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We present an eﬀective uniﬁed theory based on noncommutative geometry for the standard model with neutrino mixing, minimally coupled to gravity. The uniﬁcation is based on the symplectic unitary group in Hilbert space and on the spectral action. It yields all the detailed structure of the standard model with several predictions at uniﬁcation scale. Besides the familiar predictions for the gauge couplings as for GUT theories, it predicts the Higgs scattering parameter and the sum of the squares of Yukawa couplings. From these relations, one can extract predictions at low energy, giving in particular a Higgs mass around 170 GeV and a top mass compatible with present experimental value. The geometric picture that emerges is that space–time is the product of an ordinary spin manifold (for which the theory would deliver Einstein gravity) by a ﬁnite noncommutative geometry F . The discrete space F is of KO-dimension e-print archive: http://lanl.arXiv.org/abs/arXiv:hep-th/0610241



992



ALI H. CHAMSEDDINE ET AL.



6 modulo 8 and of metric dimension 0, and accounts for all the intricacies of the standard model with its spontaneous symmetry breaking Higgs sector.
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Introduction



In this paper, we present a model based on noncommutative geometry for the standard model with massive neutrinos, minimally coupled to gravity. The model can be thought of as a form of uniﬁcation, based on the symplectic unitary group in Hilbert space, rather than on ﬁnite-dimensional Lie groups. In particular, the parameters of the model are set at uniﬁcation scale, and one obtains physical predictions by running them down through the renormalization group using the Wilsonian approach. For the renormalizability of the gravity part of our model, one can follow the renormalization analysis of higher derivatives gravity as in [12, 19]. Later, we explain in detail how the gravitational parameters behave. The input of the model is extremely simple. It consists of the choice of a ﬁnite-dimensional algebra, which is natural in the context of the left–right symmetric models. It is a direct sum C ⊕ H ⊕ H ⊕ M3 (C),



(1.1)



where H is the involutive algebra of quaternions. There is a natural representation M for this algebra, which is the sum of the irreducible bimodules of odd spin. We show that the fermions of the standard model can be identiﬁed with a basis for a sum of N copies of M, with N being the number of generations. (We will restrict ourselves to N = 3 generations.) An advantage of working with associative algebras as opposed to Lie algebras is that the representation theory is more constrained. In particular, a ﬁnite-dimensional algebra has only a ﬁnite number of irreducible representations, hence a canonical representation in their sum. The bimodule M described above is obtained in this way by imposing the odd spin condition. The model we introduce, however, is not a left–right symmetric model. In fact, geometric considerations on the form of a Dirac operator for the algebra (1.1) with the representation H = M⊕3 lead to the identiﬁcation of a subalgebra of (1.1) of the form C ⊕ H ⊕ M3 (C) ⊂ C ⊕ H ⊕ H ⊕ M3 (C).



(1.2)



This will give a model for neutrino mixing which has Majorana mass terms and a see-saw mechanism. For this algebra we give a classiﬁcation of all possible Dirac operators that give a real spectral triple (A, H, D), with H being the representation described above. The resulting Dirac operators depend on 31 real parameters, which physically correspond to the masses for leptons and quarks
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(including neutrino Yukawa masses), the angles of the CKM and PMNS matrices, and the Majorana mass matrix. This gives a family of geometries F = (A, H, D) that are metrically zerodimensional, but that are of dimension 6 mod 8 from the point of view of real K-theory. We consider the product geometry of such a ﬁnite-dimensional spectral triple with the spectral triple associated to a 4-dimensional compact Riemannian spin manifold. The bosons of the standard model, including the Higgs, are obtained as the inner ﬂuctuations of the Dirac operator of this product geometry. In particular, this gives a geometric interpretation of the Higgs ﬁelds which generate the masses of elementary particles through spontaneous symmetry breaking. The corresponding mass scale speciﬁes the inverse size of the discrete geometry F . This is in marked contrast with the grand uniﬁed theories, where the Higgs ﬁelds are then added by hand to break the GUT symmetry. In our case, the symmetry is broken by a speciﬁc choice of the ﬁnite geometry, in the same way as the choice of a speciﬁc space–time geometry breaks the general relativistic invariance group to the much smaller group of isometries of a given background. Then we apply to this product geometry a general formalism for spectral triples, namely the spectral action principle. This is a universal action functional on spectral triples, which is “spectral”, in the sense that it depends only on the spectrum of the Dirac operator and is of the form Tr(f (D/Λ)),



