Intro GxEcon Empirics Structural Conclusion
Genetic and Economic Interaction in the Formation of Health: The Case of Obesity Pietro Biroli University of Z¨ urich
Grenoble Applied Economics Laboratory Grenoble 29 June 2017
Pietro Biroli
1
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Outline 1
Introduction Research question Motivation
2
Gene x Econ
3
Empirical Findings ALSPAC Data Results Productivity Effect Preferences Robustness Checks
Replication using FHS 4
Structural Model The Model Simulations
5
Conclusion and Future Work
Pietro Biroli
2
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Genes, Biology, and Choices What: How genetic differences influence health investments and life-cycle evolution of health via changes in production function ↔ productive efficiency via changes in preferences ↔ allocative efficiency
Pietro Biroli
3
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Genes, Biology, and Choices What: How genetic differences influence health investments and life-cycle evolution of health via changes in production function ↔ productive efficiency via changes in preferences ↔ allocative efficiency
How: Integrate genes into an life-cycle model of health Micro-foundation of evidence from genetics Genes = measures of heterogeneity
Pietro Biroli
4
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Genes, Biology, and Choices What: How genetic differences influence health investments and life-cycle evolution of health via changes in production function ↔ productive efficiency via changes in preferences ↔ allocative efficiency
How: Integrate genes into an life-cycle model of health Micro-foundation of evidence from genetics Genes = measures of heterogeneity
Why: Inequality at birth and impact over the life Measure of ‘unobserved ability’ Differential response to prices, taxes, policies Pietro Biroli
5
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Obesity: major health problem 2nd preventable cause of death and disease (U.S.) [Mokdad et al., 2004] Median American and European are overweight The average French is almost overweight (BMI of 24.3, USA: 28.7) Obese Men
70.0
Overweight Men
60.0 50.0 40.0 30.0 20.0 10.0 France
Estonia
Belgium
Italy
Austria
Latvia
Bulgaria
Romania
Slovakia
Hungary
Germany
Spain
Cyprus
Poland
Greece
Czech Republic
United Kingdom
Malta
Slovenia
0.0
Source: European Health Interview Survey (2010), Eurostat
Cost Consequences Health: (US) $14.3 billion for children, $147 billion for adults, 400k deaths; (US, per year) Economic: lower skills acquisition, wages, labor force, and productivity. ,→ see [Cawley, 2010, Kline and Tobias, 2008, Ng et al., 2014] Pietro Biroli
6
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Health at a Glance 2011: OECD Indicators - © OECD 2011 2. NON-MEDICAL 2.4.1. DETERMINANTS Children aged 5-17OF years HEALTH who are - Overweight overweightand (including obesityobese), among children latest available estimates Version 1 - Last updated: 28-Oct-2011
Adolescent overweight
Children aged 5-17 years who are overweight (including obese), latest available estimates Girls Boys 37.0 35.9
4.5
50
40
30
20
10
45.0
Greece United States Italy Mexico New Zealand Chile United Kingdom Canada Hungary Iceland Slovenia Australia Spain Portugal OECD Brazil Russian Fed. Sweden Finland India Netherlands South Africa Germany Czech Republic Slovak Republic Denmark France Norway Japan Switzerland Poland Turkey Korea China
30.9 29.0 28.8 27.1 26.6 26.1 25.9 25.5 24.4 24.0 22.9 21.6 21.4 21.1 19.8 19.5 19.1 18.3 17.9 17.7 17.6 16.9 16.2 15.2 14.9 14.7 14.4 13.1 12.4 10.3 9.9
0
% of children aged 5-17 years
Pietro Biroli Source: International Association for the Study of Obesity (2011).
35.0 32.4 28.1 28.2 28.6 22.7 28.9 25.5 22.0 28.7 22.0 32.9 23.5 22.9 23.1 24.2 17.0 23.6 20.6 14.7 13.6 22.6 24.6 17.5 14.1 13.1 12.9 16.2 16.7 16.3 11.3 16.2 5.9
0
10
20
30
40
50
% of children aged 5-17 years
7
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
The obesity ‘epidemic’
BMI increases: 1 with age 2 over time 3 across countries Pietro Biroli
8
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Inputs into BMI
Behaviors: calories in (diet) & calories out (exercise) ‘Obesogenic Environment’: cheaper food and less exercise [Cutler et al., 2003, Lakdawalla et al., 2005]
Genes: More than 30 genetic variants related to obesity (GWAS) [Speliotes et al., 2010, Berndt et al., 2013]
GxE: Gene-Environment Interaction [Rosenquist et al., 2015, Liu and Guo, 2015, Guo et al., 2015]
Pietro Biroli
9
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Genes: What and Why? Genetic Variants Human Genome Project (2003) Single Nucleotide Polymorphism (SNPs) ≈ 10 million 2 alleles, e.g.: AA, AT, or TT Why we care? Randomized at birth, fixed for life Causal pathways Cheaper to measure Geneticists at discovering stage
Pietro Biroli
10
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Related Literature 1
Nature and Nurture (Twin Studies): Use MZ/DZ twins to estimate genetic and environmental heritability. See [Galton, 1874, Taubman, 1976, Kohler et al., 2011]
2
Genoeconomics: Find genetic determinants of economic behaviors: risk aversion, time and social pref., addiction. See [Benjamin et al., 2007, Cesarini et al., 2009, Benjamin et al., 2016]
3
Mendelian Randomization: Genes as IV
See [Davey Smith, 2003, Fletcher and Lehrer, 2009, von Hinke Kessler Scholder et al., 2013, Cawley et al., 2011]
4
Obesity and Health: Evolution of health stock and investment + causes of obesity. See [Grossman, 1972, Lakdawalla et al., 2005, Galama and Kapteyn, 2011, Scholz and Seshadri, 2013, Cawley, 2010, Cutler et al., 2003]
Pietro Biroli
11
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Related Literature 1
Nature and Nurture (Twin Studies): Use MZ/DZ twins to estimate genetic and environmental heritability. See [Galton, 1874, Taubman, 1976, Kohler et al., 2011]
,→ Contribution: Specific biological mechanisms 2
Genoeconomics: Find genetic determinants of economic behaviors: risk aversion, time and social pref., addiction. See [Benjamin et al., 2007, Cesarini et al., 2009, Benjamin et al., 2016]
,→ Contribution: understand how known genes shape econ choices 3
Mendelian Randomization: Genes as IV
See [Davey Smith, 2003, Fletcher and Lehrer, 2009, von Hinke Kessler Scholder et al., 2013, Cawley et al., 2011]
,→ Contribution: Genes as measure of heterogeneity 4
Obesity and Health: Evolution of health stock and investment + causes of obesity. See [Grossman, 1972, Lakdawalla et al., 2005, Galama and Kapteyn, 2011, Scholz and Seshadri, 2013, Cawley, 2010, Cutler et al., 2003]
,→ Contribution: look at fat mass, exercise, diet over the life-cycle Pietro Biroli
12
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Preview of Results Raw difference in BMI by FTO-genotype: 0.4 to 0.7 +26% prob overweight Small, as in most GWAS studies, but economically significant and similar to BMI gradient in SES (0.3), education (0.4) Evidence of both productivity and preferences shifts risky-FTO genotype eat 2% more calories convert calories into BMI at 1/3 higher rate
Stronger effect of genes for adults born in later cohort Simulations show that policy responses vary by genotype
Pietro Biroli
13
Intro GxEcon Empirics Structural Conclusion
Research question Motivation
Road map
Genetic and economic framework Empirical Findings Avon Longitudinal Study of Parents and Children (ALSPAC) Framingham Heart Study (FHS)
Structural Model and Simulations
Pietro Biroli
14
Intro GxEcon Empirics Structural Conclusion
Outline 1
Introduction Research question Motivation
2
Gene x Econ
3
Empirical Findings ALSPAC Data Results Productivity Effect Preferences Robustness Checks
Replication using FHS 4
Structural Model The Model Simulations
5
Conclusion and Future Work
Pietro Biroli
15
Intro GxEcon Empirics Structural Conclusion
Simple Model
max U (B, F , `, c; g) E,F
s.t Ω=`+E
(1)
Y = pF F + c
(2)
B = I(F , E; g) + (1 − δ)B 0 + ε
(3)
Utility from BMI B, consumption c, food consumption F , and leisure ` Income Y is devoted to buying food F and non-food consumption c time Ω devoted to exercise E vs leisure ` Genotype g influences:
Cost of investment [disutility: U(.;g)] Productivity of investment [I(.; g)] Pietro Biroli
16
Intro GxEcon Empirics Structural Conclusion
The Model: Genetic-Economic Interaction
Body Mass Index
(a) Shift the production function
BMI Isoquant T-Allele
BMI
Investment 1: (a) Productivity Effect Calories Pietro Biroli
17
Intro GxEcon Empirics Structural Conclusion
The Model: Genetic-Economic Interaction (a) Shift the production function
Body Mass Index
BMI Isoquant A-Risky BMI Isoquant T-Allele
BMI
Investment 1: (a) Productivity Effect Calories Pietro Biroli
18
Intro GxEcon Empirics Structural Conclusion
The Model: Genetic-Economic Interaction
Body Mass Index
BMI Isoquant A-Risky BMI Isoquant T-Allele
BMI
Investment 1: (a) Productivity Effect Calories Pietro Biroli
Sedentary Minutes
(a) Shift the production function (b) Change the utility cost of investment
BMI Isoquant T-Allele
BMI
Indifference Set T-Allele
(b) Cost Effect
Calories
19
Intro GxEcon Empirics Structural Conclusion
The Model: Genetic-Economic Interaction
Body Mass Index
BMI Isoquant A-Risky BMI Isoquant T-Allele
BMI
Investment 1: (a) Productivity Effect Calories Pietro Biroli
Sedentary Minutes
(a) Shift the production function (b) Change the utility cost of investment
BMI Isoquant A-Risky BMI Isoquant T-Allele
BMI
Indifference Set T-Allele
(b) Cost Effect
Indifference Set A-Risky
Calories
20
Intro GxEcon Empirics Structural Conclusion
Examples of genetic effects: MAOA and ALDH2
Productivity: (MAOA gene) x (Maltreatment) = Antisocial Behavior [Caspi et al., 2002]
Utility Cost: ALDH2 gene
[[Davey Smith, 2010]]
Alcohol intake induces facial flushing → Higher cost of drinking → Lower alcohol intake → Lower risk of liver cirrhosis Pietro Biroli
21
Intro GxEcon Empirics Structural Conclusion
The gene variant rs9939609 Gene: FTO intron, long-range connection with IRX [Smemo et al., 2014] Risky A-allele connected to obesity by GWAS How?: Regulates appetite Appetite-stimulant hormone (ghrelin) Neural responsiveness to food images Expressed in the hunger-related sites of the brain
⇒ could increase the utility cost of dieting [Karra et al., 2013, Speakman et al., 2008, Fawcett and Barroso, 2010, Wardle et al., 2008, Cecil et al., 2008, Olszewski et al., 2009, Fredriksson et al., 2008, Timpson et al., 2008, Smemo et al., 2014, Claussnitzer et al., 2015] pics
More exercise associated with lower genetic differences in BMI Weight-loss in dieting programs associated with FTO ⇒ could change the productivity of investments [Andreasen et al., 2008, Franks et al., 2008, Kilpel¨ ainen et al., 2011, Huang et al., 2014, Zhang et al., 2012] Pietro Biroli
22
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Outline 1
Introduction Research question Motivation
2
Gene x Econ
3
Empirical Findings ALSPAC Data Results Productivity Effect Preferences Robustness Checks
Replication using FHS 4
Structural Model The Model Simulations
5
Conclusion and Future Work
Pietro Biroli
23
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
ALSPAC Data Avon Longitudinal Study of Parents and Children (ALSPAC) Cohort of children born in 1991-1992 near Bristol (UK) Data from clinic visits Enrolled ≈ 14,000 pregnant mothers, ≈ 8,000 children with genetic data Obesity: Body Mass Index (BMI), ages 1 to 18 Investments: ages 11 and 13 - Child Physical Activity: uni-axial accelerometer MTI Actigraph; see [Mattocks et al., 2008]
- Child Diet: 3-day dietary diary Nutrients with reporting adjustment, see [Noel et al., 2010]
- Genetic data collected at age 7
Pietro Biroli
24
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
The Children of the 90s
Pietro Biroli
25
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Summary Statistics Table: Summary Statistics, Age 11 and 13 by genotype and father SES Genotype T-Allele A-Risky Body Mass Index
Overweight (%)
Kilocalories/day
Sedentary Hours/day
n obs.
