FOURIER TRANSFORMATION Fourier Transform:

We know the complex form of Fourier integral i.e.

f (x) =

1 2π





−∞

−∞

∫ ∫

f (t) ei λ (t − x) d t d λ

On rewriting this (i.e. by replacing λ by s ), we get

1 ∞ ∞ 1 = f (x) = f (t) ei s (t − x) d t d s ∫ ∫ 2 π −∞ −∞ 2π Now if





−∞

f (t) ei st d t = F (s) , then from (1) we get f (x) =

1 2π





−∞

F (s) e−i s x d s





−∞

e

−i s x



d s ∫ f (t) ei st d t −∞

(1)

(2)

The function F (s) defined above is known as Fourier Transform of f (x) . Also the function f (x) given by (2) is called inverse Fourier transform of F (s) . The expression given by (2) is also known as inversion formula of Fourier transform.

Fourier Sine Transform:

Again Fourier sine transform can be deducted from Fourier sine integral i.e. ∞

∞ 2 f (x) = ∫  ∫ f (t)sin λ t d t  sin λ x d λ  π 0  0

On rewriting this (i.e. by replacing λ by s ), we get ∞

∞ 2 f (x) = ∫  ∫ f (t)sin s t d t  sin s x d λ  π 0  0

(3)

Dr. Jogendra Kumar

Page 1

FOURIER TRANSFORMATION Now let



Fs (s) = ∫ f (t) sin s t d t , then from (1) 0

f (x) =

The function

2 ∞ Fs (s)sin s x d s π ∫0

(4)

Fs (s) is known as Fourier sine transforms of f (x) in 0 < x < ∞. . Also the function

f (x) given by (4) is called inverse Fourier sine transforms of Fs (s) .

Fourier Cosine Transform:

Again Fourier cosine transform can be deducted from Fourier cosine integral i.e. ∞

∞ 2 f (x) = ∫  ∫ f (t) cos λ t d t  cos λ x d λ  π 0  0

On rewriting this (i.e. by replacing λ by s ), we get ∞

∞ 2 f (x) = ∫  ∫ f (t) cos s t d t  cos s x d s  π 0  0

Now let

(5)



Fc (s) = ∫ f (t) cos s t d t , then from (1)

f (x) =

The function

0

2 ∞ Fc (s) cos s x ds π ∫0

(6)

Fc (s) is known as Fourier cosine transforms of f (x) in 0 < x < ∞. . Also the function

f (x) given by (6) is called inverse Fourier cosine transforms of Fc (s) .

Dr. Jogendra Kumar

Page 2

FOURIER TRANSFORMATION Properties of Fourier Transform:

Linearity Property: If F (s) and G(s) are complex Fourier transforms of f (x) and

g(x) respectively, then

F [ a f (x) + b g (x) ] =a F (s) + b G(s)

Where a and b are constants.

Change of scale property:

If F (s) is the complex Fourier transforms of

= F {f (a x)}

1 s F  , a a

a≠0

f (x) , then

Proof: We know that

F{f (x)} = F(s) = ∴





−∞

f (x) ei s x d x

(1)



dt Pu ta x =t ⇒ d x = a

F{f (a x)} =∫ f (a x) ei s x d x −∞

=

i st 1 ∞ a f e dt (t) a ∫−∞ s

i  t 1 ∞ = ∫ f (t) e  a  d t a −∞ 1 s = F  a a

Shifting Property:

If F (s) is the complex Fourier transforms of

F{f ( x − a)} = ei s a F ( s )

f (x) , then

Dr. Jogendra Kumar

Page 3

FOURIER TRANSFORMATION Proof: We know that

∫ ∴ F{f (x − a)} = ∫ =∫ = F(s) = F{f (x)}



−∞



−∞ ∞

−∞

f (x) ei s x d x f (x − a) ei s x d x

Pu t x − a = t ⇒ d x = d t

f (t) ei s (t + a ) d x ∞

= ei a s ∫ f (t) ei s t d x −∞

=e

ias

F (s)

