Unit I - Fourier series Fourier series in an interval of length 2 f (x ) 

a0  2

n 1

Fourier series of f(x) in 0,2 

f (x ) 

 a0 n x n x      a n cos  b n sin  2 n 1    

1 a0   an

1  

1 bn  

  a

2

n

cos

n x nx   b n sin    

Fourier series of f(x) in  ,  

 a0  2 n 1

f (x) 

 f ( x ) dx

1 a0  

nx 0 f ( x ) cos  dx

1 an  

nx 0 f ( x ) sin  dx

1 bn  

0

2

2

Even Function  a nx   f (x)  0   a n cos  2 n 1   

n x nx    bn sin  a n cos     

f ( x ) dx



f ( x ) cos

nx dx 

f ( x ) sin

nx dx 

 



Odd Function 

  b

f (x) 

n 1

n

sin

nx    

a0 

2 f ( x ) dx  0 2 n x f ( x ) cos dx  0 

a0  0

an  0

an 

2 nx f (x) sin dx  0  

bn 

bn  0 Convergence of Fourier Series:  At a continuous point x = a, Fourier series converges to f(a)

 At end point c or c+2l in (c, c+2l), Fourier series converges to  At a discontinuous point x = a, Fourier series converges to

f ( c )  f ( c  2 ) 2

f (a  )  f (a  ) 2

Fourier series in the Interval of length 2 f (x) 

a0  2

 a n 1

n

cos nx  b n sin nx 

Fourier Series of f(x) in (-  ,  )

Fourier Series of f(x) in (0,2  )

f (x ) 

 a0   a n cos nx  b n sin nx  2 n 1

1 a0   an

1  

1 bn  

2

 f ( x ) dx 0

2

 f ( x ) cos

nxdx

0

2

 f ( x ) sin

nxdx

0

a0

a0    a n cos nx  2 n 1

2   

an 

 f ( x ) dx 0

2 f ( x ) cos nx dx  0

bn  0

 a0   a n cos nx  b n sin nx  2 n 1

1 a0  

Even Function

f (x) 

f (x ) 

an

1  

1 bn  

 f ( x ) dx

 

 f ( x ) cos nxdx

 

 f ( x ) sin

nxdx



Odd Function

f (x ) 

 b n 1

n

sin nx 

a0  0

an  0 

2 b n   f (x) sin nx dx 0

Half Range Fourier series

Fourier Cosine Series

f (x) 

Fourier Sine Series

a0   nx    an cos  2 n1  

2 a0  

 nx   f (x)   bn sin    n 1

 f ( x ) dx

2 n x bn  f ( x ) sin dx  

0

0

2 nx a n   f ( x ) cos dx 0 

Convergence of Fourier Cosine series:  At a continuous point x = a, Fourier cosine series converges to f(a).  At end point 0 in(0,l), Fourier cosine series converges to f(0+)  At end point l in(0,l), Fourier cosine series converges to f(l-)

Convergence of Fourier Sine series:  At a continuous point x = a, Fourier Sine series converges to f(a).  At both end points Fourier Sine series converges to 0.

Harmonic Analysis: a

0

  2 

y   , N 

an

  nx   y cos     2 N  

   ,  

b

n

   2  

 nx   y sin      N  

Parseval’s Theorem: If f (x) 

a0   nx nx     a n cos  bn sin  2 n 1   

is the Fourier series of f(x) in (c, c+2l),

c 2 2  2 a 2 1  Then y  0   (a n 2  b n 2 ) (or) 1  [ f ( x )] 2 dx  a 0  1  ( a n 2  b n 2 ) 4 2 n 1 2 c 4 2 n 1

Root Mean Square Value:

y 2 is the effective value (or) Root Mean square (RMS) value of the function y = f(x), which is given by c 2

 [ f ( x )]

y 

2

dx

c

2

Some Important Results: 1.

