ ​were​ ​too widely​ ​spaced​ ​and​ ​the​ ​axle​ ​hole​ ​was​ ​not​ ​yet​ ​aligned.

21

Version​ ​3-4:​ ​Version​ ​3​ ​was​ ​functional,​ ​but​ ​required​ ​sanding​ ​to​ ​make​ ​fit​ ​and​ ​caused​ ​more​ ​friction​ ​than​ ​was optimal.​ ​Version​ ​4​ ​fixed​ ​these​ ​issues​ ​by​ ​slightly​ ​increasing​ ​the​ ​diameter​ ​of​ ​these​ ​holes.

In​ ​plastic,​ ​1-4​ ​from​ ​left​ ​to​ ​right

January​ ​21 - 3D​ ​printed​ ​the​ ​“Dunker”​ ​assembly - Mounted​ ​The​ ​Dunker​ ​onto​ ​the​ ​lift​ ​assembly - Tested​ ​motor​ ​control January​ ​22 - Wired​ ​the​ ​lift​ ​system​ ​with​ ​power - Lubricated​ ​the​ ​lifting​ ​rack​ ​and​ ​pinion​ ​systems​ ​to​ ​ensure​ ​a​ ​smooth​ ​fit - Finalized​ ​mechanical​ ​build​ ​(tighten​ ​screws/motor​ ​mounts/​ ​general​ ​inspections)

22

January​ ​23 - Recalibrated​ ​motors​ ​for​ ​new​ ​weight​ ​of​ ​“The​ ​Dunker” - Finished​ ​programming​ ​autonomous - Rigorous​ ​testing - During​ ​testing​ ​the​ ​3D​ ​printed​ ​component​ ​holding​ ​down​ ​the​ ​axle​ ​snapped along​ ​the​ ​layer​ ​lines - Reinforced​ ​the​ ​axle​ ​lockdown​ ​system​ ​with​ ​a​ ​metal​ ​panel​ ​to​ ​ensure​ ​that​ ​it​ ​will remain​ ​stable​ ​in​ ​the​ ​competition February​ ​10 - Updated​ ​Autonomous​ ​to​ ​update​ ​from​ ​relative​ ​positioning​ ​to​ ​absolute​ ​positioning.

February​ ​13 - After​ ​testing​ ​autonomous​ ​we​ ​realized​ ​that​ ​more​ ​speed​ ​was​ ​necessary​ ​to complete​ ​our​ ​objective​ ​of​ ​pulling​ ​two​ ​rolling​ ​goals​ ​into​ ​the​ ​parking​ ​zone - We​ ​adjusted​ ​the​ ​gear​ ​ratio​ ​of​ ​the​ ​drive​ ​motors​ ​from​ ​2-1​ ​to​ ​1-1.​ ​ ​This​ ​gave us​ ​significantly​ ​greater​ ​speed. - Although​ ​we​ ​still​ ​have​ ​enough​ ​power​ ​to​ ​push/pull​ ​goals​ ​we​ ​now​ ​can complete​ ​our​ ​entire​ ​autonomous​ ​plan​ ​in​ ​25​ ​seconds​ ​instead​ ​of​ ​32