19.10 (11.24) [0.07]*** 22.17 (17.26) [0.82]*** 1.89 (0.21) [0.01]** 7.51 (1.54) [0.02] 2562
19.47 (11.07) [0.05]*** 28.48 (20.37) [0.67]*** 1.92 (0.19) [0.01]** 7.55 (1.59) [0.02] 4490
Father SES High Low 19.17 (10.09) [0.06]** 23.39 (17.92) [0.75]*** 1.91 (0.19) [0.01] 7.67 (1.46) [0.02]** 3722
19.39 (11.68) [0.06]** 27.47 (19.93) [0.82]*** 1.90 (0.20) [0.01] 7.43 (1.65) [0.02]** 3330
Total 19.33 (11.17) 26.19 (19.33) 1.91 (0.20) 7.54 (1.58) 7052
2
Mean of Body Mass Index (BMI kg/m ), percentage overweight (BMI greater than 85% pct), sedentary hours, and Kilocalories (x1000), by FTO variant and father SES. Sample variance in parenthesis; mean standard-error in brackets. 49% of the sample is male. 63% of the sample carries one or two A-Alleles in the rs9939609 SNP of the FTO gene (15% are heterozygous AA, Minor Allele Frequency of 0.39 representative of UK population). High SES: manager or professional (47%); low: worker (skilled or unskilled), based on OPCS occupation codes. Pietro Biroli
By Age
Investments
Anthropometrics
Gender
26
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Evolution of Body Mass Index
Mom SES Pietro Biroli
Dad Edu
Mom Edu
Income 27
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Evolution of Body Mass Index
Mom SES Pietro Biroli
Dad Edu
Mom Edu
Income 28
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Evolution of Body Mass Index
Mom SES Pietro Biroli
Dad Edu
Mom Edu
Income 29
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Summary Statistics, Environment and Covariates Table: Family Characteristics, by Child FTO genotype
Mother Edu Father Edu Mother SES Father SES Mother BMI Mother age at birth Teen mother (%) Single Mother (%) Parity Birth Weight (kg)
FTO genotype T-Allele A-Risky
Total
3.36 [0.03] 3.32 [0.04] 2.75 [0.02] 2.88 [0.03] 22.74** [0.10] 29.33 [0.12] 1.51 [0.33] 15.85 [0.98] 0.69 [0.02] 3.42 [0.01]
3.34 [0.02] 3.33 [0.02] 2.77 [0.02] 2.86 [0.02] 22.90 [0.06] 29.34 [0.07] 1.88 [0.22] 15.49 [0.58] 0.72 [0.01] 3.42 [0.01]
3.33 [0.02] 3.34 [0.03] 2.78 [0.02] 2.84 [0.02] 23.00** [0.08] 29.35 [0.09] 2.10 [0.29] 15.28 [0.73] 0.73 [0.02] 3.43 [0.01]
Average value of the covariates for the sample used in the main analysis. Pooled across genders and separated by FTO-genotype. Standard errors of means in brackets. Mean difference * significant at 10%; ** significant at 5%; *** significant at 1%. Education ranges from lowest (1 = CSE or less) to highest (5 = degree). Socio-Economic-Status ranges from from highest (1 = professional) to lowest (6 = unskilled). Teen mother is a dummy for mothers who were pregnant before age 19. Single mother is a dummy for a household without a male figure. Pietro Biroli
30
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Gene×Calories Interaction
Figure:
Nonparametric local-mean smoothing using Epanechnikov kernel and Silverman’s Rule-of-Thumb bandwidth. Combining information from successive clinical visits, age 11 and 13; excluding outliers in the top and bottom 5% of the distributions of BMI and log(energy intake). Pietro Biroli
Male
Female
31
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Gene×Exercise Interaction
Figure:
Nonparametric local-mean smoothing using Epanechnikov kernel and Silverman’s Rule-of-Thumb bandwidth. Combining information from successive clinical visits, age 11 and 13; excluding outliers in the top and bottom 5% of the distributions of BMI and log(sedentary minutes). Pietro Biroli
Male
Female
32
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Genetic Productivity Effect Log-linearize a Cobb Douglas production function for obesity
log(Bi,t ) =µ + µg g + αe log(Ei,t ) + αf log(Fi,t )+ + αg×e log(Ei,t ) · g + αg×f log(Fi,t ) · g+ + δlog(Bi,t−1 ) + γb log(Bimom ) + h(Xi,t ) + κt + εi,t
Level effect: µg =
∂f ∂g
Productivity effect: αGxK =
∂f ∂investment
− g=A
∂f investment
g=T
Xi covariates: mom and dad education and SES; mother age at pregnancy; parity; birth weight; age of child at clinic date; dummy for single mother; time dummy; seasonal dummies; month effects; low kilo-calories reporting; late respondent; Pietro Biroli
33
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Identification and limitations
Identification: Mendelian Randomization: Mendel’s first law of segregation Genotype random conditional on parental g Dad genotype unobserved → bound using [Altonji et al., 2008] Limitations: Measurement error and misreporting → attenuation Potential endogeneity of investments
Pietro Biroli
34
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Reduced Form Table: Gene and Investment Interaction - FTO log(Body Mass Indext ) (2) (3)
(1) Risky FTO Gene
βg
log(Food Intake)
αf
G X Food Intake
αg×f
log(Sedentary min.)
αe
G X Sedentary min.
αg×e
log(BMI)t−1
(1 − δ)
log(BMI)mom
γb
Covariates Mom Gene R2 Observations n
0.019 [0.005]***
0.006 [0.002]***
0.969 [0.007]*** 0.090 [0.007]*** X
0.010 [0.002]*** 0.067 [0.009]*** 0.025 [0.011]** 0.027 [0.009]*** 0.011 [0.011] 0.939 [0.008]*** 0.090 [0.007]*** X
78% 7052 3526
78% 7052 3526
0.32% 7052 3526
(4)
(5)
0.010 [0.003]*** 0.059 [0.010]*** 0.027 [0.011]** 0.028 [0.011]*** 0.010 [0.011] 0.947 [0.013]*** 0.097 [0.012]*** X X 78% 7052 3526
0.010 [0.003]*** 0.069 [0.009]*** 0.026 [0.011]** 0.024 [0.009]*** 0.012 [0.011] 0.967 [0.008]***
78% 7052 3526
Dependent variable: log BMI (kg/m2 ); Risky FTO gene g = 1 if rs9939609 gene variant contains one or more A-Alleles; g = 0 otherwise; Covariates: gender; parity; age of child at clinic date; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level in brackets. Pietro Biroli
Sizable effect: ≈ 1/4 kg
35
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Utility Cost Second genetic effect: change in the demand for investments A-Allele Higher food intake No differences in activity Table: Utility Cost Effect Male Risky FTO Gene Covariates Observations
Calories Female
(1) 0.020 [0.009]** X 3,347
(2) 0.018 [0.008]** X 3,711
Sedentary Activity Male Female (3) 0.006 [0.007] X 3,347
(4) 0.005 [0.006] X 3,711
Dependent variables: log of daily kilocalories intake (columns (1) and (2)), and log of daily sedentary minutes (columns (3) and (4)). Covariates: log(BMI)t−1 ; log mom BMI during pregnancy; parity; age of child at clinic date; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; month dummies; late respondent; birth weight. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level in brackets.
