

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Written by Sam Mackness Sarah Lucas Published November 2017

Fleet management at scale How Google manages a quarter million computers securely and eﬃciently

 Introduction

Google's employees are spread across the globe, and with job functions

“Everyone in Site Reliability Engineering’s goal is to automate themselves out of a job. Don’t worry—there will be a new job for you; something that isn’t yet automated. Human beings do not exist to push buttons and turn cranks on things which should be automated.”

ranging from software engineers to ﬁnancial analysts, they require a broad spectrum of technology to get their jobs done. As a result, we manage a ﬂeet of nearly a quarter-million computers (workstations and laptops) across four operating systems (macOS, Windows, Linux, and Chrome OS). Our colleagues often ask how we're able to manage such a diverse ﬂeet. Do we have access to unlimited resources? Impose draconian security policies on users? Shift the maintenance burden to our support staff? The truth is that the bigger we get, the more we look for ways to increase eﬃciency without sacriﬁcing security or user productivity. We scale our engineering teams by relying on reviewable, repeatable, and automated backend processes and minimizing GUI-based conﬁguration tools. Using and developing open-source software saves money and provides us with a level of ﬂexibility that's often missing from proprietary software and closed systems. And we strike a careful balance between user uptime and security

by giving users freedom to get their work done while preventing them from

― Thomas Bushnell, Linux SRE at Google

doing harm, like installing malware or exposing Google data. This paper describes some of the tools and systems that we use to image,

1

manage, and secure our varied inventory of workstations and laptops . Some tools were built by third parties—sometimes with our own modiﬁcations to make them work for us. We also created several tools to meet our own enterprise needs, often open sourcing them later for wider use. By sharing this information, we hope to help others navigate some of the challenges we've faced—and ultimately overcame—throughout our enterprise ﬂeet management journey.

1

Since Chrome OS requires very little enterprise management, we don’t cover it here. We also don’t discuss mobile devices as the management systems and challenges are different and may be addressed in a future paper.

1

Imaging at scale The ﬁrst stop a device makes when it enters the Google ecosystem is imaging. With nearly a quarter-million computers to image, we’ve had to ﬁnd

“Our package management and conﬁguration management tools [allow us] to customize a single monolithic image for all of the Macs in the Google inventory.”

ways to reduce the complexity of our imaging process and cut down on the time it takes to image a machine. No matter the platform, we always start with a basic vanilla image and package it with our conﬁguration management tools. It’s easier and faster to change network-based ﬁles than it is to regenerate a new image whenever we update a conﬁguration tool. We use Standalone Puppet2—which doesn’t require connecting to Puppet conﬁguration servers on the web—to apply conﬁgurations across our entire macOS, Windows, and Linux landscape. Our workﬂow entails declaring the desired machine state; Puppet then consistently runs checks to ensure that the computer is in the desired state. When a machine fails this check, Puppet

― Edward Eigerman, Mac SRE at Google

returns the machine to the declared state. For example, if you declare that machines should have a 5-minute screen timeout and an employee disables their screen-lock, Puppet will enable the screen timeout the next time it runs.

Master Puppet vs. Standalone Puppet We’ve switched from standard Master Puppet mode to Standalone (Masterless) Puppet mode at Google for two main reasons: ● Standalone doesn’t require a large infrastructure of Puppet conﬁguration servers. Our hosts pull the cryptographically veriﬁed conﬁguration ﬁles from a web host which serves the ﬁles, veriﬁes the data locally, and then applies the conﬁgurations. ● Not having servers allows us to commit to our BeyondCorp access model, which does away with using internal networks for corp access. Read more about our BeyondCorp effort at https://cloud.google.com/beyondcorp

2

https://puppet.com

2

 Our approach to packaging our conﬁguration tools with the image and distributing this image to computers varies by operating system. On Mac, we use AutoDMG3 to combine the base image from Apple with our

conﬁguration tools and then upload it onto our internal distributed ﬁle

We have a team dedicated to tracking the latest in consumer enterprise hardware, working with outside vendors and partners, as well as the internal Chrome OS hardware group. They monitor industry trends, attend advisory meetings with vendors, and run their own tests and focus groups with Googlers to ensure that our hardware offerings continue to meet everyone’s needs.