(1.3)



where Λ ﬁxes the energy scale and f is a test function. The function f only ∞ plays a role through its momenta f0 , f2 , and f4 , where fk = 0 f (v)v k−1 dv for k > 0 and f0 = f (0). (cf. Remark A.5 below for the relation with the notations of [8]). These give three additional real parameters in the model. Physically, these are related to the coupling constants at uniﬁcation, the gravitational constant, and the cosmological constant. The action functional (1.3), applied to inner ﬂuctuations, only accounts for the bosonic part of the model. In particular, in the case of classical Riemannian manifolds, where no inner ﬂuctuations are present, one obtains from (1.3) the Einstein–Hilbert action of pure gravity. This is why gravity is naturally present in the model, while the other gauge bosons arise as a consequence of the noncommutativity of the algebra of the spectral triple. The coupling with fermions is obtained by including an additional term 1 Tr(f (D/Λ)) + Jψ, Dψ, 2



(1.4)
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where J is the real structure on the spectral triple, and ψ is an element in the space H, viewed as a classical fermion, i.e., as a Grassman variable. The fermionic part of the Euclidean functional integral is given by the Pfaﬃan of the antisymmetric bilinear form Jψ  , Dψ. This, in particular, gives a substitute for Majorana fermions in Euclidean signature (cf., e.g., [27, 34]). We show that the gauge symmetries of the standard model, with the correct hypercharge assignment, are obtained as a subgroup of the symplectic unitary group of Hilbert space given by the adjoint representation of the unimodular unitary group of the algebra. We prove that the full Lagrangian (in Euclidean signature) of the standard model minimally coupled to gravity, with neutrino mixing and Majorana mass terms, is the result of the computation of the asymptotic formula for the spectral action functional (1.4). The positivity of the test function f in (1.3) ensures the positivity of the action functional before taking the asymptotic expansion. In general, this does not suﬃce to control the sign of the terms in the asymptotic expansion. In our case, however, this determines the positivity of the momenta f0 , f2 , and f4 . The explicit calculation then shows that this implies that the signs of all the terms are the expected physical ones. We obtain the usual Einstein–Hilbert action with a cosmological term and, in addition, the square of the Weyl curvature and a pairing of the scalar curvature with the square of the Higgs ﬁeld. The Weyl curvature term does not aﬀect gravity at low energies, due to the smallness of the Planck length. The coupling of the Higgs to the scalar curvature was discussed by Feynman in [21]. We show that the general form of the Dirac operator for the ﬁnite geometry gives a see-saw mechanism for the neutrinos (cf. [33]). The large masses in the Majorana mass matrix are obtained in our model as a consequence of the equations of motion. Our model makes three predictions, under the assumption of the “big desert”, in running down the energy scale from uniﬁcation.  The ﬁrst prediction is the relation g2 = g3 = 5/3 g1 between the coupling constants at uniﬁcation scale, exactly as in the GUT models (cf., e.g., [33, § 9.1] for SU(5) and [11] for SO(10)). In our model this comes directly from the computation of the terms in the asymptotic formula for the spectral action. In fact, this result is a feature of any model that uniﬁes the gauge interactions, without altering the fermionic content of the model.
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The second prediction is the Higgs scattering parameter αh at uniﬁcation scale. From this condition, One obtains a prediction for the Higgs mass as a function of the W mass, after running it down through the renormalization group equations. This gives a Higgs mass of the order of 170 GeV and agrees with the “big desert” prediction of the minimal standard model (cf. [41]). The third prediction is a mass relation between the Yukawa masses of fermions and the W boson mass, again valid at uniﬁcation scale. This is of the form 



2 m2e + m2ν + 3m2d + 3m2u = 8MW .



