

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

GoogleMappingPP.nb

1

Generating Google™ maps A preprint version of a “Mathematical graphics” column from Mathematica in Education and Research . Mark McClure Department of Mathematics University of North Carolina at Asheville Asheville, NC 28804 Abstract The Google Maps™ mapping service provides a relatively easy way to create interactive maps. To do so efficiently however, some interesting mathematical problems must be solved. Mathematica 's tools for reading, manipulating, and writing data make it a good choice to generate a Google map presenting complicated data.

ü Mathematica Initializations

1. Introduction Google Maps™ mapping service provides an exciting and relatively simple new way to create interactive maps called Google maps. While relatively simple, creating a Google map to display interesting geographic data can be complicated, depending on the nature of the data. The data is likely stored in a file which must be read, analyzed, and translated to javascript, the language of the Google Maps™ API. Mathematica is an outstanding tool for each step along the way. First, Mathematica’s XML capabilities make it easy to read several key types of files used to store geographic information. Second, the data might need to be simplified to be displayed efficiently; some interesting mathematics arises at this step. Finally, Mathematica’s string manipulation and file processing tools make it easy to write out the HTML and javascript representing the map. Description of this process seems like a natural topic for an issue focusing on the interface between Mathematica and other software. Many readers are surely familiar with the main Google Maps™ website [1]. Using this site is quite easy and intuitive for most users and this article necessarily assumes a basic familiarity with that interface. It’s easy to set up a URL pointing to a Google map of a specific place. For example, the following URL points to a Google map of Asheville, North Carolina: http://maps.google.com/maps?q=asheville+nc. It is also possible to set up a Google map residing in your own webspace using the Google Maps™ API. You can add clickable markers, complicated paths, and just about any tool you can program - in javascript. Since the Google Maps™ API is implemented in javascript and the map itself is displayed in a webpage, some familiarity with javascript and HTML would be helpful to the reader of this paper. It is not, however, mandatory. Indeed, a major point of this issue's column is to provide a simple tool for Mathematica users to create their own Google maps, without delving too deeply into javascript. One logical use of the Google Maps™ mapping service is to display geographic data already stored in a file. Geographic data can be very complicated and the Google Maps™ API, being based in javascript, has difficulty handling large data. It is necessary to cluster large collections of markers and simplify complicated path data. Mathematica has built in tools to deal with the first problem and is an excellent programming tool to deal with the second.

GoogleMappingPP.nb

2

One logical use of the Google Maps™ mapping service is to display geographic data already stored in a file. Geographic data can be very complicated and the Google Maps™ API, being based in javascript, has difficulty handling large data. It is necessary to cluster large collections of markers and simplify complicated path data. Mathematica has built in tools to deal with the first problem and is an excellent programming tool to deal with the second.

A basic map Before generating maps with complicated data, we should introduce the basics of the Google Maps™ API. Much more complete information is presented at the Google Maps™ API reference [2]. Two main pieces of code are required to define and display a Google map: an HTML file for the webpage and a javascript file that defines the map. The HTML code below defines a minimal webpage to hold a Google map. This is exactly the code contained in the BasicGoogleMap.html file in the SupplementaryFiles folder distributed with this column.

 A very basic Google map

Code segment 1: HTML for a basic Google map. This code has several important elements that are immediately relevant to the Google map. Inside the head are pointers to two javascripts. The first points to the Google Maps™ API file which defines the classes and functions you can use to make a Google map. The second points to a file, typically written by the programer, that uses the API to define the Google map in the web page. Inside the body element is a div element which holds the map. The style property of the div sets the size of the map and the id property names the map for reference by the javascript. Finally, the onload property of the body element calls the load method, which is defined in BasicGoogleMap.js; it is the load method which starts the action. Here are the contents of the BasicGoogleMap.js file. function load() { var map = new GMap2(document.getElementById("map")); map.setCenter(new GLatLng(35.6173, -82.5657), 16); map.addControl(new GSmallMapControl()); map.addControl(new GMapTypeControl()); }

Code segment 2: Javascript for a basic Google map. This defines the function load referred to in the HTML file. The first step of load initializes the map, the second sets the location and zoom level, and then a couple of controls are added. If you view the HTML file in a web browser, you should see the following map which is defined by the javascript.