Sizable effect: ≈ 1.5 kg/year Pietro Biroli
36
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Decomposition of the Genetic Effect
Decompose the overall effect in difference in parameters and difference in inputs (Oaxaca 1973): BMI g = W g αg ⇒ BMI A − BMI T = W T (αA − αT ) + (W A − W T )αA {z } | | {z } | {z } ∆ BMI
∆ parameters
∆ inputs
Difference in Parameters: 35.4% [26%,39%] → productivity Difference in Inputs:
Pietro Biroli
64.6% [47%,72%] → preferneces
37
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Robustness
Check the robustness of the results: → Polygenic Score
Gender+NoUnder
→ Dropping underweight children (≈ 4%) → Different measures of fat-mass
Fat Mass
→ Different measures of investments → Different quantiles
Pietro Biroli
Gender+NoUnder
Food
Quantiles
38
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Replication of the Results
Framingham Heart Study (FHS), Offspring Cohort Information on 5,124 individuals, children of the original cohort population (1948) Born over a 60-year period (1905-1965) 8 clinical exams from 1971 to 2008 Genetic info: 1987-1991, 98% consent 4 waves with BMI, caloric intake, and physical activity
Pietro Biroli
39
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
FHS: Log-Linear Regression Table: FHS: Gene and Investment Interaction - FTO (1) Risky FTO variant
βg
log(Energy Intake)
αf
G X Energy Intake
αg×f
log(Physical Activity)
αe
G X Physical Activity
αg×e
log(BMI)t−1
(1 − δ)
Covariates R2 Observations n
log(Body Mass Indext ) (2) (3) born after 1940
0.024*** [0.007]
0.043*** [0.010]
0.4% 8258 2753
1.2% 4918 1639
0.002 [0.001] 0.013*** [0.004] 0.010** [0.005] -0.005** [0.002] 0.003 [0.003] 0.937*** [0.006] x 85.3% 8258 2753
(4) born after 1940 0.005** [0.002] 0.022*** [0.005] 0.016** [0.006] -0.009*** [0.003] 0.001 [0.004] 0.927*** [0.009] x 84.7% 4642 1547
Dependent variable: log BMI (kg/m2 ); Risky FTO gene g = 1 if rs9939609 gene variant contains one or more A-Alleles; g = 0 otherwise; Covariates: gender; 3-degree polynomial in age; dummies education and income; dummies for marital status; reliable dietary report; time dummies; birth cohort dummies; 20 first principal components of genome. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level in brackets.
Pietro Biroli
40
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Birth Year Effects
Pietro Biroli
41
Intro GxEcon Empirics Structural Conclusion
ALSPAC Data Results Replication using FHS
Prices, Income, Food Availability
Pietro Biroli
42
Intro GxEcon Empirics Structural Conclusion
The Model Simulations
Outline 1
Introduction Research question Motivation
2
Gene x Econ
3
Empirical Findings ALSPAC Data Results Productivity Effect Preferences Robustness Checks
Replication using FHS 4
Structural Model The Model Simulations
5
Conclusion and Future Work
Pietro Biroli
43
Intro GxEcon Empirics Structural Conclusion
The Model Simulations
Life-cycle Model
Vt (Bt , Yt , εt ; g) = max u (Bt , Ft , `t , ct ; g) + βEVt+1 (Bt+1 , Yt+1 , εt+1 ; g) E t ,Ft
s.t Ω(Bt ) = `t + E t Yt = pFt Ft + ct Bt+1 = I(Ft , E t ; g) + (1 − δt )Bt + εt
(4) (5) (6)
Utility from BMI Bt , food consumption Ft , and leisure `t Income Yt is devoted to buying food Ft (calories) and non-food consumption ct time Ωt devoted to exercise E t vs leisure `t Genotype g influences:
Cost of investment [disutility: U(.;g)] Productivity of investment [I(.; g)]
Pietro Biroli
44
Intro GxEcon Empirics Structural Conclusion
The Model Simulations
First Order Conditions for Investment Simple 3-period model. The optimal caloric consumption: ∂I(F2 , E 2 ; g) ∂F2 ∂I(F , E 2 2 ; g) = pF Uc02 βE [ϕB3 ] ∂F2
UF0 2 (.; g) = pF Uc02 + βE [−UB0 ]
→ LHS: Productivity effect → RHS: Utility Cost effect Similarly, in the first period: UF0 1 (.; g) = pF Uc01 + βE [ϕB2 + β(1 − δ2 )ϕB3 ]
∂I(F1 , E 1 ; g) ∂F1
Genotype changes the incentive to invest in every period, and this cumulates over time. Pietro Biroli
45
Intro GxEcon Empirics Structural Conclusion
The Model Simulations
Evolution of Body Mass Index
Source: ALSPAC Pietro Biroli
Males
Density 46
Intro GxEcon Empirics Structural Conclusion
The Model Simulations
Calibration Use parameters estimated in reduced form to calibrate: Body Mass Index
20.0 19.5 19.0 18.5
B M 18.0 I 17.5 17.0 16.5
16.0 1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Age
Pietro Biroli
A-Risky
T-Allele
47
Intro GxEcon Empirics Structural Conclusion
The Model Simulations
Policy A: Food Tax Higher food prices Body Mass Index 50% Tax on Calories
20.0 19.5 19.0 18.5
B M 18.0 I 17.5 17.0 16.5
16.0 1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Age
Pietro Biroli
A-Risky
T-Allele
48
Intro GxEcon Empirics Structural Conclusion
The Model Simulations
Policy B: School Eating Reduce caloric consumption by 25% in the first 10 years of life Body-Mass-Index Healthy Eating in School
20.0 19.5 19.0 18.5
B M 18.0 I 17.5 17.0 16.5
16.0 1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Age
Pietro Biroli
A-Risky
T-Allele
49
Intro GxEcon Empirics Structural Conclusion
Outline 1
Introduction Research question Motivation
2
Gene x Econ
3
Empirical Findings ALSPAC Data Results Productivity Effect Preferences Robustness Checks
Replication using FHS 4
Structural Model The Model Simulations
5
Conclusion and Future Work
Pietro Biroli
50
Intro GxEcon Empirics Structural Conclusion
Conclusion: Model of health behaviors and BMI over the life-cycle integrating genetics and economics Genes set the stage for human capital investments Genetic heterogeneity in both productivity and preferences + 1/3 productivity of calories + 2% caloric intake
Effect of genes varies with environment where people are born “Nature and nurture” interact Behaviors can mitigate genetic “risks” Policies can have differential effect depending on genotype
Pietro Biroli
51
Intro GxEcon Empirics Structural Conclusion
Future Work:
Potential Extensions: Preference formation and addiction Parameter uncertainty and learning
Related questions: Genetic architecture of utility parameters cognitive and soft skills ([Rietveld et al., 2014])
Epigenetics: gene expression changing with environment Better identification of “Environment” and G×E
Pietro Biroli
52
Thank You
Pietro Biroli
53
Appendix
Pietro Biroli
54
Genes and DNA Human DNA is composed of an estimated 3 billion base pairs and 20k-25k genes. Genes encode for proteins that regulate the development and functioning of the human body The most common form of genetic variation are SNPs, single neuclotide polymorphisms, and they represent a difference in a single DNA building block (nucleotide). Each SNP contains two alleles, one inherited from your father and the other from your mother. 10 million SNPs are estimated to be in the human genome A genotype is your genetic type at a particular genetic locus, for example a genotype can be AA, AT, or TT. In this paper I consider together those who have at least one A-allele, so that AT and AA are considered as having the same risk (dominant model) A phenotype is the observable outcome of interest, in this case BMI back
Pietro Biroli
55
Cost of Genotyping
Private Genotyping company - 23&me: $100 Back Pietro Biroli
56
Gene × Environment Interaction BUT: responses to environment changes by genotype
Back
Pietro Biroli
57
Parametrization of the Model
Utility u (B, F , `, c; g) = ζB log B + ζF (g) log F + ζ` log ` + ζc log c Production function log Bt+1 = log φ(g)+a(g) log Ft +b(g) log E t + (1 − δ1 − t/T δ2 ) log Bt +εt
10 Parameters ζB , ζF (g), ζ` , ζc , φ(g), a(g), b(g), δ1 , δ2 , σε2
4 vary by genotype back
Pietro Biroli
58
Calibrated Parameters Parameters taken from the literature: β = 0.97 (As in Hubbard, Skinner, and Zeldes (1995); and Engen, Gale, and Uccello (1999)) ζc = 0.36 (As in Scholz and Seshadri (2013))
Calibrated: ζB = 0.4 ζ` = 0.4 ζF (0) = 0.1 ζF (1) = 0.2 a(0) = 0.06 a(1) = 0.09 b(0) = 0.3 b(1) = 0.3 φ(0) = 1.0 φ(1) = 1.1 δ1 = 0.02 δ2 = 0.04 back Pietro Biroli
59
Alternative Parametrization of the Model
Utility o 1−σ n ρ ρ λ F η(g) `1−η(g) + (1 − λ)B ρ u (B, F , `; g) =
1−σ
+ αct
11 Parameters: λ, η(g), ρ, σ, α, φ(g), a(g), b(g), δ1 , δ2 , σε2 4 vary by genotype back
Pietro Biroli
60
Moments to Match
Match the following moments from the ALSPAC data: Ft , E t at ages 11 and 13 Average, median, and BMI cutoff at different ages Cov (Bt , Ft−1 ) Cov (Bt , E t−1 ) Cov (Bt , Bt−1 ) Cov (Ft , E t ) back
Pietro Biroli
61
Brain Imaging, Appetite, and FTO
Figure:
Brain regions where the TT and AA genotypes exhibited different BOLD responses in fMRI when viewing food/non-food images while fasting (A-F); or comparing interaction between fed/fasting and high-incentive/low-incentive-value food (D-F)
Back Pietro Biroli
62
Brain Imaging, Appetite, and FTO
Figure: Pietro Biroli
Brain regions where the circulating acyl-ghrelin differentially affected brain fMRI responses in TT and AA genotypes
Back 63
Endogeneity of Inputs
So far, assumed Ie , Id ⊥ ⊥ εH Now, consider system of equations: Bt Id Ie
= f (Id , Ie , Bt−1 , X ; g) + εH = Id (Ie , Bt−1 , X , Z ; g) + εd = Ie (Id , Bt−1 , X , Z ; g) + εe
Exclusion restriction: Z ⊥ ⊥ εk Lagged investments Ik,t−1 Income Y , family composition, distance to school Mother and Father behaviors back
Pietro Biroli
64
Instrumented Regression Table: Health Production Function - Instrumented Regression
Risky FTO Gene
βg
log(Food Intake)
αf
G X Food Intake
αg×f
log(Sedentary min.)