(1.5)



generations



After applying the renormalization group to the Yukawa couplings, assuming that the Yukawa coupling for the ντ is comparable to the one for the top quark, one obtains good agreement with the measured value. Moreover, we can extract from the model predictions for the gravitational constant involving the parameter f2 /f0 . The reasonable assumption that the parameters f0 and f2 are of the same order of magnitude yields a realistic value for the Newton constant. In addition to these predictions, a main advantage of the model is that it gives a geometric interpretation for all the parameters in the standard model. In particular, this leaves room for predictions about the Yukawa couplings, through the geometry of the Dirac operator. The properties of the ﬁnite geometries described in this paper suggest possible approaches. For instance, there are examples of spectral triples of metric dimension zero with a diﬀerent KO-homology dimension, realized by homogeneous spaces over quantum groups [18]. Moreover, the data parameterizing the Dirac operators of our ﬁnite geometries can be described in terms of some classical moduli spaces related to double coset spaces of the form K\(G × G)/(K × K) for G a reductive group and K the maximal compact acting diagonally on the left. The renormalization group deﬁnes a ﬂow on the moduli space. Finally, the product geometry is 10-dimensional from the KO-homology point of view and may perhaps be realized as a low-energy truncation, using the type of compact ﬁbers that are considered in string theory models (cf. e.g., [23]).
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Naturally, one does not really expect the “big desert” hypothesis to be satisﬁed. The fact that the experimental values show that the coupling constants do not exactly meet at uniﬁcation scale is an indication of the presence of new physics. A good test for the validity of the above approach will be whether a ﬁne tuning of the ﬁnite geometry can incorporate additional experimental data at higher energies. The present paper shows that the modiﬁcation of the standard model required by the phenomenon of neutrino mixing in fact resulted in several improvements on the previous descriptions of the standard model via noncommutative geometry. In summary, we have shown that the intricate Lagrangian of the standard model coupled with gravity can be obtained from a very simple modiﬁcation of space–time geometry, provided one uses the formalism of noncommutative geometry. The model contains several predictions and the corresponding Section 5 of the paper can be read directly, skipping the previous sections. The detailed comparison in Section 4 of the spectral action with the standard model contains several steps that are familiar to high energy particle physicists but less to mathematicians. Sections 2 and 3 are more mathematical but, for instance, the relation between classical moduli spaces and the CKM matrices can be of interest to both physicists and mathematicians. The results of this paper are a development of the preliminary announcement of [17].



2



The ﬁnite geometry



2.1



The left–right symmetric algebra



The main input for the model we are going to describe is the choice of a ﬁnite-dimensional involutive algebra of the form ALR = C ⊕ HL ⊕ HR ⊕ M3 (C).



(2.1)



This is the direct sum of the matrix algebras MN (C) for N = 1, 3 with two copies of the algebra H of quaternions, where the indices L, R are just for book-keeping. We refer to (2.1) as the “left–right symmetric algebra” [10]. By construction, ALR is an involutive algebra, with involution ¯ q¯L , q¯R , m∗ ), (λ, qL , qR , m)∗ = (λ,



(2.2)



where q → q¯ denotes the involution of the algebra of quaternions. The algebra ALR admits a natural subalgebra C ⊕ M3 (C), corresponding to integer
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spin, which is an algebra over C. The subalgebra HL ⊕ HR , corresponding to half-integer spin, is an algebra over R. 2.2



The bimodule MF



Let M be a bimodule over an involutive algebra A. For u ∈ A unitary, i.e., such that uu∗ = u∗ u = 1, one deﬁnes Ad(u) by Ad(u)ξ = uξu∗ , ∀ξ ∈ M. Deﬁnition 2.1. Let M be an ALR -bimodule. Then M is odd iﬀ the adjoint action of s = (1, −1, −1, 1) fulﬁlls Ad(s) = −1. Let A0LR denote the opposite algebra of ALR . Lemma 2.2. An odd bimodule M is a representation of the reduction B = (ALR ⊗R A0LR )p of ALR ⊗R A0LR by the projection p = 1/2 (1 − s ⊗ s0 ). This subalgebra is an algebra over C. Proof. The result follows directly from the action of s = (1, −1, −1, 1) in Deﬁnition 2.1.  Since B = (ALR ⊗R A0LR )p is an algebra over C, we restrict to consider complex representations. Deﬁnition 2.3. One deﬁnes the contragredient bimodule of a bimodule M as the complex conjugate space M0 = {ξ¯ ; ξ ∈ M}, a ξ¯ b = b∗ ξ a∗ , ∀ a, b ∈ ALR . (2.3) The algebras MN (C) and H are isomorphic to their opposite algebras (by m → mt for matrices and q → q¯ for quaternions. We use this antiisomorphism to obtain a representation π 0 of the opposite algebra from a representation π. We follow the physicists convention to denote an irreducible representation by its dimension in boldface. So, for instance, 30 denotes the 3dimensional irreducible representation of the opposite algebra M3 (C). Proposition 2.4. Let MF be the direct sum of all inequivalent irreducible odd ALR -bimodules. • The dimension of the complex vector space MF is 32. • The ALR -bimodule MF = E ⊕ E 0 is the direct sum of the bimodule E = 2L ⊗ 1 0 ⊕ 2 R ⊗ 1 0 ⊕ 2 L ⊗ 3 0 ⊕ 2 R ⊗ 3 0 with its contragredient