GoogleMappingPP.nb

3

Show@Import@"BasicGoogleMap.tiff"D, ImageSize Ø $ImageSizeD

Note the empty key parameter at the end of the longest line in the HTML file. In order to display the map on a public webpage, you must sign up for Google Maps™ key at http://www.google.com/apis/maps/signup.html. This page contains a script which will generate a long and complicated string which is your Google Maps™ key. This string is tied to your webspace and is the proper value of the key parameter. For development purposes, it is not necessary to use a key to display a map off of your harddrive. After the addition of the key, the HTML file is as complicated as is necessary to create a Google map. We'll generate some much more interesting javascript to add long paths and large collections of markers, however.

ü A V6 goodie It's easy to modify the code to display a map of your favorite city; simply replace the latitude and longitude (contained in the GLatLng function) by the latitude and longitude of the city you want and adjust the zoom level. The new V6 CityData command offers simple access to this type of information. For example the following command (executed in V6) yields {35.5799,-82.5558}, the latitude and longitude of Asheville, NC. CityData@8"Asheville", "NorthCarolina", "UnitedStates"

GPXToGoogleMap Provided with this column is a package called GPXToGoogleMap, which automates the process of producing a Google map to display information stored in a file. This program has been under development nearly since the inception of the Google Maps™ API in early 2005. The current version is compatible with Mathematica versions 5.1, 5.2, and 6.0. The latest version of the program can be downloaded from the GPXToGoogleMap webpage [3], which contains much more extensive documentation. There are many different filetypes used to store geographic information. GPXToGoogleMap reads GPX, a filetype for the storage of data obtained from a Geographical Positioning System (GPS) unit. The advantages of using GPX for this purpose include: its widespread use, the fact that each GPX element corresponds to a Google map object in an obvious way, and its implementation in XML allowing use of Mathematica's XML capabilities. (Another natural choice of filetype to translate might be KML, Google's proprietary, XML based filetype used with the Google Earth™ mapping service. KML is currently undergoing rapid development, however. Thus, the primary advantage of GPX over KML is its stability.) There are three major types of elements which may be described in a GPX document: tracks, waypoints, and routes. A track is simply a sequence of points defined by latitude, longitude pairs typically used to represent a path graphically on a map. Other data, such as elevation, may or may not be present as well. If elevation data is present for all of the tracks, then GPXToGoogleMap will also generate elevation profiles for these tracks. A waypoint is defined by a latitude, longitude pair and typically has more data associated with it, such as a name and description. A route is a sequence of route points from one location to another. The route points usually have directional information associated with them, so a route is a good way to represent driving directions. Waypoints and routepoints are represented using markers on the Google map.

GoogleMappingPP.nb

4

There are three major types of elements which may be described in a GPX document: tracks, waypoints, and routes. A track is simply a sequence of points defined by latitude, longitude pairs typically used to represent a path graphically on a map. Other data, such as elevation, may or may not be present as well. If elevation data is present for all of the tracks, then GPXToGoogleMap will also generate elevation profiles for these tracks. A waypoint is defined by a latitude, longitude pair and typically has more data associated with it, such as a name and description. A route is a sequence of route points from one location to another. The route points usually have directional information associated with them, so a route is a good way to represent driving directions. Waypoints and routepoints are represented using markers on the Google map. There are some interesting mathematical challenges that arise in the attempt to translate a GPX file to a Google map. It is not unusual for a GPX file to contain an extremely large number of waypoints and very complicated tracks. Javascript, while a natural choice to add dynamic enhancement to webpages, is not a particularly fast language. Thus, it is important that we represent our Google map as efficiently as possible. The Google Maps™ API offers several tools for this purpose, but we must still algorithmically translate the GPX file into a form that these tools understand. It is in this regard that GPXToGoogleMap stands out from the many other comparable tools available on the web. A GPX file with a few thousands waypoints and several tracks consisting of tens of thousands of points each can be handled fairly easily. Use of GPXToGoogleMap is easy. Simply load the package and execute the command. The following command generates a Google map from the file MtMitchell.gpx in the SupplementaryFiles folder distributed with this paper. Needs@"GPXToGoogleMap`"D; GPXToGoogleMap@"MtMitchell.gpx", DisplayFunction Ø $DisplayFunctionD 7000 6000 5000 4000 3000 2000 5