23

Service​ ​Outreach

Our​ ​team​ ​operates​ ​two​ ​service​ ​groups,​ ​much​ ​like​ ​how​ ​our​ ​club​ ​has​ ​separate build​ ​and​ ​programing​ ​teams.​ ​Our​ ​service​ ​groups​ ​each​ ​have​ ​their​ ​own​ ​primary​ ​focus,​ ​but just​ ​as​ ​there​ ​is​ ​crossover​ ​between​ ​teams,​ ​members​ ​from​ ​multiple​ ​divisions​ ​of​ ​our​ ​team participate​ ​in​ ​both​ ​groups. Our​ ​computer​ ​science​ ​education​ ​group,​ ​Hello​ ​World,​ ​Programming​ ​for​ ​the Future​,​ ​focuses​ ​on​ ​community​ ​outreach​ ​through​ ​classes​ ​teaching​ ​basic​ ​programming techniques​ ​and​ ​ideas.​ ​Thus​ ​far,​ ​Hello​ ​World​ ​has​ ​used​ ​the​ ​Scratch​ ​programming​ ​system to​ ​teach​ ​introductory​ ​programming​ ​to​ ​middle​ ​school​ ​students.​ ​However,​ ​this​ ​year,​ ​we will​ ​be​ ​expanding​ ​our​ ​program​ ​through​ ​the​ ​addition​ ​of​ ​a​ ​robotics-based​ ​curriculum​ ​using Pi-Bots,​ ​robotics​ ​kits​ ​based​ ​on​ ​the​ ​Arduino​ ​microprocessor. In​ ​the​ ​modern​ ​day,​ ​understanding​ ​computer​ ​logic​ ​and​ ​coding​ ​ideas​ ​is​ ​a​ ​skill​ ​that benefits​ ​everyone.​ ​The​ ​members​ ​of​ ​“Hello​ ​World”​ ​focus​ ​on​ ​teaching​ ​students​ ​to​ ​“think like​ ​a​ ​computer”​ ​as​ ​well​ ​as​ ​inspiring​ ​interest​ ​in​ ​programming​ ​and​ ​computer​ ​science. Whether​ ​our​ ​students​ ​go​ ​on​ ​to​ ​pursue​ ​a​ ​career​ ​in​ ​computer​ ​science,​ ​other​ ​areas​ ​of STEM,​ ​or​ ​professions​ ​in​ ​the​ ​humanities,​ ​we​ ​hope​ ​that​ ​they​ ​will​ ​put​ ​their​ ​knowledge​ ​of and​ ​passion​ ​for​ ​programming​ ​to​ ​use.

24

Kairos​ ​Technologies​ ​focuses​ ​on​ ​the​ ​hardware​ ​aspect​ ​of​ ​computing.​ ​ ​According​ ​to Julious​ ​Genachowski,​ ​the​ ​Federal​ ​Communications​ ​Chairman,​ ​"100​ ​million​ ​people​ ​[in America​ ​still​ ​do​ ​not​ ​have​ ​broadband​ ​in​ ​their​ ​homes,​ ​many​ ​of​ ​them​ ​being​ ​low-income Americans​ ​and​ ​minorities."​ ​ ​He​ ​also​ ​says​ ​that​ ​"over​ ​half​ ​of​ ​today's​ ​jobs​ ​require technology​ ​skills,​ ​and​ ​nearly​ ​80​ ​percent​ ​of​ ​jobs​ ​in​ ​the​ ​next​ ​decade​ ​are​ ​projected​ ​to require​ ​digital​ ​skills."​ ​His​ ​statement​ ​shows​ ​how​ ​important​ ​understanding​ ​how​ ​to​ ​use technology​ ​is,​ ​especially​ ​at​ ​a​ ​young​ ​age.​ ​This​ ​is​ ​the​ ​inspiration​ ​for​ ​Kairos​ ​Technologies. Kairos​ ​Technologies​ ​is​ ​a​ ​Sage​ ​Hill​ ​High​ ​school​ ​service​ ​learning​ ​group,​ ​where​ ​we specialize​ ​in​ ​the​ ​refurbishing​ ​of​ ​old​ ​computers,​ ​which​ ​we​ ​donate​ ​to​ ​various​ ​schools across​ ​the​ ​Orange​ ​County​ ​area​ ​so​ ​that​ ​their​ ​students​ ​can​ ​enhance​ ​their​ ​computer​ ​skills to​ ​be​ ​successful​ ​in​ ​the​ ​future.​ ​Our​ ​mission​ ​reads​ ​as​ ​follows:​ ​“Kairos​ ​Technologies​ ​seeks to​ ​provide​ ​computers​ ​and​ ​computer​ ​education​ ​to​ ​elementary​ ​schools​ ​in​ ​the​ ​the​ ​Orange County​ ​area.”​ ​We​ ​believe​ ​that​ ​by​ ​providing​ ​underprivileged​ ​students​ ​with​ ​access​ ​to technology,​ ​we​ ​can​ ​help​ ​solve​ ​the​ ​issues​ ​brought​ ​up​ ​by​ ​Genachowski. Each​ ​time​ ​we​ ​receive​ ​donations,​ ​we​ ​will​ ​perform​ ​a​ ​military​ ​grade​ ​wipe​ ​on​ ​each computer​ ​and​ ​install​ ​a​ ​linux-based​ ​operating​ ​system,​ ​which​ ​is​ ​a​ ​more​ ​learning​ ​based program.​ ​ ​Then,​ ​once​ ​we​ ​refurbish​ ​a​ ​critical​ ​mass​ ​of​ ​computers,​ ​we​ ​donate​ ​them​ ​to​ ​El Sol​ ​academy,​ ​a​ ​local​ ​charter​ ​school​ ​in​ ​Costa​ ​Mesa,​ ​CA.