E 0.



(2.4)
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• The ALR -bimodule MF is isomorphic to the contragredient bimodule M0F by the antilinear isometry JF given by ¯ JF (ξ, η¯) = (η, ξ), ∀ ξ, η ∈ E (2.5) • One has J 2 = 1,



ξ b = Jb∗ J ξ, ∀ ξ ∈ MF , b ∈ ALR



(2.6)



Proof. The ﬁrst two statements follow from the structure of the algebra B described in the following lemma. Lemma 2.5. The algebra B = (ALR ⊗R A0LR )p is the direct sum of four copies of the algebra M2 (C) ⊕ M6 (C). The sum of irreducible representations of B has dimension 32 and is given by 2L ⊗ 10 ⊕ 2R ⊗ 10 ⊕ 2L ⊗ 30 ⊕ 2R ⊗ 30 ⊕ 1 ⊗ 20L ⊕ 1 ⊗ 20R ⊕ 3 ⊗ 20L ⊕ 3 ⊗ 20R



(2.7)



Proof. By construction one has B = (HL ⊕ HR ) ⊗R (C ⊕ M3 (C))0 ⊕ (C ⊕ M3 (C)) ⊗R (HL ⊕ HR )0 . Thus the ﬁrst result follows from the isomorphism: H ⊗R C = M2 (C),



H ⊗R M3 (C) = M6 (C).



The complex algebra MN (C) admits only one irreducible representation and the latter has dimension N . Thus the sum of the irreducible representations of B is given by (2.7). The dimension of the sum of irreducible representations is 4 × 2 + 4 × 6 = 32.  To end the proof of Proposition 2.4, notice that by construction MF is the direct sum E ⊕ E 0 of the bimodule (2.4) with its contragredient, and that the map (2.5) gives the required antilinear isometry. Note, moreover, that one has (2.6) using (2.3).  2.3



Real spectral triples



A noncommutative geometry is given by a representation theoretic datum of spectral nature. More precisely, we have the following notion. Deﬁnition 2.6. A spectral triple (A, H, D) is given by an involutive unital algebra A represented as operators in a Hilbert space H and a self-adjoint
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operator D with compact resolvent such that all commutators [D, a] are bounded for a ∈ A. A spectral triple is even if the Hilbert space H is endowed with a Z/2grading γ which commutes with any a ∈ A and anticommutes with D. The notion of real structure (cf. [15]) on a spectral triple (A, H, D), is intimately related to real K-homology (cf. [2]) and the properties of the charge conjugation operator. Deﬁnition 2.7. A real structure of KO-dimension n ∈ Z/8 on a spectral triple (A, H, D) is an antilinear isometry J : H → H, with the property that JD = ε DJ,



J 2 = ε,



and



Jγ = ε γJ (even case).



(2.8)



The numbers ε, ε , ε ∈ {−1, 1} are a function of n mod 8 given by n ε ε ε



0 1 2 3 4 5 6 7 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 −1



Moreover, the action of A satisﬁes the commutation rule [a, b0 ] = 0 ∀ a, b ∈ A,



(2.9)



where b0 = Jb∗ J −1



∀b ∈ A,



(2.10)



and the operator D satisﬁes the order-one condition: [[D, a], b0 ] = 0 ∀ a, b ∈ A.