system (DFS). We created an app that pulls the image from our DFS and writes the image to machines attached in a target-disk mode. Our imaging time is down to 15 minutes, compared to the hour that it used to take when we used TFTP servers and PXE boot. On Windows, we use Glazier4—a code-based imaging tool that we created in house and then open sourced. Glazier is made up of binaries that are conﬁgured through source-controlled and peer-reviewed text. Text ﬁles suit our typical use cases better than GUIs because they work with version control systems. Admins can see a complete revision history of the imaging environment, peer-review changes, and roll back the image if problems arise. The image ﬁles are then distributed over HTTP(S). We chose this method because it’s open and ubiquitous, has many freely available server implementations, can distribute data globally, and is highly secure (in the case of HTTPS). On Linux, we use PXE to netboot a standard Ubuntu/Debian installer image. We have a system that automatically builds new OS install images on a schedule (in the form of compressed tar-format archives). These install images are then placed on an HTTPS server alongside Debian preseed ﬁles that automate the host setup portion of the installation. Our installation process is integrated with our Puppet and host update infrastructure to ensure every host is conﬁgured as intended at install. This allows us to reinstall any host from the network in about 30 minutes without needing to distribute media or requiring another host to boot from.

3 4

https://github.com/MagerValp/AutoDMG https://github.com/google/glazier

3

 As a result of our retooling, our imaging processes are easy and fast enough for Googlers to reimage their own machines if they need to.

Getting software on computers

We provide end users with a catalog-style shopping portal where they can order licensed software. Once the request is approved, most software packages are automatically “pushed” to a user’s machine and can be installed without tech support intervention.

Since we aim to keep the image we install on new machines simple, we only preload mandatory management software onto machines. If a user needs speciﬁc software to do their job, we make this available to them through central software repositories. We use a combination of third-party and custom tools developed in-house to package and push software to these repositories in ways that are automatic and easily repeatable. In 2010 we evaluated several commercially available software packaging and management solutions for macOS, but none of them ﬁt our needs. Munki5, a great open source software (OSS) tool, also fell short of our requirements because its only purpose is to fetch a manifest and catalog ﬁle from a simple web server. We needed the ability to dynamically generate these catalog and manifest ﬁles on a per-host basis, so we created and open sourced a solution called Simian6. Simian is a Google App Engine-hosted server, with a client powered by Munki. We use Luggage7 to create the Apple package installers and Munki to get the packages on Googlers' machines and push updates. Simian then works with Munki to deploy or update software to targeted users, hostnames, OS versions, groups, and more. Simian also lets us force-install updates on machines when necessary. On Windows, we currently use Microsoft System Center Conﬁguration Manager (SCCM). While SCCM has many features beyond packaging, it’s not the best solution for us. Software needs are as diverse as our workers, so we need a tool that allows us to create reviewable packages in our codebase and push directly to our software repository. We’ve developed an internal tool on Linux called Rapture that does just this, and are working on switching

5

https://github.com/munki/munki https://github.com/google/simian 7 https://github.com/unixorn/luggage 6

4

 from SCCM to Rapture on Windows to drive more consistency between platforms and the infrastructure we use. With Rapture, we can create union software repositories to group multiple

repositories owned by different teams into one larger meta-repository. Using

We often ﬁnd that third-party tools don’t fully suit our typical use cases. That’s why we use open-source software whenever possible, or build our own tools and make them available for wider use.

this system, we can publish one small set of repositories to all clients, that make use of server-side features like canaries and version controlling, without having to manage a complicated set of repositories on the client side. Rapture also handles signiﬁcant request load. Our hosts check in with Rapture every 15 minutes for new software updates. When things get busy, like during a new software release, Rapture regularly serves more than 75 gigabits per second of network traﬃc. Of course, these backend processes are invisible to end users. We provide centralized software centers on all of our platforms where users can ﬁnd the software they need and install it with just a few clicks. On Linux, since most of our users are much happier using CLI’s, software can also be installed via APT. This self-service approach cuts down on the amount of time techs need to spend installing software on users’ computers and makes it easy for users to quickly get the software they need, when they need it.