25

Monrovia​ ​FTC​ ​Qualifier​ ​-​ ​December​ ​7,​ ​2014 Pre-Competition This​ ​was​ ​our​ ​first​ ​competition​ ​of​ ​the​ ​year,​ ​and​ ​only​ ​our​ ​second​ ​competition​ ​as​ ​a team.​ ​We​ ​had​ ​been​ ​working​ ​on​ ​our​ ​robot​ ​fervently​ ​for​ ​the​ ​last​ ​two​ ​weeks:​ ​fine​ ​tuning working​ ​components​ ​and​ ​fixing​ ​new​ ​problems​ ​as​ ​they​ ​came​ ​up.​ ​Our​ ​programming​ ​team was​ ​hard​ ​at​ ​work​ ​on​ ​our​ ​robot’s​ ​autonomous​ ​portion.​ ​During​ ​our​ ​testing​ ​and development,​ ​we​ ​had​ ​run​ ​into​ ​a​ ​great​ ​dilemma:​ ​our​ ​ramp​ ​system​ ​for​ ​scoring​ ​balls​ ​in​ ​the rolling​ ​goals​ ​was​ ​not​ ​successful.​ ​We​ ​were​ ​left​ ​with​ ​a​ ​choice​ ​between​ ​working​ ​on​ ​what might​ ​have​ ​been​ ​a​ ​fruitless​ ​attempt​ ​at​ ​fixing​ ​our​ ​ramp,​ ​or​ ​ditching​ ​the​ ​ramp​ ​and remaining​ ​unable​ ​to​ ​score​ ​balls.​ ​However,​ ​we​ ​were​ ​not​ ​entirely​ ​at​ ​a​ ​loss.​ ​Our​ ​robot​ ​was extremely​ ​sturdy​ ​and​ ​we​ ​still​ ​had​ ​one​ ​method​ ​of​ ​scoring​ ​left​ ​to​ ​us:​ ​a​ ​set​ ​of​ ​grabbers​ ​on the​ ​front​ ​of​ ​the​ ​robot​ ​designed​ ​to​ ​drag​ ​rolling​ ​goals.​ ​We​ ​quickly​ ​devised​ ​a​ ​new​ ​strategy for​ ​our​ ​teleop​ ​phase.​ ​Our​ ​plan​ ​was​ ​to​ ​take​ ​advantage​ ​of​ ​these​ ​servo-powered​ ​grippers to​ ​support​ ​our​ ​allies​ ​by​ ​supplying​ ​them​ ​with​ ​goals​ ​for​ ​most​ ​of​ ​the​ ​game​ ​and,​ ​during endgame,​ ​drag​ ​all​ ​three​ ​goals​ ​up​ ​the​ ​ramp​ ​with​ ​our​ ​robot.​ ​Additionally,​ ​we​ ​felt​ ​confident in​ ​our​ ​autonomous​ ​program,​ ​which​ ​was​ ​designed​ ​to​ ​move​ ​a​ ​goal​ ​into​ ​the​ ​parking​ ​zone from​ ​either​ ​starting​ ​location. Seeding​ ​Rounds As​ ​the​ ​autonomous​ ​portion​ ​of​ ​the​ ​first​ ​game​ ​began,​ ​both​ ​of​ ​our​ ​robots​ ​began​ ​to move​ ​forward.​ ​Then,​ ​the​ ​robots​ ​intercepted​ ​each​ ​other,​ ​with​ ​caused​ ​our​ ​alliance partner’s​ ​robot​ ​to​ ​drive​ ​into​ ​a​ ​wall​ ​while​ ​ours​ ​reversed​ ​onto​ ​the​ ​ramp,​ ​hanging​ ​off dangerously.​ ​At​ ​this​ ​point,​ ​the​ ​teleop​ ​phase​ ​began.​ ​Due​ ​to​ ​a​ ​miscommunication between​ ​our​ ​team​ ​and​ ​our​ ​alliance​ ​partners,​ ​we​ ​were​ ​holding​ ​the​ ​incorrect​ ​controllers, which​ ​lead​ ​to​ ​a​ ​great​ ​deal​ ​of​ ​confusion.​ ​Our​ ​alliance​ ​partner​ ​accidentally​ ​drove​ ​our​ ​robot partially​ ​off​ ​the​ ​ramp.​ ​It​ ​got​ ​stuck​ ​and​ ​was​ ​unable​ ​to​ ​drive​ ​for​ ​the​ ​rest​ ​of​ ​the​ ​match. When​ ​we​ ​communicated​ ​with​ ​our​ ​alliance​ ​partner​ ​for​ ​our​ ​second​ ​match​ ​of​ ​the day,​ ​the​ ​Assemblers,​ ​we​ ​were​ ​surprised​ ​to​ ​discover​ ​that​ ​they​ ​could​ ​not​ ​pick​ ​up​ ​any​ ​balls either.​ ​Their​ ​robot​ ​did​ ​not​ ​have​ ​an​ ​autonomous​ ​program,​ ​which​ ​allowed​ ​us​ ​to​ ​start​ ​from the​ ​ramp​ ​once​ ​again​ ​and​ ​circumvent​ ​our​ ​less​ ​reliable​ ​parking​ ​zone​ ​program.​ ​We realized​ ​that​ ​our​ ​previous​ ​support​ ​strategy​ ​during​ ​teleop​ ​was​ ​not​ ​going​ ​work,​ ​so​ ​we worked​ ​to​ ​devise​ ​the​ ​plan​ ​that​ ​would​ ​benefit​ ​our​ ​teams​ ​the​ ​most.​ ​Little​ ​did​ ​we​ ​know,​ ​this strategy​ ​would​ ​win​ ​us​ ​the​ ​event.​ ​Rather​ ​than​ ​worry​ ​about​ ​scoring​ ​balls,​ ​we​ ​focused entirely​ ​on​ ​dragging​ ​the​ ​empty​ ​rolling​ ​goals​ ​up​ ​the​ ​ramp.​ ​As​ ​everyone​ ​began​ ​to​ ​realize the​ ​effectiveness​ ​of​ ​our​ ​strategy,​ ​the​ ​MC​ ​of​ ​the​ ​competition,​ ​announced​ ​“This​ ​could​ ​very well​ ​be​ ​the​ ​defining​ ​strategy​ ​of​ ​the​ ​game”.​ ​When​ ​we​ ​came​ ​back​ ​to​ ​the​ ​scoreboards,​ ​we

