Unit I - Fourier series Fourier series in an interval of length 2 f (x )
a0 2
n 1
Fourier series of f(x) in 0,2
f (x )
a0 n x n x a n cos b n sin 2 n 1
1 a0 an
1
1 bn
a
2
n
cos
n x nx b n sin
Fourier series of f(x) in ,
a0 2 n 1
f (x)
f ( x ) dx
1 a0
nx 0 f ( x ) cos dx
1 an
nx 0 f ( x ) sin dx
1 bn
0
2
2
Even Function a nx f (x) 0 a n cos 2 n 1
n x nx bn sin a n cos
f ( x ) dx
f ( x ) cos
nx dx
f ( x ) sin
nx dx
Odd Function
b
f (x)
n 1
n
sin
nx
a0
2 f ( x ) dx 0 2 n x f ( x ) cos dx 0
a0 0
an 0
an
2 nx f (x) sin dx 0
bn
bn 0 Convergence of Fourier Series: At a continuous point x = a, Fourier series converges to f(a)
At end point c or c+2l in (c, c+2l), Fourier series converges to At a discontinuous point x = a, Fourier series converges to
f ( c ) f ( c 2 ) 2
f (a ) f (a ) 2
Fourier series in the Interval of length 2 f (x)
a0 2
a n 1
n
cos nx b n sin nx
Fourier Series of f(x) in (- , )
Fourier Series of f(x) in (0,2 )
f (x )
a0 a n cos nx b n sin nx 2 n 1
1 a0 an
1
1 bn
2
f ( x ) dx 0
2
f ( x ) cos
nxdx
0
2
f ( x ) sin
nxdx
0
a0
a0 a n cos nx 2 n 1
2
an
f ( x ) dx 0
2 f ( x ) cos nx dx 0
bn 0
a0 a n cos nx b n sin nx 2 n 1
1 a0
Even Function
f (x)
f (x )
an
1
1 bn
f ( x ) dx
f ( x ) cos nxdx
f ( x ) sin
nxdx
Odd Function
f (x )
b n 1
n
sin nx
a0 0
an 0
2 b n f (x) sin nx dx 0
Half Range Fourier series
Fourier Cosine Series
f (x)
Fourier Sine Series
a0 nx an cos 2 n1
2 a0
nx f (x) bn sin n 1
f ( x ) dx
2 n x bn f ( x ) sin dx
0
0
2 nx a n f ( x ) cos dx 0
Convergence of Fourier Cosine series: At a continuous point x = a, Fourier cosine series converges to f(a). At end point 0 in(0,l), Fourier cosine series converges to f(0+) At end point l in(0,l), Fourier cosine series converges to f(l-)
Convergence of Fourier Sine series: At a continuous point x = a, Fourier Sine series converges to f(a). At both end points Fourier Sine series converges to 0.
Harmonic Analysis: a
0
2
y , N
an
nx y cos 2 N
,
b
n
2
nx y sin N
Parseval’s Theorem: If f (x)
a0 nx nx a n cos bn sin 2 n 1
is the Fourier series of f(x) in (c, c+2l),
c 2 2 2 a 2 1 Then y 0 (a n 2 b n 2 ) (or) 1 [ f ( x )] 2 dx a 0 1 ( a n 2 b n 2 ) 4 2 n 1 2 c 4 2 n 1
Root Mean Square Value:
y 2 is the effective value (or) Root Mean square (RMS) value of the function y = f(x), which is given by c 2
[ f ( x )]
y
2
dx
c
2
Some Important Results: 1.
Sin n =0 for all integer values of n
2. Cos n= (–1)n for all integer values of n 3. Cos2n=1 for all integer values of n 4. Sin2n = 0 for all integer values of n 5. If f( –x ) = f( x ) then f(x) is even and If f( –x ) = – f( x ) then f( x ) is odd. 1 ( x ) ( ,0 ) is even if either 1 ( x ) 2 ( x ) or 2 ( x ) 1 ( x ) 6. f (x ) ( x ) ( 0 , ) 2
1 ( x ) 7. f ( x ) 2 ( x )
( ,0) ( 0, )
is odd if either 1 (x) 2 (x) or 2 ( x ) 1 ( x )
x, x 0 8. x x, x 0 9.
ax e cos bxdx
10 .
e
ax
e ax a cos bx b sin bx a2 b2
e ax sin bxdx 2 a sin bx b cos bx a b2
11 . udv uv 1 u v 2 u v 3 ......... Where u
du d2u , u , ........ v 1 dx dx 2
dv ,
v2
v
1
dx , v 3
v
2
dx .......... ..