Modulation Theorem:

If F (s) is the complex Fourier transforms of

1 [ F (s+ a) + F(s− a)] 2

F{f ( x) cos a = x}

f (x) , then

Proof: If F (s) is the complex Fourier transforms of

F{f = ( x)} F= (s)





−∞

f (x) ei s x d x

f (x) , then



isx ∴ F{f ( x) cos s x} = ∫ f (x) cos a x .e d x −∞

=∫



−∞

 ei a x + e − i a x f (x) ei s x  2 

(

 d x 

)

1 ∞ f (x) ei ( s + a ) x + ei ( s − a ) x d x ∫ −∞ 2 ∞ 1 ∞ i(s+ a) x f e d x f (x) ei ( s − a ) x d x  (x) = + ∫ ∫   −∞ −∞ 2 1 = [ F(s+ a) + F(s− a)] 2 =

Dr. Jogendra Kumar

Page 4

FOURIER TRANSFORMATION Note: If Fs (s) and Fc (s) are the Fourier sine transforms and Fourier cosine transforms of

f (x)

respectively, then the following results hold true. (i)

(ii)

(iii)

x} Fs {f ( x) cos a=

1 [ Fs (s+ a) + Fs (s− a)] 2

x} Fc {f ( x) sin a=

1 [ Fs (s+ a) − Fs (s− a)] 2

x} Fs {f ( x) sin a=

1 [ Fc (s− a) − Fc (s+ a)] 2

All these result can be proved similarly as above result.

Que. Find the Fourier transform of

1 for x < 1 , f (x) =   0 for x > 1

Solution: By definition, we have

F{f = ( x)} F= (s)



Question-Answer Section Hence evaluate



−∞





0

sin x d x. x

f (x) ei s x d x

i.e. − 1 < x < 1  1 for x < 1, 0 for x > 1, i.e. x < −1 and x > 1

Now since f (x) = 

∴ F{f ( = x)}

∫ ∫

−1

−∞

=

−1

−∞



1

f (x).ei s x d x + ∫ f (x).ei s x d x + ∫ f (x).ei s x d x −1

0.e

isx

1

d x + ∫ 1.e −1

isx

1



d x + ∫ o .e 1

isx

dx

1

ei s x ei s − e − i s 2  ei s − e − i s  = ∫ e= dx = =   −1 i s −1 is s  2i  2sin s = = F (s) s 1

isx

Dr. Jogendra Kumar

Page 5

FOURIER TRANSFORMATION Now by inverse Fourier transforms, we have

f (x) =

1 2π





−∞

F (s) e−i s x d s

∞ sin s 1 ∞ 2sin s −i s x ⇒ = e d s e −i s x d s π f (x) ∫ ∫ −∞ −∞ 2π s s Now putting x = 0 both sides, we get ∞ sin s [ f(0) 1by definition of f(x)] = d s π= f (0) π ∫−∞ s= ∞ sin s ∞ sin s π  sin s  ⇒ 2∫ d s= d s= is even function  π ⇒ ∫  0 0 2  s s s  ∞ sin x π d x= ⇒ ∫ ( In definite integral variable can be replaced by other variable ) 0 x 2

= ∴ f (x)

(2) Find the Fourier transform of 2 1 − x for x ≤ 1 , f (x) =   0 for x > 1

Hence evaluate

Solution: By definition, we have

F{f = ( x)} F= (s)

∴ F{f ( = x)} =

∫ ∫

−1

−∞ −1

−∞





−∞





0

x  x cos x − sin x    cos d x. 3 x 2  

f (x) ei s x d x



1

f (x).ei s x d x + ∫ f (x).ei s x d x + ∫ f (x).ei s x d x −1

1

1



0.ei s x d x + ∫ (1 − x 2 ).ei s x d x + ∫ o .ei s x d x −1

1

Dr. Jogendra Kumar

Page 6

FOURIER TRANSFORMATION 1

F {f (x)} =∫ (1 − x ) e 2

isx

−1

ei s x (1 − x 2 ) = is

ei s x d x =(1 − x ) is +2

 ei s + e − i s 0 − 2 = 2  s

1

−1

− ∫ (−2 x)