26

found​ ​that​ ​we​ ​had​ ​rocketed​ ​from​ ​near​ ​the​ ​bottom​ ​of​ ​the​ ​rankings​ ​all​ ​the​ ​way​ ​to​ ​2nd place. Our​ ​win​ ​streak​ ​continued,​ ​since​ ​our​ ​new​ ​strategy​ ​allowed​ ​us​ ​to​ ​synergize​ ​with the​ ​vast​ ​majority​ ​of​ ​common​ ​designs.​ ​We​ ​won​ ​our​ ​other​ ​matches​ ​the​ ​same​ ​way​ ​we​ ​had won​ ​the​ ​second.​ ​We​ ​lost​ ​only​ ​one​ ​other​ ​game,​ ​when​ ​our​ ​robot​ ​was​ ​disabled​ ​during​ ​an autonomous​ ​collision.​ ​At​ ​one​ ​point​ ​during​ ​the​ ​day,​ ​we​ ​held​ ​rank​ ​#1​ ​and​ ​we​ ​ended​ ​the seeding​ ​rounds​ ​in​ ​the​ ​top​ ​10​ ​teams. At​ ​this​ ​point​ ​we​ ​began​ ​to​ ​negotiate​ ​with​ ​the​ ​number​ ​one​ ​team,​ ​Alpha-Genesis and​ ​another​ ​team,​ ​the​ ​Quantum​ ​Potentials,​ ​as​ ​potential​ ​alliance​ ​partners​ ​in​ ​the​ ​finals. However,​ ​while​ ​those​ ​teams​ ​both​ ​had​ ​autonomous​ ​periods​ ​from​ ​the​ ​ramp,​ ​none​ ​of​ ​us had​ ​a​ ​solid​ ​autonomous​ ​period​ ​from​ ​the​ ​ground.​ ​We​ ​resolved​ ​to​ ​fix​ ​our​ ​unreliable parking​ ​zone​ ​routine.​ ​Our​ ​porgrammers​ ​worked​ ​furiously​ ​on​ ​the​ ​robot,​ ​fine​ ​tuning​ ​and calibrating.​ ​Meanwhile,​ ​the​ ​alliance​ ​draft​ ​loomed​ ​nearer.​ ​5​ ​minutes​ ​before​ ​the ceremony,​ ​we​ ​were​ ​satisfied.​ ​We​ ​had​ ​a​ ​reliable​ ​autonomous​ ​period​ ​from​ ​the​ ​ground. The​ ​Finals We​ ​joined​ ​forces​ ​with​ ​the​ ​two​ ​teams​ ​we​ ​had​ ​talked​ ​with​ ​earlier,​ ​Alpha-Genesis, the​ ​only​ ​team​ ​undefeated​ ​in​ ​seeding,​ ​and​ ​Quantum​ ​Potentials,​ ​the​ ​highest​ ​scorer​ ​of​ ​the day.​ ​We​ ​swept​ ​the​ ​semi-finals​ ​and​ ​finals,​ ​not​ ​losing​ ​a​ ​single​ ​game.​ ​We​ ​could​ ​feel​ ​the buzz​ ​in​ ​the​ ​air​ ​after​ ​each​ ​round.​ ​Our​ ​competition​ ​was​ ​formidable,​ ​but​ ​with​ ​each​ ​win,​ ​we thought​ ​“maybe​ ​we​ ​can​ ​do​ ​this.”​ ​and​ ​believed​ ​it​ ​just​ ​a​ ​little​ ​bit​ ​more.​ ​During​ ​the​ ​awards ceremony,​ ​our​ ​team​ ​was​ ​second​ ​place​ ​for​ ​the​ ​inspire​ ​award.​ ​Alpha-Genesis​ ​won​ ​the Inspire​ ​Award​ ​and​ ​Quantum​ ​Potentials​ ​placed​ ​third,​ ​a​ ​full​ ​sweep​ ​of​ ​the​ ​podium​ ​for​ ​our alliance. Our​ ​Impact This​ ​was​ ​only​ ​our​ ​second​ ​competition​ ​as​ ​a​ ​team.​ ​last​ ​year,​ ​our​ ​robot​ ​performed quite​ ​poorly,​ ​so​ ​we​ ​had​ ​a​ ​lot​ ​to​ ​prove​ ​to​ ​ourselves​ ​and​ ​the​ ​other​ ​teams.​ ​At​ ​Monrovia,​ ​we were​ ​able​ ​to​ ​stand​ ​out,​ ​working​ ​well​ ​with​ ​our​ ​alliance​ ​partners,​ ​aiding​ ​a​ ​number​ ​of teams​ ​with​ ​their​ ​autonomous​ ​programs,​ ​and​ ​scoring​ ​extremely​ ​reliably​ ​in​ ​the​ ​teleop portion.

