1) REFRACTIVE INDEX (n) OF A MATERIAL When a ray of light is shone from air onto the flat face of a semi-circular block of transparent material which is denser than air, at any angle other than 90o, the ray changes direction on entering the material (due to a change in velocity) - The ray is refracted: normal

θair

On entering the material, the light ray bends towards the normal line - The angle θmaterial is always less than the angle θair. If you change θair several times, measure θair and θmaterial each time, then calculate values for sin θair and sin θmaterial, you can plot a graph of sin θair against sin θmaterial. The graph you obtain is a straight line passing through the origin: θ θ

θmaterial

"! θ θαθ θ θ θ# θ θ

0

θ θ

The constant is known as the refractive index of the material. It is given the symbol n. It does not have a unit : refractive index (n) =

sin θair sin θmaterial

.  +           % &   +   ,*  %  %                & * Example Calculate the refractive index of the glass block shown:

# /0 -.

θ θ#?:#:=?<

θ θ(>:?(< #$>(



!"!#" !#","),!$+" ,"),!$+" $"< ()!#"  !" !#" ()!#" '!",$!#$% !#$%5(; 5(;$% '"),('/ '!",$ !#$% 5(;$%'" $%'" ),('/  /1

 !" !"!#" !#"+ + "() !#" "()!#" ()!#" ;(* -"θ -"θ / 

,2

30

θ



 #$>:

Refractive Index and Frequency of Light The refractive index of a material depends on the frequency (colour) of the light hitting it. When white light passes through a glass prism, a visible spectrum is produced because each component colour of white light has a different frequency, so is refracted by a different amount.

Clipart copyright S.S.E.R. Ltd

Violet is refracted more than red, so the refractive index for violet light must be greater than the refractive index for red light.

Refractive Index, Angles, Velocity and Wavelength of Light When light passes from air into a denser material such as glass: Its velocity decreases.

Its wavelength decreases.

Its frequency remains constant.

This equation shows the relationship between refractive index, angles, velocity of light and wavelength of light in air and a material:  #θ θ# θ θ



#λ λ



λ λ







!"!#" !#"+"($!1 +"($!1() -%% "$-#! $-#!>*+""-!# $$, $,$%  !" !#" +"($!1()$-#! ()$-#!$ $-#!$ $ -%% " $-#!>*+""-!#?44 >*+""-!#?44' ?44' $ $,$% 5(;*#$# #% ,"),!$+" &%%"$!( &%!$'!",$ '!",$() 5(;*#$##% *#$##% ,"),!$+"$"< ,"),!$+"$"<() $"<()3.43 ()3.43 &%%"$!( $!(&%!$ &%!$ '!",$() >"($!1() ,"),!$+"$"< !"!#" !#" >"($!1()$-#! ()$-#!$ $-#!$$, $$,A $,A A< < 4B '%/ ,"),!$+"$"<36?3 $"<36?3 36?3 !" *+""-!#() ()!#" $!#" !#"&%!$/ *+""-!# ()!#"$-#! !#"$-#!$ $-#!$ !#"&%!$/

normal

normal

  θair

90o θair

 

θmaterial θmaterial

θmaterial

θmaterial



θmaterial θmaterial 

normal

2) CRITICAL ANGLE and TOTAL INTERNAL REFLECTION





 

When a monochromatic light ray is passed from air into a semi-circular crown glass block at an angle of incidence close to the normal line, most of the light ray is refracted into the air at the flat surface. A small amount of the light is reflected back into the glass by the flat surface - the dim, partially reflected light ray.

  44 

If the angle of incidence between the incoming light ray and the normal line is increased to 42o, most of the light ray is refracted along the flat surface into the air (at 90o to the normal line). A much larger amount of the light is reflected back into the glass by the flat surface - the partially reflected light ray is much brighter.



If the angle of incidence between the incoming light ray and the normal line is increased above the critical angle (42o), all of the light ray is reflected back into the glass by the flat surface. This is called TOTAL INTERNAL REFLECTION.

We call the angle of incidence at which this happens the CRITICAL ANGLE for the material. "      )   9 

Relationship Between Critical Angle and Refractive Index 90o

 

0air

At the critical angle (θ θc), θair = 90o. 0material

0material

  

 

 #θ θ#A:

θ θ θ θ #$



θ θ

&",)(,'" "<&",$'"! "<&",$'"!!( !()$ !#",$!$ ,$!$-" ,"),!$+"$"< $"<() ' &",)(,'"  "<&",$'"! !()$!#" )$!#" ,$!$-" -","),!$+" ,"),!$+" $"<() () &%!$'!",$ '!",$*#$# *#$## $!( %"'$$, ,5(;3 &%!$ '!",$ *#$##5"" #5""%#&" 5""%#&"$!( %#&"$!( %"'$$, , 5(;3 & %+" %+"#$% #$%,"&(,! ,"&(,!( ( #"(&"" (&""!#" ' !1&" &  %+" #$% ,"&(,! (  5 5 !*#" !*#"#" *#"#" (&""!#")$" !#")$""% >%%#(* ,,(*% ( #$% $-,'% >%%#(*5"(*/ %#(*5"(*/ "&' $-,'%)$$- )$$-$ $!#" !#"'$%%$- '$%%$-*(,% *(,% "& ' 51) 51) 15"$-#$% 15"$-#$%$-,'% #$%$-,'% )$$-$ !#"'$%%$- *(,% ('&"!$-#$% #$%,"),!$+" ('&"!$- #$%,"),!$+"$"< ,"),!$+"$"< $"< !$(/

Experiment to Find the Critical Angle and Refractive Index of a Semi-Circular Plastic Block I passed a ray of red light into the plastic block. The angle of incidence between the ray and the normal line was small. Most of the light ray ______________ ___________________________________________ but a ______ amount of the light was ____________ ___________________________________________

I increased the angle of __________ between the incoming light ray and the normal line until most of the ray was __________ along the flat surface of the block (at ___ to the normal line). A much larger amount of light was ___________________________ ___________________________________________ The angle of incidence at which this happened is called the ___________ ______ for the material. Its value was ____.

?$

When I increased the angle of _________ between the incoming light ray and the normal a little bit further (above the ________ angle) ____________ ___________________________________________ - This is known as _______ _________ _________. Here is how I derived the relationship between the refractive index and critical angle of the plastic:

Here is how I calculated the refractive index of the plastic:

C" "!",'$"!#" !#","),!$+" %&"$-%% -%%= C" %" %",1 ,1() ,1()," (),"$-#! ,"$-#! !("!",'$" !("!",'$" !#","),!$+"$"< ,"),!$+"$"<() $"<()%&"$ ()%&"$ -%%= >$!#" )(,'() () ,5(;3 5(;3 >$!#")(,' !#")(,' ()%"'$$, %"'$$, , (5%",+"!#" !#")((*$-/ )((*$-/ C" D %!"#", %!"#",&&,! #",&&,! % !$%#" !$%#"(5%",+" %#"(5%",+" !#" 0air = 90o

a

b

45o

> (* (*("% ("%!#" !#"%$7" %$7"() ('&,"*$!# *$!#!#" ("% !#" %$7" ()-" () -" -"  ('&," *$!# !#" %$7"() %$7"()-" ()-"5 -"59EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 9EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE >5 !!"!#" !#"+ + "() !!"!#" "()-" ()-"5 -"5/EEEEEEEEEEE /EEEEEEEEEEE > #! '" $% -$+" !( -"  *#" !#" $-#! ,1%," ,"% %%#(*9 ,1%," %%#(*9EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE %#(*9EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

> %" !#" $-,' !( ",$+"  "0 !$( *#$# $;% !#" ,"),!$+" $"< () %&"$-%% -"// %&"$-%%= -%%=!( =!($!% !($!%,$!$ $!%,$!$ -"

>"  !"!#" !"!#" !#","),!$+" ,"),!$+"$"< ,"),!$+"$"<() $"<()%&"$ ()%&"$-%% %&"$-%%= -%%=/

>) "%,$5" "%,$5"*#! *#!*$ "!#" !#" *#! *$#&&" *$ #&&"*#" #&&" *#"-" *#" -"  $%$,"%" $% $,"%"5(+" $,"%" 5(+"6. 5(+" 6.(3  " '"() ()!#$% !#$%&,("%%/ &,("%%/EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE '" ()!#$% &,("%%/ EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

2> <&$ <&$#(* #(*1( ;(**#"!#", #(*1( ;(* ;(**#"!#", *#"!#",,1 ,1() ,1()$-#! ()$-#!*#$# $-#!*#$#%!,$;"% *#$#%!,$;"%!#" %!,$;"%!#"$%$" !#"$%$"% $%$"% ,)" () '!",$ '!",$*$ *$5" $!",1,")"!" ,")"!"/ () '!",$ *$5"!(!1 5"!(!1$!",1 !(!1$!",1 ,")"!"/EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE /EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE >5 "!",'$" "!",'$"*#"!#", *#"!#",!#$% 5"!(!1 !(!1$!",1 $!",1,")"!" ,")"!"51 51!#" *#"!#",!#$%$-#! !#$%$-#!,1 $-#!,1*$ ,1*$5" *$5" !(!1$!",1 ,")"!" 51!#"(&!$ !#"(&!$ )$5,"/ 48o

normal

 !"!#" !#"  !" ,$!$ -" )(, )(, '!",$*$!# *$!# '!",$ *$!# ,"),!$+"$"< ,"),!$+"$"<() $"<() 3..3

n=1 . 48 6 !"!#" !#" 6 !" ,"),!$+" $"< () () % 5%!"*#$# 5%!"*#$##% *#$##% ,$!$ ,$!$-" ,$!$-"() -"() 623.(3

Experiment to Find the Critical Angle and Refractive Index of a Semi ...