αe
G X Sedentary min.
αg×e
log(BMI)t−1
(1 − δ)
log(BMI)mom
γb
Covariates Observations
(1) OLS
(2) Lagged Invest
(3) Income
(4) Parental Behavior
0.010 [0.002]*** 0.067 [0.009]*** 0.025 [0.011]** 0.027 [0.009]*** 0.012 [0.011] 0.939 [0.008]*** 0.090 [0.007]*** X 7052
0.006 [0.002]** 0.073 [0.039]* 0.029 [0.026] -0.001 [0.030] 0.102 [0.026]*** 0.952 [0.009]*** 0.024 [0.022] X 6264
0.025 [0.020] 0.365 [0.346] 0.354 [0.366] -0.203 [0.248] -0.195 [0.364] 0.927 [0.020]*** 0.005 [0.015] V 7052
0.037 [0.026] 0.660 [0.639] 0.724 [0.580] -0.250 [0.481] -0.086 [0.634] 0.929 [0.034]*** 0.091 [0.008]*** X 7052
Dependent variable: log BMI (kg/m2 ). 3-stage-least-square estimation. Column (1) reports the baseline results from OLS regression in table (3). Column (2) uses lagged values of food intake, protein intake, and sugar intake as instruments for caloric intake; lagged sedentary minutes, moderate to vigorous activity, and counts per minutes as instruments for investment in exercise. Column (3) uses income and financial difficulties, mother and father SES, mother and father education, distance to school, and number of siblings as instruments for both investments. Column (4) uses mother and father Food intake when child was 4-years old, and mother self-reported level of physical activity as instruments for investments. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level and correlated across equations in brackets. Risky FTO gene g = 1 if rs9939609 gene variant contains one or more A-alleles; g = 0 otherwise; Covariates X: gender; parity; age of child at clinic date; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. Covariates V: gender; age of child at clinic date; mother age at pregnancy; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. Pietro Biroli
back 65
Utility Cost Effect Table: Investment Equation - Food Intake (2)
(3)
(4)
Risky FTO Gene log(Sed Min)
0.017 [0.006]*** -0.222 [0.052]***
Risky FTO Gene log(Sed Min)
0.109 [0.077] -19.590 [0.128]***
Risky FTO Gene log(Sed Min)
0.112 [0.076] -19.459 [0.184]***
Lagged Food Int. Lagged Protein Int. Lagged Sugar Int.
0.198 [0.021]*** 0.074 [0.014]*** 0.042 [0.009]***
Income
0.009 [0.073] -0.012 [0.045] -0.106 [0.036]*** 0.259 [0.041]*** 0.071 [0.036]** 0.176 [0.041]*** -0.153 [0.048]*** V 7052
Mom Food Int. (age 4) Dad Food Int. (age 4) Mom Physical Activity
0.063 [0.143] 0.018 [0.183] -0.227 [0.099]**
Mom SES Dad SES Mom Edu Dad Edu Distance Num Sibling
Covariates Observations
X 6264
Instrument: Lag Investment
Income and distance to school
X 7052 Parental Behavior
Dependent variable: log(Food Intake). 3-stage-least-square estimation. Column (2) uses lagged values of food intake, protein intake, and sugar intake as instruments for caloric intake; lagged sedentary minutes, moderate to vigorous activity, and counts per minutes as instruments for investment in exercise. Column (3) uses income and financial difficulties, mother and father SES, mother and father education, distance to school, and number of siblings as instruments for both investments. Column (4) uses mother and father Food intake when child was 4-years old, and mother self-reported level of physical activity as instruments for investments. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level and correlated across equations in brackets. Risky FTO gene g = 1 if rs9939609 gene variant contains one or more A-alleles; g = 0 otherwise; Covariates X: gender; parity; age of child at clinic date; log mom BMI during pregnancy; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. Covariates V: gender; age of child at clinic Pietro Biroli back date; mother age at pregnancy; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. 66
Utility Cost Effect - 2 Table: Investment Equation - Sedentary Minutes (2)
(3)
(4)
Risky FTO Gene log(Food Intake)
0.008 [0.004]* -0.187 [0.010]***
Risky FTO Gene log(Food Intake)
0.006 [0.004] -0.051 [0.000]***
Risky FTO Gene log(Food Intake)
0.006 [0.004] -0.051 [0.000]***
Lagged Sedentary Min Lagged Vig. Activity Lagged Counts per min
0.191 [0.020]*** 0.021 [0.006]*** -0.140 [0.019]***
Income
0.000 [0.004] -0.001 [0.002] -0.005 [0.002]*** 0.013 [0.002]*** 0.004 [0.002]** 0.009 [0.002]*** -0.008 [0.002]*** V 7052
Mom Food Int. (age 4) Dad Food Int. (age 4) Mom Physical Activity
0.003 [0.007] 0.001 [0.009] -0.012 [0.005]**
Mom SES Dad SES Mom Edu Dad Edu Distance Num Sibling
Covariates Observations
X 6264
Instrument: Lag Investment
Income and distance to school
X 7052 Parental Behavior
Dependent variable: log(Sedentary min.). 3-stage-least-square estimation. Column (2) uses lagged values of food intake, protein intake, and sugar intake as instruments for caloric intake; lagged sedentary minutes, moderate to vigorous activity, and counts per minutes as instruments for investment in exercise. Column (3) uses income and financial difficulties, mother and father SES, mother and father education, distance to school, and number of siblings as instruments for both investments. Column (4) uses mother and father Food intake when child was 4-years old, and mother self-reported level of physical activity as instruments for investments. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level and correlated across equations in brackets. Risky FTO gene g = 1 if rs9939609 gene variant contains one or more A-alleles; g = 0 otherwise; Covariates X: gender; parity; age of child at clinic date; log mom BMI during pregnancy; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. Covariates V: gender; age of child at clinic Pietro Biroli age at pregnancy; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. date; mother
back 67
Summary Statistics, Investments Table: Summary Statistics, Food Intake and Exercise FTO genotype T-Allele A-Risky Kilocalories (x1000) Fat Intake (grams/day) Dietary Cholesterol Intake (grams/day) Carbohydrate Intake (grams/day) Total Sugar Intake (grams/day) Physical Activity (Sedentary Hours) Physical Activity (Moderate To Vigorous) Physical Activity (counts per minute) Very Active (self-report)
Total
1.89** [0.01] 75.82** [0.45] 188.66** [1.88] 252.83* [1.30] 114.74 [0.91]
1.92** [0.01] 77.10** [0.33] 193.39** [1.44] 255.58* [0.94] 115.87 [0.64]
1.91 [0.01] 76.64 [0.27] 191.67 [1.15] 254.58 [0.76] 115.46 [0.53]
7.51 [0.02] 23.92 [0.32] 581.96 [3.73] 3.69 [0.02]
7.55 [0.02] 23.68 [0.25] 576.78 [2.84] 3.71 [0.01]
7.54 [0.01] 23.77 [0.20] 578.66 [2.26] 3.7 [0.01]
Average measures of investment in diet, and investment in exercise. Pooled across gender and ages, separated by FTO-genotype. Standard errors of means in brackets. Mean difference * significant at 10%; ** significant at 5%; *** significant at 1%. 3-day dietary records coded using the Diet In Data Out software. Actigraph data: counts per min., min. of sedentary activity, and moderate to vigorous activity. Self-reported activity ranged from 1 (never) to 5 (daily). Pietro Biroli
Back
68
Summary Statistics, by age
Table: Summary Statistics by age, gender, and genotype Body Mass Index Age 8
11
13
Sedentary Hours
Female T-Allele A-Allele
Male T-Allele A-Allele
16.25 (4.71) [0.07] 18.50 (10.39) [0.10] 20.41 (11.84) [0.12]
16.06 (3.37) [0.06] 18.17 (8.56) [0.09] 19.74 (10.29) [0.11]
16.42 (4.57) [0.05] 18.99 (10.80) [0.08] 20.87 (12.56) [0.09]
16.13 (3.59) [0.04] 18.62 (10.29) [0.07] 20.08 (11.68) [0.09]
Female T-Allele A-Allele . . . 7.18 (1.19) [0.04] 8.26 (1.32) [0.05]
. . . 7.25 (1.21) [0.03] 8.24 (1.31) [0.03]
Male T-Allele A-Allele . . . 6.89 (1.27) [0.04] 7.73 (1.50) [0.05]
. . . 6.98 (1.45) [0.03] 7.77 (1.54) [0.04]
Mean of Body Mass Index (BMI kg/m2 ), sedentary hours, and Kilocalories (in thousands), by age, gender, and FTO genotype. Sample variance in parenthesis; mean standard-error in brackets.
Back
Pietro Biroli
69
Summary Statistics, by age
Table: Summary Statistics by age, gender, and genotype Kilocalories Age 8
11
13
Female T-Allele A-Allele 1.64 (0.08) [0.01] 1.75 (0.13) [0.01] 1.77 (0.21) [0.02]
1.64 (0.08) [0.01] 1.78 (0.12) [0.01] 1.76 (0.18) [0.01]
Whole Sample
Male T-Allele A-Allele 1.75 (0.09) [0.01] 1.92 (0.15) [0.01] 2.12 (0.30) [0.02]
1.79 (0.11) [0.01] 1.97 (0.16) [0.01] 2.15 (0.27) [0.01]
BMI
Sed
Kcal
16.23 (4.08) [0.03] 18.64 (10.23) [0.04] 20.34 (11.92) [0.05]
. . . 7.10 (1.31) [0.02] 8.02 (1.47) [0.02]
1.71 (0.10) [0.00] 1.86 (0.15) [0.01] 1.95 (0.27) [0.01]
Mean of Body Mass Index (BMI kg/m2 ), sedentary hours, and Kilocalories (in thousands), by age, gender, and FTO genotype. Sample Variance in parenthesis; mean standard-error in brackets.
