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Abstract Intrinsic volumes of convex sets are natural geometric quantities that also play important roles in applications, such as linear inverse problems with convex constraints, and constrained statistical inference. It is a well-known fact that, given a closed convex cone C ⊂ Rd , its conic intrinsic volumes determine a probability measure on the finite set {0, 1, ...d}, customarily denoted by L(VC ). The aim of the present paper is to provide a Berry-Esseen bound for the normal approximation of L(VC ), implying a general quantitative central limit theorem (CLT) for sequences of (correctly normalised) discrete probability measures of the type L(VCn ), n ≥ 1. This bound shows that, in the high-dimensional limit, most conic intrinsic volumes encountered in applications can be approximated by a suitable Gaussian distribution. Our approach is based on a variety of techniques, namely: (1) Steiner formulae for closed convex cones, (2) Stein’s method and second order Poincar´e inequality, (3) concentration estimates, and (4) Fourier analysis. Our results explicitly connect the sharp phase transitions, observed in many regularised linear inverse problems with convex constraints, with the asymptotic Gaussian fluctuations of the intrinsic volumes of the associated descent cones. In particular, our findings complete and further illuminate the recent breakthrough discoveries by Amelunxen, Lotz, McCoy and Tropp (2014) and McCoy and Tropp (2014) about the concentration of conic intrinsic volumes and its connection with threshold phenomena. As an additional outgrowth of our work we develop total variation bounds for normal approximations of the lengths of projections of Gaussian vectors on closed convex sets.
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Introduction



1.1



Overview



Every closed convex cone C ⊂ Rd can be associated with a random variable VC , with support on {0, . . . , d} whose distribution L(VC ) coincides with the so-called conic intrinsic 0 0
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volumes of C. The distribution L(VC ) is a natural object that summarizes key information about the geometry of C, and is important in applications, ranging from compressed sensing to constrained statistical inference. In particular, for a closed convex cone C the mean δC = EVC (which is customarily called the statistical dimension of C) measures in some sense the ‘effective’ dimension of C, and generalises the classical notion of dimension for linear subspaces. As proved in the groundbreaking papers Amelunxen, Lotz, McCoy and Tropp [3] and by McCoy and Tropp [32] (see also Section 1.4 below for a more detailed discussion of this point), in the case of the so-called descent cones arising in convex optimisation, the concentration of the distribution of VC around δC explains with striking precision threshold phenomena exhibited by the probability of success in linear inverse problems with convex constraints. Our principal aim in this paper is to produce a Berry-Esseen bound for L(VC ) leading to minimal conditions on a sequence of closed convex cones {Cn }n≥1 , ensuring that the sequence VCn − EVCn p , Var(VCn )



n ≥ 1,



converges in distribution towards a standard Gaussian N (0, 1) random variable. The bounds in our main findings depend only on the mean and the variance of the random variables VCn , and are summarized in Part 2 of Theorem 1.1 below. As explained in the sections to follow, the strategy for achieving our goals consists in using the elegant Master Steiner formula from McCoy and Tropp [32], in order to connect random variables of the type VC to objects with the form kΠC (g)k2 , where g is a standard Gaussian vector, ΠC is the metric projection onto C, and k · k stands for the Euclidean norm. Shifting from VC to kΠC (g)k2 allows one to unleash the full power of some recently developed techniques for normal approximations, based on the interaction between Stein’s method (see [17]) and variational analysis on a Gaussian space (see [34]). In particular, our main tool will be the so-called second order Poincar´e inequality developed in [14, 35]. In Section 4, we will also use techniques from Fourier analysis in order to compute explicit Berry-Esseen bounds. As discussed below, our findings represent a significant extension of the results of [3, 32], where the concentration of L(VC ) around δC was first studied by means of tools from Gaussian analysis, as well as by exploiting the connection between intrinsic volumes and metric projections. Explicit applications to regularised linear inverse problems are described in detail in Section 1.4 below. We will now quickly present some basic facts of conic geometry that are relevant for our analysis. Our main theoretical contributions are discussed in Section 1.3, whereas connections with applications are described in Section 1.4 and Section 1.5.



1.2



Elements of conic geometry



The reader is referred to the classical references [36, 37], as well as to [3, 32], for any unexplained notion or result related to convex analysis. Distance from a convex set and metric projections. Fix an integer d ≥ 1. Throughout the paper, we shall denote by hx, yi and kxk2 = hx, xi, respectively, the standard inner product
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and squared Euclidean norm in Rd . Given a closed convex set C ⊂ Rd , we define the distance between a point x and C as d(x, C) := inf kx − yk.



(1)



y∈C



By the strict convexity of the mapping x 7→ kxk2 , the infimum is attained at a unique vector, called the metric projection of x onto C, which we denote by ΠC (x). Convex cones and polar cones. A set C ⊂ Rd is a convex cone if ax + by ∈ C whenever x and y are in C and a and b are positive reals. The polar cone C 0 of a cone C is given by  C 0 = y ∈ Rd : hy, xi ≤ 0, ∀x ∈ C . (2) It is easy to verify that the polar cone of a closed convex cone is again a closed convex cone. By virtue e.g. of [32, formula (7.2)], any vector x ∈ Rd may be written as: x = ΠC (x) + ΠC 0 (x) with ΠC (x) ⊥ ΠC 0 (x),



(3)



where the orthogonality relation is in the sense of the inner product h·, ·i on Rd . A quick computation shows also that, for every closed convex cone C and every x ∈ Rd , kΠC (x)k =



sup



hx, yi.



(4)



y∈C:kyk≤1



Steiner formulae and intrinsic volumes. Letting B d and S d−1 denote, respectively, the unit ball and unit sphere in Rd , the classical Steiner formula for the Euclidean expansion of a compact convex set K states that Vol(K + λBd ) =



d X



λd−j Vol(B d−j )Vj



for all λ ≥ 0,



j=0



where addition on the left-hand side indicates the Minkowski sum of sets, and the numbers Vj , j = 0, . . . , d on the right, called Euclidean intrinsic volumes, depend only on K. The Euclidean intrinsic volumes numerically encode key geometric properties of K, for instance, Vd is the volume, 2Vd−1 the surface area, and V0 the Euler characteristic of K. See e.g. [1, p. 142], [29, Chapter 7] and [43, p. 600] for standard proofs. An ‘angular’ Steiner formula was developed in [2, 26, 39], and expresses the size of an angular expansion of a closed convex cone C as follows: 
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P d (θ, C) ≤ λ =



d X



βj,d (λ)vj ,



(5)



j=0



where θ is a random variable uniformly distributed on S d−1 , the coefficients βj,d (λ) = P [B(d − j, d) ≤ λ] (where each B(d − j, d) has the Beta distribution with parameters (d − j)/2 and d/2) do not depend on C, and the conic intrinsic volumes v0 , . . . , vd are determined by C only, and 3



can be shown to be nonnegative and sum to one. As a consequence, we may associate to the conic intrinsic volumes of C an integer-valued random variable V , whose probability distribution L(V ) is given by P (V = j) = vj ,



for j = 0, . . . , d.



(6)



When the dependence of any quantities on the cone needs to be emphasized, we will write VC for V and vj (C) for vj , j = 0, . . . , d. As shown in [32], relation (5) can be seen as a consequence of a general result, known as Master Steiner formula and stated formally in Theorem 3.2 below. Such a result implies that, writing g ∼ N (0, Id ) for a standard ddimensional Gaussian vector, the squared norms kΠC (g)k2 and kΠC 0 (g)k2 behave like two independent chi-squared random variables with a random number VC and d−VC , respectively, of degrees of freedom: in symbols, (kΠC (g)k2 , kΠC 0 (g)k2 ) ∼ (χ2VC , χ2d−VC ).



(7)



In particular, equation (7) is consistent with the well-known relation vj (C) = vd−j (C 0 ) (j = 0, ..., d), that is: the distribution of the random variable VC 0 , associated with the polar cone C 0 via its intrinsic volumes, satisfies the relation Law



VC 0 = d − VC ,



(8)



Law



where, here and in what follows, = indicates equality in distribution. To conclude, we notice that partial versions of (7) (only involving kΠC (g)k2 ) were already known in the literature prior to [32], in particular in the context of constrained statistical inference — see e.g. [19, 40, 41], as well as [42, Chapter 3]. Statistical dimensions. As for Euclidean intrinsic volumes, the distribution of VC encodes key geometric properties of C. For instance, the mean δC := E[VC ] = EkΠC (g)k2 , generalizes the notion of dimension. In particular, if Lk is a linear subspace of Rd of dimension k, and hence a closed convex cone, then vj (Lk ) is one when j = k and zero otherwise, and therefore δ(Lk ) = k. The parameter δC is often called the statistical dimension of C. We observe that, in view of (4), the statistical dimension δC is tightly related to the so-called Gaussian width of a convex cone ! wC := E



sup



hg, yi ,



y∈C:kyk≤1



where g ∼ N (0, Id ). The notion of Gaussian width plays an important role in many key results of compressed sensing (see e.g. [38]). Standard arguments yield that wC2 ≤ δC ≤ wC2 +1 (see [3, Proposition 10.2]). One situation where the statistical dimension is particularly simple to calculate is when C is self dual, that is, when C = −C 0 . In this case, δC = d/2 by (8). The nonnegative orthant, the second-order cone, and the cone of positive-semidefinite matrices are all self dual; see [32] for definitions and further explanations. Polyhedral cones. We recall that a polyhedral cone C is one that can be expressed as the intersection of a finite number of halfspaces, that is, one for which there exists an integer N and vectors u1 , . . . , uN in Rd such that C=



N \



{x ∈ Rd : hui , xi ≥ 0}.



i=1
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For polyhedral cones the probabilities vj , j = 0, . . . , d can be connected to the behavior of the projection ΠC (g) of a standard Gaussian variable g ∼ N (0, Id ) onto C. Indeed, in this case we have the representation vj = P (ΠC (g) lies in the relative interior of a j-dimensional face of C)



(9)



(see e.g. [3, 32]).



1.3



Main theoretical contributions



The main result of the present paper is the following general central limit theorem (CLT), involving the intrinsic volume distributions of a sequence of closed convex cones with increasing statistical dimensions. Theorem 1.1 Let {dn : n ≥ 1} be a sequence of non-negative integers and let {Cn ⊂ Rdn : n ≥ 1} be a collection of non-empty closed convex cones such that δCn → ∞, and write τC2 n = Var(VCn ), n ≥ 1. For every n, let gn ∼ N (0, Idn ) and write σC2 n = Var(kΠCn (gn )k2 ), n ≥ 1. Then, the following holds. 1. One has that 2δCn ≤ σC2 n ≤ 4δCn for every n and, as n → ∞, the sequence kΠCn (gn )k2 − δCn , σCn



n ≥ 1,



converges in distribution to a standard Gaussian random variable N ∼ N (0, 1). 2. If, in addition, lim inf n→∞ τC2 n /δCn > 0, then, as n → ∞, the sequence VCn − δCn , τCn



n ≥ 1,



also converges in distribution to N ∼ N (0, 1), and moreover one has the Berry-Esseen estimate !   1 V − δ Cn Cn sup P ≤ u − P [N ≤ u] = O p . (10) τ log δCn u∈R Cn Part 1 follows from Corollary 3.1. Part 2 is a consequence of Theorem 5.1 below that provides a Berry-Esseen bound, with small explicit constants, for the normal approximation of VC and for any closed convex cone C, in terms of δC , σC2 and τC2 . In particular, if C is a closed convex cone such that τC > 0, then we will prove in Theorem 5.1 and Remark 5.1 that, writing α := τC2 /δC , for δC ≥ 8,   V C − δC 48 sup P ≤ u − P [N ≤ u] ≤ h(δC ) + q , (11) √ τC + u∈R α log (α 2δC ) where 1 h(δ) = 72
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log δ δ 3/16



5/2 .



(12)



Remark 1.1 Observe that, if one considers the sequence {Cd }d≥1 consisting of the nonnegative orthants of Rd , then VCd follows a binomial distribution with parameters (1/2, d) (in particular, δCd = d/2). It follows that, in this case, the supremum on the left-hand side of (10) converges to zero at a speed of the order O(d−1/2 ), from which we conclude that the rate supplied by (10) is, in general, not optimal. As anticipated, our strategy for proving Theorem 1.1 (exception made for the BerryEsseen bound (10)) is to connect the distributions of kΠCn (gn )k2 and VCn via the Master Steiner formula (7), and then to study the normal approximation of the squared norm of ΠCn (gn ) by means of Stein’s method, as well as of general variational techniques on a Gaussian space (see [17, 34]). As illustrated in the Appendix contained in Section 5 below, Stein’s method proceeds by manipulating a characterizing equation for a target distribution (in this case the normal), typically through couplings or integration by parts. Hence, we justify the title of this work by the heavy use that our application of Stein’s method makes of relation (7), generalizing the angular Steiner formula (5). As mentioned above, our main tool will be a form of the second order Poincar´e inequalities studied in [14, 35]. Remark 1.2 A crucial point one needs to address when applying Part 2 of Theorem 1.1 is that, in order to check the assumption lim inf n→∞ τC2 n /δCn > 0, one has to produce an effective lower bound on the sequence of conic variances τC2 n , n ≥ 1. This issue is dealt with in Section 4, where we will prove new upper and lower bounds for conic variances, by using an improved version of the Poincar´e inequality (see Theorem 6.2), as well as a representation of the covariance of smooth functionals of Gaussian fields in terms of the Ornstein-Uhlenbeck semigroup, as stated in formula (96) below. In particular, our main findings of Section 4 (see Theorem 4.1) will indicate that, in many crucial examples, the sequence n 7→ τC2 n eventually satisfies a relation of the type ckE[ΠCn (g)]k2 ≤ τC2 n ≤ 2kE[ΠCn (g)]k2 , where c ∈ (0, 2) does not depend on n. In view of Jensen inequality, this conclusion strictly improves the estimate τC2 n ≤ 2δCn that one can derive e.g. from [32, Theorem 4.5]. We obtain normal approximation results for random variables that are more general than kΠC (g)k2 . To this end, fix a closed convex cone C ⊂ Rd and µ ∈ Rd , and introduce the shorthand notation: F = kµ − ΠC (g + µ)k2 − m,



with m = E[kµ − ΠC (g + µ)k2 ] and σ 2 = Var(F ). (13)



Then, we prove in Theorem 3.1 that dT V (F, N ) ≤



16 √ 2 m(1 + 2kµk) + 3kµk + kµk , σ2



(14)



where N ∼ N (0, σ 2 ) and dT V stand for the total variation distance, defined in (28), between the distribution of two random variables. In the fundamental case µ = 0, Proposition 3.1 shows that the previous estimate implies the simple relation  8 dT V kΠC (g)k2 − δC , N ≤ √ , δC 6



(15)



where N ∼ N (0, σC2 ). Relation (15) reinforces our intuition that the statistical dimension δC encodes a crucial amount of information about the distributions of kΠC (g)k2 and, therefore, about VC , via (7). It does not seem possible to directly combine the powerful inequality (15) with (7) in order to deduce an explicit Berry-Esseen bound such as (10). This estimate is obtained in Section 5, by means of Fourier theoretical arguments of a completely different nature. Remark 1.3 We stress that the crucial idea that one can study a random variable of the type VC , by applying techniques of Gaussian analysis to the associated squared norm kΠC (g)k2 , originates from the path-breaking references [3, 32], where this connection is exploited in order to obtain explicit concentration estimates via the entropy method, see [7] and [30]. As stated in the Introduction, we will now show that our results can be used to exactly characterise phase transitions in regularised inverse problems with convex constraints.



1.4 1.4.1



Applications to exact recovery of structured unknowns General framework



In what follows, we give a summary of how the conic intrinsic volume distribution plays a role in convex optimization for the recovery of structured unknowns and refer the reader e.g. to the excellent discussions in [3, 10, 13, 32] for more detailed information. In certain high dimension recovery problems some small number of observations may be taken on an unknown high dimensional vector or matrix x0 , thus determining that the unknown lies in the feasible set F of all elements consistent with what has been observed. As F may be large, the recovery of x0 is not possible without additional assumptions, such as that the unknown possesses some additional structure such as being sparse, or of low rank. As searching F for elements possessing the given structure can be computationally expensive, one instead may consider a convex optimization problem of finding x ∈ F that minimizes f (x) for some proper convex function1 that promotes the structure desired. The analysis of such an optimization procedure leads one naturally to the study of the descent cone D(f, x) of f at the point x, given by D(f, x) = {y : ∃τ > 0 such that f (x + τ y) ≤ f (x)}. That is, D(f, x) is the conic hull of all directions that do not increase f near x. The proof of Part 1 of Theorem 1.2 below – included here for completeness – reflects the general result, that in the case where F is a subspace, the convex optimization just described successfully recovers the unknown x0 if and only if F ∩ (x0 + D(f, x0 )) = {x0 } (see Section 4 of [38] and Proposition 2.1 [13], and Fact 2.8 of [3]). 1



a convex function having at least one finite value and never taking the value −∞
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(16)



The work [13] provides a systematic way according to which an appropriate convex function f may be chosen to promote a given structure. When an unknown vector, or matrix, is expressed as a linear combination x0 = c1 a1 + · · · ck ak



(17)



for ci ≥ 0, ai ∈ A a set of building blocks or atoms of vectors or matrices, and k small, then one minimizes f (x) = inf{t > 0 : x ∈ tconv(A)},



(18)



over the feasible set, where conv(A) is the convex hull of A. 1.4.2



Recovery of sparse vectors via `1 norm minimization



We now consider the underdetermined linear inverse problem of recovering a sparse vector x0 ∈ Rd from the observation of z = Ax0 , where for m < d the known matrix A ∈ Rm×d has independent entries each with the standard normal N (0, 1) distribution. We say the vector x0 is s-sparse if it has exactly s nonzero components; the value of s is typically much smaller than d. As a sparse vector is a linear combination of a small number of standard basis vectors, the prescription (18) leads us to find a feasible vector that minimizes the `1 norm, denoted by k · k1 . It is a well-known fact that such a linear inverse problem displays a sharp phase transition (sometimes called a threshold phenomenon): heuristically, this means that, for every value of d, there exists a very narrow band [m1 , m2 ] (that depends on d and on the sparsity level of x0 ) such that the probability of recovering x0 exactly is negligible for m < m1 , and overwhelming for m > m2 . Understanding such a phase transition (and, more generally, threshold phenomena in randomised linear inverse problems) has been the object of formidable efforts by many researchers during the last decade, ranging from the seminal contributions by Cand`es, Romberg and Tao [11, 12], Donoho [20, 21] and Donoho and Tanner [22], to the works of Rudelson and Vershynin [38] and Ameluxen et al. [3] (see [10, Section 3], and the references therein, for a vivid description of the dense history of the subject). In particular, reference [3] contains the first proof of the fundamental fact that the above described threshold phenomenon can be explained by the Gaussian concentration of the intrinsic volumes of the descent cone of the `1 norm at x0 around its statistical dimension. In what follows, we shall further refine such a finding by showing that, for large values of d, the phase transition for the exact recovery of x0 has an almost exact Gaussian nature, following from the general quantitative CLTs for conic intrinsic volumes stated at Point 2 of Theorem 1.1. The next statement provides finite sample estimates, valid in any dimension. Note that we use the symbol bac to indicate the integer part of a real number a. Theorem 1.2 (Finite sample) Let x0 ∈ Rd and let C be the descent cone of the `1 norm k · k1 at x0 . Further, let V be the random variable defined by (6), set δ = E[V ] to be the statistical dimension of C, and τ 2 = Var(V ). Let Tδ,τ be the set of real numbers t such that the number of observations mt := bδ + tτ c
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lies between 1 and d. Fix t ∈ Tδ,τ . Let At ∈ Rmt ×d have independent entries, each with the standard normal N (0, 1) distribution and let Ft = {x ∈ Rd : At x = At x0 }. Consider the convex program (CPt ) : min kxk1 subject to x ∈ Ft . Then, for δ ≥ 8 one has the estimate Z t 1 −u2 /2 e du sup P {x0 is the unique solution of (CPt )} − √ 2π −∞ t∈Tδ,τ 48 1 ≤ h(δ) + q , +√ √ 2πτ 2 α log+ (α 2δ)



(19)



where α := τ 2 /δ, and h(δ) given by (12).



Remark 1.4 1. The estimate (19) implies that, for a fixed d and up to a uniform explicit error, the mapping t 7→ P {x0 is the unique solution of (CPt )} , (expressing the probability of recovery as a function of mt ) can by the R t be approximated 2 standard Gaussian distribution function t 7→ Φ(t) := √12π −∞ e−u /2 du, thus demonstrating the Gaussian nature of the threshold phenomena described above. To better understand this point, fix a small α ∈ (0, 1), and let yα be such that Φ(yα ) = 1 − α. Then, standard computations imply that (up to the uniform error appearing in (19)) the probability P {x0 is the unique solution of (CPyα )} is bounded from below by 1 − α, whereas P {x0 is the unique solution of (CP−yα )} is bounded from above by α. Using the explicit expressions m−yα = bδ − yα τ c and myα = bδ + yα τ c, one therefore sees that the transition from a negligible to an overwhelming probability √ of exact reconstruction takes place within a band of approximate length 2yα τ ≤ 2yα 2δ, centered at δ. In particular, if δ → ∞, then the length of such a band becomes negligible with respect to δ, thus accounting for the sharpness of the phase transition. Sufficient conditions, ensuring that α = τ 2 /δ is bounded away from zero when δ → ∞, are given in Theorem 1.3. 2. Define the mapping ψ : [0, 1] → [0, 1] as  ψ(ρ) := inf ρ(1 + γ 2 ) + (1 − ρ)E[(|N | − γ)2+ ] , γ≥0



(20)



where N ∼ N (0, 1). The following estimate is taken from [3, Proposition 4.5]: under the notation and assumptions of Theorem 1.2, if x0 is s-sparse, then 2 δ ψ(s/d) − √ ≤ ≤ ψ(s/d). d sd



(21)



Moreover, as shown in [13, Proposition 3.10] one has the upper bound δ ≤ 2s log(d/s)+ 5s/4, an estimate which is consistent with the classical computations contained in [21]. 9



Proof of Theorem 1.2. We divide the proof into three steps. Step 1. We first show that x0 is the unique solution of (CPt ) if and only if C∩Null(At ) = {0}. Indeed, assume that x0 is the unique solution of (CPt ) and let y ∈ C ∩Null(At ). Since y ∈ C, there exists τ > 0 such that x := x0 + τ y satisfies kxk1 ≤ kx0 k1 . Since y ∈ Null(A) one has x ∈ Ft . As x is feasible the inequality kxk1 < kx0 k1 would contradict the assumption that x0 solves (CPt ). On the other hand, the equality kxk1 = kx0 k1 would contradict the assumption that x0 solves (CPt ) uniquely if x 6= x0 . Hence y = 0, so C ∩ Null(At ) = {0}. Now assume that C ∩ Null(At ) = {0} and let x denote any solution of (CPt ) (note that such an x necessarily exists). Set y = x − x0 . Of course, y ∈ Null(At ). Moreover, by definition of x and that x0 ∈ Ft one has kxk1 = kx0 + yk1 ≤ kx0 k1 , implying in turn that y ∈ C. Hence, y = 0 and x = x0 , showing that x0 is the unique solution to (CPt ). Law



Step 2. We show2 that Null(At ) = Q(Rd−mt × {0}) for Q a uniformly random d × d orthogonal matrix. Both Null(At ) and Q(Rd−mt × {0}) belong almost surely to the Grassmannian Gd−mt (Rd ), the set of all (d − mt )-dimensional subspaces of Rd . Defining the distance between two subspaces as the Hausdorff distance between the unit balls of those subspaces makes Gd−mt (Rd ) into a compact metric space. The metric is invariant under the action of the orthogonal group O(d), and the action is transitive on Gd−mt (Rd ). Therefore, there exists a unique probability measure on Gd−mt (Rd ) that is invariant under the action of the orthogonal group. The law of the matrix A, having independent standard Gaussian entries, is orthogonaly invariant. Therefore, P (Null(At ) ∈ X) = P (Null(At ) ∈ R(X)) for any R ∈ O(d) and any measurable subset X ⊂ Gd−mt (Rd ). On the other hand, it is clear that one also has P (Q(Rd−mt × {0}) ∈ X) = P (Q(Rd−mt × {0}) ∈ R(X)) for any R ∈ O(d) and any measurable subset X ⊂ Gd−mt (Rd ). Therefore, the claim follows by uniqueness of the probability measure on Gd−mt (Rd ) invariant under the action of O(d). Step 3. Combining Steps 1 and 2 we find P (x0 is the unique solution of (CPt )) = P (C ∩ Q(Rd−mt × {0}) = {0}), where Q is a uniformly random orthogonal matrix. the closure of C,



On the other hand, with C denoting



P (C ∩ Q(Rd−mt × {0}) = {0}) = P (C ∩ Q(Rd−mt × {0}) = {0}). As a result of this subtle point, that follows from the discussion of touching probabilities located in [43, pp. 258–259], we may and will assume in the rest of the proof that C is closed. By the Crofton formula (see [3, formula (5.10)]) P (C ∩ Q(Rd−mt × {0}) = {0}) = 1 − 2hmt +1 (C) where hk (C) =



d X



vj (C). (22)



j=k,j−k even



Combining (22) with the interlacing relation stated in [3, Proposition 5.9], that states P (V ≤ mt − 1) ≤ 1 − 2hmt +1 (C) ≤ P (V ≤ mt ) 2



This is a well-known result: we provide a proof for the sake of completeness.
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(23)



yields P (V ≤ mt − 1) ≤ P {x0 is the unique minimizer of (CPt )} ≤ P (V ≤ mt ). But,  P (V ≤ mt − 1) = P V ≤ bδ + tτ c − 1    V −δ 1 ≥ P V ≤ δ + tτ − 1 = P ≤t− τ τ and √  P (V ≤ mt ) = P V ≤ bδ + t τ c    V −δ 1 ≤ P V ≤ δ + tτ + 1 = P ≤t+ . τ τ The conclusion now follows from (11), as well as from the fact that the standard Gaussian density on R is bounded by (2π)−1/2 .  The next result provides natural sufficient conditions, in order for a sequence of linear inverse problems to display exact Gaussian fluctuations in the high-dimensional limit. Theorem 1.3 (Asymptotic Gaussian phase transitions) Let sn , dn , n ≥ 1 be integervalued sequences diverging to infinity, and assume that sn ≤ dn . For every n, let xn,0 ∈ Rdn be sn -sparse, denote by Cn the descent cone of the `1 norm at xn,0 and write δn = δCn = E[VCn ] and τn2 = τC2 n = Var(VCn ). For every real number t, write  if bδn + tτn c < 1  1, bδn + tτn c, if bδn + tτn c ∈ [1, dn ] . mn,t :=  dn , if bδn + tτn c > dn For every n, let An,t ∈ Rmn,t ×dn be a random matrix with i.i.d. N (0, 1) entries, let Fn,t = {x ∈ Rdn : An,t x = An,t xn,0 }, and consider the convex program (CPn,t ) :



min kxk1



subject to x ∈ Fn,t .



Assume that there exists ρ ∈ (0, 1) (independent of n) such that sn = bρdn c. Then, as n → ∞, lim inf n τn2 /δn > 0, and   Z t 1 1 −u2 /2 P {x0 is the unique solution of (CPn,t )} = √ e du + O √ , log δn 2π −∞   1 √ where the implicit constant in the term O log δn depends uniquely on ρ. Proof. In view of the estimate (19), the conclusion will follow if we can prove the existence of a finite constant α(ρ) > 0, uniquely depending on ρ, such that τn2 /δn ≥ α(ρ) for n sufficiently large. The existence of such a α(ρ) is a direct consequence of the results stated in the forthcoming Proposition 4.1.  11



1.4.3



Second example: low-rank matrices



Let the inner product of two m × n matrices U and V be given by hU, Vi = tr(UT V), and recall that, for X ∈ Rm×n , the Schatten 1 (or nuclear) norm is given by min(m,n)



kXkS1 =



X



σi (X),



(24)



i=1



where σ1 (X) ≥ · · · ≥ σmin(m,n) (X) are the singular values of X. Given a matrix A ∈ Rm×np , partition A as (A1 , . . . , Ap ) into blocks of sizes m × n, and let A be the linear map from Rm×n to Rp given by A(X) = (hX, A1 i, · · · , hX, Ap i). Now let X0 ∈ Rm×n be a low rank matrix, and suppose that one observes z = A(X0 ), where the components of A are independent with distribution N (0, 1). To recover X0 we consider the convex program minkXkS1



subject to X ∈ F,



where F = {X : A(X) = z}.



As F is the affine space X0 + Null(A), arguing as in the previous section one can show that X0 is recovered exactly if and only if C ∩ Null(A) = {0} where C = D(k · kS1 , X0 ), the descent cone of the Schatten 1-norm at X0 . Furthermore, Null(A) is a subspace of Rm×n of dimension nm−p, and is rotation invariant in the sense that for any P ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of size p, Null(A) = Q(SP ) where Q is a uniformly random orthogonal transformation on Rm×n , and SP = {X ∈ Rm×n : Xij = 0 for all (i, j) ∈ P }. Now considering the natural linear mapping between Rm×n and Rnm that preserves inner product, one may apply the Crofton formula (5.10) and proceed as for the `1 descent cone as above in Section 1.4.3 to deduce low rank analogues of Theorems 1.2 and 1.3. In particular, for the latter we have the following result. As the Schatten 1-norm of a matrix and its transpose are equal, without loss of generality we assume that all matrices below have at least as many columns as rows. Theorem 1.4 For every k ∈ N, let (nk , mk , rk ) be a triple of nonnegative integers depending on k. We assume that nk → ∞, mk /nk → ν ∈ (0, 1] and rk /mk → ρ ∈ (0, 1) as k → ∞, and that for every k the matrix X(k) ∈ Rmk ×nk has rank rk . Let Ck = D(k · kS1 , X(k)),



δk = δ(Ck ) 12



and



τk2 = Var(VCk )



denote the descent cone of the Schatten 1-norm of X(k), its statistical dimension, and the the variance of its conic intrinsic volume distribution, respectively. For every real number t, write  1 if bδk + tτk c < 1  bδk + tτk c if bδk + tτk c ∈ [1, mk nk ] . pk,t :=  mk nk if bδk + tτk c > mk nk For every k, let Ak,t ∈ Rmk ×nk pk,t be a random matrix with i.i.d. N (0, 1) entries, let Fk,t = {X : Ak,t (X) = Ak,t (X(k))} and consider the convex program (CPk,t ) :



minkXkS1



subject to



X ∈ Fk,t .



Then, as k → ∞, lim inf τk2 /δk > 0, and   Z t 1 1 −u2 /2 , P {X(k) is the unique solution of (CPk,t )} = √ e du + O √ log δk 2π −∞   1 where the implicit constant in the term O √log depends uniquely on ν and ρ. δk



1.5



Connections with constrained statistical inference



Let C ⊂ Rd be a non-trivial closed convex cone, let g ∼ N (0, Id ) and fix a vector µ ∈ Rd . When µ is an element of C and y = g + µ is regarded as a d-dimensional sample of observations, then the projection ΠC (g + µ) is the least square estimator of µ under the convex constraint C, and the norm kµ − ΠC (g + µ)k measures the distance between this estimator and the true value of the parameter µ; the expectation Ekµ − ΠC (g + µ)k2 is often referred to as the L2 -risk of the least squares estimator. Properties of least square estimators and associated risks have been the object of vigorous study for several decades; see e.g. [5, 9, 15, 16, 44, 45, 46, 47] for a small sample. Although several results are known about the norm kµ − ΠC (g + µ)k2 (for instance, concerning concentration and moment estimates – see [15, 16] for recent developments), to our knowledge no normal approximation result is available for such a random variable, yet. We conjecture that our estimate (14) might represent a significant step in this direction. Note that, in order to make (14) suitable for applications, one would need explicit lower bounds on the variance of kµ − ΠC (g + µ)k2 for a general µ, and for the moment such estimates seem to be outside the scope of any available technique: we prefer to think of this problem as a separate issue, and leave it open for future research. We conclude by observing that, as explained e.g. in [19, 41] and in [42, Chapter 3], the likelihood ratio test (LRT) for the hypotheses H0 : µ = 0 versus H1 : µ ∈ C\{0} rejects H0 when the projection kΠC (y)k2 of the data y on C is large. In this case, our results, together with the concentration estimates from [3, 32], provide information on the distribution of the test statistic under the null hypothesis. Similarly, the squared projection length kΠC 0 (y)k2 onto the polar cone C 0 is the LRT statistic for the hypotheses H0 : µ ∈ C versus H1 : µ ∈ Rd \C.



1.6



Plan



The paper is organised as follows. Section 2 deals with normal approximation results for the squared distance between a Gaussian vector and a general closed convex set. Section 13



3 contains total variation bounds to the normal, and our main CLTs for squared norms of projections onto closed convex cones, as well as for conic intrinsic volumes. In Section 4, we derive new upper and lower bounds on the variance of conic intrinsic volumes. Section 5 is devoted to explicit Berry-Esseen bounds for intrinsic volumes distributions, whereas the Appendix in Section 6 provides a self-contained discussion of Stein’s method, Poincar´e inequalities and associated estimates on a Gaussian space.



2



Gaussian Projections on Closed Convex Sets: normal approximations and concentration bounds



Let C ⊂ Rd be a closed convex set, let µ ∈ Rd and let g ∼ N (0, Id ) be a normal vector. In this section, we obtain a total variation bound to the normal, and a concentration inequality, for the centered squared distance between g + µ and C, that is, for F = d2 (g + µ, C) − E[d2 (g + µ, C)],



(25)



where d(x, C) is given by (1). We also set σ 2 = Var(d2 (g + µ, C)) = Var(F ). It is easy to verify that σ 2 is finite for any non empty closed convex set C, and equals zero if and only if C = Rd . To exclude trivialities, we call a set C non-trivial if ∅ ( C ( Rd . The following two lemmas are the key to our main result Theorem 2.1: their proofs are standard, and are provided for the sake of completeness. Lemma 2.1 Let C be a non empty closed convex subset of Rd , and let ΠC (x) the metric projection onto C. Then, ΠC and Id − ΠC are 1-Lipschitz continuous, and the Jacobian Jac(ΠC )(x) ∈ Rd×d exists a.e. and satisfies k(Id − Jac(ΠC )(x))T yk ≤ kyk



for all y ∈ Rd .



(26)



Proof: Since ΠC is a projection onto a non-empty closed convex set, by [36, p. 340] (see also B.3 of [3]), we have that kΠC (v) − ΠC (u)k ≤ kv − uk for all u, v ∈ Rd , that is, ΠC , and hence Id − ΠC , are 1-Lipschitz. Bound (26) now follows by Rademacher’s theorem and the fact that, on a Hilbert space, the operator norms of a matrix and that of its transpose are the same.  Lemma 2.2 Let C be a non-empty closed convex set C ⊂ Rd , and let ΠC (x) be the metric projection onto C. Then, ∇d2 (x, C) = 2 (x − ΠC (x)) ,



x ∈ Rd .



(27)



Proof: Fix an arbitrary x0 ∈ Rd , and use the shorthand notation v0 := x0 −ΠC (x0 ). Writing ϕ(u) := d2 (x0 + u, C) − d2 (x0 , C) − 2hv0 , ui, relation (27) is equivalent to the statement that the mapping u 7→ ϕ(u) is differentiable at u = 0, and ∇ϕ(0) = 0. To prove this statement, we show the following stronger relation: for every u ∈ Rd , one has that |ϕ(u)| ≤ kuk2 . Indeed, the inequality ϕ(u) ≤ kuk2 follows from the fact that d2 (x0 + u, C) ≤ ku + v0 k2 and 14



d2 (x0 , C) = kv0 k2 . To obtain the relation ϕ(u) ≥ −kuk2 , just observe that u 7→ ϕ(u) is a convex mapping vanishing at the origin, implying that ϕ(u) ≥ −ϕ(−u) ≥ −k−uk2 = −kuk2 , where the second inequality is a consequence of the estimates deduced in the first part of the proof. This yields the desired conclusion.  We recall that the total variation distance between the laws of two random variables F and G is defined as dT V (F, G) = sup |P (F ∈ A) − P (G ∈ A)|,



(28)



A



where the supremum runs over all the Borel sets A ⊂ R. It is clear from the definition that dT V (F, G) is invariant under affine transformations, in the following sense: for any a, b ∈ R with a 6= 0, one has dT V (aF + b, aG + b) = dT V (F, G). We say that Fn converges to F in TV TV total variation (in symbols, Fn → F ) if dT V (Fn , F ) → 0 as n → ∞. Note that, if Fn −→ F , Law Law then Fn −→ F , where −→ denotes convergence in distribution. The following statement provides a total variation bound for the normal approximation of the squared distance between a Gaussian vector with arbitrary mean and a closed convex set. Theorem 2.1 Let C ⊂ Rd be a non trivial closed convex set, F and σ 2 as in (25), and N ∼ N (0, σ 2 ). Then for g ∼ N (0, Id ) and µ ∈ Rd , p 16 Ed2 (g, C − µ) . dT V (F, N ) ≤ σ2 Proof: As the translation of a closed convex set is closed and convex, and d2 (g + µ, C) = d2 (g, C − µ) we may replace C by C − µ and assume (without loss of generality) that µ = 0. Using Lemma 6.2 and Theorem 6.1 in the Appendix we deduce that s  Z ∞ 2 −t b dT V (F, N ) ≤ 2 Var e h∇F (g), E(∇F (b gt ))idt , (29) σ 0 where bt = e−t g + g



√



b, 1 − e−2t g



b denote, respectively, expectation b an independent copy of g, and the symbols E and E with g b b. Set also E = E ⊗ E. Letting H(g) denote the integral inside the with respect to g and g variance in (29), by (27) we have Z ∞ b gt − ΠC (b H(g) = 4 e−t hg − ΠC (g), E[b gt )]idt. (30) 0



We bound the variance of H(g) by the Poincar´e inequality (see Theorem 6.2 in the Appendix), which states that Var(H(g)) ≤ Ek∇H(g)k2 . (31) 15



Applying the product rule and differentiating under the integral (justified e.g. by a dominated convergence argument), using (30), (27) and Lemma 2.1 we obtain Z ∞ b gt − ΠC (b e−t (Id − Jac(ΠC )(g))T E[b gt )]dt (32) ∇H(g) = 4 0 Z ∞ b d − Jac(ΠC )(b e−t E[(I gt ))T ] (g − ΠC (g)) dt. +4 0



The expectation of the squared norm of the first term on the right-hand side of (32) is given by a factor of 16 multiplying Z ∞ b gt − ΠC (b Ek e−t (Id − Jac(ΠC )(g))T E[b gt )]dtk2 0 Z ∞ b gt − ΠC (b e−t k (Id − Jac(ΠC )(g))T E[b gt )]k2 dt ≤ E Z0 ∞ Z ∞ −t b 2 e kE[b gt − ΠC (b gt )]k dt ≤ E e−t kb gt − ΠC (b gt )k2 dt ≤ E 0 Z0 ∞ = E e−t kg − ΠC (g)k2 dt = Ekg − ΠC (g)k2 = Ed2 (g, C), 0



where we have used the triangle inequality, Lemma 2.1, Jensen’s inequality, and the fact that gbt has the same distribution as g for all t. Applying a similar chain of inequalities, it is immediate to bound the expectation of the squared norm of the second summand in (32) by the same quantity. Applying (31) together with the inequality kx + yk2 ≤ 2kxk2 + 2kyk2 , we therefore deduce that Var(H(g)) is bounded by 64Ed2 (g, C). Substituting this bound into (29) yields the desired result.  To conclude the section, we present a concentration bound for random variables of the type (25). Theorem 2.2 Let C be a closed convex set, and F given in (25). Then,  2 2  2ξ Ed (g, C − µ) ξF Ee ≤ exp , for all ξ < 1/2, 1 − 2ξ and



  2 P (F > t) ≤ exp −Ed (g, C − µ)h



t 2 2Ed (g, C − µ)



(33)



 for all t > 0



(34)



where h(u) = 1 + u −



√



1 + 2u.



Proof: We reduce to the case µ = 0 as in the proof of Theorem 3.1. The arguments used in the proof of Lemma 4.9 of [32] for convex cones work essentially in the same way for projections on closed convex sets: we shall therefore provide only a quick sketch of the proof, and leave the details to the reader. Similarly to [32], for g ∼ N (0, Id ) we set H(g) = ξZ



for Z = d2 (g, C) − Ed2 (g, C), 16



and, using (27), we deduce that  k∇H(g)k2 = 4ξ 2 kg − ΠC (g)k2 = 4ξ 2 d2 (g, C) = 4ξ 2 Z + Ed2 (g, C) . Proceeding as in the proof of Lemma 4.9 in [32], with Ed2 (g, C) here replacing δC there, yields the bound (33) on the Laplace transform of F . Using the terminology defined in Section 2.4 of [8], we have therefore shown that F is sub-gamma on the right tail, with variance factor 4Ed2 (g, C) and scale parameter 2. The conclusion now follows by the computations in that same section of [8].  Note that the estimate (34) is equivalent to the following bound: for every t > 0   p P F > 8Ed2 (g, C − µ)t + 2t ≤ e−t . Remark 2.1 Let C be a closed convex cone. In [32, Lemma 4.9] it is proved that, for every ξ < 21 ,  2  2ξ δC ξ(kΠC (g)k2 −δC ) Ee ≤ exp , (35) 1 − 2ξ where g ∼ N (0, Id ) and (as before) δC = E[kΠC (g)k2 ]. This estimate can be deduced by applying the general relation (33) to the polar cone C 0 in the case where µ = 0: indeed, by virtue of (3) one has that kΠC (x)k2 = d2 (x, C 0 ),



(36)



so that (35) follows immediately.



3



Steining the Steiner formula: CLTs for conic intrinsic volumes



3.1



Metric projections on cones



The goal of our analysis in this subsection is to demonstrate the following variation of Theorem 2.1. Theorem 3.1 Let C ⊂ Rd be a non-trivial closed convex cone and let F = kµ − ΠC (g + µ)k2 − m,



with



m = E[kµ − ΠC (g + µ)k2 ] and



σ 2 = Var(F ).



Then for every µ ∈ Rd , dT V (F, N ) ≤



o √ 16 np 2 + 2 mkµk + 3kµk2 EkΠ (g + µ)k C σ2 16 √ ≤ 2 m(1 + 2kµk) + 3kµk2 + kµk . σ



17



Proof: Expanding F we obtain F = kµk2 + kΠC (g + µ)k2 − 2hµ, ΠC (g + µ)i − m. The gradient of the first and last terms above are zero, while ∇kΠC (x + µ)k2 = 2ΠC (x + µ) and ∇hµ, ΠC (x + µ)i = Jact (ΠC (x + µ))µ. the first equality following from (36) and (27), the second from the definition of the Jacobian, and Lemma 2.1, showing existence. We apply (94), and hence consider Z ∞ √ b b, bt = e−t g + 1 − e−2t g e−t h∇F (g), E(∇F (b gt ))idt where g G= 0



b be expectation with respect to b an independent copy of g. As before, we let E and E with g b b, respectively, and write E = E ⊗ E. g and g Expanding out the inner product, we obtain G Z =



∞



 b 2ΠC (b e−t h2ΠC (g + µ) − 2Jact (ΠC (g + µ))µ, E gt + µ) − 2Jact (ΠC (b gt + µ))µ idt



0



= 4(A1 − A2 − A3 + A4 ) where ∞



Z



b (ΠC (b e−t hΠC (g + µ), E gt + µ))idt



A1 = Z0 ∞ A2 = Z0 ∞ A3 = 0



Z



 b Jact (ΠC (b e−t hΠC (g + µ), E gt + µ))µ idt b (ΠC (b e−t hJact (ΠC (g + µ))µ, E gt + µ))idt and



∞



 b Jact (ΠC (b e−t hJact (ΠC (g + µ))µ, E gt + µ))µ idt.



A4 = 0



Exploiting (94), as well as the fact that σ 2 = E[G] = 4E[A1 − A2 − A3 + A4 ], we deduce that 2 E|σ 2 − 4 (A1 − A2 − A3 + A4 ) | σ2 4 8 X 8 E|Ai − EAi | ≤ 2 (B1 + B2 + B3 + B4 ) , ≤ 2 σ i=1 σ



dT V (F, N ) ≤



where B1 =



p



Var(A1 ) and Bj = 2E|Aj | for j = 2, 3, 4.



One has that Bj ≤ 2E kΠC (g + µ)k2



1/2



√ kµk ≤ 2( m + kµk)kµk for j = 2, 3 and B4 ≤ 2kµk2 , 18



(37)



where we have applied the Cauchy-Schwarz and triangle inequality, as well as Lemma 2.1. On the other hand, one can write Z ∞ b (b e−t hg + µ − ΠC0 (g + µ), E gt + µ − ΠC0 (b gt + µ))idt, A1 = 0



bt + µ and exploit exactly the same arguments used after formula (30) (with g + µ and g bt ) to deduce replacing, respectively, g and g B12 = Var(A1 ) ≤ 4E[kg + µ − ΠC 0 (g + µ)k2 ] = 4E[kΠC (g + µ)k2 ], thus yielding the first claim of the theorem. The second follows from observing that p √ E[kΠC (g + µ)k2 ] ≤ m + kµk, where we have applied the triangle inequality with respect to the norm on Rd -valued random p  vectors defined by the mapping X 7→ EkXk2 .



3.2



Master Steiner formula and Main CLTs



As anticipated in the Introduction, the aim of this section is to obtain CLTs involving the conic intrinsic volume distributions {L(VCn )}n≥1 (see Section 1.2) associated with a sequence {Cn }n≥1 of closed convex cones. The strategy for achieving this goal will consist in connecting the intrinsic volume distribution of a closed convex cone C ⊂ Rd to the squared norm of the metric projection of g ∼ N (0, Id ) onto C. Our main tool will be the powerful “Master Steiner Formula” stated in [32, Theorem 3.1 and Corollary 3.2]. Throughout the following, we use the symbol χ2j to indicate the chi-squared distribution with j degrees of freedom, j = 0, 1, 2, ... . Theorem 3.2 (Master Steiner Formula, see [32]) Let C ⊂ Rd be a non-trivial closed convex cone, denote by C 0 its polar cone, and write {vj : j = 0, ..., d} to indicate the conic intrinsic volumes of C. Then, for every measurable mapping f : R2+ → R, 2



2



Ef (kΠC (g)k , kΠC 0 (g)k ) =



d X



0 E[f (Yj , Yd−j )]vj ,



(38)



j=0



where {Yj , Yj0 , j = 0, . . . , d} stands for a collection of independent random variables such that Yj , Yj0 ∼ χ2j , j = 0, 1 . . . , d. Observe that, somewhat more compactly, we may also express (38) as the mixture relation Law



(kΠC (g)k2 , kΠC 0 (g)k2 ) = (YVC , YV0C 0 )



(39)



where the integer-valued random variable VC is independent of {Yj , Yj0 , j = 0, . . . , d}, and VC 0 = d − VC . Once combined with (3) and (9), in the case of a polyhedral cone C ⊂ Rd , relation (39) reinforces the intuition that, given the dimension j of the face of C in which lies the projection ΠC (g), the Gaussian vector g can be written as the sum of two independent 19



Gaussian elements, with dimension j and d − j respectively, whose squared lengths follow the chi-squared distribution with the same respective degrees of freedom. Fix a non-trivial closed convex cone C ⊂ Rd . In order to connect the standardized limiting distributions of kΠC (g)k2 and VC , we use (39) to deduce that Law



kΠC (g)k2 =



VC X



Xi = WC + VC ,



where WC =



i=1



VC X



(Xi − 1),



(40)



i=1



and {Xi }i≥1 denotes a collection of i.i.d. χ21 random variables, independent of VC . Since EXi = 1, we find EkΠC (g)k2 = E[VC ], and letting GC denote the squared projection length, we have GC = kΠC (g)k2



and δC = E[GC ].



(41)



Similarly, applying the conditional (on VC ) variance formula in (40) yields, with τC2 := Var(VC ) and σC2 := Var(GC ), that Var(WC ) = 2δC



and σC2 = τC2 + 2δC ,



(42)



the latter formula recovering Proposition 4.4 of [32]. Standardizing both sides of the first equality in (40) we therefore obtain that √ GC − δC Law 2δC WC τ C V C − δC √ = + . (43) σC σC 2δC σC τC The following statement, that is partially a consequence of Theorem 3.1, shows that a total variation bound to the normal for the standardized projection can be expressed in terms of the mean δC only. We recall that C is self dual when C 0 = −C, and that in this case δC = d/2 by (8). Proposition 3.1 We have that τC2 ≤ 2δC



and



2δC ≤ σC2 ≤ 4δC .



(44)



In addition, with GC and δC as in (41) and N ∼ N (0, σC2 ), one has that √ √ 8 8 2 16 δC ≤√ and, if C is self dual, then dT V (F, N ) ≤ √ . (45) dT V (GC − δC , N ) ≤ σC2 δC d Proof: Theorem 4.5 of [32] yields the first bound in (44). The second bound in (44) now follows from the second relation stated in (42). The first inequality in (45) follows from the first inequality of Theorem 3.1 by setting µ = 0, and the remaining claims by the lower bound on σC2 in (44).  Remark 3.1 The first estimate in (45) can also be directly obtained from Theorem 2.1 by specializing it to the case µ = 0. Indeed, writing C 0 for the dual cone of C, one has that kΠC (g)k2 = d2 (g, C 0 ): the conclusion then follows by applying Theorem 2.1 to the random variable F = d2 (g, C 0 ) − Ed2 (g, C 0 ). 20



We now consider normal limits for the conic intrinsic volumes. Explicit Berry-Esseen bounds will be presented in Theorem 5.1. Theorem 3.3 Let {dn : n ≥ 1} be a sequence of non-negative integers and let {Cn ⊂ Rdn : n ≥ 1} be a collection of non-trivial closed convex cones such that δCn → ∞. For notational simplicity, write δn , σn , τn , etc., instead of δCn , σCn , τCn , etc., respectively. Then, 1.  dT V



W √ n ,N 2δn



 ≤



2σn , δn



for all n ≥ 1,



(46)



where N ∼ N (0, 1), and W TV √ n −→ N (0, 1), 2δn



as n → ∞.



n are asymptotically independent in the fol2. The two random variables √W2δnn and Vnτ−δ n lowing sense: if {nk : k ≥ 1} is a subsequence diverging to infinity and



Vnk − δnk , τnk



k ≥ 1,



(47)



converges in distribution to some random variable Z, then ! Wnk Vnk − δnk Law p −→ (N, Z), , τnk 2δnk where N has the N (0, 1) distribution and is stochastically independent of Z. 3. If Vn − δn Law −→ N (0, 1), τn



as n → ∞,



(48)



Gn − δn Law −→ N (0, 1), σn



as n → ∞,



(49)



then



and the converse implication holds if lim inf n→∞ τn2 /δn > 0. Remark 3.2 Proposition 3.1 shows that, if δn → ∞, then (49) holds and, provided lim inf τn2 /δn > 0, relation (48) also takes place by virtue of Part 3 of Theorem 3.3. This chain of implications, which is one of the main achievements of the present paper, corresponds to the statement of Theorem 1.1 in the Introduction (exception made for the Berry-Esseen bound). Results analogous to Part 3 of Theorem 3.3 (involving general mixtures of independent χ2 random variables) can be found in Dykstra [25]. 21



Proof of Theorem 3.3: Throughout the proof, and when there is no risk of confusion, we drop the subscript n for readability. (Point 1) By [31], a variable X with a Γ(α, λ) distribution satisfies E[Xf 0 (X) + (α − λX)f (X)] = 0 for all locally absolutely continuous functions f for which these expectations exist. Hence, since conditionally on V , W has a centered chi-squared distribution with V degrees of freedom, one verifies immediately that, for every Lipschitz mapping φ : R → R,       W W W 1 0 E √ φ √ = E (W + V )φ √ . δ 2δ 2δ 2δ Stein’s inequality (89) in the Appendix therefore yields that   W 2 2√ 2σ 4 dT V √ , N ≤ E|W + V − δ| ≤ 2δ + τ 2 = ≤ √ →0 δ δ δ 2δ δ using (44) together with the fact that δ → ∞ by assumption. (Point 2) Let η, ξ be arbitrary real numbers. Using that the conditional distribution L(W |V ) corresponds to a centered chi-squared distribution with V degrees of freedom, we have E[eiηW |V ] =



e−iηV = exp(−V (iη + (1/2) log(1 − 2iη)). (1 − 2iη)V /2



Conditioning on V , we obtain the following expression for the joint characteristic function √ of W/ 2δ and (V − δ)/τ : i h W √ √ V −δ iη √ +iξ V τ−δ = E[e−V (iη/ 2δ+(1/2) log(1−2iη/ 2δ))+iξ τ ] ψ(η, ξ) := E e 2δ h V −δ i √ √ √ √ δ [−iη/ 2δ− 21 log(1−2iη/ 2δ)] iξ−iητ / 2δ− τ2 log(1−2iη/ 2δ)) ( τ =e ×E e . (50) As δ → ∞, one has clearly that   √ √ 1 δ −iη/ 2δ − log(1 − 2iη/ 2δ) → −η 2 /2. 2 p Moreover, since τ /δ ≤ 2/δ → 0 by (44), we obtain as well that √ √ iξ − iητ / 2δ − τ /2 log(1 − 2iη/ 2δ) → iξ. Hence, letting ψZ be the characteristic function of the limiting distribution Z of the sequence in (47), we infer that 2 ψ(η, ξ) → e−η /2 ψZ (ξ), thus yielding the desired conclusion. (Point 3) For both implications it is sufficient to show that, for every subsequence nk , k ≥ 1, of 1, 2, 3, . . ., there exists a further subsequence nkl , l ≥ 1, along which the claimed distributional convergence holds. By (44), 0 ≤ lim inf τ 2 /δ ≤ lim sup τ 2 /δ ≤ 2, so for every nk , k ≥ 0 22



there exists a further subsequence nkl , l ≥ 1, along which τ 2 /δ converges to a limit, say r, in [0, 2]. Hence, along nkl , l ≥ 1, we obtain r r p √ 2 r and τ /σ → . 2δ/σ = 2δ/(2δ + τ 2 ) → 2+r 2+r Assume first that (48) is satisfied. Then, according to (43) andq Point 2 in the statement, p r G−δ 2 one has that σ converges in distribution along nkl , l ≥ 1, to N + Z, where 2+r 2+r N and Z are two independent N (0, 1) random variables, and we conclude that (49) holds along nkl , l ≥ 1. Now assume that (49) is satisfied and that lim inf n→∞ τn2 /δn > 0; in this case, we may assume that τ 2 /δ converges to r ∈ (0, 2] along nkl . Observe that, by virtue of boundedness in L2 , the family { V τ−δ } is tight. Consider now a further subsequence of nkl along which V τ−δ converges in distribution to, say, Z. According to Point 2 we know that the q p r 2 N + 2+r Z elements of the limiting pair (N, Z) are independent, and by (49) the sum 2+r is normal. By Cram´er’s theorem we conclude that both N and Z are normally distributed, yielding the desired conclusion.  As Table 1 below shows, Theorem 1.1 yields a central limit theorem for Gn and Vn for the most common examples of convex cones that appear in practice. The last two rows refer to CA and CBC , chambers of finite reflection groups acting on Rd , which are the normal cones to the permutahedon, and signed permutahedron, respectively. For further definitions and properties, see e.g. [3, 32] and the references therein. Cone Orthant Real Positive Semi-Definite Cone Circα CA CBC



Ambient Rd 2 Rn Rd Rd Rd



δ 1 d 2 1 n(n + 4 2



1)



d sin α Pd k −1 Pk=1 d 1 −1 k=1 2 k



τ2 1 d 4  ' π42 − 14 n2 1 (d − 2) sin2 (2α) 2 P d k −1 (1 − k −1 ) Pk=1 d 1 −1 1 −1 k=1 2 k (1 − 2 k )



Table 1: Some common cones



Remark 3.3 The first three lines of Table 1 are taken from Table 6.1 of [32]. The means for the permutathedron and signed permutahedron are from Section D.4. of [3]. The expressions for the variances τ 2 associated with the permutathedron and signed permutahedron can be deduced as follows. Let q(s) =



d X



vk sk ,



k=0



be the probability generating function of the distribution of V = VCd . We have q 0 (1) = EV



and q 00 (1) = EV (V − 1)



23



so in particular, Var(V ) = q 0 (1) + q 00 (1) − q 0 (1)2 = q 0 (1) + log q(s)00 |s=1 . For the permutahedron, one can use Theorem 3 of [23, Theorem 3] (see also the first line of Table 10 of [18]) to deduce that d



q(s) =



1 Y (s + k − 1) so that d! k=1



log q(s) = − log d! +



d X



log(s + k − 1).



k=1



Hence, 0



0



EV = q (1) = log q(s) |s=1 =



d X k=1



1 s+k−1



! =



d X 1 k=1



s=1



k



,



and 0



00



0



Var(V ) = q (1) + log q(s) |s=1 = q (1) −



d X k=1



1 (s + k − 1)2



! = s=1



d  X 1 k=1



1 − 2 k k



 .



The calculation for the signed permutahedron is the analogous, but now one has to use [6, formula (3)]; see also the second line of Table 10 of [18]. We conclude the section with a statement showing that the rate of convergence appearing in (46) is often optimal. Also, by suitably adapting the techniques introduced in [33], one can√deduce precise information about the local asymptotic behaviour of the difference P [Wn / 2δn ≤ x] − P [N ≤ x], where x ∈ R and N ∼ N (0, 1). Proposition 3.2 Let the notation and assumptions of Theorem 3.3 prevail, and assume further that τn2 /δn → r for some r ≥ 0, as n → ∞. Then, for every x ∈ R one has that, as n → ∞, r     2 δn 2 e−x /2 Wn 2 ≤ x − P [N ≤ x] −→ − (x − 1) √ . (51) P √ σn 18 + 9r 2δn 2π As a consequence, there exists a constant c ∈ (0, 1) (independent of n) such that, for all n sufficiently large,     Wn Wn σn ≤ dKol √ , N ≤ dT V √ , N . c (52) δn 2δn 2δn Proof. Fix x ∈ R. It suffices to show that, for every sequence nk , k ≥ 1 diverging to infinity, there exists a subsequence nkl , l ≥ 1 along which the convergence (51) takes place. Let then nk → ∞ be an arbitrary divergent sequence. By L2 -boundedness, the collection of the laws V −δ of the random variables nkτn nk , k ≥ 1 is tight, and therefore there exists a subsequence nkl such that



Vnk −δnk l τ nk l



k



l



converges in distribution to some random variable Z. Exploiting again



L2 -boundedness, which additionally implies uniform integrability, one sees immediately that Z is necessarily centered. Now let φx = φh denote the solution (90) to the Stein equation 24



(88) for the indicator test function h = 1(−∞,x] . By (2.8) of [17], φx is Lipschitz, so as in part 1 of the proof of Theorem (3.3), we have       Wn Wn Wn 1 0 E √ φ √ = E (Wn + Vn )φ √ . δn 2δn 2δn 2δn Hence, by (88), we obtain        Wn Wn Wn Wn 0 P √ ≤ x − P [N ≤ x] = E φx √ − √ φx √ 2δn 2δn 2δn 2δn     Wn 1 0 E φx √ = (δn − Wn − Vn ) . δn 2δn Dividing both sides by σn /δn , one obtains √         Wn 2δn Wn δn Wn τn Vn − δn 0 √ P √ ≤ x − P [N ≤ x] = E φx √ − − . σn σ n τn σn 2δn 2δn 2δn In view of Parts 1 and 2 of Theorem 3.3, of formula (42), and of the fact that Z is centered, one has, along the subsequence nkl , that r     δn Wn 2 E[φ0x (N )N ], P √ ≤ x − P [N ≤ x] → − σn 2+r 2δn where N ∼ N (0, 1). We can now use e.g. [33, formula (2.20)] to deduce that, for every real x, 2 (x2 − 1) e−x /2 0 E[φx (N )N ] = × √ , 3 2π from which the desired conclusion follows at once.  In the next section, we shall prove general upper and lower bounds for the variance of conic intrinsic volumes. In particular, these results will apply to two fundamental examples that are not covered by the estimates contained in Table 1, and that are key in convex recovery of sparse vectors and low rank matrices: the descent cone of the `1 norm, and of the Schatten 1-norm.



4 4.1



Bounds on the variance of conic intrinsic volumes Upper and lower bounds



Fix d ≥ 1, let C ⊂ Rd be a closed convex cone, and let V = VC be the integer-valued random variable associated with C via relation (6). As before, we will denote by g ∼ N (0, Id ) a d-dimensional standard Gaussian random vector. The following statement provides useful new upper and lower bounds on the variance of VC . Theorem 4.1 Define v := kE[ΠC (g)]k2



and 25



b :=



p dδC /2,



(53)



where δC is the statistical dimension of C. Then, one has the following estimates: min(v 2 , 4b2 ) ≤ Var(VC ) ≤ 2v. b



(54)



Remark 4.1 (a) In view of the orthogonal decomposition (3) and of the fact that g is a centered Gaussian vector, one has that v = −hE[ΠC (g)], E[ΠC 0 (g)]i = kE[ΠC 0 (g)]k2 ,



(55)



where C 0 is the polar of C. Moreover, since the mapping x 7→ min(x2 , 4b2 ) is increasing on R+ , one has also that Var(VC ) ≥ min(x2 , 4b2 )/b, for every 0 ≤ x < v. (b) An elementary consequence of (54) is the intuitive fact that a closed convex cone C is a subspace if and only if v = 0, that is, if and only if ΠC (g) is a centered random vector. In order to prove Theorem 4.1, we need the following auxiliary result. Lemma 4.1 (Steiner form of the conic variance) For any closed convex cone C, Var(VC ) = −Cov(kΠC (g)k2 , kΠC 0 (g)k2 ). Proof: From the Master Steiner Formula (38), we deduce that Cov(kΠC (g)k2 , kΠC 0 (g)k2 ) =



d X



0 E[Yj Yd−j ]vj − δC (d − δC ) =



j=0



d X



j(d − j)vj − δC (d − δC ),



j=0



and the conclusion follows from straightforward simplifications.







Proof of Theorem 4.1. (Upper bound) Using (42), one has that Var(VC ) = Var(kΠC (g)k2 ) − 2δC . Now we apply Lemma 6.2 and Theorem 6.2 in the Appendix to the mapping F (g) = kΠC (g)k2 = d2 (g, C 0 ), to obtain that 1 1 Var(kΠC (g)k2 ) ≤ E[k∇F (g)k2 ] + kE[∇F (g)]k2 = 2δC + 2v, 2 2 where we have used the fact that ∇kΠC (g)k2 = 2ΠC (g), following from (36) and (27). √ ˆt = e−t g + 1 − e−2t g ˆ , where g ˆ is an independent (Lower bound) For every t > 0, define g copy of g. The crucial step is to apply relation (96) in the Appendix to the random variables F (g) = kΠC (g)k2 and G(g) = kΠC 0 (g)k2 , obtaining that, for any a ≥ 0, Z ∞ Z ∞ 2 2 −t gt )idt ≤ 4E e−t hΠC (g), ΠC 0 (b gt )idt, Cov(kΠC (g)k , kΠC 0 (g)k ) = 4E e hΠC (g), ΠC 0 (b 0



a



where we have used the definition of the polar cone C 0 as that set that has non-positive ˆ . Now write inner product with all elements of C, and E indicates expectation over g and g hΠC (g), ΠC 0 (b gt )i = hΠC (g), ΠC 0 (b g)i + hΠC (g), ΠC 0 (b gt ) − ΠC 0 (b g)i. 26



(56)



For the second term, using the fact that the projection ΠC 0 (x) is 1-Lipschitz, |EhΠC (g), ΠC 0 (b gt ) − ΠC 0 (b g)i| ≤ E (kΠC (g)k kΠC 0 (b gt ) − ΠC 0 (b g)k) p p bk) ≤ δ(C)Ekb bk2 ≤ 2dδ(C)e−t = 2be−t , ≤ E (kΠC (g)k kb gt − g gt − g as   √ √ bk2 = Eke−t g + ( 1 − e−2t − 1)b Ekb gt − g gk2 = 2 1 − 1 − e−2t d ≤ 2e−2t d. Now use Lemma 4.1: multiplying (56) by e−t , integrating over [a, ∞) and taking expectation yields Z ∞ e−t hΠC (g), ΠC 0 (b gt )idt ≤ 4e−a (−v + be−a ), −Var(VC ) ≤ 4E a



showing that, for every y ∈ [0, 1], Var(VC ) ≥ 4y(v − by). The claim now follows by maximizing the mapping y 7→ 4y(v − by) on [0, 1].







In the next two sections, we shall apply the variance bounds of Theorem (4.1) to the descent cones of the `1 and Schatten-1 norms.



4.2



The descent cone of the `1 norm at a sparse vector



The next result provides the key for completing the proof of Theorem 1.3. In the body of the proofs in this subsection and the next, given two positive sequences an , bn , n ≥ 1, we shall use the notation an ≈ bn to indicate that an /bn → 1, as n → ∞. Proposition 4.1 Let the assumptions and notation of Theorem 1.3 prevail (in particular, sn = bρdn c for a fixed ρ ∈ (0, 1)). Then, ( s ) 2 2 4 √ τ 1 ρ γ(ρ) lim inf n ≥ 2 min 2 ; > 0, (57) n δn ψ(ρ) ψ(ρ)3/2 where ψ(ρ) is defined in (20) and γ = γ(ρ) > 0 is the unique solution to the stationary equation r Z ∞  2 u ρ 2 − 1 e−u /2 du = . π γ γ 1−ρ Proof. Since the `1 norm is invariant with respect to signed permutations, we can assume – without loss of generality – that the sparse vector xn,0 has the form (xn,1 , ..., xn,sn , 0, ..., 0), xn,j > 0. Also, by virtue of the estimate (21), one has that δn ≈ sn ψ(ρ)/ρ. Now write vn := kE[ΠCn (gn )]k2 = kE[ΠCn0 (gn )]k2 ,



n≥1



where we have used (55), and: (i) Cn is the descent cone of the `1 norm at xn,0 , (ii) Cn0 is the polar cone of Cn , and (iii) gn = (g1 , ..., gdn ) stands for a dn -dimensional standard centered Gaussian vector. 27



Using the lower bound in (54) together with some routine simplifications, it is easily seen that relation (57) is established if one can show that lim inf n



vn ≥ γ(ρ)2 . sn



(58)



To accomplish this task, weSfirst reason as in [3, Section B.1] to deduce that, for every n, the polar cone Cn0 has the form γ≥0 γ·∂kxn,0 k1 , where ∂kxn,0 k1 denotes the subdifferential of the `1 norm at xn,0 , that collection of vectors z = (z1 , ..., zdn ) ∈ Rdn such that z1 = · · · = zsn = 1 and |zj | ≤ 1, for every j = sn + 1, ..., dn . As a consequence, for every n, the projection ΠCn0 (gn ) has the form ΠCn0 (g) = (γρ,n , ..., γρ,n , ? , ..., ? ), where the symbol ‘?’ stands for entries whose exact values are immaterial for our discussion, and γρ,n > 0 is defined as the unique random point minimising the mapping Pn Pn γ 7→ Fn,ρ (γ) := si=1 (gi − γ)2 + di=s (|gi | − γ)2+ over R+ . This shows that vn ≥ sn E[γρ,n ]2 : n +1 as a consequence, in order to prove that (58) holds it suffices to check that lim inf E[γρ,n ] ≥ γ(ρ).



(59)



n



The key point is now that γρ,n is (trivially) the unique minimiser of the normalised mapping γ 7→ d1n Fn,ρ (γ), and also that, in view of the strong law of large numbers, for every γ ≥ 0,  1 Fn,ρ (γ) −→ Hρ (γ) := ρ(1 + γ 2 ) + (1 − ρ)E[(|N | − γ)2+ ] , dn



as n → ∞,



(60)



with probability 1. The function γ 7→ Hρ (γ) is minimised at the unique point γ = γ(ρ) > 0 given in the statement, and Fn,ρ (γ) is convex by (1) of Lemma C.1 of [3]. Fix ω ∈ Ω and 0 < ε < γ(ρ), and set Dε = min [Hρ (γ(ρ) + εu) − Hρ (γ(ρ))]. u∈{±1}



Since γ(ρ) is the unique minimizer of Hρ , one has Dε > 0. From (60) we deduce the existence of n0 (ω) large enough such that n ≥ n0 (ω) implies 1 2 max Fn,ρ (γ(ρ) + εu) − Hρ (γ(ρ) + εu) < Dε , v∈{0,±1} dn implying in turn, by Lemma 6.3, that |γρ,n − γ(ρ)| ≤ ε. That is, with probability 1, γρ,n −→ γ(ρ) as n → ∞. Relation (59) now follows from a standard application of Fatou’s Lemma, and the proof of (57) is therefore achieved. 



28



4.3



The descent cone of the Schatten 1-norm at a low rank matrix



In this section we provide lower bounds on the conic variances of the descent cones of the Schatten 1-norm (see definition (24)) for a sequence of low rank matrices. For every k ∈ N, let (n, m, r) be a triple of nonnegative integers depending on k. We drop explicit dependence of n, m and r on k for notational ease, and continue to take m ≤ n without loss of generality. We assume that n → ∞, m/n → ν ∈ (0, 1] and r/m → ρ ∈ (0, 1) as k → ∞, and that for every k the matrix X(k) ∈ Rm×n has rank r. Let δk = δ(Ck ) and τk2 = Var(VCk )



Ck = D(k · kS1 , X(k)),



denote the descent cone of the Schatten 1-norm of X(k), its statistical dimension, and the the variance of its conic intrinsic volume distribution, respectively. Proposition 4.7 of [3] provides that δk = ψ(ρ, ν), k→∞ nm lim



(61)



where ψ : [0, 1]2 → [0, 1] is given by ψ(ρ, ν) = inf η(γ) with γ≥0   Z 2 η(γ) = ρν + (1 − ρν) ρ(1 + γ ) + (1 − ρ)



a+







(u −



γ)2+ φy (u)du



, (62)



a−



and y = (ν − ρν)/(1 − ρν), a± = 1 ± 1 φy (u) = πyu



√



y, and



q (u2 − a2− )(a2+ − u2 ) for u ∈ [a− , a+ ].



The infimum of η(γ) over [0, ∞) is attained at the solution γ(ν, ρ) to  Z a+  u ρ − 1 φy (u)du = . γ 1−ρ a− ∨γ It is not difficult to verify that γ(ν, ρ) > 0 for all ν ∈ (0, 1], ρ ∈ (0, 1). Proposition 4.2 For the sequence of matrices X(k), k ∈ N, lim inf k→∞



τk2 δk



√ ≥ min



2



3/2



2[ρ(1 − νρ)γ(ν, ρ)] 2 ,p 3/2 ψ(ρ, ν) ψ(ρ, ν)



! .



(63)



Proof. By (D.8) of [3], the subdifferential of the Schatten 1-norm at X(k) is given by    Ir 0 m×n ∂kX(k)kS1 = ∈R : σ1 (W ) ≤ 1 , (64) 0 W and it generates the polar C 0 of the descent cone, see Corollary 23.7.1 of [36]. Closely following the proof of Proposition 4.7 of [3], and in particular the application of the HoffmanWielandt Theorem, see [28], Corollary 7.3.8] for the second equality below, taking G to be 29



an m × n matrix with independent N (0, 1) entries, we have   2 G11 − γIr G12 dist(G, γ · ∂kX(k)kS1 )2 = + inf kG22 − γWk2F G21 0 σ1 (W)≤1 F   2 m−r X G11 − γIr G12 = (σi (G22 ) − γ)2+ , + G21 0 F



(65)



i=1



with k · kF denoting the Frobenius norm and where G is partitioned into the 2 × 2 block matrix (Gij )1≤i,j≤2 formed by grouping successive rows of sizes r and m − r, and successive columns of sizes r and n − r. Hence, we obtain   γk Ir 0 ΠCk0 (G) = (66) 0 γk W ∗ for some matrix W ∗ with largest singular value at most 1, and γk the minimizer of the map γ → dist(G, γ · ∂kX(k)kS1 )2 given by (65). As the subdifferential (64) is a nonempty, compact, convex subset of Rm×n that does not contain the origin, Lemma C.1 of [3] guarantees that the map is convex. By [4], Theorem 3.6, √ 1 dist2 (G, γ n − r · ∂kXkS1 ) →a.s. η(γ), nm where η(γ) is given in (62). Reasoning as in Section 4.2 (that is, using Lemma 6.3 followed by Fatou’s lemma), we obtain  √ γ √ k = argmin dist2 (G, γ n − r · ∂kXkS1 ) →a.s. γ(ν, ρ) n−r E[γk ] and lim inf √ ≥ γ(ν, ρ). (67) k→∞ n−r We now invoke Theorem 4.1, and make use of b) of Remark 4.1, to compute a variance lower bound in terms of vk = kE[ΠCk0 (G)]k2F . The two terms in the minimum in (54) give rise to the corresponding terms in (63). By (66), √ kΠC 0 (G)kF ≥ rγk . Squaring, taking expectation, and applying (67), we find lim inf k→∞



Letting bk =



p



vk rγ 2 ≥ lim inf k = ρ(1 − νρ)γ(ν, ρ). k→∞ nm nm



(68)



δk nm/2, since (61) provides that δk ≈ nmψ(ρ, ν), we obtain √ 2 vk2 2vk = lim inf . lim inf 2 k→∞ δk bk k→∞ (nm) ψ(ρ, ν)3/2



Applying (68) now yields the first term in (63). Next, as r 4bk nm 3/2 lim inf = lim inf 2 , k→∞ δk k→∞ δk applying (61) now yields the second term in (63), completing the proof. 30







5



Bound to the normal for VC



Fix a non-trivial convex cone C ⊂ Rd , and denote by δC and τC , respectively, the mean and variance of its intrinsic conic distribution. The main result of the present section is Theorem 5.1, providing a bound on the L∞ norm η = kF − Φk∞ = sup |F (u) − Φ(u)|



(69)



u∈R



of the difference between the distribution function F (u) of (VC − δC )/τC and Φ(u) = P [N ≤ u], where N ∼ N (0, 1). In the following, we set log+ x = max (log x, 0). Lemma 5.1 Let ψF (t) and ψG (t) denote the characteristic functions of a mean-zero distribution with variance 1 and the standard normal distribution N (0, 1), respectively. If sup |ψF (t) − ψG (t)| ≤ B



(70)



|t|≤L



for some positive real numbers L and B, then η ≤ B log+ (L) +



4 . L



(71)



Proof: The result holds trivially for L < 1, so assume L ≥ 1. Let hL (x) be the ‘smoothing’ density function hL (x) =



1 − cos Lx , πLx2



corresponding to the distribution function HL (x), let ∆(x) = F (x) − G(x), and let ∆L = ∆ ∗ HL



and ηL = sup |∆L (x)|.



By Lemma 3.4.10 and the proof of Lemma 3.4.11 of [24] we have Z dt 24 1 η ≤ 2ηL + √ and ηL ≤ |ψF (t) − ψG (t)| . 2π |t|≤L |t| 2π 3/2 L



(72)



As ψF (t) is a characteristic function of a mean-zero distribution with variance 1, it is straightforward to prove that |ψF (t) − 1| ≤



t2 , 2



so |ψF (t) − ψG (t)| = |(ψF (t) − 1) − (ψG (t) − 1)| ≤ t2 . Hence for all  ∈ (0, L] Z



dt |ψF (t) − ψG (t)| ≤ |t| |t|≤ 31



Z |t|≤



|t| = 2 .



(73)



By (70), Z |ψF (t) − ψG (t)| 


dt ≤ 2B log(L/). |t|



(74)



Hence, by (73), (74) and (72), 1 η≤ π







24  + 2B log(L/) + √ 2πL 2



 .



As L ≥ 1 we may choose  = L−1/2 . The conclusion now follows.







Lemma 5.2 Let τ ≥ 0 and δ > 0 satisfy τ 2 ≤ 2δ. Then, the quantity s  3 τ τ2 + L= log satisfies L ≤ τ /8. 144δ δ



(75)



Proof: Consider the function on [0, ∞) given by √ 9x2 f (x) = 2 2x − e 4 ,



√ 9x 9x2 with derivative f 0 (x) = 2 2 − e 4 . 2



Clearly, f 0 (x) is positive at zero and decreases strictly to −∞ as x → ∞. Hence f (x) has a global maximum value on [0, ∞) achieved at the unique solution x0 to the equation √ 9x2 4 2 . xe 4 = 9 Note that



√  √  √ 9x2 9x2  2 2 9 2 2 0 0 2 f (x0 ) = 2 2x0 − e 4 = 9x2 − 2 9x0 − √ x0 e 4 = g(x0 ) where g(x) = 9x0 9x 2 2 and that f0



√ ! √ √  2 2 = 4 − 3 e < 0. 3 2



√ √ Hence x0 ≤ 2/3, and since g(x) is increasing in [0, ∞), we have f (x0 ) = g(x0 ) ≤ g( 2/3) = 0. As f (x0 ) is the global maximum of f (x) on [0, ∞) we conclude that √ 9x2 2 2x ≤ e 4 . (76) Using τ 2 ≤ 2δ and (76) we obtain √ 9δ τ ≤ 2 2δ 3/2 ≤ δe 4 3



 implying



log



τ3 δ



 ≤



9δ . 4



The final inequality holds with log replaced by log+ since the right hand side is always non negative. The inequality so obtained provides an upper bound on L in (75) that verifies the claim.  In the following theorem, for notational simplicity we will write δ, τ and σ instead of δC , τC and σC respectively, and also set a ∨ b = max{a, b}. 32



Theorem 5.1 The L∞ norm η given in (69) satisfies 1 η≤ 108







τ 1 ∨ 8/3 3 δ δ



s  3  23  2  3   163  τ τ τ δ log+ log+ log+ + 48 δ 144δ δ τ 2 log+



τ3 δ



 . (77)



Remark 5.1 The estimate (11) follows immediately from (77) and the following inequalities, valid for δ ≥ 8: √  3 τ 2 1 16 ∨ 8/3 ≤ 15/32 , 3 δ δ δ  3  32  √ τ log+ ≤ (log 2 2δ)3/2 ≤ (log δ)3/2 , δ  2  3  τ τ log+ log+ ≤ log (log δ) ≤ log δ. 144δ δ √ The above relations all follow from the bound τ ≤ 2δ stated in (44). Remark 5.2 When considering a sequence of cones such that lim inf τ 2 /δ > 0, the right √ hand side of the bound (77) behaves like O 1/ log δ , thus yielding the Berry-Esseen estimate stated in Part 2 of Theorem 1.1. However, one should note that the bound (77) covers in principle a larger spectrum of asymptotic behaviors in the parameters τ 2 and δ: in particular, in order for the right-hand side of (77) to converge to zero, it is not necessary that the ratio τ 2 /δ is bounded away from zero. Proof: We show Lemma 5.1 may be applied with L as in (75) and B = 32L3 e



9L2 δ τ2



δ . τ3



(78)



Let t ∈ R satisfy |t| ≤ L. As was done in [32] for the Laplace transform, the implication (40) of the Steiner formula (39) can be applied to show that the relationship EeitV = Eeξit G



with ξt =



 1 1 − e−2t 2



(79)



holds between the characteristic functions of V = VC and G = kΠC (g)k2 . Replacing t by t/τ and multiplying by e−itδ/τ in (79) yields the following expression for the standardized characteristic function of V , Eeit(



V −δ τ



) = Eeξit/τ G e− itδ τ .



(80)



Comparing the characteristic function of the standardized V to that of the standard normal, identity (80) and the triangle inequality yield |Eeit(



V −δ τ



−t2 /2 ) − e−t2 /2 | = |Eeξit/τ G e− itδ τ − e |   2   t t2 δ itδ −ξ δ ≤ |Eeξit/τ G e− τ − e τ 2 it/τ | + e τ 2 |Eeξit/τ (G−δ) − Eeit/τ (G−δ) | t2 δ



+ e τ 2 |Eeit/τ (G−δ) − e−σ 33



2 t2 /2τ 2



|. (81)



For the final term we have used (42), which shows that 2δ − σ 2 = −τ 2 . For the first two terms we will make use of the inequality |e(a+bi)g − ecig | ≤ (|b − c| + |a|) e|ga| |g|,



(82)



valid for all a, b, c, g ∈ R, which follows immediately by substitution from |ea+bi − eci | = ≤ ≤ ≤



|ea+bi − ea+ci + ea+ci − eci | ea |b − c| + |ea − 1| ea |b − c| + e|a| − 1 e|a| (|b − c| + |a|) .



Now using (79), implying |Eeξit/τ G | = |Ee(it/τ )V | ≤ 1, we bound the first term in (81) by ξit/τ G



|Ee



− itδ τ



| |e







−e



t2 −ξit/τ τ2







δ



− itδ τ



| ≤ |e







−e



t2 −ξit/τ τ2







δ



| = |eci − ea+bi |,



where we have set t2 δ 1 a = 2 − (1 − cos (2t/τ )) δ, τ 2



1 b = − sin(2t/τ )δ, 2



and c = −



tδ , τ



which satisfy |a| ≤



2|t|3 δ 3τ 3



and |b − c| ≤



2|t|3 δ . 3τ 3



By (44) of Corollary 3.1 we have τ 2 ≤ 2δ, and in particular we may apply Lemma 5.2 to yield |t| ≤ L ≤ τ /8. Now (82) with g = 1 shows that the first term is bounded by 4|t|3 δ 2t22δ eτ . 3τ 3



(83)



Now we write the second term as t2 δ



t2 δ



e τ 2 E|eξit/τ (G−δ) − eit/τ (G−δ) | = e τ 2 E|e(a+bi)g − ecig |,



(84)



where a=



1 (1 − cos(2t/τ )) , 2



b=



1 sin(2t/τ ), 2



c = t/τ



and g = G − δ,



for which  |a| ≤ min



|t| t2 , τ τ2



 and |b − c| ≤



t2 . τ2



Applying (82) and the Cauchy Schwarz inequality we may bound (84) as  |t|  2σt2 t2 δ q 2|t| 2 t2 δ 2t e τ 2 2 E e τ |G−δ| |G − δ| ≤ 2 e τ 2 Ee τ |G−δ| . τ τ 34



(85)



Recalling that kΠC (x)k2 = d2 (x, C 0 ), invoking Theorem 2.2 for the polar cone C 0 and µ = 0, for 0 ≤ ξ < 1/2 inequality (33) yields Eeξ|G−δ| = Eeξ(G−δ) 1(G − δ ≥ 0) + Ee−ξ(G−δ) 1(G − δ < 0) ≤ Eeξ(G−δ) + Ee−ξ(G−δ)  2   2   2  2ξ δ 2ξ δ 2ξ δ ≤ exp + exp ≤ 2 exp . 1 − 2ξ 1 + 2ξ 1 − 2ξ Thus, applying this bound with ξ = 2|t|/τ , where ξ < 1/2 by virtue of |t| ≤ τ /8 we obtain a bound on (85), and hence on the second term of (81), of the form s   2 t2 δ √ σt2 9t2 δ 8t2 δ 2σt 2 τ 2 exp ≤ 2 2 2 e τ2 . (86) e τ2 τ 2 (1 − 4|t|/τ ) τ For the final term, as the function eit/τ has modulus 1, Theorem 2.1 yields √ t2 δ δC t2 δ 2 t2 /2τ 2 it/τ (G−δ) −σ e τ 2 |Ee −e | ≤ 16 2 e τ 2 . σ



(87)



Combining the three terms (83), (86) and (87), for |t| ≤ L we obtain √ √   3 √ σt2 9t2 δ √ σL2 9L2 δ 4L δ δC t22δ δC 4|t|3 δ 2t22δ 2 τ τ τ τ2 . e + 2 2 e + 16 e ≤ + 2 2 + 16 e 3τ 3 τ2 σ2 3τ 3 τ2 σ2 From the bounds (44) in Corollary 3.1, we have √ √  3  √ 4L3 δ 2 2L2 σ 16 δC 4L δ 2 + + ≤ + 8L + 16 2 . 3 2 2 3τ τ σ 3 τ3 As the bound (71) holds for L < 1, we may assume L ≥ 1, in which case B as in (78) satisfies (70) when ψF and ψG are the characteristic functions of (V − δ)/τ and the standard normal, respectively. Invoking Lemma 5.1, the proof is completed by specializing (71) to yield (77) for the given values of L and B. 



6 6.1



Appendix A total variation bound



Here, we prove the total variation bound (29) used in the proof of Theorem 2.1. We begin with a standard lemma based on Stein’s method (see [34]), involving the solution φh to the Stein equation φ0h (x) − xφh (x) = h(x) − E[h(N )]



(88)



for N ∼ N (0, 1) and a given test functions h. Lemma 6.1 If E[F ] = 0 and E[F 2 ] = 1, then dT V (F, N ) ≤ sup |E[φ0 (F )] − E[F φ(F )]|,



(89)



φ



where N ∼ N (0, 1) and the supremum runs over all C 1 functions φ : R → R with kφ0 k∞ ≤ 2. 35



Proof: For a given h ∈ C 0 taking values in [0, 1], by e.g. (2.5) of [17], the unique bounded solution φh (x) to the Stein equation (88) is given by Z ∞ Z x 2 −u2 /2 x2 /2 x2 /2 e−u /2 (h(u) − E[h(N )])du, (90) e (h(u) − E[h(N )])du = −e φh (x) = e −∞



x



where the second equality holds since Z √ 2 e−u /2 (h(u) − E[h(N )])du = 2πE[h(N ) − E[h(N )]] = 0. R



One can easily check that φh is C 1 . Using the first equality in (90) for x < 0, and the R −u2 /2 x2 /2 ∞ ue = 1. We deduce that second one for x > 0 one obtains that |xφh (x)| ≤ e |x| 0 |φh |∞ ≤ 2. Recall that the total variation distance dT V (F, G) (as defined in (28)) may also be represented as the supremum over all measurable functions h taking values in [0, 1]. Using this fact, together with Lusin’s theorem, relation (88) and the properties of the solution φh , we infer that dT V (F, N ) =



sup |E[h(F )] − E[h(N )]| h:R→[0,1]



sup



|E[h(F )] − E[h(N )]| ≤ sup |E[φ0 (F )] − E[F φ(F )]|,



h:R→[0,1], h∈C 0



φ



= as claimed.







To make the paper as self-contained as possible, we will also prove the total variation bound (29) that was applied in the proof of Theorem 2.1; this result is given, at a slightly lesser level of generality, as Lemma 5.3 in [14]. Given d ≥ 1, we use the symbol D1,2 to denote the Sobolev class of all mappings f : Rd → R that are in the closure of the set of polynomials p : Rd → R with respect to the norm   Z Z 1/2



1/2



2



kpk1,2 =



p(x) dγ(x)



2



k∇p(x)k dγ(x)



+



,



Rd



Rd



where γ stands for the standard Gaussian measure on Rd . It is not difficult to show that a sufficient condition in order for f to be a member of D1,2 is that f is of class C 1 , with f and its derivatives having subexponential growth at infinity. We stress that, in general, when f is in D1,2 the symbol ∇f has to be interpreted in a weak sense. See e.g. [34, Chapters 1 and 2] for details on these concepts. Theorem 6.1 Let H : Rd → R be an element of D1,2 . Let g ∼ N (0, Id ) be a standard Gaussian random vector in Rd . Let F = H(g) and set m = E[F ] and σ 2 = Var(F ). √ bt = e−t g + 1 − e−2t g b, where g b is an independent copy of g. Write Further, for t ≥ 0, set g b to indicate expectation with respect to g b. Then, with N ∼ N (m, σ 2 ), E s Z ∞  2 −t b dT V (F, N ) ≤ 2 Var e h∇H(g), E(∇H(b gt ))idt . (91) σ 0



36



Proof: Without loss of generality, assume that m = 0 and σ 2 = 1. The random vector √ √ b is an independent copy of g bt , and g = e−t g bt + 1 − e−2t gt . (92) gt = 1 − e−2t g − e−t g By a standard approximation argument, it is sufficient to show the result for H ∈ C 1 , b If with H and its derivatives having subexponential growth at infinity. Let E = E ⊗ E. 1 ϕ : R → R is C , then using the growth conditions imposed on H to carry out the interchange of expectation and integration and the integration-by-parts, one has Z ∞ d E[H(b gt )ϕ(H(g))]dt E[F ϕ(F )] = E[(H(g) − H(b g)) ϕ(H(g))] = − dt 0 Z ∞ Z ∞ e−2t −t √ biϕ(H(g))dt Eh∇H(b gt ), g = e Eh∇H(b gt ), giϕ(H(g))dt − 1 − e−2t 0 0 Z ∞ √ e−t √ bt + 1 − e−2t gt ))dt Eh∇H(b gt ), gt iϕ(H(e−t g = −2t Z0 ∞ 1 − e √ √ bt + 1 − e−2t gt )iϕ0 (H(e−t g bt + 1 − e−2t gt ))dt e−t Eh∇H(b gt ), ∇H(e−t g = 0 Z ∞ b = E e−t h∇H(g), E(∇H(b gt ))iϕ0 (H(g))dt. (93) 0



Applying identity (93) to (89) yields Z dT V (F, N ) ≤ 2E 1 −



0



∞



b e h∇H(g), E(∇H(b gt ))idt , −t



(94)



and for ϕ(x) = x yields Z Var(F ) = E



∞



b e−t h∇H(g), E(∇H(b gt ))idt.



(95)



0



As Var(F ) = 1 the conclusion (91), with σ 2 = 1, now follows by applying the Cauchy Schwarz inequality in (94).  We now prove the following useful fact that was applied in the proofs of Theorem 2.1 and Lemma 4.1. Lemma 6.2 Let C be a closed convex subset of Rd . Then, the mapping x 7→ d2 (x, C) is an element of D1,2 . Proof: It is sufficient to show that d2 (·, C) and its derivative have sub-exponential growth at infinity. To prove this, observe that Lemma 2.1 together with the triangle inequality imply that d(·, C) is 1-Lipschitz, so that d2 (x, C) ≤ 2d2 (0, C) + 2kxk2 . To conclude, use (27) in order to deduce that k∇d2 (x, C)k = 2d(x, C) ≤ 2d(0, C) + 2kxk.  A variation of the arguments leading to the proof of (93) (whose details are left to the reader) yield also the following useful result. 37



Proposition 6.1 Let F, G ∈ D1,2 , and let the notation adopted in the statement and proof of Theorem 6.1 prevail. Then, Z ∞ e−t h∇F (g), ∇G(b gt )idt. (96) Cov[F (g)G(g)] = E 0



6.2



An improved Poincar´ e inequality



The next result refines the classical Poincar´e inequality, and plays a pivotal role in Theorems 2.1 and 4.1. Theorem 6.2 (Improved Poincar´ e inequality) Fix d ≥ 1, let F ∈ D1,2 , and g = (g1 , ..., gd ) ∼ N (0, Id ). Then, 1 1 Var(F (g)) ≤ E[k∇F (g)k2 ] + kE[∇F (g)]k2 ≤ E[k∇F (g)k2 ]. 2 2 Proof: The quickest way to show the estimate Var(F (g)) ≤ 12 E[k∇F (g)k2 ] + 12 kE[∇F (g)]k2 is to adopt a spectral approach. To accomplish this task, we shall use some basic results of Gaussian analysis, whose proofs can be found e.g. in [34, Chapter 2]. Recall that, for k = 0, 1, 2, ..., the k th Wiener chaos associated with g, written Ck , is the subspace spanned Q H (g by all random variables of the form m ki ji ), where {Hk : k = 0, 1, ...} denotes the i=1 collection of Hermite polynomials on the real line, k1 + · · · + km = k, and the indices k1 , · · · , km are pairwise distinct. It is easily checked that Wiener chaoses of different orders are orthogonal in L2 (Ω), and also that every square-integrable P random variable of the type F (g) can be decomposed as an infinite sum of the type F (g) = ∞ k=0 Fk (g), where the series converges in L2 (Ω) and where, for every k, Fk (g) denotes the projection of F (g) on Ck (in particular, F0 (g) = E[F (g)]). This decomposition yields in particular that Var(F (g)) =



∞ X



E[Fk2 (g)].



k=1



The key point is now that, if F ∈ D1,2 , then one has the additional relations 2



E[k∇F (g)k ] =



∞ X



kE[Fk2 (g)]



k=1



(see e.g. [34, Exercice 2.7.9]) and E[F12 (g)] = kE[∇F (g)]k2 , the last identity being justified as follows: if F is a smooth mapping, then the projection of F (g) on C1 is given by F1 (g) =



d X



E[F (g)gi ]gi =



i=1



d X i=1
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 ∂F E (g) gi , ∂xi



and the result for a general F ∈ D1,2 is deduced by an approximation argument. The previous relations imply therefore that Var(F (g)) =



∞ X



E[Fk2 (g)] ≤ E[F12 (g)]+



k=1



∞ X k k=2



1 1 E[Fk2 (g)] = kE[∇F (g)]k2 + E[k∇F (g)k2 ]. 2 2 2



The proof is concluded by observing that, in view of Jensen inequality, kE[∇F (g)]k2 ≤ E[k∇F (g)k2 ]. 



6.3



A bound on the distance to the minimizer of a convex function.



Following an idea introduced by Hjort and Pollard [27], one has the following lemma, providing a bound on the distance to the minimizer of a convex function in terms of another, not necessarily convex, function. Lemma 6.3 Suppose f : [0, ∞) → R is a convex function, and let g : [0, ∞) → R be any function. If x0 is a minimizer of f , y0 ∈ (0, ∞) and ε ∈ (0, y0 ), then 2 max |g(y0 + εv) − f (y0 + εv)| < min [g(y0 + εu) − g(y0 )] v∈{0,±1}



(97)



u∈{±1}



implies |x0 − y0 | ≤ ε. Proof. Suppose a := |x0 − y0 | > ε > 0. Set u = a−1 (x0 − y0 ). Then u ∈ {±1}, x0 = y0 + au and the convexity of f implies (1 − ε/a)f (y0 ) + (ε/a)f (x0 ) ≥ f (y0 + εu). Hence ε (f (x0 ) − f (y0 )) ≥ f (y0 + εu) − f (y0 ) a = g(y0 + εu) − g(y0 ) + [f (y0 + εu) − g(y0 + εu)] + [g(y0 ) − f (y0 )] ≥ min [g(y0 + εu) − g(y0 )] − 2 max |g(y0 + εv) − f (y0 + εv)|. u∈{±1}



v∈{0,±1}



If (97) is satisfied, then aε (f (x0 ) − f (y0 )) > 0. But this contradicts that x0 is a minimizer of f . Hence, |x0 − y0 | > ε is impossible.  Acknowledgments: The authors would like to thank John Pike for his assistance with the final two rows of Table 1, and the associated computations.
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