Sin n =0 for all integer values of n

2. Cos n= (–1)n for all integer values of n 3. Cos2n=1 for all integer values of n 4. Sin2n = 0 for all integer values of n 5. If f( –x ) = f( x ) then f(x) is even and If f( –x ) = – f( x ) then f( x ) is odd.  1 ( x ) (   ,0 ) is even if either  1 (  x )   2 ( x ) or  2 (  x )   1 ( x ) 6. f (x )    ( x ) ( 0 ,  )  2

1 ( x ) 7. f ( x )    2 ( x )

(  ,0) ( 0,  )

is odd if either 1 (x)  2 (x) or  2 ( x )  1 ( x )

 x, x  0 8. x    x, x  0 9.

ax  e cos bxdx

10 .

e

ax

e ax a cos bx  b sin bx a2  b2

e ax sin bxdx  2 a sin bx  b cos bx  a  b2

11 .  udv  uv 1  u  v 2  u  v 3  ......... Where u 

du d2u , u   , ........ v 1  dx dx 2

 dv ,

v2 

v

1

dx , v 3 

v

2

dx .......... ..

## Fourier series

Fourier series in an interval of length i2. Even Function. Odd Function. Convergence of Fourier Series: â¢ At a continuous point x = a, Fourier series converges to ...

#### Recommend Documents

Fascinating Fourier Series
Nov 30, 2007 - by M.R. Spiegel. Using these formulae, any periodic function can be expressed in terms of its Fourier series expansion. We use these definitions to deduce some interesting mathematical series in the following sections. Using the Fourie

Fourier series Vacuum Maxwell's equations.
3 First order vacuum solution with Fourier series. 4. 3.1. Basic solution in terms of undetermined coefficients. . . . . . . 4. 3.2. Solution as time evolution of initial field. . . . . . . . . . . . . . 5. 3.3. Prettying it up? Questions of commutat

Plane wave Fourier series solutions to the ... - Peeter Joot's Blog
3.3 Energy density. Take II. For the Fourier coefficient energy calculation we now take 7 as the starting point. We will need the conguate of the field. Fâ  = Î³0. (. â.

Introduction to Graph Theory (Dover Books on Mathematics) · Probability Theory: A Concise Course (Dover Books on Mathematics) · Introduction to Topology: ...

Fourier Series Expansion in a Non-Orthogonal System ...
Dec 5, 2007 - for a challenging through-casing resistivity application, we reduce ... typically âcorrectedâ (modified) using semi-analytical formulas to account for ..... In this Section, we first assume that we have a software capable of solving

Plane wave Fourier series solutions to the ... - Peeter Joot's Blog
âiÏt. (12). The set of fourier coefficients considered in the sum must be restricted to those values that equation 12 holds. An effective way to achieve this is to pick a specific orientation of the coordinate system so the angular velocity bivect

Ebook Fourier Series (Dover Books on Mathematics)
Introduction to Graph Theory (Dover Books on Mathematics) · Probability Theory: A Concise Course (Dover Books on Mathematics) · Introduction to Topology: ...

fourier integrals
1 sin(1 )x sin(1 )x. 1 (1 )sin(1 )x (1 )sin(1 )x. 1. 1. 2. 1. (1 ) sin cos cos sin. (1 ) sin cos cos sin. 1. 1. 1 2sin. 2sin. 1. (1. ) x x x x x x x x Ï Ï Ï Î» Î» Î» Î» Î» Î» Ï.

THE FOURIER-STIELTJES AND FOURIER ALGEBRAS ...
while Cc(X) is the space of functions in C(X) with compact support. The space of complex, bounded, regular Borel measures on X is denoted by. M(X).

fourier transformation
1. (x). (s). 2. 1. 2sin sin. (x). (x). 2. Now putting x 0 both sides, we get sin. (0). [ f(0) 1by definition of f(x)] sin sin sin. 2. 2 isx isx isx f. F. e d s s s f e ds e ds f s s s. d s.

lecture 15: fourier methods - GitHub
LECTURE 15: FOURIER METHODS. â¢ We discussed different bases for regression in lecture. 13: polynomial, rational, spline/gaussianâ¦ â¢ One of the most important basis expansions is ... dome partial differential equations. (PDE) into ordinary diffe