Back
Pietro Biroli
70
Summary Statistics, by gender Table: Summary Statistics, by gender Female T-Allele A-Risky Body Mass Index
Kilocalories/day
Sedentary Hours/day
19.34 (11.80) [0.09]*** 1.77 (0.16) [0.01] 7.70 (1.51) [0.03]
19.77 (11.73) [0.07]*** 1.79 (0.14) [0.01] 7.72 (1.52) [0.03]
Male
Total
T-Allele
A-Risky
18.83 (10.49) [0.09]*** 2.02 (0.23) [0.01]*** 7.29 (1.50) [0.04]
19.14 (10.16) [0.07]*** 2.06 (0.21) [0.01]*** 7.36 (1.62) [0.03]
19.33 (11.17) 1.91 (0.20) 7.54 (1.58)
Mean of Body Mass Index (BMI kg/m2 ), sedentary hours, and Kilocalories (x1000), by gender and FTO variant. Sample variance in parenthesis; mean standard-error in brackets. 49% of the sample is male. 63% of the sample carries one or two A-Alleles in the rs9939609 SNP of the FTO gene (15% are heterozygous AA, Minor Allele Frequency of 0.39, representative of UK population) Back
Pietro Biroli
71
Summary Statistics, Anthropometrics Table: Summary Statistics, Anthropometrics
Height (cm) Weight (kg) BMI kg/cm2 BMI z-score Fat Percentage Overweight (%) Underweight (%) Arm Circ. (cm) Waist Circ. (cm) Waist/Hip ratio
FTO genotype T-Allele A-Risky
Total
154.51 [0.21] 46.22*** [0.24] 19.10*** [0.07] 0.20*** [0.02] 24.31*** [0.19] 22.17*** [0.82] 4.18 [0.40] 23.90*** [0.07] 68.45*** [0.19] 0.82 [0.00]
154.7 [0.13] 46.88 [0.14] 19.33 [0.04] 0.3 [0.01] 25.02 [0.12] 26.19 [0.52] 3.79 [0.23] 24.18 [0.04] 69.05 [0.11] 0.82 [0.00]
154.81 [0.16] 47.26*** [0.18] 19.47*** [0.05] 0.35*** [0.02] 25.42*** [0.15] 28.49*** [0.67] 3.56 [0.28] 24.34*** [0.05] 69.39*** [0.14] 0.82 [0.00]
Body mass index normal z-scores calculated using 1990 British Growth Reference. Fat percentage: ratio of fat mass to total mass. Overweight and Underweight calculated using the BMI z-scores with a cutoff of 5% and 85%. Standard errors of means in brackets. Mean difference * significant at 10%; ** significant at 5%; *** significant at 1%. Back Pietro Biroli
72
Evolution of Body Mass Index
Back Pietro Biroli
Density 73
Evolution of Body Mass Index
Back Pietro Biroli
74
Evolution of Body Mass Index
Back Pietro Biroli
75
Evolution of Body Mass Index
Back Pietro Biroli
76
Evolution of Body Mass Index
Back Pietro Biroli
77
Gene×Calories Interaction
Figure:
Nonparametric local-mean smoothing using Epanechnikov kernel and Silverman’s Rule-of-Thumb bandwidth. Combining information from successive clinical visits, age 11 and 13; excluding outliers in the top and bottom 5% of the distributions of BMI and log(energy intake).
Pietro Biroli
Density
Back
78
Gene×Calories Interaction
Figure:
Nonparametric local-mean smoothing using Epanechnikov kernel and Silverman’s Rule-of-Thumb bandwidth. Combining information from successive clinical visits, age 11 and 13; excluding outliers in the top and bottom 5% of the distributions of BMI and log(energy intake). Pietro Biroli
Density
Back
79
Gene×Exercise Interaction
Figure:
Nonparametric local-mean smoothing using Epanechnikov kernel and Silverman’s Rule-of-Thumb bandwidth. Combining information from successive clinical visits, age 11 and 13; excluding outliers in the top and bottom 5% of the distributions of BMI and log(sedentary minutes).
Pietro Biroli
Density
Back 80
Gene×Exercise Interaction
Figure:
Nonparametric local-mean smoothing using Epanechnikov kernel and Silverman’s Rule-of-Thumb bandwidth. Combining information from successive clinical visits, age 11 and 13; excluding outliers in the top and bottom 5% of the distributions of BMI and log(sedentary minutes).
Pietro Biroli
Density
Back 81
Distribution of BMI, Females
Back
Pietro Biroli
82
Distribution of BMI, Males
Back
Pietro Biroli
83
Distribution of Caloric Intake, Females
Back
Pietro Biroli
84
Distribution of Caloric Intake, Males
Back
Pietro Biroli
85
Distribution of Exercise, Females
Back
Pietro Biroli
86
Distribution of Exercise, Males
Back
Pietro Biroli
87
Polygenic Approach
Consider other genes related to obesity from GWAS studies See [Vimaleswaran and Loos, 2010, Speliotes et al., 2010, Sandholt et al., 2012]
Construct a ‘gene-score’ by adding up the number of obesity-related alleles of 24 different genes, following [Belsky et al., 2013] MC4R TMEM18 FTO TFAP2B BCDIN3D ETV5 BDNF GNPDA2 PPARG THADA IGF2BP2 TCF7L2 NPC1 MTCH2 PCSK1 KCTD15 SH2B1 NRXN3 HHEX LYPLAL1 GCK NEGR1 PTER GCKR
dist
Obtain very similar results by considering the genetic-score The level of interaction is less pronounced, but the results are consistent with the previous tables Back
Pietro Biroli
88
Polygenic Approach Table: Gene and Investment Interaction - Genetic Score Risky Genetic Score log(Energy Intake)
βg
(2)
(3)
(4)
0.009 [0.002]***
0.012 [0.002]*** 0.066 [0.008]*** 0.026 [0.011]** 0.014 [0.008]* -0.003 [0.011] 0.965 [0.008]***
1.05% 7052
0.967 [0.007]*** 0.089 [0.007]*** X 78% 7052
0.012 [0.002]*** 0.065 [0.008]*** 0.025 [0.011]** 0.019 [0.008]** 0.000 [0.011] 0.938 [0.008]*** 0.090 [0.007]*** X 78% 7052
αf
G X Energy Intake
αg×f
log(Sedentary min.)
αe
G X Sedentary min.
αg×e
log(BMI)t−1
(1 − δ)
log(BMI)mom
γb
Covariates R2 Observations
(1) 0.034 [0.005]***
78% 7052
* significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level in brackets. Dependent variable: log BMI (kg/m2 ); Risky genetic score g = 1 if genetic score > 25; g = 0 otherwise; Covariates: gender; parity; age of child at clinic date; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight.
Back Pietro Biroli
89
Utility Cost Effect Effect of the genetic score on the investments: Varies by gender Differences also in activity levels Table: Genetic Effect on Investments - Genetic Score Caloric Consumption Male Female Risky Genetic Score Covariates Observations
(1) 0.011 [0.009] X 3,347
(2) 0.014 [0.008]* X 3,371
Sedentary Minutes Male Female (3) 0.001 [0.007] X 3,347
(4) 0.022 [0.006]*** X 3,371
* significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level in brackets. Dependent variables: logarithm of daily kilocalories intake (columns (1) and (2)), and logarithm of daily sedentary minutes (columns (3) and (4)). Covariates: log(sedentary min.) in columns (1) and (2), and log(kilocalories) in columns (3) and (4); log(BMI)t−1 ; log mom BMI during pregnancy; parity; age of child at clinic date; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; month dummies; late respondent; birth weight.
→ Must understand better the biological function of the various genes Back Pietro Biroli
90
Heterogeneity by group Table: By Gender and Without Underweight
Risky FTO Gene
βg
log(Food Int.)
αf
G X Food Int.
αg×f
log(Sedentary m.)
αe
G X Sedentary m.
αg×e
Bt−1
(1 − δ)
Controls R2 Observations
(1)
(2)
(3)
Baseline
Males
Females
(4) No Underweight
0.010 [0.002]*** 0.067 [0.009]*** 0.025 [0.011]** 0.027 [0.009]*** 0.012 [0.011] 0.939 [0.008]*** X 78% 7,052
0.006 [0.004] 0.067 [0.013]*** 0.004 [0.016] 0.042 [0.013]*** 0.026 [0.016]* 0.947 [0.012]*** X 79% 3,346
0.010 [0.003]*** 0.082 [0.014]*** 0.044 [0.018]** 0.007 [0.013] -0.007 [0.016] 0.928 [0.011]*** X 79% 3,706
0.011 [0.003]*** 0.069 [0.009]*** 0.030 [0.011]*** 0.028 [0.009]*** 0.009 [0.011] 0.911 [0.008]*** X 77% 6,785
Column (1) reports the baseline estimates (same as table 3). Column (2) and (3) run the model separately for males and females. Column (4) runs the model dropping the children who are below the 5th percentile of the z-BMI standard distribution for the UK (they represent 4% of the sample). * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. Risky FTO gene g = 1 if rs9939609 gene variant contains one or more A-Alleles; g = 0 otherwise. Covariates: gender; parity; age of child at clinic date; log mom BMI during pregnancy; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight.
Back Pietro Biroli
91
Measurement of Adiposity Table: Different Measures of Adiposity
Risky FTO Gene
βg
log(Food Int.)
αf
G X Food Int.
αg×f
log(Sedentary m.)
αe
G X Sedentary m.