27

Venice​ ​FTC​ ​Qualifier​ ​-​ ​January​ ​24,​ ​2015 The​ ​Beginning We​ ​arrived​ ​at​ ​Venice​ ​High​ ​School​ ​at​ ​7:30​ ​am​ ​and​ ​immediately​ ​set​ ​up​ ​in​ ​the​ ​pit. Although​ ​we​ ​had​ ​improved​ ​our​ ​design​ ​significantly​ ​since​ ​our​ ​last​ ​competition,​ ​we​ ​knew that​ ​all​ ​of​ ​the​ ​other​ ​teams​ ​had​ ​had​ ​time​ ​to​ ​prepare​ ​as​ ​well.​ ​The​ ​competition​ ​would​ ​be much​ ​more​ ​formidable​ ​this​ ​time.​ ​We​ ​quickly​ ​passed​ ​inspection​ ​and​ ​proceeded​ ​to​ ​talking with​ ​the​ ​other​ ​teams.​ ​We​ ​had​ ​a​ ​good​ ​meetings​ ​with​ ​Rock​ ​and​ ​Roll,​ ​ ​Kings​ ​and​ ​Queens, ANCroid,​ ​and​ ​a​ ​few​ ​other​ ​teams.​ ​During​ ​this​ ​time​ ​Eric,​ ​our​ ​primary​ ​software​ ​developer at​ ​this​ ​event,​ ​was​ ​working​ ​on​ ​testing​ ​our​ ​autonomous​ ​on​ ​the​ ​practice​ ​field.​ ​ ​During​ ​this period​ ​he​ ​discovered​ ​that​ ​some​ ​of​ ​the​ ​code​ ​was​ ​now​ ​inoperable,​ ​due​ ​to​ ​issues​ ​with motor​ ​calibration​ ​and​ ​a​ ​disastrous​ ​misreading​ ​of​ ​the​ ​rules​ ​that​ ​led​ ​our​ ​chief​ ​programmer to​ ​believe​ ​that​ ​rolling​ ​goals​ ​could​ ​be​ ​scored​ ​on​ ​the​ ​ramp​ ​during​ ​autonomous.​ ​Because we​ ​were​ ​in​ ​the​ ​first​ ​game​ ​of​ ​the​ ​day,​ ​we​ ​had​ ​to​ ​resort​ ​to​ ​a​ ​much​ ​more​ ​basic​ ​program. The​ ​Games We​ ​suffered​ ​several​ ​setbacks​ ​during​ ​our​ ​first​ ​game.​ ​Our​ ​autonomous​ ​was inoperable​ ​due​ ​to​ ​a​ ​coding​ ​typo​ ​and​ ​when​ ​we​ ​tried​ ​to​ ​raise​ ​our​ ​lift​ ​during​ ​the​ ​endgame, tension​ ​on​ ​the​ ​dump​ ​motor​ ​cable​ ​pulled​ ​it​ ​out​ ​of​ ​the​ ​motor​ ​controller. We​ ​quickly​ ​rushed​ ​to​ ​secure​ ​the​ ​wiring​ ​on​ ​our​ ​dump​ ​motor.​ ​In​ ​the​ ​second​ ​game, our​ ​dump​ ​went​ ​much​ ​more​ ​smoothly.​ ​For​ ​one​ ​of​ ​the​ ​first​ ​times​ ​in​ ​our​ ​team’s​ ​short history,​ ​a​ ​complex​ ​mechanism​ ​worked​ ​exactly​ ​as​ ​intended.​ ​The​ ​lift​ ​extended​ ​steadily upwards​ ​and​ ​deposited​ ​our​ ​preloaded​ ​ball​ ​cleanly​ ​into​ ​the​ ​center​ ​goal,​ ​to​ ​a​ ​roar​ ​of applause. Our​ ​third​ ​game​ ​we​ ​implemented​ ​a​ ​simple​ ​linear​ ​autonomous​ ​and​ ​agreed​ ​to​ ​let our​ ​allies​ ​begin​ ​on​ ​the​ ​ramp.​ ​As​ ​autonomous​ ​began,​ ​our​ ​ally’s​ ​robot​ ​rolled​ ​down​ ​to​ ​the end​ ​of​ ​the​ ​ramp​ ​and​ ​promptly​ ​stopped​ ​working​ ​for​ ​the​ ​rest​ ​of​ ​the​ ​game.​ ​This​ ​impeded our​ ​normal​ ​game​ ​plan​ ​greatly​ ​as​ ​it​ ​prevented​ ​us​ ​from​ ​getting​ ​our​ ​robot​ ​or​ ​most​ ​of​ ​the rolling​ ​goals​ ​up​ ​the​ ​ramp.​ ​With​ ​clever​ ​maneuvering,​ ​our​ ​drive​ ​team​ ​was​ ​able​ ​to​ ​put​ ​a single​ ​rolling​ ​goal​ ​onto​ ​the​ ​ramp​ ​in​ ​an​ ​attempt​ ​to​ ​salvage​ ​the​ ​game.​ ​However,​ ​it​ ​was​ ​not nearly​ ​enough​ ​to​ ​win. Our​ ​fourth​ ​alliance​ ​partner​ ​could​ ​not​ ​score​ ​balls​ ​in​ ​tubes,​ ​and​ ​had​ ​no autonomous​ ​beyond​ ​the​ ​ubiquitous​ ​straight​ ​line.​ ​During​ ​the​ ​teleop​ ​of​ ​this​ ​game,​ ​we grabbed​ ​two​ ​goals​ ​and​ ​pushed​ ​them​ ​to​ ​the​ ​top​ ​of​ ​the​ ​ramp.​ ​As​ ​we​ ​positioned​ ​for​ ​our endgame​ ​strategy,​ ​our​ ​ally​ ​attempted​ ​to​ ​push​ ​the​ ​final​ ​goal​ ​up​ ​the​ ​ramp.​ ​However,​ ​they unfortunately​ ​lost​ ​control​ ​of​ ​their​ ​robot,​ ​which​ ​barreled​ ​up​ ​the​ ​ramp​ ​at​ ​full​ ​speed​ ​and