10

15

20

25

30

35

GPXToGoogleMap accepts a number of options. In this example, we have used the option DisplayFunctionØ $DisplayFunction to show the elevation profile, which is usually embedded in the webpage but not displayed. After

executing this command, three files should appear on your harddrive: MtMitchell.html, MtMitchell.js, and MtMitchellEC1.gif. The last of these is the elevation chart of the GPX track. If you open MtMitchell.html, you should see the following Google map. Show@Import@"MtMitchell.tiff"D, ImageSize Ø $ImageSizeD

The obvious difference between this map and the simpler map from the last section is the presence of a path, indicating the GPX track, and two markers indicating the beginning and ending of the path. The code to add these is, perhaps, a bit more mysterious than the simple code from before, particularly the code defining the path: var ePolyline = new GPolyline.fromEncoded({ color: "#0000ff", weight: 4, opacity: 0.8, points: "LongStrangeString1", levels: "LongStrangeString2", zoomFactor: 2, numLevels: 18

GoogleMappingPP.nb

5

var ePolyline = new GPolyline.fromEncoded({ color: "#0000ff", weight: 4, opacity: 0.8, points: "LongStrangeString1", levels: "LongStrangeString2", zoomFactor: 2, numLevels: 18 }); map.addOverlay(ePolyline);

Code segment 3: Javascript for an encoded polyline Code of this type defines a GPolyline object. The color, weight and opacity lines are simple style directives and the addOverlay function simply adds the path to the map. The strings which encode the points and levels, together with the zoomFactor and numLevels, are the trickiests aspect of this code. The levels string will be discussed in the next section. Of particular interest, though, is the fact that this path with over 700 points displays very quickly. Paths with several thousand points can render quite easily using the encoding technique. It's also possible to generate a Google map which displays a few thousand markers. However, it is important that no more than a hundred or so be displayed at any given time. GPXToGoogleMap accomplishes this by clustering the markers. For example, the file NCCities.gpx contains waypoints for 650 different cities in North Carolina. We can still apply GPXToGoogleMap. GPXToGoogleMap@"NCCities.gpx"D

If you now view the Google map generated by this command in NCCities.html, you should see the following. Show@Import@"NCCities.tiff"D, ImageSize Ø $ImageSizeD

Each large marker represents a cluster of more than 20 cities, while the smaller markers on either side represent a cluster of between 2 and 20 cities. As we zoom in, the clusters split into smaller clusters as appropriate. If we zoom in to the Asheville area, for example, we see the following.

GoogleMappingPP.nb

6

Show@Import@"AshevilleAreaCities.tiff"D, ImageSize Ø $ImageSizeD

The new, smallest markers represent single cities. You can click on those markers to get the population and elevation of the city. GPXToGoogleMap has a number of options, although their use requires a bit more knowledge of the Google Maps™ API. We refer the interested reader to the GPXToGoogleMap webpage [3].

Some mathematical details The GPXToGoogleMap package is nearly 1000 lines of Mathematica code. Much of this is concerned with string manipulation and file input/output operations. It's actually quite a bit shorter than it might be, thanks to Mathematica's XML capabilities and the fact that GPX is an XML extension. Much of it is useful, but not particularly exciting. There are, however, some interesting mathematical steps related to the clustering of the markers and encoding of the paths. We briefly discuss the ideas here and refer the reader to the GPXToGoogleMap documentation [3] for more details.

ü Clustering markers As mentioned earlier, the performance of a Google map will start to degrade when more than about 100 or so markers are displayed at once. A class defined in the Google Maps™ API called the GMarkerManager class provides a workaround. The programmer can define marker icons that correspond to groups of markers and specify when they turn on and off using the GMarkerManager. It is still up to the programmer to cluster the markers appropriately at various levels. The GPXToGoogleMap package accomplishes this using the Agglomerate function in the Statistics`ClusterAnalysis` package. If@$VersionNumber < 6.0, Needs@"Statistics`ClusterAnalysis`"D, Needs@"HierarchicalClustering`"DD;

To illustrate the process, we can Import the locations of the 650 cities from NCCities.gpx using the XML structure of the file.