Balancing usability with security We try to give end users as much freedom as possible in managing their own machines and installing software. Granting end users this freedom, however, means that we need to take precautions to secure our ﬂeet. Puppet is one tool we use towards this end. However, since Puppet isn't equipped to singlehandedly safeguard our ﬂeet, we're taken steps to ensure that all of our devices are encrypted, have the latest OS version installed, and are free from malware.

 5

 Encrypting devices The ﬁrst step to securing our ﬂeet was to fully encrypt all of our machines.

To ﬁt our needs, we used Apple’s provided tools for key escrowing and

At Google, security and usability aren’t necessarily mutually exclusive goals. We aim to design invisible and unobtrusive security solutions that users don’t have to “work around”.

created Cauliﬂower Vest8 on App Engine. With Cauliﬂower Vest (an anagram for Filevault Escrow), we can forcibly enable encryption on users' machines and access recovery keys to unlock or revert volumes. While we initially developed Cauliﬂower Vest for macOS, it also works with BitLocker recovery keys from Active Directory and LUKS on Linux. Users can retrieve their own recovery keys, so if they get locked out they don’t have to wait for tech support to regain access.

Applying operating system updates At Google, the state of your machine is a key factor in determining your level of access to internal systems. We use our Access Proxy and Access Control Engine9 to enforce policies, like mandatory operating system upgrades, and restrict access to most corp resources until these policies are met. To encourage users to install OS updates, we nag them with pop-up messages. The longer they wait to update, the more frequent the pop-ups become. If they wait too long to update, they will ﬁnd their level of access degraded until these updates are applied. If that isn’t enough to get someone to upgrade, we built a tool that forces updates if too much time has passed since the last system update. The user receives pop-up notiﬁcations that their machine is about to reboot and upgrade so they're not force-updated without warning.

8 9

https://github.com/google/cauliﬂowervest https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45728.pdf

6

 Preventing malware with social whitelisting While our software repositories allow Googlers to download the most

popular software, we can’t possibly review and package every piece of

After rolling out Santa (binary whitelisting for macOS) to our Mac ﬂeet, we observed a 78% decrease in malware-related Mac reimage requests.

software employees need when they need it. We do allow users to download software from the internet, but only after it’s gone through a social whitelisting process involving peer-based voting. To this end, we use tools that provide local binary whitelisting systems at the kernel level: Santa10 on macOS and Carbon Black11 (formerly Bit9) on Windows. These tools run every time a binary launches, checking the hash of the binary and running it against local SQL database to see if the binary is allowed to run. If not, the tool blocks the binary from running. When a user tries to install software that isn’t whitelisted, they're served a pop-up that sends them to an internal website where they can request whitelisting approval. The tool notiﬁes the user of any red ﬂags with the software—for instance, if it looks like potential malware. If the software has no obvious problems, the user simply has to vote for the software in the tool and get another employee to vote for it. The software is then whitelisted and available for download by the user and anyone who voted for it. Of course, there are some third-party tools that we prohibit due to potential security issues, so we maintain a list of banned software. Banned software can't be whitelisted with votes. And if a piece of software becomes suﬃciently popular, as measured by the percentage of installs across our ﬂeet, we undertake a security review, and then package and deploy it to our software repositories.

10 11

https://github.com/google/santa https://www.carbonblack.com

7

 Applying a similar strategy at your company

“Employees at indeed.com are very happy that they can self-serve to offer software to any customer, look at basic inventory items, and an item can be pushed globally in a super eﬃcient manner.”

 Adopting a scaled enterprise ﬂeet management approach did require some upfront investment and a culture shift toward automated, reviewable, and repeatable systems and processes. In return, we've beneﬁted from lower maintenance and support costs, and increased job satisfaction for engineers, support staff, and our users. Many of the tools mentioned in this paper are open source, making them affordable for companies of any size. Indeed.com is one good example of how a company much smaller than Google implemented a scalable strategy for securely managing their ﬂeet of Macs. Before experimenting with Simian, their process for installing patches and updates was time-consuming and

—Allister Banks, IT Systems Administrator at Indeed.com

cumbersome. Their help desk had to manually apply updates using a 20+-task checklist and run various scripts manually on ﬁrstboot. It only took Indeed.com a few days to implement Simian with Munki, and their implementation was covered under the free App Engine usage tier.