(2.11)



A spectral triple endowed with a real structure is called a real spectral triple. A key role of the real structure J is in deﬁning the adjoint action of the unitary group U of the algebra A on the Hilbert space H. In fact, one deﬁnes a right A-module structure on H by ξ b = b0 ξ,



∀ ξ ∈ H, b ∈ A.



(2.12)



The unitary group of the algebra A then acts by the “adjoint representation” on H in the form H ξ → Ad(u) ξ = u ξ u∗ ,



∀ ξ ∈ H, u ∈ A, u u∗ = u∗ u = 1.



(2.13)
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Deﬁnition 2.8. Let Ω1D denote the A-bimodule ⎧ ⎫ ⎨ ⎬ 1 aj [D, bj ] | aj , bj ∈ A . ΩD = ⎩ ⎭



(2.14)



j



Deﬁnition 2.9. The inner ﬂuctuations of the metric are given by D → DA = D + A + ε J A J −1 , where A ∈ Ω1D , A = A∗ is a self-adjoint operator of the form  aj [D, bj ], aj , bj ∈ A. A=



(2.15)



(2.16)



j



For any gauge potential A ∈ Ω1D , A = A∗ and any unitary u ∈ A, one has Ad(u)(D + A + ε J A J −1 )Ad(u∗ ) = D + γu (A) + ε J γu (A) J −1 , where γu (A) = u [D, u∗ ] + u A u∗ (cf. [16]).



2.4



The subalgebra and the order-one condition



We let HF be the sum of N = 3 copies of the ALR -bimodule MF of Proposition 2.4, that is, HF = M⊕3 F .



(2.17)



Remark 2.10. The multiplicity N = 3 here is an input, and it corresponds to the number of particle generations in the standard model. The number of generations is not predicted by our model in its present form and has to be taken as an input datum. We deﬁne the Z/2-grading γF by γF = c − JF c JF ,



c = (0, 1, −1, 0) ∈ ALR .



(2.18)



One then checks that JF2 = 1,



JF γF = −γF JF .



(2.19)



The relation (2.19), together with the commutation of JF with the Dirac operators, is characteristic of KO-dimension equal to 6 modulo 8 (cf. Deﬁnition 2.7).
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By Proposition 2.4 one can write HF as the direct sum HF = Hf ⊕ Hf¯



(2.20)



of N = 3 copies of E of (2.4) with the contragredient bimodule, namely Hf = E ⊕ E ⊕ E,



Hf¯ = E 0 ⊕ E 0 ⊕ E 0 .



(2.21)



The left action of ALR splits as the sum of a representation π on Hf and a representation π  on Hf¯. These representations of ALR are disjoint (i.e., they have no equivalent subrepresentations). As shown in Lemma 2.12 below, this precludes the existence of operators D in HF that fulﬁll the order-one condition (2.11) and intertwine the subspaces Hf and Hf¯. We now show that the existence of such intertwining of Hf and Hf¯ is restored by passing to a unique subalgebra of maximal dimension in ALR . Proposition 2.11. Up to an automorphism of ALR , there exists a unique subalgebra AF ⊂ ALR of maximal dimension admitting oﬀ-diagonal Dirac operators, namely operators that intertwine the subspaces Hf and Hf¯ of HF . The subalgebra is given by AF = {(λ, qL , λ, m) | λ ∈ C, qL ∈ H, m ∈ M3 (C)} ∼ C ⊕ H ⊕ M3 (C). (2.22) Proof. For any operator T : Hf → Hf¯, we let A(T ) = {b ∈ ALR | π  (b)T = T π(b), π  (b∗ )T = T π(b∗ )}.



(2.23)