28

knocked​ ​a​ ​goal​ ​off​ ​of​ ​the​ ​ramp.​ ​While​ ​we​ ​once​ ​again​ ​scored​ ​cleanly​ ​in​ ​the​ ​high​ ​goal,​ ​the massive​ ​penalties​ ​our​ ​alliance​ ​suffered​ ​resulted​ ​in​ ​a​ ​game​ ​loss. In​ ​our​ ​fifth​ ​game,​ ​we​ ​were​ ​allied​ ​with​ ​Marlbots.​ ​During​ ​pre-game​ ​planning,​ ​we determined​ ​that​ ​they​ ​had​ ​a​ ​better​ ​mechanism​ ​for​ ​scoring​ ​in​ ​the​ ​center​ ​goal,​ ​so​ ​we agreed​ ​to​ ​act​ ​as​ ​backup​ ​in​ ​case​ ​they​ ​experienced​ ​some​ ​sort​ ​of​ ​mechanical​ ​difficulties. Instead​ ​of​ ​scoring​ ​the​ ​ball​ ​in​ ​endgame,​ ​we​ ​focused​ ​on​ ​our​ ​strategy​ ​of​ ​scoring​ ​the​ ​rolling goals​ ​and​ ​our​ ​robot​ ​on​ ​the​ ​ramp.​ ​Marlbots​ ​successfully​ ​scored​ ​in​ ​the​ ​high​ ​goal,​ ​and​ ​not only​ ​did​ ​we​ ​successfully​ ​place​ ​all​ ​3​ ​rolling​ ​goals​ ​and​ ​our​ ​robot​ ​on​ ​the​ ​ramp,​ ​we​ ​also were​ ​able​ ​to​ ​make​ ​room​ ​for​ ​Marlbots,​ ​leading​ ​to​ ​an​ ​extremely​ ​successful​ ​round​ ​and​ ​a clear​ ​victory.​ ​Our​ ​natural​ ​inter-team​ ​communication​ ​and​ ​our​ ​robots’​ ​synergy​ ​greatly impressed​ ​Marlbots.​ ​As​ ​alliance​ ​draft​ ​negotiations​ ​began,​ ​Marlbots,​ ​at​ ​the​ ​time​ ​in​ ​5th place,​ ​told​ ​us​ ​that​ ​we​ ​were​ ​their​ ​most​ ​prefered​ ​alliance​ ​partner.​ ​ ​However,​ ​as​ ​we​ ​were ranked​ ​fourteenth,​ ​they​ ​determined​ ​they​ ​would​ ​pick​ ​Rock​ ​and​ ​Roll​ ​Robots​ ​first​ ​and​ ​hope to​ ​get​ ​us​ ​with​ ​their​ ​second​ ​pick. The​ ​Alliance​ ​Draft Although​ ​Marlbots​ ​were​ ​ranked​ ​fifth,​ ​there​ ​was​ ​word​ ​that​ ​the​ ​fourth​ ​alliance captaincy​ ​would​ ​open​ ​up​ ​due​ ​to​ ​alliances​ ​within​ ​the​ ​top​ ​four​ ​teams.​ ​Midway​ ​through​ ​the negotiations​ ​period,​ ​the​ ​judges​ ​announced​ ​that​ ​their​ ​was​ ​an​ ​error​ ​in​ ​the​ ​rankings,​ ​and that​ ​Marlbots​ ​were​ ​actually​ ​fourth.