1

1

−1

1

2

x ei s x

(i s )

2 −

ei s x −2 (i s )3

  ei s − e − i s  + 2 3   is

1 1 = 4  3 sin s − 2 cos s s

−1

ei s x dx is

1

−1

 1  ei s − e − i s  4 =  3    s  2i

 1  ei s + e − i s − 2   s  2

  

4  − 3 (s cos s − sin s) s = s 

Now by inverse Fourier transform, we have

f (x) =

1 2π





−∞

F (s) e − i s x d s

1 ∞ 4 2 ∞  s cos s − sin  ∴ f (x) = − 3 ( s cos s − sin s )  e − i s x d s = − ∫  ∫  2 π −∞  s π −∞  s3  Now putting x =

( )

s   −i s x  e d s 

1 both sides, we get 2

 s cos s − sin s   − i 2s = − ∫   e d s 2 s3 π −∞   ∞  s cos s − sin s   s s π  1 3π ⇒ ∫  − 1 −  = −   cos − i sin  d s = 3 −∞ s 2 2 2  4 8   f 1







−∞

2



s 3π  s cos s − sin s  (On comparing real and imaginary parts both sides) −   cos d s = 3 s 2 8  

Dr. Jogendra Kumar

Page 7

FOURIER TRANSFORMATION Que. Find the Fourier transform of e

− a2 x2

, a > 0 . Hence deduce that e



x2 2

is self reciprocal in respect of

Fourier transform.

Solution: By definition

F{f = ( x)} F= (s)



2 2



F{e − a x= }



−∞







−∞

f (x) ei s x d x



e − a x ei s x d= x 2 2



−∞

 i s x i2 s2  − a 2  x 2 − 2 + 4  a 4a  

e

isx   − a2  x2 − 2  a  

i2 s2 4 a2

e e dx ∫ ∫=

=

−∞

=e





−∞

s2 4 a2





−∞

e

 is  − a 2  x −  a 2  2 



−∞

 is  − a 2  x − 2   2a 

e

2



e

s2 4 a2

dx

dx

 is  1 put a  x − 2  =⇒ t d x= dt 2a  a 

dx

s2

π



 i s x i2 s2 i2 s2  − a 2  x 2 − 2 + 4 −  a 4a 4 a 4  

2

π

1 − 4 a2 ∞ − t 2 e = = ∫−∞ e d t a

2 2

e

d= x



a



e

s2 4 a2

{



 ∫ e− t d t =

π

2

−∞

}

s2 4 a2

F{e − a x } = e a



Now taking a 2 = −

x2 2

1 in above transform, we get 2

= F{e }



π

s2 4.1

= e 1 2

So, we can conclude that e



x2 2

2

2π e



s2 2

.Since the functions e



is self reciprocal of its Fourier transform e

x2 2



s2 2

and e



s2 2

are the function.

.

Dr. Jogendra Kumar

Page 8

FOURIER TRANSFORMATION Que. Find the Fourier transform of (i) e − 2 (x −3) and (ii) e − x cos 3 x . 2

2

Solution: (i) From above problem, we have −

x2 2



s2 2

= 2π e F (s) , say

= F{e }

Now consider e − 2 x which can be rewrite as 2

(2 x)2 2

1 s e= e= f (2 x) . Thus F{ f (2 x)} = F   by change of scale property i.e. 2 2 −

−2 x 2

( If F (s) is the complex Fourier transforms of −

(2 x )2 2



f (x) , then = F {f (a x)}

( s 2)

a ≠ 0)

2

1 πe 2 {e } 2= F{e } F= Therefore, = 2 −2 x

2

1 s F  , a a

π 2

e



s2 8

Again F {e −2( x −3) = = ei a s F (s) , by shifting property i.e. } F{f (x − 3)} 2