αg×e
Bt−1
(1 − δ)
(1) Prob Overweight
(2) BMI and Height
Weight
zBMI
Fat %
0.228 [0.065]*** 0.500 [0.224]** 0.091 [0.274] 0.554 [0.218]** 0.082 [0.252] 2.101 [0.052]***
0.010 [0.002]*** 0.060 [0.009]*** 0.025 [0.011]** 0.026 [0.009]*** 0.012 [0.011] 0.934 [0.008]*** 0.106 [0.021]*** X 78% 7,050
0.012 [0.003]*** 0.072 [0.011]*** 0.030 [0.013]** 0.031 [0.011]*** 0.009 [0.013] 0.761 [0.008]*** 0.92 [0.031]*** X 88% 7,048
0.081 [0.019]*** 0.490 [0.070]*** 0.199 [0.083]** 0.189 [0.067]*** 0.076 [0.080] 0.869 [0.008]***
-0.011 [0.019] 0.036 [0.078] 0.029 [0.093] 0.141 [0.068]** 0.021 [0.081] 0.306 [0.022]***
X 77% 7,052
X 55% 5,305
log(Height) Controls R2 Observations
X 7,052
(3)
(4)
(5)
Column (1) runs a probit model on the probability of being obese. Column (2) uses Bt =log(weight) as dependent variable, controlling for log(height). Column (3) uses z-BMI as dependent variable. Column (4) uses the estimated percentage of body fat as dependent variable. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. Risky FTO gene g = 1 if rs9939609 gene variant contains one or more A-Alleles; g = 0 otherwise. Covariates: gender; parity; age of child at clinic date; log mom BMI during pregnancy; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight. Pietro Biroli Back
92
Measurement of Food Intake Table: Different Measures of Food Intake - FTO gene
Risky FTO Gene
βg
log(Food)
αf
G X Food
αg×f
log(Sedentary min.)
αe
G X Sedentary min.
αg×e
log(BMI)t−1
(1 − δ)
Covariates R2 Observations
(1)
(2)
(3)
(4)
(7)
Proteins
Fat
Carbs
(5) Dietary Cholesterol
(6)
Calories
Sugar
Starch
0.010 [0.002]*** 0.067 [0.009]*** 0.025 [0.011]** 0.027 [0.009]*** 0.012 [0.011] 0.939 [0.008]*** X 78% 7052
0.010 [0.002]*** 0.046 [0.007]*** 0.027 [0.009]*** 0.025 [0.009]*** 0.010 [0.011] 0.939 [0.008]*** X 78% 7052
0.009 [0.002]*** 0.037 [0.007]*** 0.015 [0.008]* 0.027 [0.009]*** 0.013 [0.011] 0.944 [0.008]*** X 78% 7052
0.008 [0.002]*** 0.047 [0.008]*** 0.013 [0.010] 0.026 [0.009]*** 0.011 [0.011] 0.942 [0.008]*** X 78% 7052
0.008 [0.002]*** 0.010 [0.004]*** 0.009 [0.005]* 0.024 [0.009]** 0.010 [0.011] 0.945 [0.008]*** X 78% 7051
0.007 [0.002]*** 0.011 [0.005]** 0.002 [0.006] 0.024 [0.009]** 0.010 [0.011] 0.946 [0.008]*** X 78% 7052
0.008 [0.002]*** 0.046 [0.007]*** 0.011 [0.009] 0.027 [0.009]*** 0.011 [0.011] 0.943 [0.008]*** X 78% 7052
Column (1) reports the baseline estimates (same as table 3). The different measures of dietary intake used are: Food intake (kilocalories/day - column 1); protein intake (grams/day - column 2); fat intake (grams/day - column 3); carbohydrate intake (grams/day - column 4); dietary cholesterol intake (mg/day - column 5); total sugar intake (grams/day - column 6); starch intake (grams/day column 7); non-starch polysaccharide (fibre) intake (grams/day - column 8); factor score of all the dietary measures (column 9); * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level in brackets. Dependent variable: log BMI (kg/m2 ); Covariates: gender; parity; age of child at clinic date; log mom BMI during pregnancy; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight.
Back Pietro Biroli
93
Measurement of Exercise Table: Different Measures of Physical Activity - FTO gene
Risky FTO Gene
βg
log(Food Intake)
αf
G X Food Intake
αg×f
log(Exercise)
αe
G X Exercise
αg×e
log(BMI)t−1
(1 − δ)
Covariates R2 Observations
(1) Sedentary min
MVPA
(2)
(3) Counts per min
Factor Score
(4)
0.010 [0.002]*** 0.067 [0.009]*** 0.025 [0.011]** 0.027 [0.009]*** 0.012 [0.011] 0.939 [0.008]*** X 78% 7052
0.009 [0.002]*** 0.068 [0.009]*** 0.021 [0.011]* -0.011 [0.002]*** -0.001 [0.002] 0.934 [0.008]*** X 79% 7043
0.009 [0.003]*** 0.069 [0.009]*** 0.024 [0.011]** -0.028 [0.005]*** -0.009 [0.006] 0.936 [0.008]*** X 79% 7052
0.009 [0.002]*** 0.069 [0.009]*** 0.023 [0.011]** -0.008 [0.002]*** -0.002 [0.002] 0.936 [0.008]*** X 79% 7043
Column (1) reports the baseline estimates (same as table 3). The different measures of exercise used are: sedentary minutes (column 1); moderate to vigorous physical activity (MVPA - column 2); counts per minute (column 3) factor score of all the exercise measures (column 4); * significant at 10%; ** significant at 5%; *** significant at 1%. Standard error clustered at the individual level in brackets. Dependent variable: log BMI (kg/m2 ); Covariates: gender; parity; age of child at clinic date; log mom BMI during pregnancy; mom and dad education and SES; mother age at pregnancy; dummy for single mother; reliable dietary report; time dummy; seasonal dummies; late respondent; birth weight.
Back Pietro Biroli
94
Quantile Regression
Back Pietro Biroli
95
Quantile Regression
Back Pietro Biroli
96
According to Mendel’s laws of independent assortment, we expect a bell-shaped distribution
back
Pietro Biroli
97
References I
Altonji, J. G., Elder, T. E., and Taber, C. R. (2008). Using Selection on Observed Variables to Assess Bias from Unobservables when Evaluating Swan-Ganz Catheterization. American Economic Review: Papers & Proceedings, 98(2):345–350. Andreasen, C. H., Stender-petersen, K. L., Mogensen, M. S., Torekov, S. S., Wegner, L., Andersen, G., Nielsen, A. L., Albrechtsen, A., Borch-johnsen, K., Rasmussen, S. S., Clausen, J. O., Sandbæk, A., Lauritzen, T., Hansen, L., Jorgensen, T., Pedersen, O., and Hansen, T. (2008). Low Physical Activity Accentuates the Effect of the FTO rs9939609 Polymorphism on Body Fat Accumulation. Diabetes, 57(January):95–101. Belsky, D. W., Moffitt, T. E., Sugden, K., Williams, B. S., Houts, R. M., McCarthy, J., and Caspi, A. (2013). Development and evaluation of a genetic risk score for obesity. Biodemography and social biology, 59(1):85–100. Benjamin, D. J., Caplin, A., Cesarini, D., Thom, K., and Turley, P. (2016). Smoking, Genes, and Health. Working Paper, pages 1–27. Benjamin, D. J., Chabris, C. F., Glaeser, E. L., Gudnason, V., Harris, T. B., Laibson, D. I., Launer, L. J., and Purcell, S. M. (2007). Genoeconomics. In Weinstein, M., Vaupel, J. W., and Wachter, K. W., editors, Biosocial Surveys, chapter 15, pages 304–335. The National Academies Press, Washington, D.C.