​ ​We​ ​were​ ​ecstatic​ ​that​ ​the​ ​team​ ​who​ ​had​ ​expressed such​ ​keen​ ​interest​ ​in​ ​an​ ​alliance​ ​had​ ​become​ ​an​ ​alliance​ ​captain.​ ​However,​ ​less​ ​than five​ ​minutes​ ​before​ ​the​ ​ceremony​ ​started,​ ​the​ ​judges​ ​made​ ​a​ ​second​ ​announcement and​ ​revoked​ ​their​ ​previous​ ​change.​ ​Marlbots​ ​was​ ​once​ ​again​ ​in​ ​fifth.​ ​However,​ ​we​ ​were still​ ​hopeful​ ​that​ ​they​ ​would​ ​be​ ​an​ ​alliance​ ​captain.​ ​As​ ​was​ ​rumored,​ ​the​ ​top​ ​team, Thavma,​ ​picked​ ​the​ ​second​ ​ranked​ ​team,​ ​Aluminati,​ ​as​ ​their​ ​first​ ​partner.​ ​Next,​ ​the​ ​mike passed​ ​to​ ​Heat​ ​it​ ​up​ ​and​ ​Keep​ ​It​ ​Cool,​ ​now​ ​second​ ​ranked​ ​alliance​ ​captain.​ ​We​ ​were shocked​ ​when​ ​they​ ​picked​ ​Marlbots​ ​as​ ​their​ ​first​ ​partner.​ ​Few​ ​other​ ​teams​ ​in​ ​the​ ​finals had​ ​expressed​ ​great​ ​interest​ ​in​ ​us​ ​as​ ​alliance​ ​partners,​ ​so​ ​with​ ​Marlbots​ ​unable​ ​to​ ​form an​ ​alliance,​ ​we​ ​could​ ​do​ ​nothing​ ​but​ ​watch​ ​intently​ ​as​ ​the​ ​selection​ ​continued.​ ​As​ ​the mike​ ​was​ ​passed​ ​from​ ​captain​ ​to​ ​captain,​ ​we​ ​noticed​ ​Marlbots​ ​in​ ​animated​ ​discussion with​ ​the​ ​captain​ ​of​ ​Heat​ ​it​ ​up​ ​and​ ​Keep​ ​it​ ​Cool,​ ​as​ ​they​ ​went​ ​down​ ​a​ ​team​ ​list,​ ​crossing them​ ​off​ ​one​ ​by​ ​one.​ ​Although​ ​it​ ​was​ ​not​ ​clear​ ​what​ ​they​ ​were​ ​debating,​ ​we​ ​could​ ​only hope​ ​that​ ​they​ ​were​ ​arguing​ ​for​ ​our​ ​inclusion.​ ​Miraculously,​ ​this​ ​appeared​ ​to​ ​be​ ​the case​ ​as​ ​we​ ​had​ ​the​ ​pleasure​ ​of​ ​graciously​ ​accepting​ ​their​ ​second​ ​alliance​ ​offer.​ ​Without Marlbots​ ​and​ ​our​ ​amazing​ ​seeding​ ​game,​ ​we​ ​might​ ​not​ ​have​ ​made​ ​it​ ​into​ ​the​ ​finals. The​ ​Finals Much​ ​like​ ​at​ ​Monrovia,​ ​we​ ​excelled​ ​during​ ​the​ ​semi-finals​ ​and​ ​finals.​ ​Our​ ​alliance only​ ​lost​ ​a​ ​single​ ​game,​ ​and​ ​it​ ​was​ ​one​ ​in​ ​which​ ​we​ ​did​ ​not​ ​participate.​ ​While​ ​other