The company further invested in this new strategy by using another tool to automatically upload the software package metadata and automate uploading/hosting the packages outside of the blobstore. According to Allister Banks, an IT Systems Administrator at Indeed.com, “Coworkers are very happy that they can self-serve to offer software to any customer, look at basic inventory items, and an item can be pushed globally in a super eﬃcient manner.” When looking for ways to eﬃciently scale your ﬂeet: ●

Automate as many of the technical processes as possible.

●

Give your users plenty of self-service options.

●

Put automatic checks in place that prevent users from doing real harm.

8

 If you’d like to implement any of our open-source tools to manage your ﬂeet, you can ﬁnd a list of the tools with links to implementation instructions in the table below.

Google’s open-source ﬂeet management tools

Tool

Compatible with

Conﬁgure with

Setup and usage instructions

Glazier

Windows

N/A

https://github.com/google/ glazier

Simian

macOS

https://github.com /munki/munki

https://github.com/google/ simian

Cauliﬂower Vest

macOS, Windows, Linux

N/A

https://github.com/google/ cauliﬂowervest

Santa

macOS

https://github.com /groob/moroz or https://github.com /zentralopensourc e/zentral/wiki

https://github.com/google/ santa

 9

 About the authors Sam Mackness, Engineering and Operations Manager Sam leads the organization responsible for Google’s corporate computing ﬂeet. He is based in the Bay Area. Since joining Google in 2002, he has held roles in Hardware Operations, Global Production Infrastructure, and Corporate Engineering. Sam holds a BA in Political Science from the University of California, Irvine. Sarah Lucas, Technical Writer Sarah is a technical writer for Google’s Corporate Engineering organization, based in NYC. Prior to joining Google in 2013, she was a freelance writer and content manager in the Metro Detroit area. Sarah holds degrees in English and Advertising from Michigan State University. Contributors: Erin Pierce, Justin Hahn, Clay Caviness, Ofer Bar-Zakai, Matt LaPlante, Marga Manterola, Betsy Beyer, Kate Borger, Daniel Meltz, David Dorbin, Max Saltonstall

10

[image: Fleet management at scale Services]
Fleet management at scale Services

[image: Google Maps helps drive success of fleet-management app - Services]
Google Maps helps drive success of fleet-management app - Services

[image: Security at Scale with Cloud Computing Services]
Security at Scale with Cloud Computing Services

[image: Building Large-Scale Internet Services - Research at Google]
Building Large-Scale Internet Services - Research at Google

[image: Large-scale cluster management at Google with Borg - Parallel and ...]
Large-scale cluster management at Google with Borg - Parallel and ...

[image: Large-scale cluster management at Google with Borg - ICDST.org pdf ...]
Large-scale cluster management at Google with Borg - ICDST.org pdf ...

[image: Large-scale cluster management at Google with Borg - Parallel and ...]
Large-scale cluster management at Google with Borg - Parallel and ...

[image: Large-scale cluster management at Google with Borg]
Large-scale cluster management at Google with Borg

[image: ParaView - Data Science at Scale]
ParaView - Data Science at Scale

[image: Fleet Management Coordination in Decentralized ...]
Fleet Management Coordination in Decentralized ...

[image: Dynamic iSCSI at Scale- Remote paging at ... - Research at Google]
Dynamic iSCSI at Scale- Remote paging at ... - Research at Google

[image: man-138\management-fleet-maintenance.pdf]
man-138\management-fleet-maintenance.pdf

[image: Product Management Services & Substance Management Services ...]
Product Management Services & Substance Management Services ...

[image: Building Large-Scale Internet Services - Research]
Building Large-Scale Internet Services - Research

[image: Shasta: Interactive Reporting At Scale - Research at Google]
Shasta: Interactive Reporting At Scale - Research at Google

[image: Yedalog: Exploring Knowledge at Scale - Semantic Scholar]
Yedalog: Exploring Knowledge at Scale - Semantic Scholar

[image: Software Defined Networking at Scale - Research at Google]
Software Defined Networking at Scale - Research at Google

Fleet management at scale Services

Google's employees are spread across the globe, and with job functions ranging from software engineers to financial analysts, they require a broad spectrum of technology to get their jobs done. As a result, we manage a fleet of nearly a quarter-million computers (workstations and laptops) across four operating systems ...