(If F (s) is the complex Fourier transforms of

π



s2 8

ias −2( x −3) F{e= F (s) e3 i s = e } e= 2 2

(ii)

π

2

e

f (x) , then F{f ( x − a)} = ei s a F ( s ) )

 s2   3 i s − 8   

We know that −

x2 2

= F{e }



s2 2

= F (s) , say. Now by modulation theorem, we have 2π e

If F (s) is the complex Fourier transforms of

f (x) , then F{f ( x) cos a = x}

1 [ F (s+ a) + F(s− a)] 2

Dr. Jogendra Kumar

Page 9

FOURIER TRANSFORMATION ∴



x2 2

1 [ F (s+ 3) + F(s− 3)] 2 (s + 3)2 (s −3)2  − − 1 2 = + 2π e 2   2π e 2   2 2 2 (s −3)  (s −3)2   − (s +3)  − (s +3) − − 1 π 2 π e 2 + e 2 = =  e 2 + e 2  2 2    

F{e

cos 3 x} =

Que. Find the Fourier cosine transform of e − x . 2

Solution. By the definition of Fourier cosine transform, we have ∞

Fc {f (x)} = ∫ f (x) cos s x d x 0

Now, let I

e cos s x d x (1) ( f (x) ∫= ∞

− x2

0

e− x

2

)

Therefore,

(

)

∞ 2 2 1 ∞ dI e − x ( x sin s x) d x = =− −2 x e − x sin s x d x ∫ ∫ 0 ds 2 0 ∞ 1 − x2 1 ∞ 2 e sin s x − ∫ e − x ( s cos s x ) 0 2 2 0 s ∞ 2 s 0 − ∫ e − x cos s x d x = = − I 2 0 2 dI s 0 ⇒ + I= ds 2

=

which is linear differential equation of first order and can be solve by separable method.

Dr. Jogendra Kumar

Page 10

FOURIER TRANSFORMATION s2 I s2 − + log c ⇒ log = − log I = c 4 4

dI s dI s + I= = − ds ⇒ 0⇒ ds 2 I 2 −

ce ⇒ I=

s2 4

(2)

Now by putting s = 0 in (1) and (2), we get

I =



π

e dx ∫= − x2

2

0

and I = c respectively, which implies that c =

π 2

.

Thus from (2), we get

I=

π 2

e



s2 4

, which is Fourier cosine transform of given function.

Que. Find the Fourier sine transforms of e

− x

and hence show that





0

x sin m x π e− m d x , m > 0. = 1 + x2 2

Solution. We know that Fourier sine transform is defined in 0 < x < ∞ and given function can be redefined as

e − x

= Fs {e }



− x

e − ( − x) e x , for x < 0 = =  −x for x ≥ 0 e ,

e sin s x d x ∫ ∫= − x

0



0

e − x sin s x d x ∞

e− x s = (− sin s x − s cos s x) = = Fs (s) 2 1+ s 1 + s2 0 Using inversion formula, we have

2 ∞ 2 ∞ s f (x) = F (s)sin s x d s sin s x d s = s π ∫0 π ∫0 1 + s 2 ∞ s π π −x sin s x d s = f (x) = e ⇒ ∫ 2 0 1+ s 2 2 Dr. Jogendra Kumar

Page 11

FOURIER TRANSFORMATION Now putting x = m in above expression, we get

s π sin m s d s = e − m 2 0 1+ s 2 ∞ x π −m ⇒ ∫ sin m x d x = e (in definite integral we can replace variable by other variable) 2 0 1+ x 2





Que. Find the Fourier sine transforms of

e− a x . x

Solution. By definition Fourier sine transform, we have ∞

Fs {f (x)} = ∫ f (x) sin s x d x . Thus 0

 e− a x  Fs  =   x 

−a x ∞e = ∫0 x sin s x d x I , say

(1)

From (1), ∞ e− a x dI a x e− a= )d x⇒ cos s x d x 2 ∫0 x (x cos s x= ∫ 0 ds s + a2 dI a ds I a. 2 ⇒ = 2 ⇒ d= 2 d s s +a s + a2 s 1 I a. tan −1 + c ⇒ = a a s I tan −1 + c ⇒ = (2) a

dI = ds



Dr. Jogendra Kumar

Page 12

FOURIER TRANSFORMATION After putting s = 0 in (1), we get

I =0

Again put s = 0 in (2), we get

I = tan −1 0 + c = c ⇒ c = 0



( I = 0 for s = 0)

 e− a x  s Fs  tan −1 = a  x 

Que. Find the Fourier cosine transform of f (x) =

ϕ (x) =

1 .Hence derive Fourier sine transform of 1 + x2

x . 1 + x2

Solution: By definition Fourier cosine transforms, we have

 1  = Fc  2 1 + x 



1

cos s x d x ∫= 1+ x 0

2

∞ dI 1 (− x sin s x) d x = ∫ 0 1 + x2 ds ∞ dI x sin s x d x ⇒ = −∫ 0 (1 + x 2 ) ds



I , say

(1)

(2)

∞ dI x2 sin s x d x = −∫ 0 x (1 + x 2 ) ds

Dr. Jogendra Kumar

Page 13

FOURIER TRANSFORMATION 2 ∞ (1 + x − 1) dI = −∫ sin s x d x 0 x (1 + x 2 ) ds



2 ∞ (1 + x ) ∞ sin s x dI s x d x sin = −∫ + ∫0 x(1 + x 2 ) d x 0 x (1 + x 2 ) ds ∞ sin s x ∞ sin s x dI d x+∫ dx = −∫ 0 0 x (1 + x 2 ) ds x ∞ sin s x dI π dx = − +∫ ds 2 0 x(1 + x 2 )

⇒ ⇒ ⇒

d2 I ∴ = d s2





0

x sin s x dx = x(1 + x 2 )





0

(3)

sin s x dx I = (1 + x 2 )

d2 I 0 −I = d s2



Its solution is

= I c1 e s + c2 e − s

dI c1 e s − c2 e − s = ds



(4)

(5)

When s = 0 from (1), we have

I =





0

1 π −1 ∞ d x tan s = = 2 0 1+ x 2

(6)

When s = 0 from (4), we have

π

c1 + c2 = 2

(7)

Dr. Jogendra Kumar

Page 14

FOURIER TRANSFORMATION Now from (3) and (5) when s = 0 , we have

c1 − c2 = −

π

(8)

2

Hence from (7) and (8), we obtained = c1 0= and c2



π 2

∞ 1 π −s  1  = cos s x d x = Fc  I= e 2 2 ∫ 0 1+ x 2 1 + x 

 x  1 + x 

Now= Fs {ϕ (x)} F= s  2





0

x sin s x d x . Thus from (2), 1 + x2

∞ x dI  x  = −∫ − Fs  sin s x d x = 2 2 0 (1 + x ) ds 1 + x 

Therefore from (5), we get ∞ x π −s  x  = −∫ Fs  e sin s x d x = 2 2 0 (1 + x ) 2 1 + x 

Dr. Jogendra Kumar

Page 15

fourier transformation

1. (x). (s). 2. 1. 2sin sin. (x). (x). 2. Now putting x 0 both sides, we get sin. (0). [ f(0) 1by definition of f(x)] sin sin sin. 2. 2 isx isx isx f. F. e d s s s f e ds e ds f s s s. d s.

235KB Sizes 1 Downloads 406 Views

Recommend Documents

Fourier Transformation for Pedestrians
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of ... This English edition is based on the third, enlarged edition in German. [4]. ...... smaller and smaller, provided only we make N big enough.

Fourier Transformation for Pedestrians
Springer is a part of Springer Science+Business Media. ... From the host of available material we'll ..... serve as a small introduction to dealing with complex numbers. ..... As frequency ω = 0 – a frequency as good as any other frequency ω =0â€

FOURIER-MUKAI TRANSFORMATION ON ...
Also, since µ and p1 : X × ˆX → X are transverse morphisms, we have p12∗(µ × id ˆX)∗P = µ∗p1∗P. But, in K0(X × ˆX), p1∗P = ∑i(−1)i[Rip1∗P]. From [13, § 13] we have that Rip1∗P = 0 for i = g and Rgp1∗P = k(0) where k(0)

Fourier series
Fourier series in an interval of length i2. Even Function. Odd Function. Convergence of Fourier Series: ➢ At a continuous point x = a, Fourier series converges to ...

fourier integrals
1 sin(1 )x sin(1 )x. 1 (1 )sin(1 )x (1 )sin(1 )x. 1. 1. 2. 1. (1 ) sin cos cos sin. (1 ) sin cos cos sin. 1. 1. 1 2sin. 2sin. 1. (1. ) x x x x x x x x π π π λ λ λ λ λ λ π.

THE FOURIER-STIELTJES AND FOURIER ALGEBRAS ...
while Cc(X) is the space of functions in C(X) with compact support. The space of complex, bounded, regular Borel measures on X is denoted by. M(X).

lecture 15: fourier methods - GitHub
LECTURE 15: FOURIER METHODS. • We discussed different bases for regression in lecture. 13: polynomial, rational, spline/gaussian… • One of the most important basis expansions is ... dome partial differential equations. (PDE) into ordinary diffe

Fascinating Fourier Series
Nov 30, 2007 - by M.R. Spiegel. Using these formulae, any periodic function can be expressed in terms of its Fourier series expansion. We use these definitions to deduce some interesting mathematical series in the following sections. Using the Fourie

Partial fourier partially parallel imaging
around 2 and 4, respectively, have been widely attained and even higher values for ... The central 1/8 portion of (ii) is extracted and Fou- .... For the constraint to be meaningful there must be some ... during the reconstruction using phase maps.

Fast Fourier Color Constancy - Jon Barron
or subjectively attractive is just a matter of the data used during training. Despite ... performing techniques on standard color constancy bench- marks [12, 20, 30].

ASYMPTOTIC RELATIONS AMONG FOURIER ...
where g(x) is a real valued C∞ function with compact support containing a neigh- borhood ... Let g be a function on R, define the Fourier transform of g by. F(g)(t) ...

GAPS BETWEEN NONZERO FOURIER ...
τ(m2 + 23n2) = 0 for any integers m and n, and using this he had obtained a short interval result similar to this for the Ramanujan ∆-function. Remark 3. Instead of estimating if (n) for all n, one may also look for a very strong bound that is val

Fourier series Vacuum Maxwell's equations.
3 First order vacuum solution with Fourier series. 4. 3.1. Basic solution in terms of undetermined coefficients. . . . . . . 4. 3.2. Solution as time evolution of initial field. . . . . . . . . . . . . . 5. 3.3. Prettying it up? Questions of commutat

z-transformation
Partial fraction method and. (iii). Inversion integral method or Residues method. Inversion method or Residues Method: The inverse Z-Transform of U(z) is given ...

Transformation Advisory - Services
scaled solutions, and dedicated technical advisory. This service will help align overall business goals and drive change in legacy behavior over time. Key Activities. Transformation Lab. • Lab preparation: help define business objectives and agree

TRANSFORMATION \T/ WARPING
Nov 17, 2008 - Additional features and advantages of the present inven tion Will .... over a wired or wireless transmission medium or light signals over an ...

Postdoctoral Fellow, Plantain Transformation - IITA
Jan 28, 2016 - IITA is one of the world's leading research partners in finding solutions ... our online application form using this link: http://www.iita.org/careers.

transformation 01.pdf
Loading… Page 1. Whoops! There was a problem loading more pages. Retrying... transformation 01.pdf. transformation 01.pdf. Open. Extract. Open with. Sign In.

biomedical anthropology's transformation
entity whose immanent property is the transformation of nature, man has turned the biosphere into an ... economic sphere of society), cultural anthropology (studying interaction of man and culture), pedagogical .... In the modern era, changes in the