GoogleMappingPP.nb

7

dataXML = Import@"NCCities.gpx", "XML"D; wpts = ToExpression@H8"lon", "lat"< ê. #1@@2DD & L êü Cases@dataXML, XMLElement@"wpt", __D, InfinityDD; ListPlot@wpts, AspectRatio Ø Automatic, PlotJoined Ø FalseD 36.5 36 35.5 35 34.5 34 -84

-82

-80

-78

-76

Given a particular distance tolerance, we wish to cluster the points so that each cluster contains a collection of points whose distance from one another is within that tolerance. Furthermore, we want to do so hierarchically; i.e. as we zoom in and decrease the error tolerance, each cluster further decomposes into sub-clusters. Creation of such a hierarchy is exactly the purpose of the Agglomerate command. Agglomerate produces a nested collection of Cluster objects. For example, hierarchy = Agglomerate@81, 2, 4, 5, 10

The format of a Cluster is Cluster[cl1,cl2,dist,n1,n2] ., where cl1 and cl2 are sub-clusters, dist is the distance between the sub-clusters and n1 and n2 are the number of elements in the sub-clusters. The DendrogramPlot command makes it easy to visualize this hierarchy. DendrogramPlot@hierarchy, Orientation Ø Left, LeafLabels Ø H# &LD 10

5

4

2

1

Now we apply Agglomerate to the city locations and segregate the clusters according to distance.

GoogleMappingPP.nb

8

heirarchy = Agglomerate@wpts, DistanceFunction Ø EuclideanDistance, Linkage Ø "Average"D; segregate@Cluster@cl1_, cl2_, d_, _, _D, tol_D := MyClusters@cl1, cl2D ê; d > tol; segregate@mine_MyClusters, tol_D := segregate@#, tolD & êü mine; segregate@x_, _D := x; cf@cl_ClusterD := ClusterFlatten@clD; cf@x_D := 8x

This has yielded 4 clusters, which may be visualized used the following ClusterPlot command. ClusterPlot@lists_D := Show@MapIndexed@ ListPlot@#, PlotJoined Ø False, AspectRatio Ø Automatic, PlotStyle Ø GrayLevel@Mod@#2@@1DD ê Length@listsD, 0.7, 0.2DD, DisplayFunction Ø IdentityD &, listsD, DisplayFunction Ø $DisplayFunctionD; ClusterPlot@clustersD 36.5 36 35.5 35 34.5 34 -84

-82

-80

-78

-76

If we were to generate a Google map showing these cities, then each of these clusters would yield a single marker at this level of resolution. As we zoom in, the process would be repeated using a smaller distance tolerance.

ü Polyline simplification and encoding Polyline simplification is the process of removing points from a path while minimizing the distortion of the shape of the path. There is a well known algorithm for this purpose, called the Douglas-Peucker algorithm, that naturally extends to the encoding process offered by the Google Maps™ API. Most of the details of the encoding process need not concern us here; we refer the interested reader to Google Maps™ API documentation [2] and the author's webpage on encoding polylines [4]. The Douglas-Peucker algorithm is an interesting and important algorithm, however, and it is a short step from there to indicate the basic idea of the polyline encoding process. The original reference for the Douglas Peucker algorithm is [5].

GoogleMappingPP.nb

9

The idea behind the Douglas-Peucker algorithm is as follows. We start with a zeroth level approximation to the path consisting of just the endpoints. Call these endpoints A and B. We then prescribe a small error tolerance - distances smaller than this error tolerance will essentially be ignored. Now, we scan the list of points in the path and find the one farthest away from the line segment [A,B]; call it C. If the distance from C to [A,B] is less than the error tolerance, then the process terminates and the polyline approximation will be a single line segment. Otherwise, label the point C with it's distance to [A,B] and call the procedure recursively on the portion of the line between A and C and the portion of the line between C and B. This procedure will eventually terminate, at which time unlabeled points will be discarded. In the classic Douglas-Peucker algorithm, the approximation consists of precisely the labeled points. In the polyline encoding algorithm, the labels are translated to characters indicating the "significance" of the point, as described shortly. This algorithm is implemented by the DPSimplify command defined below. Each segment of the path is stored in a seg; the function testSeg, tests a segment to see if it needs to be split and performs the split if necessary. DPSimplify then repeatedly calls testSeg until all segments satisfy the requirements of the algorithm. dist@q : 8x_, y_ tol, pos = Position@dists, maxD@@1, 1DD + 1; 8seg@points@@Range@1, posDDDD, seg@points@@Range@pos, Length@pointsDDDDD 2; testSeg@seg@points_ListD, tol_D := seg@points, doneD; testSeg@seg@points_List, doneD, tol_D := seg@points, doneD; DPSimplify@points_List, tol_RealD := Append@First êü First êü Flatten@8seg@pointsD< êê. s_seg ß testSeg@s, tolDD, Last@pointsDD;

We can illustrate the algorithm using the first 360 points of the Mt. Mitchell path. dataXML = Import@"MtMitchell.gpx", "XML"D; track = Take@ToExpression@Cases@dataXML, XMLElement@"trkpt", __D, InfinityD ê. XMLElement@"trkpt", latLonRules_, ___D ß H8"lon", "lat"< ê. latLonRulesLD, 360D; Show@Graphics@wholePath = 8Line@trackD, , Point êü track

This path exhibits characteristics common to GPS data. Reception is very good in some spots but not so in others. In this example, the better reception occurs on the straighter portions of the path. This is exactly the situation the Douglas-Peucker algorithm is built for. The following picture illustrates the result for several choices of the tolerance.

GoogleMappingPP.nb

10

Show@GraphicsArray@8ListPlot@DPSimplify@track, #D, Epilog Ø wholePath, Frame Ø False, DisplayFunction Ø Identity, AspectRatio Ø AutomaticD< & êü 80.01, 0.005, 0.0007

Note that the last approximation consists of only 35 points but is quite good at this level of resolution. Finally, we briefly indicate how to translate this simplification process into an encoding. The polyline code shown in code segment 3 contains a "levels" parameter. This parameter is a string and its number of characters is equal to the number of points in the path. The character in a particular position in the string indicates the zoom level at which the corresponding point should be turned on. The efficiency in the process arises from the fact that not every point need be displayed at every zoom level. It is an easy process to turn the distances computed during the Douglas-Peucker algorithm into the appropriate characters for the encoding. See the author's webpage on polyline encoding [4] for more details.

ü Another V6 Goodie There is an interactive Douglas-Peucker simplifier at the Wolfram Demonstrations site [6].

References [1] Google Maps™ mapping service: http://maps.google.com/. [2] Google Maps™ API Documentation: http://www.google.com/apis/maps/documentation/. [3] Mark McClure, GPXToGoogleMap: http://facstaff.unca.edu/mcmcclur/GoogleMaps/GPXToGoogleMap/. [4] Mark McClure, Encoding polylines: http://facstaff.unca.edu/mcmcclur/GoogleMaps/EncodePolyline/. [5] D. Douglas & T. Peucker, "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature", The Canadian Cartographer 10 (1973) 112-122.

GoogleMappingPP.nb

11

[6] Mark McClure, Polyline simplification (a Wolfram demonstration): http://demonstrations.wolfram.com/PolylineSimplification/.

[image: Generating Googleâ„¢ maps - Mark McClure]
Generating Googleâ„¢ maps - Mark McClure

[image: Generating self-affine tiles and their boundaries - Mark McClure]
Generating self-affine tiles and their boundaries - Mark McClure

[image: Generating self-affine tiles and their boundaries - Mark McClure]
Generating self-affine tiles and their boundaries - Mark McClure

[image: Boundary scanning and complex dynamics - Mark McClure]
Boundary scanning and complex dynamics - Mark McClure

[image: the prevalent dimension of graphs - Mark McClure]
the prevalent dimension of graphs - Mark McClure

[image: Vibration of the Koch drum - Mark McClure]
Vibration of the Koch drum - Mark McClure

[image: Boundary scanning and complex dynamics - Mark McClure]
Boundary scanning and complex dynamics - Mark McClure

[image: the prevalent dimension of graphs - Mark McClure]
the prevalent dimension of graphs - Mark McClure

[image: Vibration of the Koch drum - Mark McClure]
Vibration of the Koch drum - Mark McClure

[image: The Read-Bajraktarevic Operator - Mark McClure]
The Read-Bajraktarevic Operator - Mark McClure

[image: Vibration of the Koch drum - Mark McClure]
Vibration of the Koch drum - Mark McClure

[image: The connected locus for complex cubic iteration - Mark McClure]
The connected locus for complex cubic iteration - Mark McClure

[image: The connected locus for complex cubic iteration - Mark McClure]
The connected locus for complex cubic iteration - Mark McClure

[image: alt]
"Decremental tag systems and random trees". - Mark McClure

[image: alt]
"Decremental tag systems and random trees". - Mark McClure

[image: Parametric L-Systems and borderline fractals - Mark McClure]
Parametric L-Systems and borderline fractals - Mark McClure

[image: A Stochastic Cellular Automaton for Three-Coloring ... - Mark McClure]
A Stochastic Cellular Automaton for Three-Coloring ... - Mark McClure

[image: The Borel Structure of the Collections of Sub-Self ... - Mark McClure]
The Borel Structure of the Collections of Sub-Self ... - Mark McClure

[image: The Borel Structure of the Collections of Sub-Self ... - Mark McClure]
The Borel Structure of the Collections of Sub-Self ... - Mark McClure

[image: Electricity Generating]
Electricity Generating

[image: Electricity Generating - Settrade]
Electricity Generating - Settrade

[image: Generating Wealth Through Inventions]
Generating Wealth Through Inventions

[image: Generating Wealth Through Inventions]
Generating Wealth Through Inventions

[image: Google Maps]
Google Maps

Generating Googleâ„¢ maps - Mark McClure

complete information is presented at the Google Mapsâ„¢ API reference [2]. ... and display a Google map: an HTML file for the webpage and a javascript file that ...

 Download PDF

 746KB Sizes
 6 Downloads
 113 Views

 Report

Recommend Documents

[image: alt]

Generating Googleâ„¢ maps - Mark McClure

If you view the HTML file in a web browser, you should see the We can illustrate the algorithm using the first 360 points of the Mt. Mitchell path. dataXML ...

[image: alt]

Generating self-affine tiles and their boundaries - Mark McClure

Now for each pair Ha, bL where a and b are chosen from , we want MHa, bL to denote the set of pairs of digits. Hd, d'L so that b = A a used by the program.

[image: alt]

Generating self-affine tiles and their boundaries - Mark McClure

For example, the image in figure 1 is a self-affine four-tile (i.e. it consists of four parts) ... Self-similarity and iterated function systems are, by now, fairly well known concepts. In figure 5, we see the image of figure 4 under the mapping

[image: alt]

Boundary scanning and complex dynamics - Mark McClure

with this notebook. [2] J. Glynn and T. Gray, The Beginner's Guide to Mathematica Version 4. Cambridge University Press, NY, 2000. BoundaryScanPP.nb. 9.

[image: alt]

the prevalent dimension of graphs - Mark McClure

The extension of the various notions of \almost every" in Rn to infinite dimen- sional spaces is an interesting and difficult problem. Perhaps the simplest and most successful generalization has been through the use of category. Banach's application

[image: alt]

Vibration of the Koch drum - Mark McClure

A preprint version of a â€œMathematical graphicsâ€� column from More precisely, there are seven functions f0 , f1 , â€¦, f6 that map the snow- flake onto the ...

[image: alt]

Boundary scanning and complex dynamics - Mark McClure

with this notebook. [2] J. Glynn and T. Gray, The Beginner's Guide to Mathematica Version 4. Cambridge University Press, NY, 2000. BoundaryScanPP.nb. 9.

[image: alt]

the prevalent dimension of graphs - Mark McClure

An easy but important property of is that it respects closure. That is. (E) = (E). Another (F] p. 41) is that the limsup need only be taken along any sequence fcng1n=1 where c 2 (01) and we still obtain the same value. One problem with is that it is

[image: alt]

Vibration of the Koch drum - Mark McClure

We begin by setting up the boundary of the snowflake. The level Norm@interiorGrid@@#DD - KochVertices@@nDDD Â§ stepSize Ðº 2 &D@@1DD;.