29

alliances​ ​did​ ​quite​ ​well,​ ​none​ ​of​ ​them​ ​could​ ​top​ ​our​ ​consistency​ ​and​ ​well-matched partners. Our​ ​Impact This​ ​event​ ​solidified​ ​our​ ​status​ ​as​ ​a​ ​successful​ ​team,​ ​both​ ​internally​ ​and externally.​ ​It​ ​proved​ ​to​ ​us​ ​that​ ​our​ ​win​ ​at​ ​Monrovia​ ​was​ ​not​ ​a​ ​fluke​ ​and​ ​put​ ​us​ ​among​ ​a minority​ ​of​ ​teams​ ​that​ ​had​ ​won​ ​two​ ​qualifiers​ ​this​ ​season.

30

31

Bill​ ​of​ ​Materials:

-Zip​ ​Ties -ABS​ ​filament​ ​(green​ ​and​ ​black) -Rustoleum​ ​grey​ ​spray​ ​paint -1/4"​ ​wood​ ​panels -insulated​ ​16​ ​gauge​ ​copper​ ​wire​ ​(red​ ​and​ ​black) -solder -steel​ ​sheet

ENGINEERING​​NOTEBOOK

December​ ​9. - Discussed​​Materials​​Needed: - 24​​1-length​​U-beam. - 3+?​​LONG​​U-beams. - andymark​​field​​mat.

3MB Sizes 12 Downloads 51 Views

Recommend Documents

No documents