Pietro Biroli
98
References II Berndt, S. I., Gustafsson, S., M¨ agi, R., Ganna, A., Wheeler, E., Feitosa, M. F., Justice, A. E., Monda, K. L., Croteau-Chonka, D. C., Day, F. R., Esko, T., Fall, T., Ferreira, T., Gentilini, D., Jackson, A. U., Luan, J., Randall, J. C., Vedantam, S., Willer, C. J., Winkler, T. W., Wood, A. R., Workalemahu, T., Hu, Y.-J., Lee, S. H., Liang, L., Lin, D.-Y., Min, J. L., Neale, B. M., Thorleifsson, G., Yang, J., Albrecht, E., Amin, N., Bragg-Gresham, J. L., Cadby, G., den Heijer, M., Eklund, N., Fischer, K., Goel, A., Hottenga, J. J., Huffman, J. E., Jarick, I., Johansson, ˚ A., Johnson, T., Kanoni, S., Kleber, M. E., K¨ onig, I. R., Kristiansson, K., Kutalik, Z., Lamina, C., Lecoeur, C., Li, G., Mangino, M., McArdle, W. L., Medina-Gomez, C., M¨ uller-Nurasyid, M., Ngwa, J. S., Nolte, I. M., Paternoster, L., Pechlivanis, S., Perola, M., Peters, M. J., Preuss, M., Rose, L. M., Shi, J., Shungin, D., Smith, A. V., Strawbridge, R. J., Surakka, I., Teumer, A., Trip, M. D., Tyrer, J., Van Vliet-Ostaptchouk, J. V., Vandenput, L., Waite, L. L., Zhao, J. H., Absher, D., Asselbergs, F. W., Atalay, M., Attwood, A. P., Balmforth, A. J., Basart, H., Beilby, J., Bonnycastle, L. L., Brambilla, P., Bruinenberg, M., Campbell, H., Chasman, D. I., Chines, P. S., Collins, F. S., Connell, J. M., Cookson, W. O., de Faire, U., de Vegt, F., Dei, M., Dimitriou, M., Edkins, S., Estrada, K., Evans, D. M., Farrall, M., Ferrario, M. M., Ferri` eres, J., Franke, L., Frau, F., Gejman, P. V., Grallert, H., Gr¨ onberg, H., Gudnason, V., Hall, A. S., Hall, P., Hartikainen, A.-L., Hayward, C., Heard-Costa, N. L., Heath, A. C., Hebebrand, J., Homuth, G., Hu, F. B., Hunt, S. E., Hypp¨ onen, E., Iribarren, C., Jacobs, K. B., Jansson, J.-O., Jula, A. M., K¨ ah¨ onen, M., Kathiresan, S., Kee, F., Khaw, K.-T., Kivim¨ aki, M., Koenig, W., Kraja, A. T., Kumari, M., Kuulasmaa, K., Kuusisto, J., Laitinen, J. H., Lakka, T. A., Langenberg, C., Launer, L. J., Lind, L., Lindstr¨ om, J., Liu, J., Liuzzi, A., Lokki, M.-L., Lorentzon, M., Madden, P. A., Magnusson, P. K. E., Manunta, P., Marek, D., M¨ arz, W., Mateo Leach, I., McKnight, B., Medland, S. E., Mihailov, E., Milani, L., Montgomery, G. W., Mooser, V., M¨ uhleisen, T. W., Munroe, P. B., Musk, A. W., Narisu, N., Navis, G., Nicholson, G., Nohr, E. A., Ong, K. K., Oostra, B. A., Palmer, C. N. A., Palotie, A., Peden, J. F., Pedersen, N., Peters, A. H., Polasek, O., Pouta, A., Pramstaller, P. P., Prokopenko, I., P¨ utter, C., Radhakrishnan, A., Raitakari, O. T., Rendon, A., Rivadeneira, F., Rudan, I., Saaristo, T. E., Sambrook, J. G., Sanders, A. R., Sanna, S., Saramies, J., Schipf, S., Schreiber, S., Schunkert, H., Shin, S.-Y., Signorini, S., Sinisalo, J., Skrobek, B., Soranzo, N., Stanˇ c´ akov´ a, A., Stark, K., Stephens, J. C., Stirrups, K., Stolk, R. P., Stumvoll, M., Swift, A. J., Theodoraki, E. V., Thorand, B., Tregouet, D.-A., Tremoli, E., Van der Klauw, M. M., van Meurs, J. B. J., Vermeulen, S. H., Viikari, J., Virtamo, J., Vitart, V., Waeber, G., Wang, Z., Wid´ en, E., Wild, S. H., Willemsen, G., Winkelmann, B. R., Witteman, J. C. M., Wolffenbuttel, B. H. R., Wong, A., Wright, A. F., Zillikens, M. C., Amouyel, P., Boehm, B. O., Boerwinkle, E., Boomsma, D. I., Caulfield, M. J., Chanock, S. J., Cupples, L. A., Cusi, D., Dedoussis, G. V., Erdmann, J., Eriksson, J. G., Franks, P. W., Froguel, P., Gieger, C., Gyllensten, U., Hamsten, A., Harris, T. B., Hengstenberg, C., Hicks, A. A., Hingorani, A., Hinney, A., Hofman, A., Hovingh, G. K., Hveem, K., Illig, T., Jarvelin, M.-R., J¨ ockel, K.-H., Keinanen-Kiukaanniemi, S. M., Kiemeney, L. A., Kuh, D., Laakso, M., Lehtim¨ aki, T., Levinson, D. F., Martin, N. G., Metspalu, A., Morris, A. D., Nieminen, M. S., Njølstad, I., Ohlsson, C., Oldehinkel, A. J., Ouwehand, W. H., Palmer, L. J., Penninx, B. P., Power, C., Province, M. A., Psaty, B. M., Qi, L., Rauramaa, R., Ridker, P. M., Ripatti, S., Salomaa, V., Samani, N. J., Snieder, H., Sørensen, T. I. A., Spector, T. D., Stefansson, K., T¨ onjes, A., Tuomilehto, J., Uitterlinden, A. G., Uusitupa, M., van der Harst, P., Vollenweider, P., Wallaschofski, H., Wareham, N. J., Watkins, H., Wichmann, H.-E., Wilson, J. F., Abecasis, G. R., Assimes, T. L., Barroso, I., Boehnke, M., Borecki, I. B., Deloukas, P., Fox, C. S., Frayling, T. M., Groop, L. C., Haritunian, T., Heid, I. M., Hunter, D., Kaplan, R. C., Karpe, F., Moffatt, M. F., Mohlke, K. L., O’Connell, J. R., Pawitan, Y., Schadt, E. E., Schlessinger, D., Steinthorsdottir, V., Pietro Biroli
99
References III Strachan, D. P., Thorsteinsdottir, U., van Duijn, C. M., Visscher, P. M., Di Blasio, A. M., Hirschhorn, J. N., Lindgren, C. M., Morris, A. P., Meyre, D., Scherag, A., McCarthy, M. I., Speliotes, E. K., North, K. E., Loos, R. J. F., and Ingelsson, E. (2013). Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature genetics, 45(5):501–12. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., Taylor, A., and Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297(5582):851–4. Cawley, J. (2010). The economics of childhood obesity. Health affairs, 29(3):364–71. Cawley, J., Han, E., and Norton, E. C. (2011). The validity of genes related to neurotransmitters as instrumental variables. Health Economics, 20(May):884–888. Cecil, J. E., Tavendale, R., Watt, P., Hetherington, M. M., and Palmer, C. N. A. (2008). An obesity-associated FTO gene variant and increased energy intake in children. The New England Journal of Medicine, 359:2558–2566. Cesarini, D., Dawes, C. T., Johannesson, M., Lichtenstein, P., and Wallace, B. (2009). Genetic Variation in Preferences for Giving and Risk Taking. Quarterly Journal of Economics, 124(2):809–842. Claussnitzer, M., Dankel, S. N., Kim, K.-H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., Sousa, I. S., Beaudry, J. L., Puviindran, V., Abdennur, N. A., Liu, J., Svensson, P.-A., Hsu, Y.-H., Drucker, D. J., Mellgren, G., Hui, C.-C., Hauner, H., and Kellis, M. (2015). FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. New England Journal of Medicine, 373(10):895–907.
Pietro Biroli
100
References IV Cutler, D. M., Glaeser, E. L., and Shapiro, J. M. (2003). Why Have Americans Become More Obese? Journal of Economic Perspectives, 17(3):93–118. Davey Smith, G. (2003). ’Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32(1):1–22. Davey Smith, G. (2010). Mendelian Randomization for Strengthening Causal Inference in Observational Studies: Application to Gene x Environment Interactions. Perspectives on Psychological Science, 5(5):527–545. Fawcett, K. A. and Barroso, I. (2010). The genetics of obesity: FTO leads the way. Trends in genetics, 26(6):266–74. Fletcher, J. M. and Lehrer, S. F. (2009). The effects of adolescent health on educational outcomes: causal evidence using genetic lotteries between siblings. Forum for Health Economics & Policy, 12(2). Franks, P. W., Jablonski, K. A., Delahanty, L. M., McAteer, J. B., Kahn, S. E., Knowler, W. C., and Florez, J. C. (2008). Assessing gene-treatment interactions at the FTO and INSIG2 loci on obesity-related traits in the Diabetes Prevention Program. Diabetologia, 51(12):2214–23. Fredriksson, R., H¨ agglund, M., Olszewski, P. K., Stephansson, O., Jacobsson, J. A., Olszewska, A. M., Levine, A. S., Lindblom, J., and Schi¨ oth, H. B. (2008). The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology, 149(5):2062–71.
Pietro Biroli
101
References V Galama, T. and Kapteyn, A. (2011). Grossman’s missing health threshold. Journal of Health Economics, 30(5):1044–56. Galton, F. (1874). English men of science: Their nature and nurture. McMillan & Co, London. Grossman, M. (1972). On the concept of health capital and the demand for health. Journal of Political Economy, 80(2):223–255. Guo, G., Liu, H., Wang, L., Shen, H., and Hu, W. (2015). The Genome-Wide Influence on Human BMI Depends on Physical Activity, Life Course, and Historical Period. Demography, 52(5):1651–1670. Huang, T., Qi, Q., Li, Y., Hu, F. B., Bray, G. A., Sacks, F. M., Williamson, D. A., and Qi, L. (2014). FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial. The American journal of clinical nutrition, 99(5):1126–30. Karra, E., O’Daly, O. G., Choudhury, A. I., Yousseif, A., Millership, S., Neary, M. T., Scott, W. R., Chandarana, K., Manning, S., Hess, M. E., Iwakura, H., Akamizu, T., Millet, Q., Gelegen, C., Drew, M. E., Rahman, S., Emmanuel, J. J., Williams, S. C. R., R¨ uther, U. U., Br¨ uning, J. C., Withers, D. J., Zelaya, F. O., and Batterham, R. L. (2013). A link between FTO, ghrelin, and impaired brain food-cue responsivity. The Journal of clinical investigation, 123(8):3539–51.