[image: alt]

The Read-Bajraktarevic Operator - Mark McClure

0.4. 0.6. 0.8. 1. References. [1] Massopust, Peter R. Fractal functions, fractal surfaces, and wavelets. Academic Press, Inc., San Diego, CA, 1994. ReadBajPP.nb.

[image: alt]

Vibration of the Koch drum - Mark McClure

The fundamental modes of vibration of this drum can be modelled by the eigenfunctions of the We begin by setting up the boundary of the snowflake.

[image: alt]

The connected locus for complex cubic iteration - Mark McClure

SupplementaryFiles directory, which should come with this notebook. The initialization 9 Â» a Â»2 +2 M, then the orbit of z0 will diverge to Â¶. (See [4], page 266.) ...

[image: alt]

The connected locus for complex cubic iteration - Mark McClure

SupplementaryFiles directory, which should come with this notebook. The initialization 9 Â» a Â»2 +2 M, then the orbit of z0 will diverge to Â¶. (See [4], page 266.) ...

[image: alt]

"Decremental tag systems and random trees". - Mark McClure

1. Introduction. We fix a positive natural number m and consider sequences of the form xn ... tree construction we call the use it or lose it construction. In fact, our ...

[image: alt]

"Decremental tag systems and random trees". - Mark McClure

We fix a positive natural number m and consider sequences of the form xn. = (x1,...,xn), where each Sequences, http://www.research.att.com/~njas/sequences/.

[image: alt]

Parametric L-Systems and borderline fractals - Mark McClure

parameter and their application to borderline fractals. Note: To reduce the size of the Maeder, R., The Mathematica programmer (Chapter 8). AP Professional ...

[image: alt]

A Stochastic Cellular Automaton for Three-Coloring ... - Mark McClure

Aug 24, 2001 - of the tiling maps each tile to another tile. Figure 2 shows part of such a tiling. ... dynamic images are available on the author's web page:.

[image: alt]

The Borel Structure of the Collections of Sub-Self ... - Mark McClure

|T(x) -T(y)| = r|x-y| Vx y GRd: If r < 1, then T is called contractive. A fundamental result (Ed], Thm. 4.1.3) states that if Ti : Rd â†’ Rd is a contractive similarity for ...

[image: alt]

The Borel Structure of the Collections of Sub-Self ... - Mark McClure

Abstract. We show that the sets of sub-self-similar sets and super-self-similar sets are both dense, first category, F subsets of K(Rd), the Hausdorff metric space of non-empty compact, subsets of Rd. We also investigate the set of self-similar sets

[image: alt]

Electricity Generating

Dec 4, 2017 - à¸ˆà¸²à¸�à¸�à¸²à¸£à¹„à¸¡à¹ˆà¸¡à¸µà¸� à¸²à¸¥à¸±à¸‡à¸�à¸²à¸£à¸œà¸¥à¸´à¸•à¹ƒà¸«à¸¡à¹ˆà¹†à¹ƒà¸™à¸›à¸µ 2561 à¸�à¸²à¸£à¹€à¸•à¸´à¸šà¹‚à¸•à¸� à¸²à¹„à¸£à¸‚à¸à¸‡. à¸šà¸£à¸´à¸©à¸±à¸—à¸ˆà¸¶à¸‡à¹„à¸¡à¹ˆà¸™à¹ˆà¸²à¸•à¸·à¹ˆà¸™à¹€à¸•à¹‰à¸™à¸¡à¸²à¸�à¸™à

[image: alt]

Electricity Generating - Settrade

Mar 6, 2018 - Hong Kong. 41/F CentralPlaza, 18 Harbour Road, Wanchai, Hong Kong ... KGI policy and/or applicable law regulations preclude certain types ...

[image: alt]

Generating Wealth Through Inventions

Oct 28, 2016 - Office, intellectual property-based businesses and entrepreneurs drive ... trademark cancellations and domain name disputes; and preparing ...

[image: alt]

Generating Wealth Through Inventions

Oct 28, 2016 - new business model for businesses that cannot realistically compete, or that do not wish to ... A patent creates a legal barrier preventing entry into the technology segment it defines. ... barrier to entry provides many benefits:.

[image: alt]

Google Maps

and local business information-including business locations, contact information, and driving directions. Start your search in this box: Begin your search with a ...

×
Report Generating Googleâ„¢ maps - Mark McClure

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