It does not have a unit : ... The graph you obtain is a straight line passing ... This equation applies to any material that light can pass through, e.g., glass, plastic, .... internally internally reflected reflected by the optic fibre: normal. 48o n = 1.48.

465KB Sizes 32 Downloads 161 Views

Recommend Documents

Determining the Thickness and Refractive Index of a ... - Ahmet Uysal
If we send the laser beam at 30o angle of incidence to a regular glass .... text for any course covering exoplanet atmospheres.” —Mark Marley, NASA Ames ...

Determination of volume, shape and refractive index of ...
Journal of Quantitative Spectroscopy &. Radiative Transfer 102 (2006) 37– ... cFaculty of Science, Section Computational Science of the University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands. Abstract. Light scattering ... and

man-99\refractive-index-chart-and-ethylene-glycol.pdf
man-99\refractive-index-chart-and-ethylene-glycol.pdf. man-99\refractive-index-chart-and-ethylene-glycol.pdf. Open. Extract. Open with. Sign In. Main menu.

Refractive index variation in compression molding of ...
Apr 1, 2008 - Received 21 December 2007; accepted 7 February 2008; posted 12 February 2008 (Doc. ID 91103); ..... 86–88 (1955). 18. G. Joos, “Change of refractive index, density, and molecular refraction in tempering of glasses,” Optik (Jena) 1

Highly sensitive fiber Bragg grating refractive index ...
Apr 8, 2005 - have been intensively developed due to their many desirable advantages such ... length multiplexing, and distributed sensing possibilities. 1–5.

6.3 Use Trigonometry to Find an Angle
of trigonometric functions will calculate size of the acute ... Set up an equation: Take the inverse of each side: The ... Determine which trig function is needed.

Highly sensitive fiber Bragg grating refractive index ...
Apr 8, 2005 - Department of Applied Physics, California Institute of Technology, Pasadena, ... advantages such as the small size, absolute measurement ca-.

Computational Environment to Semi-Automatically Build a ...
Computational Environment to Semi-Automatically Build a Conceptual Model Represented in OntoUML.pdf. Computational Environment to Semi-Automatically ...

pdf-1410\a-critical-introduction-to-the-metaphysics-of-modality ...
... OUR ONLINE LIBRARY. Page 3 of 9. pdf-1410\a-critical-introduction-to-the-metaphysics-of ... ons-to-contemporary-metaphysics-by-andrea-borghini.pdf.

THE INDEX OF CONSUMER SENTIMENT
2008. 2009. 2010. 2011. 2012. 2013. 2014. 2015. 2016. 2017. 2018. INDEX. VAL. UE (1. 9. 6. 6. =1. 0. 0. ) THE INDEX OF CONSUMER SENTIMENT.

Critical theory and the psychodynamics of change: A ...
13,3 “criticai discussion” is that such an emphasis brings into play significant .... that the individual may draw from others, in a dependency relationship. IO.

[RAED] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success
[RAED] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success

Cognitive sociology and the study of human Cognition - A critical ...
Cognitive sociology and the study of human Cognition - A critical point.pdf. Cognitive sociology and the study of human Cognition - A critical point.pdf. Open.

A semi-empirical model of the contribution from ...
In addition, we constrain the initial input through a comparison of our modeled results with ... noctilucent cloud particles in the polar mesopause region. [von Zahn et al., ..... series of closed form analytic solutions for the determina- tion of th

[RAED] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success
[RAED] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success

[DOWNLOAD] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success
[DOWNLOAD] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success

A Laboratory Experiment
Oct 28, 2016 - del Rey 11, 28040 Madrid, Spain; e-mail: [email protected]. ..... In one treatment (Partner), for each batch of games, each subject from ...

[FREE] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success
[FREE] PDF Surviving the College Application Process: Case Studies to Help You Find Your Unique Angle for Success

A Field Experiment
are that (1) An altruistic worker will provide more effort, and, (2) An altruistic worker requires less monetary ... We hired university students through email announcements to perform a short&term computer data entry .... We employed 3 research assi

BamTools - Index of
Mar 22, 2011 - Page 3. Derek Barnett – 22 March 2011. -forceCompression. Force compression of BAM output. When tools are piped together (see details ...Missing: