GENERALIZED VOLUME CONJECTURE AND THE A-POLYNOMIALS: THE NEUMANN–ZAGIER POTENTIAL FUNCTION AS A CLASSICAL LIMIT OF PARTITION FUNCTION KAZUHIRO HIKAMI

A BSTRACT. We introduce and study partition function Zγ (M) for cusped hyperbolic 3-manifold M. We construct formally this partition function based on oriented ideal triangulation of M by assigning to each tetrahedron the quantum dilogarithm function, which is introduced by Faddeev in studies of the modular double of the quantum group. Following Thurston and Neumann–Zagier, we deform a complete hyperbolic structure of M, and we define partition function Zγ (Mu ) correspondingly. This function is shown to give the Neumann–Zagier potential function in the classical limit γ → 0, and the Apolynomial can be derived from the potential function. We explain our construction by taking examples of 3-manifolds such as complements of hyperbolic knots and punctured torus bundle over the circle.

1. I NTRODUCTION Since the quantum invariant of knots/links and 3-manifolds as a generalization of the Jones polynomial [29] is constructed by Witten [61] by use of the Chern–Simons path integral, studies on quantum invariants have been much developed. Recently geometrical interpretations of the quantum invariants have received interests since Kashaev observed an intriguing relationship [33] between the hyperbolic volume and his knot invariant, which is later identified with a specific value of the N -colored Jones poly nomial JK N ; e2π i/N [45] (here the N -colored Jones polynomial is normalized to be Junknot (N ; q) = 1). Namely the hyperbolic volume of the knot complement S 3 \ K is  conjectured to dominate the asymptotics of the invariant JK N ; e2π i/N in the large-N limit N → ∞,   2π lim (1.1) log JK N ; e2π i/N = Vol(S 3 \ K) N→∞

N

This “volume conjecture” is generalized to other values (near the N -th root of unity) of the N -colored Jones polynomial [22] (see also Refs. 43, 44), and a relationship with the A-polynomial is conjectured; when we define b by b=−

  1 d lim log JK N ; e2π i/k da N,k→∞ k

(1.2)

N/k=a

 ia

the pair eb , −e is a zero locus of the A-polynomial for knot K . This is checked partially numerically for twist knots [27]. The A-polynomial is originally defined as an algebraic curve of eigenvalues of the SL(2; C) representation of the boundary torus of knot K [12] (see also Ref. 13). This can Date: April 4, 2006. Revised on March 3, 2007. 1

2

K. HIKAMI

be computed from triangulation of the knot complement M = S 3 \ K into ideal tetrahedra in the hyperbolic space H3 once the fundamental group has a irreducible representation ρ into P SL(2; C) which is identified with the orientation-preserving isometries of H3 ; ρ : π1 (M) → P SL(2; C) ≃ Isom+ (H3 )

Up to conjugation, the meridian µ and the longitude λ of the boundary torus of K have ! ∗ ρ(µ) = 0 1/m ! ℓ ∗ ρ(λ) = 0 1/ℓ m

Another geometrical aspect of the N -colored Jones polynomial JK (N ; q) as a relationship with the A-polynomial is proposed as “AJ conjecture” [21]; recursion relation of the colored Jones polynomial with respect to N is conjectured to be related to the Apolynomial AK (ℓ, m). This conjecture is proved for the torus knots [26] and the 2-bridge knots [39]. In this paper, we shall introduce partition function for cusped hyperbolic manifold M and its deformation Mu a` la Thurston [57] following a method of Refs. 23, 24, 25, and study a classical limit thereof. Based on a triangulation of cusped 3-manifold M, we define partition function Zγ (Mu ) by assigning Faddeev’s quantum dilogarithm function to each oriented ideal tetrahedron. Originally Kashaev introduced his invariant  JK N ; e2π i/N for triangulated 3-manifolds, although the R -matrix construction is developed subsequently [32]. He studied Faddeev’s quantum dilogarithm function when q is a root of unity [17, 30] (see also Ref. 4), and assigning the quantum dilogarithm function to ideal tetrahedron he defined invariant [31, 32]. In this sense, our function Zγ (M) for M with complete hyperbolic structure can be regarded as a non-compact Uq (sl(2; R)) analogue of the Kashaev invariant. Though we do not know true content of our partition function and we have no rigorous proof on convergence, an asymptotic behavior of Zγ (S 3 \K) in the limit γ → 0 is expected to coincide with that of the Kashaev  invariant JK N ; e2π i/N in the limit N → ∞ as will be discussed below. One of advantages of our partition function is a new algorithm to compute the Apolynomial. Once the triangulation of the cusped 3-manifold is given, we can obtain the Neumann–Zagier potential function from a classical limit of integral expression of Zγ (Mu ) which can be computed by assigning an operator to each oriented ideal tetrahedron. Then the Neumann–Zagier function leads to the A-polynomial straightforwardly, although there remain computational difficulties in elimination of variables. Our construction works not only for complements of hyperbolic knots but also for oncepunctured torus bundles over the circle. As far as we know, there is no literature concerning explicit computation of quantum invariant for once-punctured torus bundles over the circle, though it may be done along a line of Refs. 2, 3. We remark that the potential function associated to hyperbolic structures of knot complements is studied in Ref. 63 based on Kashaev invariant (see also Ref. 46).

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

3

The construction of partition function Zγ (M) is parallel to that in Refs. 2, 3. Therein a family of matrix dilogarithm [17] is used for each tetrahedron unlike non-compact quantum dilogarithm function used here. A non-compact version enables us to define partition function for deformed manifold (not hyperbolic complete) Mu based on a geometrical insight, and to regard our function Zγ (Mu ) as a quantum analogue of the Neumann–Zagier potential function. This paper is organized as follows. In Section 2 we recall definitions of quantum dilogarithm function, and we discuss properties of this function. In Section 3, we shall reveal that the three-dimensional hyperbolic geometry naturally arises from the quantum dilogarithm function in the classical limit γ → 0 as was clarified in Ref. 23. In other words, the quantum dilogarithm denotes a γ -deformation of the hyperbolic geometry. Then we define the partition function Zγ (Mu ) for a deformation of complete hyperbolic cusped 3-manifold M. Based on a triangulation of M and on the fact that the quantum dilogarithm denotes a quantum deformation of the hyperbolic ideal tetrahedron, we construct the partition function by assigning quantum dilogarithm function to oriented ideal tetrahedron. We discuss that the Neumann–Zagier potential function appears in a classical limit of Zγ (Mu ). In Section 4, we take several examples of cusped hyperbolic manifolds such as complements of hyperbolic knots and punctured torus bundle over the circle, and explain our assertion in detail. We shall also give a list for other manifolds in Appendix. The last section is devoted to conclusions and discussions.

2. Q UANTUM D ILOGARITHM F UNCTION We define a function Φγ (ϕ) by an integral form following Ref. 16. We set γ ∈ R, and for | Im ϕ| < π , we define 

 Φγ (ϕ) = exp 

Z

R+i 0

e

−i ϕ x



dx 

4 sinh(γ x) sinh(π x) x

(2.1)



The Faddeev integral (2.1), which we call the quantum dilogarithm function, is also related to the double sine function [35, 38, 55], the hyperbolic gamma function [1, 53] and the quantum exponential function [62]. We see that the integral Φγ (ϕ) has a duality, Φ π 2 (ϕ) = Φγ γ



γ ϕ π



(2.2)

and that it satisfies the inversion relation, !

1  ϕ2 π 2 + γ 2  Φγ (ϕ) · Φγ (−ϕ) = exp − + 2iγ 2 6

(2.3)

The Faddeev integral satisfies the difference equations; Φγ (ϕ + i γ) 1 = Φγ (ϕ − i γ) 1 + eϕ

(2.4a)

Φγ (ϕ + i π ) 1 = π Φγ (ϕ − i π ) 1 + eγϕ

(2.4b)

4

K. HIKAMI

Due to these relations, the integral Φγ (ϕ) defined in (2.1) is analytically continued to ϕ ∈ C, and we see that ±1

zeros of Φγ (ϕ)

o n  = ϕ = ∓i (2 m + 1) γ + (2 n + 1) π m, n ∈ Z≥0

(2.5)

The most important property of the Faddeev integral is that it fulfills the pentagon identity [16, 17] ˆ Φγ (q) ˆ = Φγ (q) ˆ Φγ (pˆ + q) ˆ Φγ (p) ˆ Φγ (p) (2.6) where pˆ and qˆ are the canonically conjugate operators satisfying the Heisenberg commutation relation, ˆ = pˆ qˆ − qˆ pˆ = −2 i γ [pˆ , q] (2.7)

By this commuting relation, we call a limit γ → 0 a classical limit. Hereafter we use V as the momentum space |pi with p ∈ R which is an eigenstate of the momentum operator; pˆ |pi = p |pi.

(2.8)

A reason of the quantum dilogarithm function reveals when we take a classical limit γ → 0. In this limit, the Faddeev integral reduces to !

1 Φγ (ϕ) ∼ exp Li2 (−eϕ ) 2iγ

(2.9)

Here Li2 (x) denotes the Euler dilogarithm function defined by (see, e.g., Refs. 36, 40) Li2 (x) =

∞ X xn n2 n=1

(2.10)

where |x| ≤ 1. For x ∈ C, we use the integral form Li2 (x) = −

Zx 0

log(1 − s)

ds s

where the branch of log(1 − s) is on C \ [1, ∞) for which log(1 − 0) = 0. See that the inversion relation (2.3) of the quantum dilogarithm function Φγ (ϕ) gives that of the Euler dilogarithm function as Li2 (−ex ) + Li2 (−e−x ) +

x2

2

+

π2

6

=0

The Fourier transformation of the Faddeev integral can be computed as follows [8, 18, 35, 62]; 1 p

4π γ 1

p

4π γ

Z

dy Φγ (y) e

1 2iγ

xy

R

Z R

dy

1 Φγ (y)

e

1 2iγ x y

= Φγ (−x + iπ + iγ) e

1 2iγ



1 − 1 = e 2iγ Φγ (x − i π − i γ)

π 2 +γ 2 x2 1 2 − 2 π γ− 6





(2.11)



(2.12)

π 2 +γ 2 x2 1 2 − 2 π γ− 6

To see a relationship between the integral Φγ (ϕ) with geometry, we define the S operator acting on V ⊗ V by 1

S1,2 = e 2 i γ q1 p2 Φγ (pˆ 1 + qˆ 2 − pˆ 2 ) ˆ ˆ

(2.13)

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

5

Here the Heisenberg operators pˆ j and qˆ j act on the j -th vector space of V ⊗ V, i.e. pˆ 1 = pˆ ⊗ 1, pˆ 2 = 1 ⊗ pˆ , and so on. Then the pentagon identity (2.6) can be rewritten in a compact form; S2,3 S1,2 = S1,2 S1,3 S2,3

(2.14)

where Sj,k acts as S1,2 on the j - and k-th spaces of V ⊗ V ⊗ V and as identity on the rest. Matrix elements can be computed by use of (2.11) and (2.12); hp1 , p2 | S1,2 | p1′ , p2′ i =p

1 4π γ

δ(p1 + p2 − p1′ ) · Φγ (p2′ − p2 + i π + i γ) e

to





π 2 +γ 2 γ π − 2 6

+p1 (p2′ −p2 )



(2.15a)

′ ′ 1 hp1 , p2 | S1− , 2 | p1 , p2 i

=p

1 2iγ

1 4π γ

δ(p1 −

p1′



p2′ )

1 Φγ (p2 −

p2′

− i π − i γ)

e

1 2iγ



π 2 +γ 2 γ π + 2 −p1′ (p2 −p2′ ) 6



(2.15b)

In the classical limit γ → 0, we find by use of (2.9) that the S -operators (2.15) reduce hp1 , p2 | S1,2 | hp1 , p2 |

S1−,21

|

p1′ , p2′ i p1′ , p2′ i

∼ δ(p1 + p2 − ∼ δ(p1 −

p1′



!

p1′ )

1 V (p2′ − p2 , p1 ) · exp − 2iγ

(2.16a)

p2′ )

1 V (p2 − p2′ , p1′ ) · exp 2iγ

!

(2.16b)

where we have defined the function V (x, y) by π2

− Li2 (ex ) − x y. 6 We see that the function V (x, y) satisfies partial differential equations; V (x, y) =

∂V (x, y) ∂V (x, y) 1 +y x V (x, y) = L(1 − ex ) + 2 ∂x ∂y

!

(2.17)

(2.18)

   ∂ ∂ y V (x, y) + log |e | · Im V (x, y) (2.19) Im V (x, y) = D(1 − e ) + log |e | · Im ∂x ∂y x



x

Here the Rogers dilogarithm L(z) and the Bloch–Wigner function D(z) are respectively defined in terms of the Euler dilogarithm function (2.10) by L(z) = Li2 (z) +

1 log z log(1 − z) 2

(2.20)

D(z) = Im Li2 (z) + arg(1 − z) · log |z|

(2.21)

both of which fulfill the pentagon identity (see, e.g., Ref. 40); w L(z) − L(w ) + L z 



w D(z) − D(w ) + D z 

1 − z −1 −L 1 − w −1



!

1 − z −1 −D 1 − w −1

1−z +L 1−w



=

1−z +D 1−w





!



π2

6 =0

(2.22) (2.23)

6

K. HIKAMI

3. PARTITION F UNCTION

AND

P OTENTIAL F UNCTION

3.1 The S -operator and Hyperbolic Ideal Tetrahedron Natural interpretation of the pentagon identity (2.14) is the 2 ↔ 3 Pachner move (bistellar move along face/edge). In our case, matrix elements of the S -operator have four indices, and we can assign (oriented) tetrahedron to each S -operator as follows (see Refs. 7, 10, 34 also Ref. 11 for another interpretation as a quantization of the Teichmuller ¨ theory);

d a

ha, b | S | c, di =

b c

b

a

a, b S −1 c, d =

d c

Here we assign momenta a, b, c, d ∈ V to each face, and we interpret an integration R with respect to p, dp |pi hp|, as gluing two faces together. As every faces have no R

loop, there is no ambiguity in gluing faces together once two faces to be glued are fixed. Furthermore, one finds that in-state |pi can glue only to out-states hp|, and that we cannot glue two in-states or out-states together. By this interpretation of the S -operators with the oriented tetrahedra, the pentagon identity (2.14) is identified with the Pachner move as is depicted in Fig. 1; oriented polytope with 5 vertices can be decomposed into 2 tetrahedra with a face in common, or into 3 tetrahedra with an edge in common. Further to identify the oriented tetrahedra as hyperbolic ideal tetrahedra whose vertices are on infinity, we study an explicit form of matrix elements of the right hand side of the pentagon identity (2.14), which is read in γ → 0 as ZZZ

dy dz dw hp1 , p2 | S | y, zi hy, p3 | S | p1′ , w i hz, w | S | p2′ , p3′ i

∼ δ(p1 + p2 + p3 − + Li2 (e

p3′ −p2′ +z

p1′ )

Z

"

′ 1  π2 − + Li2 (ez−p2 ) + Li2 (ep2 −p3 −z ) dz exp 2iγ 2

) + z −p2 +

p3′



p2′



+ z − p1 p2 +

p2′

− p3



#  (p1 + p2 )

We may apply the saddle point method in above integral, and we obtain 



1 − ep2 −z−p3

−1

1 − ep2 −z









1 − ep2 −z−p3 = 1

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

7

Figure 1: Pentagon identity (2.14) is interpreted as the 2 ↔ 3 Pachner move.

Our assertion in Ref. 23 is that this condition exactly coincides with the hyperbolic consistency condition in gluing three tetrahedra around common edge (see Fig. 1), once the tetrahedra assigned to the S -operators ha, b | S ±1 | c, di are regarded as the hyperbolic ideal tetrahedra with modulus ed−b as follows;

d =

z[2] z[1]

z[1]

z[3]

b

b

a

ha, b | S | c, di =

a

z[3]

c

c

(3.1)

z[2]

b d

=

c

z[2] z[1]

z[1]

z[3]

z[3]

c

d

a

a



a, b S −1 c, d =

(3.2)

z[2]

The rightmost figures denote oriented ideal hyperbolic tetrahedra, and z[a] is the dihedral angle; z[1] = z = ed−b z[2] = 1 − z[3] =

1 z

1 1−z

8

K. HIKAMI

z

z[2] z[3]

z[1] 0

1

Figure 2: Triangle with vertices 0, 1, and z in C. Here we set 1 . z[1] = z , z[2] = 1 − z1 , and z[3] = 1−z

Here z = ed−b is the modulus, and the cross section by the horosphere is similar to the triangle in C with vertices 0, 1, and z (see Fig. 2), and we have z[1] z[2] z[3] = −1. See that the opposite edges of tetrahedra have the same dihedral angles. Coincidence between the saddle point equations and the hyperbolic consistency conditions can be seen for any other orientations of 2 ↔ 3 Pachner moves, and for any other type of gluing of ideal tetrahedra around common edges. See Ref. 23 for detail. This supports our identifications of the S -operators with hyperbolic ideal tetrahedra. Another reason of the ideal tetrahedra is a relation with the volume. As can be seen from (2.16), (2.18), and (2.19), the asymptotics of imaginary part of the S -operator in the classical limit γ → 0 is dominated by the Bloch–Wigner function because extra terms in (2.18) and (2.19) vanish due to hyperbolic consistency conditions [23]. Indeed the Bloch–Wigner function D(z) denote the hyperbolic volume of the ideal tetrahedron ∆(z) with modulus z [5, 42, 57], Vol (∆(z)) = D(z)

      = L arg(z[1]) + L arg(z[2]) + L arg(z[3])

(3.3)

where L(θ) is the Lobachevsky function defined by ∞

1 X sin(2 n θ) L(θ) = 2 n=1 n2 In view of these facts, we can assign hyperbolic ideal oriented tetrahedron to the S operator (2.15) as in (3.1) and (3.2) with modulus ed−b . As a result, we see that the S -operator (2.15) denotes a quantum deformation of the hyperbolic volume. This identification differs from the 6j symbol as a solution of the pentagon identity which was used to define the topological gravity [51]. The Ponzano–Regge partition function diverges in general, though it still enjoys a geometrical interpretation (see e.g., Ref. 52). The quantization thereof is the Turaev–Viro state sum invariant [59] in which used is the quantum 6j -symbol [37]. Relationship between the quantum 6j -symbol and the hyperbolic tetrahedron is suggested in Ref. 47.

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

9

3.2 Partition Function of Cusped 3-Manifold Any hyperbolic cusped 3-manifold M (for simplicity we assume that the number of cusp is one in this paper) can be ideally triangulated, and it is constructed from finite number of the oriented ideal tetrahedra in (3.1) and (3.2). Other types of oriented ideal tetrahedra, such as one that has a face with loop, are prohibited. So our triangulation sometimes differs from the canonical triangulation used in computer programs, such as SnapPea [60], Knotscape [28], and Snap [14]. Once triangulation is given and we know how to glue faces together, we can naturally define the partition function for hyperbolic cusped 3-manifold M based on the S -operator by Zγ (M) =

Z R

M D E Y (+) (−) (−) εi (+) p2i−1 , p2i S p2i−1 , p2i dp δC (p) δG (p)

(3.4)

i=1

where p denotes a set of variables (p1(±) , p2(±) , . . . , p2(±) M ), and εi = ±1 depending on an orientation of tetrahedron. We set M as the number of ideal tetrahedra. The condition δG (p) determines how to glue faces together (“G” stands for “gluing”). Every faces with same momentum mean to be glued together, and the fact that in-states can only  be glued  (−) (+) to out-states indicates that the gluing condition δG (p) is a product of δ pj − pk for some j and k. We need another geometrical condition δC (p) to define partition function besides a way how to glue faces (“C” stands for “completeness”) [25]. We can draw a developing map from an ideal triangulation of 3-manifold, and we need to read off a hyperbolic complete condition. This condition can be written as a constraint for p by identifications (3.1) and (3.2). By construction, the partition function Zγ (M) is invariant under the Pachner move (Fig. 1) with any orientations, and it is essentially the invariant constructed in Ref. 23. As was studied by Thurston [58], deformation of the hyperbolic structure on manifold M can be holomorphically parametrized by a parameter u in a neighborhood of completeness condition u = 0. The parameter u is the logarithm of the eigenvalue of the meridian by the holonomy representation, and we set m = eu

(3.5)

Correspondingly we denote such manifold Mu which is no more complete, and define the partition function by Zγ (Mu ) =

Z R

dp δC (p ; u) δG (p)

M D E Y (+) (+) (−) (−) p2i−1 , p2i S εi p2i−1 , p2i

(3.6)

i=1

Here the condition δC (p ; u) follows from that the meridian has a holonomy (3.5). The partition function (3.4) for M with complete hyperbolic structure follows from (3.6) by assuming a completeness u = 0 of the hyperbolic structure of Mu ; Zγ (M) = Zγ (Mu=0 )

(3.7)

10

K. HIKAMI

because δC (p) = δC (p ; u = 0)

(3.8)

Although the integral forms, (3.4) and (3.6), respectively give the partition functions of M and Mu , their true contents are not obvious. It remains for future studies mathematical rigorous analysis of our partition functions. Nonetheless important is that we can evaluate dominating terms of partition functions in the classical limit γ → 0 by the saddle point method, and that it can be interpreted geometrically as the hyperbolic ideal triangulations. In this sense, the partition function Zγ (Mu ) may include hyperbolic geometrical information of manifold Mu . Furthermore we have a new algorithm to compute the A-polynomial of the cusped hyperbolic 3-manifold, which we explain below. To see the hidden hyperbolic structure of partition function, we study a classical limit γ → 0 of our partition function Zγ (Mu ). When we take a limit γ → 0 by use of (2.16), asymptotics of the partition function defined by (3.6) is dominated by Zγ (Mu ) ∼

Z R

 M   Y (−εi )  i) dp δC (p ; u) δG (p)  δ p2(εi−i )1 − p2(−ε i−1 − p2i 

i=1



=

Z R



M   i X (ε ) (−ε ) (−ε )  × exp εi V p2i i − p2i i , p2i−1i  2 γ i=1

!

1 dx exp ΦM (x ; u) 2iγ

(3.9)

Here in the last equality for our convention we have re-parametrized variables p with x = (x1 , x2 , . . . , xM−1 ) after incorporating constraints written in terms of delta functions. The integral (3.9) could be evaluated by the saddle point method as we have worked a classical limit γ → 0. The saddle point condition for variables x is ∂ ΦM (x ; u) = 0 ∂xi

(3.10)

As was extensively studied in Ref. 23, these conditions coincide with hyperbolic consistency conditions around edges when we glue oriented tetrahedra together, i.e., unity is the product of dihedral angles around each edge. By construction the variable u denotes the meridian of cusp in this classical limit, and the complete hyperbolic structure is realized by setting u = 0. To conclude, the function ΦM (x ; u) defined by a classical limit (3.9) of the partition function Zγ (Mu ) under constraints (3.10) is nothing but the Neumann–Zagier potential function [50, 64]. As a result, differential of the potential function with respect to the deformation parameter u gives ∂ ΦM (x ; u) = 2 v ∂u

(3.11)

where v is related to the eigenvalue of the longitude by the holonomy representation ℓ = ev

(3.12)

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

11

Variables xi can be solved from the hyperbolic consistency equation (3.10) as a function of u, and we can regard the potential function ΦM (x ; u) as a function of u; ΦM (u) = ΦM (x ; u)|(3.10) . Then we can rewrite (3.11) by d lim i γ log Zγ (Mu ) = v (3.13) du γ→0 We note that our variables (u, v) differs from those in Ref. 50; when we denote their variables (uNZ , vNZ ), we have (u, v) =



uNZ vNZ , +πi

2



(3.14)

2 Hereafter we also use the function VM (x ; m) defined by

VM (x1 , x2 , . . . ; m) = ΦM (log x1 , log x2 , . . . ; u = log m)

(3.15)

As seen from (2.18) and (2.19), the potential function ΦM (x ; u) under saddle point conditions (3.10) becomes a sum of the Rogers dilogarithm functions. We recall here the Bloch invariant studied in Refs. 15, 48, 49. The Bloch invariant β(M) is defined for finite volume hyperbolic 3-manifold M as β(M) =

where [z] satisfies the Bloch group w [z] − [w ] + z 



The Bloch regulator map ρ gives [49]

"

M X

[zi ]

(3.16)

i=1

#

1 − z −1 1−z − + − 1 1−w 1−w 

ρ (β(M)) = Vol(M) + i CS(M)



=0

(3.17)

(3.18)

where CS denotes the Chern–Simons invariant defined modulo π 2 (see Ref. 41 for definition of the Chern–Simons invariant for a case of cusped manifolds). As identities (2.18)– (2.19) show that the S -operator reduces to the Rogers dilogarithm function (or the Bloch–Wigner function) in the saddle point, and that they satisfy the pentagon identities (2.22) and (2.23), we can interpret our partition function Zγ (M) as a quantization of the Bloch invariant. Generally we have many saddle points as algebraic solutions of a set of equations (3.10). Among them, a solution which has the largest absolute value dominates an asymptotics of the partition function Zγ (M). Combining this with a fact that our partition function Zγ (M) may be regarded as a quantization of the Bloch invariant, we should have  lim 2 γ log Zγ (M) = Vol(M) + i CS(M) (3.19) γ→0

as a variant of the volume conjecture [23]. Although, there still remains an ambiguity of branch in complex plane in an actual computation.

The Neumann–Zagier potential function ΦM (x ; u) has much information on geometry of manifold. One of the properties is a relationship with the A-polynomial defined in Ref. 12. When the manifold M is a complement of knot S 3 \ K , the A-polynomial AK (ℓ, m) of K as an algebraic equation of ℓ and m can be given by using the Grobner ¨

12

K. HIKAMI

base or resultant theory to eliminate xi from a set of equations, (3.10) and (3.11). So the pair (ℓ, m) = (ev , eu ) defined from (3.13) is a zero locus of the A-polynomial AK (ℓ, m). This result should be comparable with a conjecture (1.2), and the partition function Zγ (Mu ) is a non-compact generalization of the Jones–Witten invariant. The A-polynomial has following properties [12, 13]; • Polynomial AK (ℓ, m) is an integer polynomial, and it contains only even powers of m. • Up to powers of ℓ and m, we have AK (ℓ, m) = AK (1/ℓ, 1/m)

(3.20)

• If K and K ′ are mirror images, then AK (ℓ, m) = AK ′ (1/ℓ, m)

(3.21)

• With additional property that every closed incompressible surface embedded in S 3 \ K is parallel to the boundary torus, we have α α AK (ℓ, ±1) = n ℓ + 1 + ℓ − 1 − ℓβ (3.22)

with non-zero integer n. • Slopes of edges of the Newton polygon of AK (ℓ, m) are boundary slopes of K . • Coefficients of terms in the corners of the Newton polygons of AK (ℓ, m) are ±1.

Another property of the Neumann–Zagier potential function ΦM (u) associated to cusped manifold M is the volume of the Dehn surgered manifold. The (p, q)-hyperbolic Dehn surgery of M, where (p, q) is a pair of coprime integers, is performed by gluing back a solid torus with cusp of M, where the surgery data satisfy [57] pu+qv = π i

(3.23)

Then for the core c of solid torus, we have Length(c) + i Torsion(c) = −2 (r u + s v) where

p r q s

!

mod 2 π i

(3.24)

∈ SL(2, Z). We have

¯ =− Im (u v)

π

2

Length(c)

(3.25)

According to Refs. 50, 64, we have for the hyperbolic (p, q)-Dehn surgered manifold M(p,q) as 



Vol M(p,q) + i CS M(p,q) − (Vol(M) + i CS(M))  i π  Length(c) + i Torsion(c) (3.26) = − (ΦM (u) − 4 u v) − 4 2

which follows from



Zγ M(p,q) ∼

Z

du e

1 2iγ



p 2 2(π +γ)i u qu + q



Zγ (Mu )

(3.27)

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

13

4. E XAMPLES We explain our constructions of the partition function by taking some concrete examples of cusped hyperbolic 3-manifolds. 4.1 Figure-eight knot 41 We set K as the figure-eight knot 41 which is depicted as

It is well known that the complement of the figure eight knot, M = S 3 \ K , is given by two ideal tetrahedra, and the triangulation induces the partition function as Zγ (Mu ) =

Z R

dp δC (p ; u) hp1 , p2 |S|p3 , p4 i p4 , p3 S −1 p2 , p1







(4.1)

Modulus of two tetrahedra are given by w = ep4 −p2 and z = ep1 −p3 . The developing map is drawn in Fig. 3, and the meridian is read to be w = e−2u z

which shows that the condition δC (p ; u) is p4 − p2 − (p1 − p3 ) = −2 u

The complete hyperbolic structure is realized when u = 0.

w

w

w

z

w z

z

z

Figure 3: Developing map of the complement of the figure-eight knot. The gray filled triangle corresponds to top vertex of the tetrahedron (central vertex of circle in (3.1)) with modulus w in projection of (3.1). A curve denotes a meridian of cusp.

We then obtain Zγ (Mu ) =

1 4π γ

Z

dx

−1 Φγ (x + i π + i γ) e 2iγ 4u(u+x) Φγ (−x − 2 u − i π − i γ)

(4.2)

14

K. HIKAMI

which in a limit γ → 0 reduces to Zγ (Mu ) ∼

Z

=

Z

!

 1 dx exp Li2 (ex ) − Li2 (e−x−2u ) − 4 u (u + x) 2iγ !

1 dx exp VM (ex ; eu ) 2iγ

(4.3)

Here the potential function is set to be VM (x; m) = Li2 (x) − Li2



1 x m2



− 4 log m log(x m)

(4.4)

To evaluate the integral (4.3), we may apply the saddle point method, and a condition (3.10) reduces to −

m2 (1

x =1 − x) (1 − m2 x)

(4.5)

From (3.11) the longitude is given by 1 m2 x (m2 x

− 1)

=ℓ

(4.6)



Completeness condition m = 1 gives x = 1±2 3 i from (4.5). Substituting this solution for the potential function (4.4), the imaginary part coincides with the hyperbolic volume of the figure-eight knot Vol(S 3 \ 41 ) = 2.02988 · · · . For a deformed manifold Mu , we get an algebraic equation of ℓ and m by eliminating x from (4.5) and (4.6) as AM (ℓ, m) = 0

(4.7)

Here AM (ℓ, m) is the A-polynomial for the figure-eight knot; AM (ℓ, m) = −m4 + ℓ (1 − m2 − 2 m4 − m6 + m8 ) − ℓ2 m4

which can be expressed as in the Newton polygon as follows; 



0 1 0  0 −1 0       − 1 − 2 − 1    0 −1 0  0 1 0 We note that a set of equations (4.5) and (4.6) gives p 16 i 368 i 2848 i 2 v = −2 π i + 4 3 i u + √ u 3 + √ u 5 + √ u 7 + · · · 3 15 3 45 3

which coincides with a result in Ref. 50 under (3.14).

(4.8)

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

15

4.2 52 We set K as the knot 52 depicted as

The knot complement M = S 3 \ K is constructed from three tetrahedra (see, e.g., Ref. 56) and we obtain the partition function as Zγ (Mu ) =

Z R

dp δC (p ; u) p1 , p5 S −1 p4 , p3









p2 , p4 S −1 p6 , p5 p3 , p6 S −1 p1 , p2

(4.9) Modulus of three tetrahedra are respectively z1 = ep3 −p5 , z2 = ep5 −p4 , and z3 = ep2 −p6 . The developing map is depicted in Fig. 4. The meridian is read to be zz32 , and the condition δC (p ; u) is p5 − p4 + p6 − p2 = 2 u We then have Zγ (Mu ) = ×

1 4π γ

3/2

ZZ

dx dy e

1 2iγ



π 2 +γ 2 3 + 2 π γ+(2u−y)(y−x) 2



1 (4.10) Φγ (−x + y − 2 u − i π − i γ) Φγ (−y − 2 u − i π − i γ) Φγ (−y − 2 u − i π − i γ)

z3

z1

z3

z2 z1 z2

z1

z1 z2 z3

z2

z3

Figure 4: Developing map of the complement of 52 . Gray filled triangle denotes top vertex of the tetrahedron with modulus z1 . Meridian is denoted by a gray curve. In a classical limit γ → 0, we obtain Zγ (Mu ) ∼

ZZ

!

1 dx dy exp VM (ex , ey ; eu ) 2iγ

(4.11)

16

K. HIKAMI

where the Neumann–Zagier potential function is VM (x, y ; m) =

π2

2

− Li2



y x m2



− Li2

1 y

m2

!

1

− Li2

y

!

+ log (y/x) log m2 /y



(4.12)

The integral is evaluated by the saddle point method, and saddle point conditions (3.10) which denote hyperbolic consistency conditions reduce to m2 x − y = x y (m2 y − 1) (y − 1) = m2 (m2 x − y)

(4.13)

and the longitude (3.11) is computed as m4 y 2 = (m2 x − y) (m2 y − 1) ℓ

(4.14)

In the case of complete structure M, i.e., u = 0, there exists a solution of (4.13), (x, y) = (−0.877439 + 0.744862 i, 0.78492 + 1.30714 i), such that the imaginary part of the potential function !   1 y − 2D Im VM (x, y ; 1) = −D x

y

gives the hyperbolic volume of M; Vol(M) = 2.82812 · · · . Correspondingly we have π2

  y VM (x, y ; 1) = − 2L −L 2 x

1 y

!

2

= 2 π · 0.153204 · · · + i · 2.82812 · · ·

To get the A-polynomial, we eliminate variables x and y from a set of equations (4.13) and (4.14). After some algebra we obtain AM (ℓ, m) = 0, where the function AM (ℓ, m) coincides with the A-polynomial for 52 given by the following Newton polygon;              

−1



1  −2    −2 −1   1   1   −1 −2   −2  1 −1

4.3 Pretzel knot (−2, 3, 7) Let K be the (−2, 3, 7) Pretzel knot depicted as

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

17

and we set M as the complement of K . The Pretzel knot (−2, 3, 7) has the same hyperbolic volume with 52 , Vol(M) = 2.82812 · · · , but the triangulations of the complement give the following partition function; Zγ (Mu ) =

Z R

dp δC (p ; u) hp4 , p7 |S|p6, p1 i hp5 , p8 |S|p7, p5 i × hp1 , p6 |S|p8 , p2 i hp3 , p2 |S|p4 , p3 i (4.15)

Note that this triangulation differs from the canonical triangulation in Ref. 60. The developing map is given in Fig. 5. Here we set the modulus of four ideal tetrahedra as z1 = ep1 −p7

z2 = ep5 −p8

z3 = ep2 −p6

z4 = ep3 −p2

Then the meridian is read as p2 − p6 − p1 + p7 = − 2 u z3

z1

z2

z2

z1

z2

z4 z3

z2

z3 z3

z1

z1

z4 z4

z4

Figure 5: Developing map of complement of the Pretzel knot (−2, 3, 7). Horosphere of the top vertex of the tetrahedron with modulus z1 is depicted by gray triangle. Gray curve denotes a meridian. In the classical limit of the partition function Zγ (Mu ) we obtain the potential function after some change of variables as 2 π2 1 1 VM (x, y, z ; m) = − + Li2 + Li2 3 z x y z m4  

 2 + log + 3 log m2

!

+ Li2



1



m2 x

!

+ Li2 z m2 ! 2  2   y5 2 + log x log m + log y (4.16) x2

18

K. HIKAMI

The hyperbolic consistency conditions (3.10) give  x − m2 = y z m8  y m6 x y z m4 − 1 = x z   (z − 1) x y z m4 − 1 m2 z − 1 = x y z 3 m6 x y z m4 − 1



(4.17)

and the longitude (3.11) is defined by

2 2 x y z m4 − 1 m2 z − 1 m2 y 3 ℓ= (x − m2 ) x3 z 3

(4.18)

In the complete hyperbolic structure m = 1, we have a solution of (4.17),     0.337641 − 0.56228 i x     y  = 0.122561 + 0.744862 i 0.618504 − 0.410401 i z

s.t. we recover the hyperbolic volume of K ;

Im VM (x, y, z ; m = 1) = 2 D(1/z) + D

1 xy z

!

+ D(1/x) = 2.82812 · · ·

By replacing the Bloch–Wigner function by the Rogers dilogarithm function and choosing branch such that the imaginary part coincides with the volume, we recover the Chern–Simons term as 2 π2 1 VM (x, y, z ; m = 1) = − + 2 L(1/z) + L 3 xy z

!

+ L(1/x) + π i log(x z)

= 2 π 2 · 0.236537 · · · + i · 2.82812 · · ·

The A-polynomial is computed by eliminating (x, y, z) from (4.17) and (4.18), and we obtain AM (ℓ, m) = 0, where the A-polynomial for the (−2, 3, 7) Pretzel knot is   AM (ℓ, m) = −1 + m16 − 2 m18 + m20 ℓ + 2 m36 + m38 ℓ2   − ℓ4 m72 + 2 m74 − ℓ5 m90 − 2 m92 + m94 + m110 ℓ6 (4.19)

4.4 Once-Punctured Torus Bundles over the Circle One of benefits of the partition function Zγ (M) is that we can compute it explicitly, at least asymptotics thereof, for a once-punctured torus bundle over S 1 . A once-punctured torus bundle over S 1 , which we denote M(ϕ), is described by F × [0, 1]/(x, 0) ∼ (ϕ(x), 1) where a monodromy matrix ϕ ∈ SL(2, Z) is a homeomorphism from the punctured torus F = T2 \ {0} to itself. Thurston’s hyperbolization theorem indicates that M(ϕ) admits a complete hyperbolic metric with a finite volume when ϕ has 2 distinct real eigenvalues. In this case, the monodromy matrix ϕ can be written up to conjugation as ϕ = Ls1 R t1 · · · Lsn R tn (4.20) where 1 1 L= 0 1

!

1 0 R= 1 1

!

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

19

with n > 0, and sj and tj are positive integers. Note that the complement of the figure! 2 1 eight knot studied in Sec. 4.1 corresponds to ϕ = L R = . 1 1 It is known that we can triangulate the manifold M(ϕ) with hedra [19], and we have the partition function as Zγ (Mu (ϕ)) = ×

n Y

k=1

ZZZZ

 

Pn

k=1 (sk

+ tk ) ideal tetra-

da db dc dd δC (a, b, c, d ; u) δG (a, b, c, d)

R

sY k −1 i=0



 k −1 −1 tY

dk,i , ck,i+1 S dk,i+1 , ck,i bk,j , ak,j+1 S bk,j+1 , ak,j  (4.21) j=0

where a gluing condition δG (a, b, c, d) means ( bk,0 = ck+1,0

ak,0 = dk+1,0

( bk,tk = ck,sk

ak,tk = dk,sk

( bn,0 = c1,0

for k = 1, 2, . . . , n − 1

an,0 = d1,0

for k = 1, 2, . . . , n

When we set the modulus of each oriented tetrahedra as zk,j = eak,j −ak,j+1

wk,j = eck,j −ck,j+1

the developing map is drawn schematically as Fig. 6. We can then read a condition δC (a, b, c, d ; u) for meridian as n

u=

 1X ck,0 − ck,sk − ak,0 + ak,tk 2 k=1

(4.22)

With these conditions, we have the partition function Zγ (Mu (ϕ)), and the Neumann– Zagier potential function can be given by taking a classical limit γ → 0. As far as we know, both the quantum invariant and the A-polynomial-type invariant for the once-punctured torus bundle over S 1 have not been studied, but we can obtain the A-polynomial from the Neumann–Zagier function as a classical limit of the partition function. Below we give a few examples for concreteness. 4.4.1 L2 R !

3 2 We set ϕ = L2 R = , whose hyperbolic Dehn surgery is studied in Ref. 6. The 1 1 partition function (4.21) is rewritten as  Zγ Mu (L2 R) Z

= dp δC (p ; u) p1 , p5 S −1 p6 , p3 p6 , p4 S −1 p2 , p5 hp3 , p2 |S|p4 , p1 i (4.23) R

20

K. HIKAMI

w1,1

w1,0

w1,1

w1,0

w

w −

1

1, s1

−1

− ,t 1

z1

w2,1

w2,0

w

w −

1

2, s2

−1

2−

,t

z2

wn ,1

wn ,0

w

w −

1

n,

w

n,

sn

−1

sn

−1

− ,t n

zn

z n ,0

w1,0

1

z n ,0

− tn

z n,

z n ,0

w1,0

1

z n ,0

− tn

z n,

zn

,t n



1

sn

1

w

n,

sn



1

n,

1

w3,0

− t2

z 2,0

wn ,1

wn ,0

z 2,0

1

z 2,0

w3,0

− t2

z 2,0

z 2,

z 2,

z2

,t

2−

1

w

2, s2

−1

1

w

2, s2



1

2, s2

1

w2,0

− t1

z 1,0

w2,1

w2,0

z 1,0

1

z 1,0

w2,0

− t1

z 1,0

z 1,

z 1,

z1

,t 1



1

w

1, s1

−1

1

w

1, s1



1

1, s1

Figure 6: Schematic developing map for M(ϕ). Top vertex of tetrahedron with modulus z1,0 is filled gray. Gray straight line denotes meridian.

When we set the modulus of tetrahedra as w0 = ep3 −p5 , w1 = ep5 −p4 , and z0 = ep1 −p2 , the developing map M(L2 R) can be depicted as Fig. 7. Then the meridian is read as p3 − p4 − p1 + p2 = 2 u

(4.24)

In the classical limit, we have Zγ

 Mu (L2 R) ∼

ZZ

!

1 dx dy exp VM(L2R) (ex , ey ; eu ) 2iγ

(4.25)

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

21

w0

w0

w1

w1

w0 w1

z0

z0

w0 w1

z0

z0

Figure 7: Developing map of M(L2 R). Gray filled triangle is top vertex of the tetrahedron with modulus z0 . Gray curve is meridian.

where the potential function is computed as VM(L2R) (x, y ; m) = Li2



1 m2 x



!

1

− Li2

− Li2 m2 x2 y 2



m2 x y 2  2 π 2   − log m2 log m2 x2 y 4 − 2 log (x y) +

6

(4.26)

The saddle point conditions (3.10), which correspond to the hyperbolic consistency condition, reduce to  2 −1 + m 2 x −1 + m 2 x2 y 2 =1 m4 x4 y 2 (−1 + m2 x y 2 ) (4.27)  −1 + m 2 x2 y 2 =1 m2 x (−1 + m2 x y 2 ) and, as (3.11), the longitude is defined by ℓ=−

(−1 + m2 x) (−1 + m2 x2 y 2 ) m4 x2 y 2 (−1 + m2 x y 2 ) 

2

(4.28)

√  √ 1± 7 i −1± 7 i 4 , 2

solves the consisIn the complete case m = 1, we find that (x, y ) = tency condition (4.27). Among these, we can check numerically that the largest value of the imaginary part of the potential function at the saddle points Im VM(L2R) (x, y ; m = 1) = D

1

  x

−D

1 x y2

!

− D x2 y 2



coincides with the hyperbolic volume Vol M(L2 R) = 2.66674 · · · , and we have VM(L2R) (x, y ; m = 1) =

π2

6

+L

1

  x



−L

1 x y2

!

− L x2 y 2



= 2 π 2 · 0.0208333 · · · + i · 2.66674 · · ·

The A-polynomial is now given by eliminating x and y from the set of equations, (4.27) and (4.28), and we obtain the algebraic curve AM(L2 R) (ℓ, m) = 0 whose

22

K. HIKAMI

Newton polygon is given by 



0 −1 0 2   1 2 0 −1

0 1   0 0

4.4.2 L R 3 !

4 1 We take another example ϕ = L R = . In this case, the partition function (4.21) 3 1 becomes 3

3

Zγ (Mu (L R )) =

Z R

dp δC (p ; u) hp1 , p4 |S|p3 , p2 i hp3 , p6 |S|p5 , p4 i

× hp5 , p8 |S|p7 , p6 i p2 , p7 S −1 p8 , p1 (4.29)

We set the modulus of each tetrahedron as z0 = ep2 −p4

z1 = ep4 −p6

z2 = ep6 −p8

w0 = ep1 −p7

The developing map is depicted in Fig. 8, and the meridian is read as have a condition of δC (p ; u) as

w0 . z0 z1 z2

We thus

p1 − p7 − p2 + p8 = 2 u

z1 z0

w0 z2

(4.30)

z1 z0

w0 w0

z2

z1 z0

z2

w0 z1 z0

z2

Figure 8: Developing map of M(L R 3 ). In the classical limit, we obtain 3

Zγ (Mu (L R )) ∼

ZZZ

!

1 dx dy dz exp VM(LR3 ) (ex , ey , ez ; eu ) 2iγ

(4.31)

where the potential function is computed as VM(LR3 ) (x, y, z ; m) = − Li2 + Li2

1

!

+ Li2

1

!

+ Li2 m2 x2 z

m4 y m2 x y z 2 !    2 x m2 y 2 z 2 − log m + 2 log log x m2

x y



!

+ 2 log y log(y z) + 2 log z log(x z m2 ) −

π2

3

(4.32)

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

23

In the case of complete case m = 1, we can check numerically that among algebraic solutions of (3.10) the maximum of the imaginary part of VM(LR3 ) (x, y, z ; m = 1), Im VM(LR3 ) (x, y, z ; 1) = −D

1 y

!

+D

1 x y z2

!

2



+D x z +D

y2 z x

!

coincides with the hyperbolic volume Vol(M(L R 3 )) = 2.98912 · · · , and we have VM(LR3 ) (x, y, z ; 1) = −L

1 y

!

+L

1 x y z2

!

y2 z +L x z +L x 2



!



π2

3

= −2 π 2 · 0.0368931 · · · + i · 2.98912 · · ·

where

    0.475468 + 0.621671 i x     y  = 0.203723 + 0.560668 i 0.572495 − 1.57557 i z

See Ref. 20 where algebraic solutions of consistency equations are investigated in detail. Correspondingly we obtain the A-polynomial for M(L R 3 ) by eliminating x, y , and z from a set of equations. Explicitly the polynomial AM(LR3 ) (ℓ, m) is given in the form of Newton polygon as follows; 0 0 0 1 0 0 0 0 − 3 0  −1 −2 −3 −1 −2   3  0 −3 −2 2  0 2 1 3 2  0 0 3 0 0 0 0 −1 0 0 

5. C ONCLUSION

AND

0 0  0  0   1  0 0 

D ISCUSSION

We have constructed partition function Zγ (M) for cusped hyperbolic 3-manifolds M by assigning the Faddeev quantum dilogarithm function to oriented ideal tetrahedra. Once the triangulation of cusped 3-manifold M is given, it is rather straightforward to define the partition function Zγ (M) in an integral form. In the classical limit, the Faddeev integral reduces to the dilogarithm function, whose imaginary part denotes the hyperbolic volume of ideal tetrahedron. Remarkable is that the saddle point conditions coincide with the hyperbolic consistency conditions around edges [23]. We have discussed as a variant of the volume conjecture that the partition function Zγ (M), which can be regarded as a generalization of the Kashaev invariant (specific value of the colored Jones polynomial) and quantum hyperbolic invariant [3], is dominated by the hyperbolic volume in the classical limit γ → 0. We have shown that the partition function can be defined even for a one-parameter deformation of manifold Mu (not complete), and that the Neumann–Zagier potential function can be given by taking a classical limit γ → 0. Correspondingly the Apolynomial can be computed from the potential function (3.13). This may support the generalized volume conjecture (1.2) proposed in Ref. 22. We have demonstrated by taking examples that our method recovers previously known A-polynomial when M is a

24

K. HIKAMI

complement of hyperbolic knots. We have further applied our method for the oncepunctured torus bundle over the circle. It seems that the A-polynomial-type invariant has not been known for this 3-manifold, and it will be interesting to study a relationship with the boundary slope. To conclude, our results indicate that the S -operator (2.13) denotes the quantum Bloch invariant for oriented ideal tetrahedron. The A-polynomial may give an interesting insight for mathematical physics. For example, the Mahler measure of the A-polynomial is expected to coincide with the hyperbolic volume of knot. On the other hand, the Mahler measure of the determinant of the Kasteleyn matrix has appeared as the free energy of the dimer problem. From the viewpoint of our combinatorial construction, the partition function based on oriented ideal triangulation may be interpreted as a matching of in-states and out-states, and it might be interesting to investigate a Kasteleyn matrix interpretation of the A-polynomial.

A CKNOWLEDGMENTS The author would like to thank H. Murakami, K. Shimokawa, and T. Takata for communications. He also thanks R. Benedetti for bringing Refs. 2, 3 to attention. We have used computer programs, SnapPea [60], Knotscape [28], and Snap [14], in studying triangulation of manifolds. We have also used Mathematica and Pari/GP. Pictures of knots in this paper are drawn using KnotPlot [54]. This work is supported in part by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

A. M ORE E XAMPLES We shall study the partition function for other cusped manifolds in the following. We give a list of • the partition function Zγ (Mu ) in terms of the S -operators, • developing map when the number of the ideal tetrahedron is less than four, • the condition δC (p ; u), where u is a deformation parameter from the completeness u = 0, • the Neumann–Zagier potential function VM (x ; m), which follows from Zγ (Mu ) by taking the classical limit γ → 0, • a solution of the saddle point equations in the complete case u = 0, which is

checked that the hyperbolic volume coincides with a maximal value of the imaginary part of the potential function at this saddle point. We further replace the Bloch–Wigner function with the Rogers dilogarithm function and choose branch so that the imaginary (resp. real) part gives the hyperbolic volume (resp. the Chern–Simons invariant modulo π 2 ), • the A-polynomial, which is given from the potential function VM (x ; m) by eliminating parameters x .

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

25

In the first part A.1, we collect results for hyperbolic knots up to 7 crossings. Though the A-polynomial is given in Ref. 12, we give an explicit form for self-completeness. In the second part A.2, we consider simple hyperbolic knots K xy from Ref. 9. Pictures of knot may be complicated, but the triangulation of the complement is relatively simple in these cases. It should be remarked that the A-polynomial and the Chern–Simons invariant (CS = 2 π 2 · cs and cs is defined modulo 1/2) may differ from results in Refs. 9, 12 due to opposite orientation. We note that, though the number of the ideal tetrahedra of the complement of knot K xy is x in the canonical triangulation [60], our triangulations are different. A.1 Complement of Knots up to 7 Crossings A.1.1 61

 Vol(S 3 \ K) = 3.16396 · · ·

cs(S 3 \ K) = 0.1559770167 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp3 , p1 |S −1 |p2 , p4 i hp6 , p4 |S|p5 , p8 i R

× hp7 , p5 |S −1 |p6 , p1 i hp8 , p2 |S|p7 , p3 i • Developing map (Fig. 9)

z3

z4

z3 z4

z2

z3

z3 z2 z1

z2

z4 z4 z1

z1

z2

z1

Figure 9: Developing map of the knot complement of 61 . Gray triangle is a horosphere of the top vertex of the tetrahedron with modulus z1 , where we have set z1 = ep4 −p1 , z2 = ep8 −p4 , z3 = ep1 −p5 , and z4 = ep3 −p2 .

26

K. HIKAMI

• Condition δC (p ; u)

p4 − p1 − p3 + p2 = 2 u

• Potential function VM (x, y, z ; m) = Li2

z m2 xy

!

m2 y

+ Li2 (y) − Li2

!

− Li2

+ log m

2

• Hyperbolic volume & Chern–Simons

Im VM (x, y, z ; m = 1) = D VM (x, y, z ; m = 1) = L

z xy

!

z xy

!





yz m2

+ L(y) − L

y

!

y z2 x

log

+ D(y) − D

1



1 y

!

!

− log z log(x y)

− D (y z)

− L (y z) − π i log(z)

= −2 π 2 · 0.344023 · · · + i · 3.16396 · · ·

where

• A-polynomial

    −0.851808 + 0.911292 i x     y  =  0.278726 + 0.48342 i  −1.50411 − 1.22685 i z 



0 0 −1 1 0 0 0 3 −1 0      0 2 1 0 0    0 −3 −3 0 0   −1 −3 −6 −3 −1   0 0 −3 −3 0    0 0 1 2 0     0 0  0 −1 3 0 1 −1 0 0

A.1.2 62

 Vol(S 3 \ K) = 4.40083 · · ·

cs(S 3 \ K) = 0.2024924984 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp8 , p6 |S −1 |p1 , p2 i hp3 , p7 |S −1 |p8 , p4 i R

× hp4 , p5 |S|p3 , p9 i hp2 , p10 |S|p6 , p5 i hp1 , p9 |S −1 |p10 , p7 i

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

• Condition δC (p ; u)

p2 − p6 − p5 + p10 = −2 u

• Potential function VM (w , x, y, z ; m) =

π2

6

+ Li2



z m2



m4 yw

+ Li2

!

− Li2



yw m2



m2 xy

− Li2

Im VM (w , x, y, z ; 1) = D (z) + D π2

6

+ L (z) + L

1 yw

!

1 yw

− D (y w ) − D !

− L (y w ) − L

1 xy

!

1 xy

!

− L (y z)

• A-polynomial

    −0.455697 + 1.20015 i w  x  −0.964913 − 0.621896 i       =  y  −0.418784 − 0.219165 i 0.0904327 + 1.60288 i z

0 1 0 0 0 0   0 −2 1 0 0 0   −1 1 −3 0 0 0     0 2 1 0 0 0    0 −5 5 0 0 0    0 −5 3 −3 0 0   0 3 −12 8 0 0    0 0 − 13 3 0 0     0 0 3 −13 0 0   0 0 8 −12 3 0    0 0 − 3 3 − 5 0   0 0 0 5 −5 0    0 0 0 1 2 0     0 0 0 −3 1 −1   0 0 0 1 −2 0  0 0 0 0 1 0 



A.1.3 63

 Vol(S 3 \ K) = 5.69302 · · ·

cs(S 3 \ K) = 0.0 mod 1/2

yz m2 ! y2 z w

− Li2

− D (y z)

= 2 π 2 · 0.297508 · · · + i · 4.40083 · · ·

with

!

 + log x log z − log(y w ) log(y z) + log m2 log

• Hyperbolic volume

VM (w , x, y, z ; 1) =

27





28

K. HIKAMI

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp3 , p2 |S|p1 , p9 i hp7 , p9 |S −1 |p5 , p10 i hp10 , p4 |S −1 |p6 , p8 i R

× hp8 , p1 |S −1 |p4 , p11 i hp12 , p11 |S −1 |p2 , p3 i hp6 , p5 |S|p12 , p7 i (A.1) • Condition δC (p ; u)

p10 − p9 − p7 + p5 = −2 u

• Potential function VM (v, w , x, y, z ; m) !   m2 y v = Li2 − Li2 + Li2 x w

! ! !   m2 w x2 z xz v − Li2 − Li2 − Li2 v v v xy z ! !      v w y z π2 2 + log x log + log m log + log log + 2 3 w yz yz v

• Hyperbolic volume

Im VM (v, w , x, y, z ; 1)         y v w xz =D +D −D −D −D x w v v

x2 z v

!

−D

v xy z

!

VM (v, w , x, y, z ; 1) ! !         x2 z v w xz v y π2 +L −L −L −L +L −L = 3 x w v v v xy z = 0.0 + i · 5.69302 · · ·

with

• A-polynomial

    v 0.0739495 + 0.558752 i w   0.732786 + 0.381252 i          x 1 . 0  =       y   0.108378 + 0.818891 i  z 0.415113 + 0.381252 i 



0 0 0 1 0 0 0 0 0 1 −5 1 0 0    3 − 4 0 0  0 0 −4   0 0 4 9 4 0 0   0 2 2 −2 2 2 0   0 −5 −6 −21 −6 −5 0   0 1 2 8 2 1 0     1 10 17 34 17 10 1   0 1 2 8 2 1 0   0 −5 −6 −21 −6 −5 0   0 2 2 −2 2 2 0   0 0 4 9 4 0 0    3 − 4 0 0  0 0 −4   0 0 1 −5 1 0 0 0 0 0 1 0 0 0

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

29

A.1.4 72

 Vol(S 3 \ K) = 3.33174 · · ·

cs(S 3 \ K) = 0.0551535349 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp1 , p4 |S|p2 , p3 i hp5 , p2 |S|p8 , p1 i R

× hp8 , p7 |S −1 |p7 , p6 i hp6 , p3 |S|p4 , p5 i • Developing map (Fig. 10)

z1

z2

z1

z2

z2

z4 z3

z3

z3

z3

z4

z2 z4

z1

z4

z1

Figure 10: Developing map of the knot complement of 72 . The gray triangle corresponds to top vertex of the tetrahedron with modulus z1 , where we have set modulus as z1 = ep3 −p4 , z2 = ep1 −p2 , z3 = ep6 −p7 , and z4 = ep5 −p3 . • Condition δC (p ; u) p3 − p4 − p1 + p2 = − 2 u • Potential function VM (x, y, z ; m) = Li2

1

  x

+ Li2

m2 x

!

+ Li2 z m

2



− Li2



yz x2





π2

3

2 x3 m 2 − log(x/y) + log z log y2 z 

!

30

K. HIKAMI

• Hyperbolic volume

 yz Im VM (x, y, z ; 1) = 2 D + D (z) − D x x2 !     yz π2 x 1 + L (z) − L − + π i log VM (x, y, z ; 1) = 2 L x x2 3 yz

1

 



= −2 π 2 · 0.555154 · · · + i · 3.33174 · · ·

with

• A-polynomial

    0.941819 − 1.69128 i x     y  = 0.935538 + 0.903908 i 0.0581814 + 1.69128 i z

1 −2 1 0 0 0 4 −4 0 0  0 3 2 −2 0   5 5 0 0 0  0 0 6 1 1  0 0 0 − 4 − 1  0 −1 −4 0 0  0 1 1 6 0   5 5 0 0 0  0 0 −2 2 3  0 0 0 −4 4 0 0 0 1 −2 

0 0  0  0   0  0  0  0   0  0  0 1 

A.1.5 73

 Vol(S 3 \ K) = 4.5921256970 · · · cs(S 3 \ K) = 0.1872201781 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp1 , p3 |S|p4 , p8 i hp2 , p8 |S|p5 , p1 i R

× hp5 , p9 |S −1 |p6 , p7 i hp4 , p6 |S|p3 , p10 i hp7 , p10 |S|p2 , p9 i • Condition δC (p ; u)

p10 − p6 − p1 + p8 = −2 u

• Potential function 2



4

VM (w , x, y, z ; m) = Li2 m w + Li2 (m w ) + Li2



1 m2 x



+ Li2



z w



− Li2

+ log w log x + log y log z + log m

 2

z y

!



π2

2

log(y w 2 z)

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

31

• Hyperbolic volume z Im VM (w , x, y, z ; 1) = 2 D (w ) + D +D x w

1

 

π2



z VM (w , x, y, z ; 1) = − +L + 2 L (w ) + L 2 x w

1

 







z −L y

= 2 π 2 · 0.18722 · · · + i · 4.59213 · · ·

with     x 0.645284 − 0.801205 i  y  −0.676708 + 0.260961 i      =   z   −0.87287 + 1.51178 i  w 0.537981 + 1.04357 i • A-polynomial  −1 0  0   0  0  0  0  0   0  0  0  0  0   0  0  0  0  0   0  0  0  0  0   0  0  0

0

1 0 0 0 −2 0 0 0 1 0 0 0 0 0 0 0 −5 −3 0 0 −2 9 0 0 3 −2 0 0 −2 −14 0 0 0 −2 3 0 0 4 −10 0 0 −4 3 0 0 −2 12 0 0 −3 −6 −1 0 3 24 3 0 −1 −6 −3 0 0 12 −2 0 0 3 −4 0 0 −10 4 0 0 3 −2 0 0 0 −14 0 0 0 −2 0 0 0 9 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−D

0 0 0 0  0 0  0 0   0 0  0 0  0 0  0 0  0 0   0 0  0 0  0 0  0 0  0 0   0 0  0 0  0 0  0 0  0 0   −2 0   3 0  −2 0   −5 0   0 0   1 0  −2 0  1 −1 

!

z y

!

− π i log z

32

K. HIKAMI

A.1.6 74

 Vol(S 3 \ K) = 5.13794 · · ·

cs(S 3 \ K) = 0.02172669 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp1 , p10 |S|p3 , p4 i hp9 , p2 |S|p12 , p1 i hp4 , p11 |S −1 |p5 , p6 i R

× hp3 , p5 |S −1 |p2 , p7 i hp12 , p8 |S|p10 , p9 i hp6 , p7 |S|p8 , p11 i • Condition δC (p ; u) p4 − p10 + p7 − p5 − p1 + p2 = −2 u • Potential function ! v x m2 VM (v, w , x, y, z ; m) = Li2 + Li2 − Li2 y ! !  zx π2 m4 x 2 − Li2 m z + Li2 − + Li2 wy y 3     2 w 2 2 log z + log m /w − log x log w − 2 log m + log(v) log m2 x z 

w x

vw y



!

• Hyperbolic volume

w Im VM (v, w , x, y, z ; 1) = D x 



+D

vw y

!

− D (z) + D w VM (v, w , x, y, z ; 1) = L x 

vx y

−D zx y

!

+D

x wy

!

!

! ! vx x −L +L y wy ! ! zx π2 v2 − L (z) + L − − π i log y 3 w



vw +L y

!

= −2 π 2 · 0.478273 · · · + i · 5.13794 · · ·

with     v −1.10278 + 0.665457 i w  −0.102785 + 0.665457 i         1.0 x =        y  −0.664742 − 0.401127 i z −0.226699 − 1.46771 i

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

• A-polynomial

0 0 −1 3 −3 1 0 0 3 − 10 7 0   0 0 −3 3 4 0    −2 21 −6 0 0 0    0 1  10 − 3 1 0   0 −2 6 −17 3 0   0 3 −17 6 −2 0   0 1 −3 10 1 0     0 − 6 21 − 2 0 0     0 4  3 − 3 0 0   0 7 −10 3 0 0 1 −3 3 −1 0 0 



A.1.7 75

 Vol(S 3 \ K) = 6.443537 · · ·

cs(S 3 \ K) = 0.12055587 · · ·

mod 1/2

• Partition function Zγ (Mu ) =

Z R

dp δC (p ; u) hp2 , p13 |S|p1, p12 i hp4 , p1 |S|p3 , p10 i × hp6 , p3 |S|p2 , p13 i hp5 , p11 |S −1 |p4 , p7 i hp8 , p12 |S −1 |p6 , p5 i

× hp7 , p9 |S|p8 , p14 i hp10 , p14 |S −1 |p9 , p11 i

• Condition δC (p ; u) p3 + p7 + p10 = p1 + p5 + p11 − 2 u • Potential function      x u 2 + Li2 u m + Li2 VM (u, v, w , x, y, z ; m) = − Li2 v m2 ! !     π2 wx v m2 v − Li − + Li2 + Li2 − Li 2 2 y m2 w y z z 6 !  u w2 + log x log y + log u log z + log m2 log v

33

34

K. HIKAMI

• Hyperbolic volume

!   u 1 Im VM (u, v, w , x, y, z ; m = 1) = −D + D (u) + D (x) + D v y !     v wx v −D −D +D wy z z !   1 π2 u + L (u) + L (x) + L −L VM (u, v, w , x, y, z ; m = 1) = − 6 v y !     v v wx +L −L −L − π i log u wy z z = 2 π 2 · 0.120557 · · · + i · 6.44354 · · ·

with

    0.38762 + 1.0287 i u  v  −0.572726 + 0.717749 i     w  −0.259819 + 0.832925 i       =  x   0.18596 + 0.689115 i       y   0.365014 − 1.35264 i  −0.679246 − 0.851242 i z

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

• A-polynomial  −1 1 0 − 4   5 0  0 2   0 −13  0 −3  0 7   −3 0  0 0  0 0  0 0  0 0   0 0  0 0  0 0  0 0  0 0   0 0  0 0  0 0  0 0  0 0   0 0  0 0  0 0  0 0  0 0   0 0  0 0  0 0  0 0  0 0   0 0  0 0

0

0

0 0 −1 6 −17 10 35 −32 −56 24 28 −22 −14 14 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −2 12 −23 −6 48 15 −82 −28 47 −13 −46 15 15 −2 −12 7 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 6 −11 4 4 4 −11 12 −16 −52 −16 12 −11 4 4 4 −11 6 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 7 −12 −2 15 15 −46 −13 47 −28 −82 15 48 −6 −23 12 −2 0 0 0 0 0



0 0 0 0 0 0  0 0 0   0 0 0  0 0 0  0 0 0  0 0 0  0 0 0   0 0 0  0 0 0  0 0 0  0 0 0  0 0 0   0 0 0  0 0 0  0 0 0  0 0 0  0 0 0   0 0 0  0 0 0  −3 0 0  14 0 0  −14 0 0   −22 0 0  28 0 0  24 0 0  −56 0 0  −32 −3 0   35 7 0  10 −3 0   −17 −13 0   6 2 0  −1 5 0   0 −4 0 0 1 −1

A.1.8 76

 Vol(S 3 \ K) = 7.08493 · · ·

cs(S 3 \ K) = 0.18228319 · · ·

mod 1/2

35

36

K. HIKAMI

• Partition function Zγ (Mu ) =

Z R

dp δC (p ; u) hp1 , p14 |S −1 |p3 , p13 i hp4 , p13 |S −1 |p1 , p2 i hp9 , p5 |S|p4, p14 i × hp3 , p2 |S|p6 , p15 i hp7 , p6 |S|p5 , p16 i hp11 , p12 |S −1 |p7 , p8 i

× hp8 , p15 |S −1 |p6 , p10 i hp10 , p16 |S −1 |p11 , p12 i

• Condition δC (p ; u) p6 + p10 = p5 + p8 − 2 u • Potential function !   v m2 VM (t, u, v, w , x, y, z ; m) = − Li2 (t) − Li2 u m + Li2 − Li2 x x ! !     π2 1 vw u t + Li2 − Li2 − Li + + Li2 2 y wy m2 z z 3 !   x − (log m2 )2 + 2 log m2 log + log(t/v) log(x/y) − log u log z yw  2

• Hyperbolic volume !     v t 1 Im VM (t, u, v, w , x, y, z ; 1) = −D(t) − D (u) + D −D +D x x y !     1 vw u −D −D +D wy z z !     t 1 v −L +L VM (t, u, v, w , x, y, z ; 1) = −L(t) − L (u) + L x x y !     u π2 1 vw +L −L −L + − 2 π i log t wy z z 3 = −2 π 2 · 0.182283 · · · + i · 7.08493 · · ·

with     t 0.558614 − 1.43795 i  u  −0.0892864 − 0.842785 i      v   −0.280101 + 1.13004 i          w 0 . 450985 − 0 . 808297 i  =       x   0.234736 + 0.604244 i       y   −0.20665 − 0.833705 i  z −0.12431 + 1.17337 i

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

• A-polynomial 

0  0  0  0  1  0   0  0  0  0  0   0  0  0  0  0   0  0  0  0  0   0  0  0  0  0   0 0

0 1 0 −6 −2 11 6 2 −5 −16 −5 −7 16 9 5 8 −9 42 3 11 0 −37 0 8 0 23 0 −16 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1

7

−16

1 34 10 −80 −9 62 10 34 83 −44 −48 47 10 −29 19 7 1 0 0 0 0 0 0 0 0



0 0 0 0 0 0 0 0 0 0 0 0   1 0 0 0 0 0  −9 0 0 0 0 0  32 0 0 0 0 0  −30 2 0 0 0 0  −68 −16 0 0 0 0   98 41 0 0 0 0  164 −18 1 0 0 0  −212 −78 7 0 0 0  −266 52 19 0 0 0  196 158 −29 0 0 0   377 −85 10 0 0 0  24 −237 47 3 0 0  −237 24 −48 −16 0 0  −85 377 −44 23 0 0  158 196 83 8 0 0   52 −266 34 −37 0 0  −78 −212 10 11 3 0  −18 164 62 42 −9 0  41 98 −9 8 5 0  −16 −68 −80 9 16 0   2 −30 10 −7 −5 0  0 32 34 −16 −5 1  0 −9 1 2 6 0  0 1 −16 11 −2 0   0 0 7 −6 0 0 0 0 −1 1 0 0

A.1.9 77

 Vol(S 3 \ K) = 7.64338 · · ·

cs(S 3 \ K) = 0.1329856 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp1 , p3 |S|p15 , p16 i hp2 , p4 |S|p1 , p14 i hp5 , p13 |S −1 |p8 , p4 i R

× hp6 , p15 |S −1 |p3 , p2 i hp7 , p16 |S −1 |p5 , p6 i hp10 , p14 |S −1 |p7 , p9 i

× hp8 , p9 |S|p11 , p12 i hp11 , p12 |S|p10 , p13 i

• Condition δC (p ; u)

p6 + p15 = p2 + p3 − 2 u

37

38

K. HIKAMI

• Potential function !   2 t m 1 2 VM (t, u, v, w , x, y, z ; m) = Li2 v m + Li2 t m w − Li2 − Li2 x m2 w x     1 u − Li2 (v x) + Li2 (u x) + Li2 − Li2 4 m z m2 z ! !  v u w x + log m2 log + log(t u) log + log v log z m2 w y y  2



• Hyperbolic volume

    1 t −D Im VM (t, u, v, w , x, y, z ; 1) = D (v) + D (t w ) − D x wx     1 u − D(v x) + D(u x) + D −D z z     t 1 VM (t, u, v, w , x, y, z ; 1) = L (v) + L (t w ) − L −L x wx     u 1 −L + 2 π i log t − L(v x) + L(u x) + L z z = −2 π 2 · 0.867014 · · · + i · 7.64338 · · ·

with     −0.899232 + 0.400532 i t  u  −0.927958 − 0.413327 i      v   0.0287264 + 0.813859 i          w  = −0.351808 − 0.720342 i      x  −0.927958 − 0.413327 i      y  −0.927958 − 0.413327 i 0.0433154 − 1.22719 i z

• A-polynomial 

0 0 0 0   0 0  0 0  0 0  0 0  0 3   0 −11  0 4  1 20  0 −7  0 −7   7 0  0 −2  0 0  0 0  0 0   0 0  0 0 0 0

0 1 −1 0 −7 8 0 15 −19 3 1 −4 −18 −30 59 23 −1 0 27 41 −123 −65 7 −2 −19 −29 130 84 −46 35 16 35 −46 −28 130 −29 1 −2 7 −8 −123 41 −1 0 −1 11 59 −30 −6 −4 1 1 −19 15 0 8 −7 0 −1 1

0 0 0 0 1 0 −6 0 11 0 −1 0 −8 −2 1 7 −28 −7 16 −7 84 20 −19 4 −65 −11 27 3 23 0 −18 0 3 0 0 0 0 0 0 0



0 0  0   0  0  0  0  0   0  0  1  0  0   0  0  0  0  0   0 0

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

39

A.2 Complement of “Simple” Hyperbolic Knots A.2.1 K 44

 Vol(S 3 \ K) = 3.6086890618 · · · cs(S 3 \ K) = 0.1139831647 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp3 , p2 |S −1 |p2 , p1 i hp12 , p5 |S|p10 , p3 i hp6 , p1 |S −1 |p11 , p12 i R

× hp10 , p9 |S|p8 , p6 i hp4 , p7 |S|p9 , p4 i hp11 , p8 |S|p7 , p5 i • Condition δC (p ; u) p12 − p1 + p5 − p8 − p6 + p9 = −2 u • Potential function !

 z + Li2 − Li2 VM (v, w , x, y, z ; m) = − Li2 v m2 y v m2 !       π2 m2 v wy + Li2 m2 x y + Li2 − log m4 x y + log + Li2 yz z 3 z !   m2 w 2 + 2 log(w y) log(y) + log m2 log m4 w 3 + log(x) log x 

x w

1





• Hyperbolic volume

x Im VM (v, w , x, y, z ; 1) = −D w 



+D

1 vy

!

+ D (x y) + D π2

x −L VM (v, w , x, y, z ; 1) = − 3 w

  z −D v !

1

yz

wy +D z

!





  z +L −L vy v !   1 wy + L (x y) + L +L − π i log(x/y) yz z 



1

= −2 π 2 · 0.113983 · · · + i · 3.60869 · · ·

with     v −0.06796 − 1.03267 i w  −0.597112 + 0.762045 i          x  =  1.29516 + 0.539127 i       y   0.457778 + 1.02559 i  z −0.396648 − 0.345221 i

40

K. HIKAMI

• A-polynomial A(ℓ, m) = 1 + (m30 − 2 m32 + m34 ) ℓ + (−m58 + 2 m60 − 10 m62 + 4 m64 − m66 ) ℓ2 + (−2 m90 + 3 m92 − m96 ) ℓ3 + (m120 + 8 m122 + 6 m124 ) ℓ4

+ (m150 − m152 − m154 + m156 ) ℓ5 + (2 m180 − 12 m182 − 12 m186 + 2 m188 ) ℓ6 + (m212 − m214 − m216 + m218 ) ℓ7 + (6 m244 + 8 m246 + m248 ) ℓ8

+ (−m272 + 3 m276 − 2 m278 ) ℓ9 + (−m302 + 4 m304 − 10 m406 + 2 m408 − m310 ) ℓ10

+ (m334 − 2 m336 + m338 ) ℓ11 + m368 ℓ12

A.2.2 K 51

 Vol(S 3 \ K) = 3.4179148372 · · · cs(S 3 \ K) = 0.1517274811 · · ·

mod 1/2

• Partition function Z



Zγ (Mu ) = dp δC (p ; u) p5 , p2 S −1 p1 , p3 p1 , p9 S −1 p9 , p2 p4 , p3 S −1 p5 , p7 R





× p10 , p6 S −1 p4 , p11 p12 , p7 S −1 p6 , p10 p11 , p8 S −1 p8 , p12

• Condition δC (p ; u)

p11 − p6 − p10 + p7 = −2 u

• Potential function VM (v, w , x, y, z ; m) = − Li2



w x2



− Li2

wx y !

!

− Li2

y2 m4 v z

!

− Li2

y2 wz

!

!    z y m2 z 2 2 − Li2 − Li2 + π + 5 log m log vy vy z !      2  2 3 2 xy y + 2 log w log + 2 log z log − 2 log(m2 ) − 2 log x − 5 log y w z • Hyperbolic volume w Im VM (v, w , x, y, z ; 1) = −D 2 x 



!

−D

y2 vz

!

−D

y2 wz

!

− 2D

! ! wx y2 −L −L y vz ! !   z y y2 2 − 2L + π − π i log −L wz vy v

w VM (v, w , x, y, z ; 1) = −L x2 

−D

wx y



= −2 π 2 · 0.151727 · · · + i · 3.41791 · · ·

z vy

!

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

41

with

• A-polynomial

    v 0.465534 − 0.473866 i w   0.693244 + 0.159750 i           x  = −1.085877 − 0.175545 i      y  −0.952444 − 0.928780 i z −0.907927 + 0.840443 i

  AK (ℓ, m) = −1 + −m32 + m34 ℓ + 9 m64 − 3 m66 + m68 ℓ2

 + m92 − 3 m94 + 12 m96 − 14 m98 + 5 m100 − m102 ℓ3   + m124 − 7 m126 − 18 m128 + 5 m130 − 2 m132 ℓ4 + −m156 − 7 m158 + 2 m160 + 6 m162 ℓ5  + −m188 + 17 m190 + 20 m192 − 2 m194 + m196 ℓ6  + −2 m218 + 14 m220 − 12 m222 + 12 m224 − 14 m226 + 2 m228 ℓ7  + −m250 + 2 m252 − 20 m254 − 17 m256 + m258 ℓ8   + −6 m284 − 2 m286 + 7 m288 + m290 ℓ9 + 2 m314 − 5 m316 + 18 m318 + 7 m320 − m322 ℓ10  + m344 − 5 m346 + 14 m348 − 12 m350 + 3 m352 − m354 ℓ11   + −m378 + 3 m380 − 9 m382 ℓ12 + −m412 + m414 ℓ13 + ℓ14 m446

A.2.3 K 59 or 10132

 Vol(S 3 \ K) = 4.0568602242 · · · cs(S 3 \ K) = 0.1867489858 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp1 , p9 |S −1 |p2 , p3 i hp4 , p2 |S −1 |p9 , p5 i R

× hp6 , p7 |S −1 |p7 , p8 i hp5 , p3 |S|p6 , p10 i hp10 , p8 |S|p4 , p1 i • Condition δC (p ; u) p2 + p8 + p10 = p1 + p5 + p9 − 2 u • Potential function !

    y yz π2 − Li2 − Li2 (z) + Li2 + VM (w , x, y, z ; m) = Li2 (w ) − Li2 x m2 6     2   y + 2 log y log(x z) + log m2 − log m2 log(x y w ) + log w log z w y

42

K. HIKAMI

• Hyperbolic volume

Im VM (w , x, y, z ; 1) = D(w ) − D π2

w + L(w ) − L VM (w , x, y, z ; 1) = 6 y

!

w y

!

  y −D − D(z) + D (y z) x

  y −L − L(z) + L (y z) − π i log(w x y z) x

= 2 π 2 · 0.186749 · · · + i · 4.05686 · · ·

with

• A-polynomial 

    −0.0498076 + 0.754729 i w  x   −1.54094 − 1.35872 i        =  y   −0.821578 − 0.131699 i  −0.0844626 − 0.905094 i z 

0 0 0 0 1 0 0 0 0  0 0 0 − 1 − 7 0 0 0 0     0 0 −1 3 7 −4 −2 0 0    0 1 4 2 13 4 − 6 − 3 − 1   0 −1 −5 −7 −6 5 13 1 0   0 0 −5 −12 −18 9 9 4 0   0 0 12 13 −15 −10 −7 −4 0      0 4 7 10 15 −13 −12 0 0   0 −4 −9 −9 18 12 5 0 0   0 −1 −13 −5 6 7 5 1 0   1 3 6 −4 −13 −2 −4 −1 0    0 0 2 4 −7 −3 1 0 0     0 0 7 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

A.2.4 K 512 or 820

 Vol(S 3 \ K) = 4.1249032518 · · · cs(S 3 \ K) = 0.1033634474 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp8 , p2 |S|p1 , p6 i hp1 , p10 |S −1 |p10 , p4 i R

× hp9 , p3 |S|p2 , p9 i hp4 , p7 |S −1 |p5 , p3 i hp6 , p5 |S −1 |p7 , p8 i • Condition δC (p ; u) p3 − p7 + p6 − p2 − p8 + p5 = − 2 u

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

• Potential function VM (w , x, y, z ; m) ! ! ! !   x m4 w π2 x z z = − Li2 − Li + Li − Li + Li + 2 2 2 2 m2 w xy y wy xy 6       2 2  2 − 2 log w + log x − 2 log m2 !  x z2 2 + 2 log w log x + 2 log w log z − 2 log x log z + log m log w5 • Hyperbolic volume ! ! ! ! w x z z −D +D −D +D xy y wy xy ! ! ! !   x w x z z VM (w , x, y, z ; 1) = −L −L +L −L +L w xy y wy xy   2 π y + π i log + 6 z 2 = −2 π · 0.396637 · · · + i · 4.1249 · · ·

x Im VM (w , x, y, z ; 1) = −D w 



with

• A-polynomial

    −0.723387 − 0.90034 i w  x  −0.637406 + 0.318768 i       =  y  −0.483596 + 0.741071 i 1.08906 − 0.727199 i z 

0 0   0  0  0  −1  0   0  0 0

−1

1 1 −5 −2 0 2 3 1 −3 −5 0 −1 −4 0 −2 0 0 0 0

0 0 −2 −4 0 −3 3 0 −5 1



0 0 0 0  0 0   −1 0   −5 −1  1 0  2 0   −2 0   1 0 −1 0

A.2.5 K 513

 Vol(S 3 \ K) = 4.1249032518 · · · cs(S 3 \ K) = 0.0200301140 · · ·

mod 1/2

43

44

K. HIKAMI

• Partition function

Zγ (Mu ) =

Z R

dp δC (p ; u) hp2 , p9 |S −1 |p1, p3 i hp7 , p6 |S −1|p6 , p2 i × hp4 , p5 |S −1 |p9 , p7 i hp8 , p1 |S|p4 , p10 i hp10 , p3 |S|p5 , p8 i (A.2)

• Condition δC (p ; u)

p1 + p5 + p8 = p7 + p9 + p10 − 2 u

• Potential function !  x 1 VM (w , x, y, z ; m) = − Li2 (m x) + Li2 − Li2 − Li2 w w2 y ! 2 π2  z + − log m2 + Li2 wy 6 

− log m

2



z y

!

z log(w z) + log x log yw

!

− 2 log w log z

• Hyperbolic volume x Im VM (w , x, y, z ; 1) = −D (x) + D w 



−D

1 w2 y

!

−D

z y

!

+D

!  1 x VM (w , x, y, z ; 1) = −L − L (x) + L 6 w w2 y ! !   z xz z +L − π i log −L y wy w π2



= −2 π 2 · 0.47997 · · · + i · 4.1249 · · ·

with     −0.812447 + 0.173142 i w  x  −0.0890598 − 0.727199 i       = − 1 . 71268 + 1 . 30259 i y     1.09977 + 1.12945 i z

z wy

!

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

• A-polynomial 

0 1 0 0 0  0 −1 0 0 0   0 1 2 0  0   0 0 −10 1 3   0 0 8 − 14 − 11   0 −5 11 5 −1  −1 5 −10 14 29   0 −5 4 5  0   0 −1 9 − 13 − 19   0 0 5 3 −33   0 0 − 7 9 −3   0 0 2 −7 25   0 0 −1 16  0   0 0 0 1 −12   0 0 0 0 −12   0 0 0 0 8   0 0 0 0 − 1   0 0 0 0  0   0 0 0 0 0 0 0 0 0 0



0 0 0 0 0 0 0 0 0 0  0 0 0 0 0   −1 0 0 0 0  8 0 0 0 0  −12 0 0 0 0  −12 1 0 0 0  16 −1 0 0 0   25 −7 2 0 0  −3 9 −7 0 0  −33 3 5 0 0  −19 −13 9 −1 0   5 4 −5 0 0   29 14 −10 5 −1  −1 5 11 −5 0   −11 −14 8 0 0  3 1 −10 0 0  0 2 1 0 0   0 0 0 −1 0  0 0 0 1 0

A.2.6 K 521 or 946

 Vol(S 3 \ K) = 4.7517019655 · · · cs(S 3 \ K) = 0.1450479602 · · · • Partition function Z Zγ (Mu ) = dp δC (p ; u) hp4 , p1 |S|p6 , p7 i hp2 , p9 |S −1 |p1 , p8 i R

× hp7 , p8 |S −1 |p3 , p4 i hp6 , p5 |S −1 |p9 , p10 i hp3 , p10 |S −1 |p5 , p2 i • Condition δC (p ; u) p1 + p4 + p5 = p7 + p9 + p10 − 2 u • Potential function ! ! ! w2 x m2 y m2 VM (w , x, y, z ; m) = − Li2 + Li2 − Li2 m2 x w2 x z      2  2 2 wyz π2  z 2 − Li2 + + log m − 2 log w − log z − Li2 w m2 2    yz 2 − log w log x − log(y z) log(x w ) + log m log x

45

46

K. HIKAMI

• Hyperbolic volume       y 1 z Im VM (w , x, y, z ; 1) = −D w x + D −D −D − D (w y z) 2 x w xz w        1 z y π2 2 −L −L − L (w y z) −L w x +L VM (w , x, y, z ; 1) = 2 2 x w xz w = 2 π 2 · 0.145048 · · · + i · 4.7517 · · · 2



with     w −1.21844 + 0.168108 i  x   0.640448 − 0.637204 i       =  1.0 y    z −0.445837 + 0.526085 i • A-polynomial 



0 0 −1 1 0 0 2 5 −1 0      −1 −5 −3 2 0   0 0 −5 −5 0    0 2 2 2 0     0 −5 −5 0 0   0 2 −3 −5 −1     2 0  0 −1 5 0 1 −1 0 0 A.2.7 K 522 or 10139

 Vol(S 3 \ K) = 4.8511707573 · · · cs(S 3 \ K) = 0.2289275614 · · ·

mod 1/2

• Partition function Zγ (Mu ) =

Z R

dp δC (p ; u) hp5 , p9 |S|p8, p1 i hp1 , p3 |S|p2, p9 i × hp6 , p7 |S|p4 , p3 i hp2 , p8 |S|p7 , p10 i hp4 , p10 |S|p5 , p6 i

• Condition δC (p ; u) p7 + p9 + p10 = p1 + p3 + p8 − 2 u

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

• Potential function

!   m4 w w VM (w , x, y, z ; m) = Li2 + Li2 + Li2 m2 x y xz !    2 wz 5 π2 z + Li2 + 2 log m2 − + Li2 w y 6 ! !    x z w 2 + log m log + log x log + log w log 2 y z y z 

1



• Hyperbolic volume

!    wz z w Im VM (w , x, y, z ; 1) = D +D +D +D +D x xz w y ! !       5 π2 w wz z 1 w VM (w , x, y, z ; 1) = − +L +L +L +L +L 6 x y xz w y

1

 

w y

!



= −2 π 2 · 0.228928 · · · + i · 4.85117 · · ·

with

    0.660443 − 0.716885 i w  x  −0.0777392 − 0.946923 i       = − 0 . 460355 − 1 . 13932 i y     1.0 z

47

48

K. HIKAMI

• A-polynomial





1 0 0 0 0  0 0 0 0 0      0 0 0 0 0    0 0 0 0 0    0 0 0 0 0    0 0 0 0 0    0 − 1 0 0 0      0 7 0 0 0    0 − 3 0 0 0    0 1 0 0 0    0 0 0 0 0    0 0 0 0 0      0 0 0 0 0    0 0 0 0 0    0 0 6 0 0    0 0 0 0 0    0 0 0 0 0      0 0 0 0 0    0 0 0 0 0    0 0 0 1 0    0 0 0 − 3 0    0 0 0 7 0      0 0 0 − 1 0    0 0 0 0 0    0 0 0 0 0    0 0 0 0 0    0 0 0 0 0      0 0 0 0 0 0 0 0 0 1

A.2.8 K 610

 Vol(S 3 \ K) = 4.40083252 · · · cs(S 3 \ K) = 0.21417417 · · ·

mod 1/2

• Partition function Z

Zγ (Mu ) = dp δC (p ; u) p2 , p6 S −1 p4 , p1 p1 , p12 S −1 p10 , p3 hp3 , p8 |S|p6 , p11 i R



× p7 , p9 S −1 p9 , p8 p10 , p4 S −1 p12 , p5 hp11 , p5 |S|p2 , p7 i

• Condition δC (p ; u)

p5 + p6 + p11 = p1 + p4 + p8 − 2 u

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

49

• Potential function ! !    w m4 v x x VM (v, w , x, y, z ; m) = − Li2 − Li2 + Li2 − Li2 v y y z2      2 π2 z w 2 − Li2 + + Li2 − 2 log m z m2 v 3 ! !   2   y z w z3 yz 2 2 + log m log + log x log + log v log − log z log y z w v3 w v x 

• Hyperbolic volume w Im VM (v, w , x, y, z ; 1) = −D v 



−D

v y

!

+D

x y

!

−D



x z2



+D



w z



−D

! !  v x w VM (v, w , x, y, z ; 1) = −L +L −L 3 v y y         z x w x −L − π i log +L −L 2 z z v z = −2 π 2 · 0.214174 · · · + i · 4.40083 · · · π2



with     v 1.18608 + 0.874646 i w    1.0          x  = −1.09737 + 0.230836 i      y   −1.23271 + 1.09381 i  z 0.40897 − 0.337176 i • A-polynomial                                    

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 −1 3 1 7 0 −19 0 7 0 6 0 −9 −6 5 6 12 −1 −1 2 −6 −1 1 0 0

0 0 0 2 −10 15 3 −35 15 40 −2 −12 −22 −13 19 3 −3 0

0 0 1 −4 7 5 −36 16 44 −6 −30 −45 14 39 −5 −16 7 −1

−1

10 −24 −5 47 18 −21 −69 −45 45 69 21 −18 −47 5 24 −10 1

1 −7 16 5 −39 −14 45 30 6 −44 −16 36 −5 −7 4 −1 0 0



0 0 0 0 3 −1 1 0    −3 6 −2 1   −19 1 1 0   13 −12 −6 0   22 −5 6 0    12 9 0 0   2 −6 0 0   −40 −7 0 0   −15 19 0 0   35 −7 −1 0    −3 −3 1 0   −15 1 0 0   10 0 0 0   −2 0 0 0   0 0 0 0    0 0 0 0  0 0 0 0

  z v

50

K. HIKAMI

A.2.9 K 622

 Vol(S 3 \ K) = 4.76988960 · · · cs(S 3 \ K) = 0.07253540 · · ·

mod 1/2

• Partition function Z

Zγ (Mu ) = dp δC (p ; u) p6 , p1 S −1 p1 , p2 p2 , p11 S −1 p3 , p7 hp10 , p7 |S|p12 , p10 i R

• Condition δC (p ; u)



× p3 , p9 S −1 p4 , p11 hp5 , p4 |S|p9 , p8 i hp8 , p12 |S|p6 , p5 i

p4 + p5 + p7 = p8 + p9 + p12 − 2 u • Potential function ! !    w y m2 v m2 v VM (v, w , x, y, z ; m) = − Li2 − Li2 + Li2 + Li2 v2 w 2 x2 y v2 x !     2 2  v xz xz + Li2 − Li2 − log m2 + log v log w z 2 − 3 log w w y ! !   v8 w 3 x4 z 2 2 2 2 − 2 log y log v x y z + log x log + log m log y w4 x 

• Hyperbolic volume !  v v −D +D w 2 x2 y !     y xz v xz +D −D +D v2 x w y !     v v w −L +L VM (v, w , x, y, z ; 1) = −L v2 w 2 x2 y !     y xz v xz +L −L +L + π i log(v x) v2 x w y w Im VM (v, w , x, y, z ; 1) = −D v2 





= 2 π 2 · 0.427465 · · · + i · 4.76989 · · ·

with     v 0.127216 + 0.708358 i w  −0.534645 + 1.01011 i          x  = −0.40328 + 0.755585 i      y   0.66186 − 0.301752 i  z −0.54977 − 1.03005 i

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

51

• A-polynomial

                                                                                 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −9 0 0 0 0 16 0 0 0 0 7 0 0 0 0 −9 0 0 0 −2 −65 0 0 0 1 69 0 0 0 22 30 0 0 0 −36 −10 0 0 −2 2 −56 0 0 9 8 30 0 0 −4 20 −1 0 0 −5 −44 −1 0 0 −13 20 0 0 2 19 3 0 0 3 −16 −2 0 0 −8 9 0 0 0 5 1 0 0 1 −3 −1 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0



0 0 0 0 −1 0 0 0 0 0 1 0    0 0 0 0 0 0   0 0 0 0 3 0   0 0 0 −1 −3 1   0 0 0 1 5 0   0 0 0 9 −8 0    0 0 −2 −16 3 0   0 0 3 19 2 0   0 0 20 −13 0 0   0 −1 −44 −5 0 0   0 −1 20 −4 0 0    0 30 8 9 0 0   −1 −56 2 −2 0 0   −5 −10 −36 0 0 0   35 30 22 0 0 0   −32 69 1 0 0 0    −41 −65 −2 0 0 0   −13 −9 0 0 0 0   126 7 0 0 0 0   −13 16 0 0 0 0   −41 −9 0 0 0 0    −32 1 0 0 0 0   35 0 0 0 0 0   −5 0 0 0 0 0   −1 0 0 0 0 0   0 0 0 0 0 0    0 0 0 0 0 0   0 0 0 0 0 0   0 0 0 0 0 0   0 0 0 0 0 0   0 0 0 0 0 0    0 0 0 0 0 0   0 0 0 0 0 0   0 0 0 0 0 0   0 0 0 0 0 0   0 0 0 0 0 0    0 0 0 0 0 0  0 0 0 0 0 0

52

K. HIKAMI

A.2.10 K 633 or 10140

 Vol(S 3 \ K) = 5.21256682 · · · cs(S 3 \ K) = 0.10336001 · · ·

mod 1/2

• Partition function Z Zγ (Mu ) = dp δC (p ; u) hp1 , p7 |S|p5 , p3 i hp2 , p9 |S −1 |p1 , p4 ihp3 , p12 |S −1 |p10 , p2 i R

× hp5 , p4 |S −1 |p6 , p11 i hp8 , p6 |S −1 |p7 , p12 i hp10 , p11 |S −1 |p9 , p8 i • Condition δC (p ; u) p3 + p6 + p11 = p2 + p7 + p9 − 2 u • Potential function !

! w2 x − Li2 + Li2 VM (v, w , x, y, z ; m) = − Li2 vy m2 w y y    2 π2 − Li2 v m2 w y − Li2 v m2 w x z − Li2 m2 y z + 3  2  − log(v m2 ) − 2 log v log w − 2 log m2 log(w y)  − log v log(x y) − log m2 log z − log y log(z w y)

1

!

1

• Hyperbolic volume

Im VM (v, w , x, y, z ; 1) = −D

1 vy

!

−D

1 wy

!

+D

w2 x y

!

− D (v w y) − D (v w x z) − D (y z)

1 2 π2 −L VM (v, w , x, y, z ; 1) = 3 vy

!

−L

1 wy

!

w2 x +L y

!

− L (v w y) − L (v w x z) − L (y z) − π i log(v z)

= 2 π 2 · 0.10336 · · · + i · 5.21257 · · ·

with     v −1.1238 − 0.998279 i w   −0.439261 − 0.570751 i           x  =  −0.836795 + 1.7323 i       y  −0.829546 − 0.0564355 i z −0.549394 + 0.740149 i

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

53

• A-polynomial

0 0  0   0  0  0  0  −1   0  0  0 0 

−1

1 −2 5 −6 4 −2 −6 0 0 0 0

1 0 0 0 −9 0 0 0 8 −12 −2 0 −4 6 −12 −3 5 −7 4 −13 −7 8 −20 1 1 −20 8 −7 −13 4 −7 5 −3 −12 6 −4 0 −2 −12 8 0 0 0 −9 0 0 0 1

0 0 0 0  0 0  0 0   −6 −1  −2 0   4 0  −6 0   5 0   −2 0   1 0 −1 0 

R EFERENCES [1] E. W. Barnes, Theory of the double gamma functions, Phil. Trans. Roy. Soc. A 196, 265– 388 (1901). [2] S. Baseilhac and R. Benedetti, Quantum hyperbolic invariants of 3-manifolds with PSL(2,C) characters, Topology 43, 1373–1423 (2004). [3] ———, Classical and quantum dilogarithmic invariants of flat PSL(2,C)-bundles over 3manifolds, Geom. Topol. 9, 493–569 (2005). [4] V. V. Bazhanov and N. Reshetikhin, Remarks on the quantum dilogarithm, J. Phys. A: Math. Gen. 28, 2217–2226 (1995). [5] R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Universitext, Springer-Verlag, Berlin, 1992. ˚ [6] S. Betley, J. H. Przytycki, and T. Zukowski, Hyperbolic structures on Dehn filling of 1 some punctured-torus bundles over S , Kobe J. Math. 3, 117–147 (1986). [7] F. Bonahon and X. Liu, Representation of the quantum Teichmuller ¨ space and invariants of surface diffeomorphism, math.GT/0407086 (2004). [8] A. G. Bytsko and J. Teschner, R -operator, co-product and Haar-measure for the modular double of Uq (sl(2, R)), Commun. Math. Phys. 240, 171–196 (2003). [9] P. J. Callahan, J. C. Dean, and J. R. Weeks, The simplest hyperbolic knots, J. Knot Theory and Its Ramifications 8, 279–297 (1999). [10] L. Chekhov and V. V. Fock, Quantum Teichmuller ¨ space, Theor. Math. Phys. 120, 1245– 1259 (1999). [11] L. O. Chekhov and R. C. Penner, Introduction to quantum Thurston theory, Russ. Math. Surveys 58, 1141–1183 (2003). [12] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118, 47–84 (1994). [13] D. Cooper and D. D. Long, Representation theory and the A-polynomial of a knot — knot theory and its applications, Chaos, Solitons & Fractals 9, 749–763 (1998). [14] D. Coulson, O. A. Goodman, C. D. Hodgson, and W. D. Neumann, Computing arithmetic invariants of 3-manifolds, Experimental Math. 9, 127–152 (2000).

54

K. HIKAMI

[15] J. L. Dupont and C. K. Zickert, A dilogarithmic formula for the Cheeger–Chern–Simons class, Geometry & Topology 10, 1347–1372 (2006). [16] L. D. Faddeev, Modular double of quantum group, in G. Dito and D. Sternheimer, eds., Conference Mosh Flato 1999 — Vol. I. Quantization, Deformations, and Symmetries, vol. 21 of Math. Phys. Stud., pp. 149–156, Kluwer, Dordrecht, 2000. [17] L. D. Faddeev and R. M. Kashaev, Quantum dilogarithm, Mod. Phys. Lett. A 9, 427– 434 (1994). [18] L. D. Faddeev, R. M. Kashaev, and A. Y. Volkov, Strongly coupled quantum discrete Liouville theory I: algebraic approach and duality, Commun. Math. Phys. 219, 199–219 (2001). [19] W. Floyd and A. Hatcher, Incompressible surfaces in punctured torus bundles, Topology Appl. 13, 263–282 (1982). [20] S. Francaviglia, Algebraic and geometric solutions of hyperbolicity equations, Topol. Appl. 145, 91–118 (2004). [21] S. Garoufalidis and T. T. Q. Le, The colored Jones function is q -holonomic, Geom. Topol. 9, 1253–1293 (2005). [22] S. Gukov, Three-dimensional quantum gravity, Chern–Simons theory, and the Apolynomial, Commun. Math. Phys. 255, 577–627 (2005). [23] K. Hikami, Hyperbolic structure arising from a knot invariant, Int. J. Mod. Phys. A 16, 3309–3333 (2001). [24] ———, Hyperbolicity of partition function and quantum gravity, Nucl. Phys. B 616, 537–548 (2001). [25] ———, Hyperbolic structure arising from a knot invariant II. completeness, Int. J. Mod. Phys. B 16, 1963–1970 (2002). [26] ———, Difference equation of the colored Jones polynomial for the torus knot, Int. J. Math. 15, 959–965 (2004). [27] ———, Asymptotics of the colored Jones polynomial and the A-polynomial, Nucl. Phys. B (2007), to appear. [28] J. Hoste and M. B. Thistlethwaite, Knotscape, http://www.math.utk.edu/ ˜morwen/ (1999). [29] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12, 103–111 (1985). [30] R. M. Kashaev, Quantum dilogarithm as a 6j -symbol, Mod. Phys. Lett. A 9, 3757–3768 (1994). [31] ———, An invariant of triangulated links from quantum dilogarithm, POMI 224, 208– 214 (1995). [32] ———, A link invariant from quantum dilogarithm, Mod. Phys. Lett. A 10, 1409–1418 (1995). [33] ———, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys. 39, 269–275 (1997). [34] ———, On the spectrum of Dehn twists in quantum Teichmuller ¨ theory, in A. N. Kirillov and N. Liskova, eds., Physics and Combinatorics — Proceedings of the Nagoya 2000 International Workshop, pp. 63–81, World Scientific, Singapore, 2001.

GENERALIZED VOLUME CONJECTURE & THE A-POLYNOMIALS

55

[35] S. Kharchev, D. Lebedev, and M. Semenov-Tian-Shansky, Unitary representations of Uq (sl(2, R)), the modular double, and the multiparticle q -deformed Toda chains, Commun. Math. Phys. 225, 573–609 (2002). [36] A. N. Kirillov, Dilogarithm identities, Prog. Theor. Phys. Suppl. 118, 61–142 (1995). [37] A. N. Kirillov and N. Y. Reshetikhin, Representations of the algebra Uq (SL(2)), q orthogonal polynomials and invariants of links, in V. G. Kac, ed., Infinite Dimensional Lie Algebra and Groups, pp. 285–339, World Scientific, Singapore, 1989. [38] N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan Acad. Ser. A Math. Sci 67, 61–64 (1991). [39] T. T. Q. Le, The colored Jones polynomial and the A-polynomial of knots, Adv. Math. 207, 782–804 (2006). [40] L. Lewin, Polylogarithms and Associated Functions, North-Holland, New York, 1981. [41] R. Meyerhoff, Hyperbolic 3-manifolds with equal volumes but different Chern–Simons invariants, in D. B. A. Epstein, ed., Low-Dimensional Topology and Kleinian Groups, vol. 112 of London Math. Soc. Lecture Notes, pp. 209–215, Cambridge Univ. Press, Cambridge, 1986. [42] J. Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. 6, 9–24 (1982). [43] H. Murakami, Some limits of the colored Jones polynomials of the figure-eight knot, Kyungpook Math. J. 44, 369–383 (2004). [44] ———, A version of the volume conjecture, math.GT/0603217 (2006). [45] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186, 85–104 (2001). [46] H. Murakami and Y. Yokota, The colored Jones polynomials of the figure-eight knot and its Dehn surgery spaces, math.GT/0401084 (2004). [47] J. Murakami and M. Yano, On the volume of a hyperbolic and spherical tetrahedron, Comm. Anal. Geom. 13, 379–400 (2005). [48] W. D. Neumann and J. Yang, Invariants from triangulations of hyperbolic 3-manifolds, Electron. Res. Announc. Amer. Math. Soc. 1, 72–79 (1995). [49] ———, Bloch invariants of hyperbolic 3-manifolds, Duke Math. J. 96, 29–59 (1999). [50] W. Z. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24, 307–332 (1985). [51] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in F. Bloch, ed., Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58, North-Holland, 1968. [52] J. Roberts, Classical 6j -symbols and the tetrahedron, Geometry & Topology 3, 21–66 (1999). [53] S. N. M. Ruijsenaars, First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38, 1069–1146 (1997). [54] R. Scharein, Knotplot, http://www.pims.math.ca/knotplot/. [55] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo 24, 167–199 (1977). [56] M. Takahashi, On the concrete construction of hyperbolic structures of 3-manifolds, Tsukuba J. Math. 9, 41–83 (1985).

56

K. HIKAMI

[57] W. P. Thurston, The geometry and topology of three-manifolds, Lecture Notes in Princeton University, Princeton (1980). [58] ———, Hyperbolic structures on 3-manifolds. I. deformation of acylindrical manifolds, Ann. Math. 124, 203–246 (1986). [59] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j symbols, Topology 31, 865–902 (1992). [60] J. Weeks, SnapPea, http://thames.northnet.org/weeks/. [61] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121, 351–399 (1989). [62] S. L. Woronowicz, Quantum exponential function, Rev. Math. Phys. 12, 873–920 (2000). [63] Y. Yokota, On the potential functions for the hyperbolic structures of a knot complement, in T. Ohtsuki, T. Kohno, T. Le, J. Murakami, J. Roberts, and V. Turaev, eds., Invariants of knots and 3-manifolds (Kyoto 2001), vol. 4 of Geometry and Topology Monographs, pp. 303–311, Univ. Warwick, 2002. [64] T. Yoshida, The η-invariant of hyperbolic 3-manifolds, Invent. Math. 81, 473–514 (1985). E-mail address: [email protected] URL: http://gogh.phys.s.u-tokyo.ac.jp/˜hikami/ D EPARTMENT OF P HYSICS , G RADUATE S CHOOL OF S CIENCE , U NIVERSITY OF T OKYO , H ONGO 7–3–1, B UNKYO , T OKYO 113–0033, J APAN .

generalized volume conjecture and the a-polynomials

Mar 3, 2007 - in Appendix. The last section is devoted to conclusions and discussions. 2. QUANTUM DILOGARITHM FUNCTION. We define a function Φγ(ϕ) ...

4MB Sizes 1 Downloads 288 Views

Recommend Documents

The Collatz Conjecture
In all other cases, the T-orbit of x is said to be divergent. REMARK. The Collatz Conjecture is equivalent to the statement that the orbits of all positive integers under T are convergent. 4. Conjugacy. Now that we have defined some of the basic term

On the Saks-Wigderson Conjecture
May 1, 2012 - We investigate the deterministic and the randomized decision tree complexities for Boolean function f, denoted D(f) and R(f), respectively.

The Section Conjecture for Graphs and Conical Curves
none at all, and yet have a trivial Brauer group. In particular, the .... which we shall call the Grothendieck exact sequence associated with (Π,Γ). Now suppose ...

Generalized and Doubly Generalized LDPC Codes ...
The developed analytical tool is then exploited to design capacity ... error floor than capacity approaching LDPC and GLDPC codes, at the cost of increased.

The Unique Games Conjecture and some of its ...
Unique Games conjecture allows us to design a 2-bit test. 3.3 The Raz Verifier's ...... to approximate within factor (k −3−epsilon). Electronic Colloquium on ...

Network Externalities and the Coase Conjecture - Semantic Scholar
Nov 11, 1998 - a broad class of network bene t functions those that are increasing over some range of the network size , the ... function is used; section 3 deals with speci c examples. Section 4 ..... School of Business, N.Y.U.. Economides, N.

CONJUGACY AND THE 3x + 1 CONJECTURE 1 ...
The conjecture states that for every positive integer x, there exists a positive integer k such that Tk(x) = 1 where Tk is the k-fold composition of T with itself.

Explorations of the Collatz Conjecture - CiteSeerX
have all gone above and beyond the call of duty. You have .... parity vector of x. We will call this the partial parity vector of length n. For ... trajectories merge.

Explorations of the Collatz Conjecture - CiteSeerX
are a truly fantastic group of friends and I am blessed to have you. .... The total stopping time σ∞(x) of a positive integer x is defined to be the num-.

The LU-LC Conjecture is FALSE - ICTS
(−1). Q(x). = n. ∏ j=1 c xj j. , then all cj's can be chosen from {±1,±i}. s. Q(x) = x1 x2 + x1 x4 + x1 x5 + x3 x4 + x4 x5 + x4 . s. Fix Q(x),S: A system of equations in cj.

The Teitelbaum conjecture in the indefinite setting
We call M≤h (resp. M>h) the slope ≤ h (resp. slope > h) part. It is clear that ...... its L-invariant is LD = LN− . Its base change to K is built from the K-vector space ...

On Forster's Conjecture and Related Results
C[X1,X2,X3]/p has a singularity at the origin. ...... En(A). ∼ (a1 + λ2a2 + ททท + λnan,a2,...,an). Theorem 2.1.6 Let A be a ring and [b1,b2,...,bn] ∈ An be a ...

A Survey of the Multiplier Conjecture
Nov 19, 2015 - We review the current status of the multiplier conjecture for dif- ference sets, present some new results on it, and determine the open cases of the conjecture for abelian groups of order < 106. It turns out that for Paley parameters (

A Comment on the Hadamard Conjecture
binary error correcting block codes and sets of mutually orthogonal F- squares. Except in the case of F-squares, the ratio between the lower bound given by ...

On Forster's Conjecture and Related Results
However, if A = k[X1,...,Xn] and p ⊂ A is a prime ideal such that A/p is regular, then Forster (cf. [9]) proved that p is generated by n+1 elements. He conjectured that p is generated by n elements. The conjecture of Forster was settled by Sathaye

On a Conjecture of Butler and Graham
where x ∈ [k]kmr, y ∈ [k]t, and z ∈ [k]a. Furthermore, we index x by a pair (i, j) ∈ Zm k × [r],. i.e. xi,j ∈ [k] are the coordinates of x (where i ∈ Zm k ,j ∈ [r])3. For a point (x, y, z) ∈ [k]n and i ∈ Zm k ,j ∈ [r], denote by

Homology of GLn: injectivity conjecture for GL4
Jul 24, 2007 - Abstract The homology of GLn(R)and SLn(R)is studied, where R is a ... Our main theorem states that the natural map H4(GL3(R), k)→.

Generalized quantifiers and clarification content
(13) Terry: Richard hit the ball on the car. ... Nick: What ball? ... Nick: What car? Terry: The car that was going past. ... Yeah a book, log book. BNC file KNV ...

I. The numerical scheme and generalized solitary waves - UoA Scholar
Jun 13, 2006 - aDepartment of Mathematics, Statistics and Computer Science, University of Illinois at ... After suitable testing of the numerical scheme, it is used to examine the .... h of periodic smooth splines of order r (degree r − 1) on.

Purity of critical cohomology and Kac's conjecture
each Zi \ Zi−1 has pure compactly supported cohomology, from which it follows that Z does too. This in turn implies the positivity of the associated weight polynomial, as odd cohomology vanishes. The idea of relating polynomials arising in positivi

Generalized Inquisitive Semantics and Logic
Aug 28, 2009 - Of course, this picture is limited in several ways. First ...... dition of Groenendijk's logic of interrogation (Groenendijk, 1999; ten Cate and Shan,.

Generalized Bernstein Property and Gravitational ...
over the hosting complex line bundle. ... equations (1.1) and (1.2) over a simply connected domain are, respectively, equivalent instead to the vector equations.

Generalized Davis-Putnam and Satisfiability ...
Sep 1, 2009 - We consider a small Sudoku puzzle of size .... written a computer program that solves this problem on a laptop computer in under one second.