Pietro Biroli
102
References VI Kilpel¨ ainen, T. O., Qi, L., Brage, S., Sharp, S. J., Sonestedt, E., Demerath, E. W., Ahmad, T., Mora, S., Kaakinen, M. A., Sandholt, C. H., Holzapfel, C., Autenrieth, C. S., Hypp¨ onen, E., Cauchi, S., He, M., Kutalik, Z., Kumari, M., Stanˇ c´ akov´ a, A., Meidtner, K., Balkau, B., Tan, J. T., Mangino, M., Timpson, N. J., Song, Y., Zillikens, M. C., Jablonski, K. A., Garcia, M. E., Johansson, S., Bragg-Gresham, J. L., Wu, Y., van Vliet-Ostaptchouk, J. V., Onland-Moret, N. C., Zimmermann, E., Rivera, N. V., Tanaka, T., Stringham, H. M., Silbernagel, G., Kanoni, S., Feitosa, M. F., Snitker, S., Ruiz, J. R., Metter, J., Larrad, M. T. M., Atalay, M., Hakanen, M., Amin, N., Cavalcanti-Proenc¸a, C., Grøntved, A., Hallmans, G., Jansson, J.-O., Kuusisto, J., K¨ ah¨ onen, M., Lutsey, P. L., Nolan, J. J., Palla, L., Pedersen, O., P´ erusse, L., Renstr¨ om, F., Scott, R. A., Shungin, D., Sovio, U., Tammelin, T. H., R¨ onnemaa, T., Lakka, T. A., Uusitupa, M., Rios, M. S., Ferrucci, L., Bouchard, C., Meirhaeghe, A., Fu, M., Walker, M., Borecki, I. B., Dedoussis, G. V., Fritsche, A., Ohlsson, C., Boehnke, M., Bandinelli, S., van Duijn, C. M., Ebrahim, S., Lawlor, D. A., Gudnason, V., Harris, T. B., Sørensen, T. I. A., Mohlke, K. L., Hofman, A., Uitterlinden, A. G., Tuomilehto, J., Lehtim¨ aki, T., Raitakari, O. T., Isomaa, B., Njølstad, P. R., Florez, J. C., Liu, S., Ness, A., Spector, T. D., Tai, E. S., Froguel, P., Boeing, H., Laakso, M., Marmot, M. G., Bergmann, S., Power, C., Khaw, K.-T., Chasman, D., Ridker, P. M., Hansen, T., Monda, K. L., Illig, T., J¨ arvelin, M.-R., Wareham, N. J., Hu, F. B., Groop, L. C., Orho-Melander, M., Ekelund, U., Franks, P. W., and Loos, R. J. F. (2011). Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS medicine, 8(11):e1001116. Kline, B. and Tobias, J. L. (2008). The wages of BMI: Bayesian analysis of a skewed treatment-response model with nonparametric endogeneity. Journal of Applied Econometrics, 23(6):767–793. Kohler, H.-P., Behrman, J. R., and Schnittker, J. (2011). Social Science Methods for Twins Data: Integrating Causality, Endowments, and Heritability. Biodemography and Social Biology, 57(1):88–141. Lakdawalla, D., Philipson, T. J., and Bhattacharya, J. (2005). Welfare-Enhancing Technological Change and the Growth of Obesity. American Economic Review, 95(2):253–257. Liu, H. and Guo, G. (2015). Lifetime Socioeconomic Status, Historical Context, and Genetic Inheritance in Shaping Body Mass in Middle and Late Adulthood. American Sociological Review, 80(4):705–737. Pietro Biroli
103
References VII Mattocks, C., Ness, A. R., Leary, S. D., Tilling, K., Blair, S. N., Shield, J., Deere, K., Saunders, J., Kirkby, J., Davey Smith, G., Wells, J. C., Wareham, N. J., Reilly, J. J., and Riddoch, C. J. (2008). Use of accelerometers in a large field-based study of children: protocols, design issues, and effects on precision. Journal of physical activity & health, 5 Suppl 1:S98–111. Mokdad, A. H., Marks, J. S., Stroup, D. F., and Gerberding, J. L. (2004). Actual causes of death in the United States, 2000. JAMA, 291(10):1238–45. Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., Abraham, J. P., Abu-Rmeileh, N. M. E., Achoki, T., AlBuhairan, F. S., Alemu, Z. A., Alfonso, R., Ali, M. K., Ali, R., Guzman, N. A., Ammar, W., Anwari, P., Banerjee, A., Barquera, S., Basu, S., Bennett, D. A., Bhutta, Z., Blore, J., Cabral, N., Nonato, I. C., Chang, J.-C., Chowdhury, R., Courville, K. J., Criqui, M. H., Cundiff, D. K., Dabhadkar, K. C., Dandona, L., Davis, A., Dayama, A., Dharmaratne, S. D., Ding, E. L., Durrani, A. M., Esteghamati, A., Farzadfar, F., Fay, D. F. J., Feigin, V. L., Flaxman, A., Forouzanfar, M. H., Goto, A., Green, M. A., Gupta, R., Hafezi-Nejad, N., Hankey, G. J., Harewood, H. C., Havmoeller, R., Hay, S., Hernandez, L., Husseini, A., Idrisov, B. T., Ikeda, N., Islami, F., Jahangir, E., Jassal, S. K., Jee, S. H., Jeffreys, M., Jonas, J. B., Kabagambe, E. K., Khalifa, S. E. A. H., Kengne, A. P., Khader, Y. S., Khang, Y.-H., Kim, D., Kimokoti, R. W., Kinge, J. M., Kokubo, Y., Kosen, S., Kwan, G., Lai, T., Leinsalu, M., Li, Y., Liang, X., Liu, S., Logroscino, G., Lotufo, P. A., Lu, Y., Ma, J., Mainoo, N. K., Mensah, G. A., Merriman, T. R., Mokdad, A. H., Moschandreas, J., Naghavi, M., Naheed, A., Nand, D., Narayan, K. M. V., Nelson, E. L., Neuhouser, M. L., Nisar, M. I., Ohkubo, T., Oti, S. O., Pedroza, A., Prabhakaran, D., Roy, N., Sampson, U., Seo, H., Sepanlou, S. G., Shibuya, K., Shiri, R., Shiue, I., Singh, G. M., Singh, J. A., Skirbekk, V., Stapelberg, N. J. C., Sturua, L., Sykes, B. L., Tobias, M., Tran, B. X., Trasande, L., Toyoshima, H., van de Vijver, S., Vasankari, T. J., Veerman, J. L., Velasquez-Melendez, G., Vlassov, V. V., Vollset, S. E., Vos, T., Wang, C., Wang, S. X., Weiderpass, E., Werdecker, A., Wright, J. L., Yang, Y. C., Yatsuya, H., Yoon, J., Yoon, S.-J., Zhao, Y., Zhou, M., Zhu, S., Lopez, A. D., Murray, C. J. L., and Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 384(9945):766–781. Noel, S. E., Mattocks, C., Emmett, P. M., Riddoch, C. J., Ness, A. R., and Newby, P. K. (2010). Use of accelerometer data in prediction equations for capturing implausible dietary intakes in adolescents. American Journal of Clinical Nutrition, 92(6):1436–1445.
Pietro Biroli
104
References VIII Olszewski, P. K., Fredriksson, R., Olszewska, A. M., Stephansson, O., Alsi¨ o, J., Radomska, K. J., Levine, A. S., and Schi¨ oth, H. B. (2009). Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC neuroscience, 10:129. Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B., Chabris, C. F., Emilsson, V., Johnson, A. D., Lee, J. J., de Leeuw, C., Marioni, R. E., Medland, S. E., Miller, M. B., Rostapshova, O., van der Lee, S. J., Vinkhuyzen, A. A. E., Amin, N., Conley, D. C., Derringer, J., van Duijn, C. M., Fehrmann, R. S. N., Franke, L., Glaeser, E. L., Hansell, N. K., Hayward, C., Iacono, W. G., Ibrahim-Verbaas, C., Jaddoe, V. W. V., Karjalainen, J. M., Laibson, D. I., Lichtenstein, P., Liewald, D. C., Magnusson, P. K. E., Martin, N. G., McGue, M., McMahon, G., Pedersen, N. L., Pinker, S., Porteous, D. J., Posthuma, D., Rivadeneira, F., Smith, B. H., Starr, J. M., Tiemeier, H., Timpson, N. J., Trzaskowski, M., Uitterlinden, A. G., Verhulst, F. C., Ward, M. E., Wright, M. J., Davey Smith, G., Deary, I. J., Johannesson, M., Plomin, R., Visscher, P. M., Benjamin, D. J., Cesarini, D., and Koellinger, P. D. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences, 111(38):13790–13794. Rosenquist, J. N., Lehrer, S. F., O’Malley, A. J., Zaslavsky, A. M., Smoller, J. W., and Christakis, N. A. (2015). Cohort of birth modifies the association between FTO genotype and BMI. Proceedings of the National Academy of Sciences, 112(2):354–9. Sandholt, C. H., Hansen, T., and Pedersen, O. (2012). Beyond the fourth wave of genome-wide obesity association studies. Nutrition and Diabetes, 2(7):e37. Scholz, J. K. and Seshadri, A. (2013). Health and Wealth In a Lifecycle Model. Working Paper, (July). Smemo, S., Tena, J. J., Kim, K.-H., Gamazon, E. R., Sakabe, N. J., G´ omez-Mar´ın, C., Aneas, I., Credidio, F. L., Sobreira, D. R., Wasserman, N. F., Lee, J. H., Puviindran, V., Tam, D., Shen, M., Son, J. E., Vakili, N. A., Sung, H.-K., Naranjo, S., Acemel, R. D., Manzanares, M., Nagy, A., Cox, N. J., Hui, C.-C., Gomez-Skarmeta, J. L., and Nobrega, M. A. (2014). Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. Pietro Biroli
105
References IX Speakman, J. R., Rance, K. A., and Johnstone, A. M. (2008). Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity, 16(8):1961–5. Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., Lango Allen, H., Lindgren, C. M., Luan, J., M¨ agi, R., Randall, J. C., Vedantam, S., Winkler, T. W., Qi, L., Workalemahu, T., Heid, I. M., Steinthorsdottir, V., Stringham, H. M., Weedon, M. N., Wheeler, E., Wood, A. R., Stefansson, K., North, K. E., McCarthy, M. I., Hirschhorn, J. N., Ingelsson, E., and Loos, R. J. F. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature genetics, 42(11):937–48. Taubman, P. (1976). Earnings, education, genetics, and environment. Journal of Human Resources, 11(4):447–461. Timpson, N. J., Emmett, P. M., Frayling, T. M., Rogers, I. S., Hattersley, A. T., McCarthy, M. I., and Davey Smith, G. (2008). The fat mass- and obesity-associated locus and dietary intake in children. The American Journal of Clinical Nutrition, 88(4):971–8. Vimaleswaran, K. S. and Loos, R. J. F. (2010). Progress in the genetics of common obesity and type 2 diabetes. Expert reviews in molecular medicine, 12(February):e7. von Hinke Kessler Scholder, S., Davey Smith, G., Lawlor, D. A., Propper, C., and Windmeijer, F. (2013). Child height, health and human capital: Evidence using genetic markers. European Economic Review, 57:1–22. Wardle, J., Carnell, S., Haworth, C. M. A., Farooqi, I. S., O’Rahilly, S., and Plomin, R. (2008). Obesity associated genetic variation in FTO is associated with diminished satiety. The Journal of clinical endocrinology and metabolism, 93(9):3640–3.
Pietro Biroli
106
References X
Zhang, X., Qi, Q., Zhang, C., Smith, S. R., Hu, F. B., Sacks, F. M., Bray, G. A., and Qi, L. (2012). FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes, 61(11):3005–11.
Pietro Biroli
107