 Download PDF

 558KB Sizes
 3 Downloads
 237 Views

 Report

Recommend Documents

[image: alt]

Fleet management at scale Services

How Google manages a quarter million computers securely and efficiently control systems. Admins can see a complete revision history of the imaging ... latest in consumer enterprise hardware, working with outside vendors and partners, as well as

[image: alt]

Google Maps helps drive success of fleet-management app - Services

Google and the Google logo are trademarks of Google Inc. All other company and product names may be trademarks of the respective companies with which they are associated. About. â€¢ ISSCO is part of the ISS Group and delivers innovative technologies

[image: alt]

Security at Scale with Cloud Computing Services

can help you make smart architectural decisions of your own as you move forward. ... Increasingly, online storage and collaboration are important parts of office.

[image: alt]

Building Large-Scale Internet Services - Research at Google

Some Commonly Used Systems Infrastructure at Google. â€¢GFS & Colossus (next gen GFS). â€“cluster-level file system (distributed across thousands of nodes).

[image: alt]

Large-scale cluster management at Google with Borg - Parallel and ...

Apr 23, 2015 - triggered a software defect in Borg so it can be debugged); fixing it by Normally, though, an online schedul- ing pass memory-accounting.

[image: alt]

Large-scale cluster management at Google with Borg - ICDST.org pdf ...

Apr 23, 2015 - web search, and for internal infrastructure services (e.g.,. BigTable). ... (RPCs) to Borg, most commonly from a command-line tool, other Borg ...

[image: alt]

Large-scale cluster management at Google with Borg - Parallel and ...

Apr 23, 2015 - Borg provides three main benefits: it (1) hides the details of resource ... web search, and for internal infrastructure services (e.g.,. BigTable). ... the high-performance datacenter-scale network fabric that connects them. A cluster

[image: alt]

Large-scale cluster management at Google with Borg

Apr 23, 2015 - Figure 2: The state diagram for both jobs and tasks. lated whenever a Borgmaster election occurs. Systems (SRMPDS), Pittsburgh, PA, USA, Sept. 2012. [58] Google LMCTFY project (let me contain that for you).

[image: alt]

ParaView - Data Science at Scale

scientists to visualize and analysis extremely large data sets. The tool For advanced users who wish to create complex program graphs, the program graph.

[image: alt]

Fleet Management Coordination in Decentralized ...

May 28, 2013 - explore pay-per-call and pay-per-time contracts in call-centers when there is information asymmetry about worker productivity. In this service ...

[image: alt]

Dynamic iSCSI at Scale- Remote paging at ... - Research at Google

Pushes new target lists to initiator to allow dynamic target instances ... Service time: Dynamic recalculation based on throughput. 9 ... Locally-fetched package distribution at scale pt 1 No good for multitarget load balancing ... things for fr

[image: alt]

man-138\management-fleet-maintenance.pdf

Try one of the apps below to open or edit this item. man-138\management-fleet-maintenance.pdf. man-138\management-fleet-maintenance.pdf. Open. Extract.

[image: alt]

Product Management Services & Substance Management Services ...

New data management approaches for industry, NCAs and the EMA: - Data synchronisation on an ongoing basis. - Possible need for data transformation/enrichment. SPOR data is accessible via a web User Interface. (UI) and SPOR APIs*. (Application Program

[image: alt]

Building Large-Scale Internet Services - Research

~1 network rewiring (rolling ~5% of machines down over 2-day span). ~20 rack Web Search for a Planet: The Google Cluster Architecture, IEEE Micro, 2003.Missing:

[image: alt]

Shasta: Interactive Reporting At Scale - Research at Google

online queries must go all the way from primary storage to user- facing views, resulting in tions, a user changing a single cell in a sorted UI table can induce subtle changes to LANGUAGE. As described in Section 3, Shasta uses a language c

[image: alt]

Yedalog: Exploring Knowledge at Scale - Semantic Scholar

neck when analyzing large repositories of data. We introduce Yedalog, a declarative programming language that allows programmers to mix data-parallel ...

[image: alt]

Software Defined Networking at Scale - Research at Google

Google Confidential and Proprietary. Google's Global CDN. Page 7. Google Confidential and Proprietary. B4: Software Defined inter-Datacenter WAN. Page 8 ...

×
Report Fleet management at scale Services

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