It is by construction an involutive unital subalgebra of ALR . We prove the following preliminary result. Lemma 2.12. Let A ⊂ ALR be an involutive unital subalgebra of ALR . Then the following properties hold. (1) If the restriction of π and π  to A are disjoint, then there is no oﬀ-diagonal Dirac operator for A. (2) If there exists an oﬀ-diagonal Dirac for A, then there exists a pair e, e of minimal projections in the commutants of π(ALR ) and π  (ALR ) and an operator T such that e T e = T = 0 and A ⊂ A(T ). Proof. (1) First the order-one condition shows that [D, a0 ] cannot have an oﬀ-diagonal part since it is in the commutant of A. Conjugating by J shows that [D, a] cannot have an oﬀ-diagonal part. Thus the oﬀ-diagonal part Doﬀ of D commutes with A, i.e., [Dof f , a] = 0, and Doﬀ = 0 since there are no intertwining operators.
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(2) By (1) the restrictions of π and π  to A are not disjoint and there exists a non-zero operator T such that A ⊂ A(T ). For any elements x, x of the commutants of π and π  , one has A(T ) ⊂ A(x T x) since π  (b)T = T π(b) implies π  (b)x T x = x T xπ(b). Taking a partition of unity by minimal projections there exists a pair e, e of minimal projections in the commutants of π and π  such that e T e = 0 so that  one can assume e T e = T = 0. We now return to the proof of Proposition 2.11. Let A ⊂ ALR be an involutive unital subalgebra. If it admits an oﬀ-diagonal Dirac, then by Lemma 2.12 it is contained in a subalgebra A(T ) with the support of T contained in a minimal projection of the commutant of π(ALR ) and the range of T contained in the range of a minimal projection of the commutant of π  (ALR ). This reduces the argument to two cases, where the representation π is the irreducible representation of H on C2 and π  is either the representation of C in C or the irreducible representation of M3 (C) on C3 . In the ﬁrst case the support E of T is 1-dimensional. The commutation relation (2.23) deﬁnes the subalgebra A(T ) from the condition λT ξ = T qξ, for all ξ ∈ E, which implies λξ − qξ = 0. Thus, in this case the algebra A(T ) is the pullback of {(λ, q) ∈ C ⊕ H | q ξ = λ ξ,



∀ ξ ∈ E}



(2.24)



under the projection on C ⊕ H from ALR . The algebra (2.24) is the graph of an embedding of C in H. Such an embedding is unique up to inner automorphisms of H. In fact, the embedding is determined by the image of i ∈ C, and all elements in H satisfying x2 = −1 are conjugate. The corresponding subalgebra AF ⊂ ALR is of real codimension 4. Up to the exchange of the two copies of H it is given by (2.22). In the second case, the operator T has at most 2-dimensional range R(T ). This range is invariant under the action π  of the subalgebra A and so is its orthogonal since A is involutive. Thus, in all cases the M3 (C)-part of the subalgebra is contained in the algebra of 2 ⊕ 1 block diagonal 3 × 3 matrices which is of real codimension 8 in M3 (C). Hence A is of codimension at least 8 > 4 in ALR .
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It remains to show that the subalgebra (2.22) admits oﬀ-diagonal Dirac operators. This follows from Theorem 2.21 below.  2.5



Unimodularity and hypercharges



The unitary group of an involutive algebra A is given by U (A) = {u ∈ A | uu∗ = u∗ u = 1}. In our context we deﬁne the special unitary group SU(A) ⊂ U (A) as follows. Deﬁnition 2.13. We let SU(AF ) be the subgroup of U (AF ) deﬁned by SU(AF ) = {u ∈ U(AF ) : det(u) = 1}, where det(u) is the determinant of the action of u in HF . We now describe the group SU(AF ) and its adjoint action. As before, we denote by 2 the 2-dimensional irreducible representation of H of the form  α β , (2.25) ¯ −β¯ α with α, β ∈ C. Deﬁnition 2.14. We let | ↑ and | ↓ be the basis of the irreducible representation 2 of H of (2.25) for which the action of λ ∈ C ⊂ H is diagonal ¯ on | ↓. with eigenvalues λ on | ↑ and λ In the following, to simplify notation, we write ↑ and ↓ for the vectors | ↑ and | ↓. Remark 2.15. The notation ↑ and ↓ is meant to be suggestive of “up” and “down” as in the ﬁrst generation of quarks, rather than refer to spin states. In fact, we will see in Remark 2.18 below that the basis of HF can be naturally identiﬁed with the fermions of the standard model, with the result of the following proposition giving the corresponding hypercharges. Proposition 2.16. of the form



(1) Up to a ﬁnite abelian group, the group SU(AF ) is SU(AF ) ∼ U(1) × SU(2) × SU(3).



(2.26)
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(2) The adjoint action of the U(1) factor is given by multiplication of the basis vectors in Hf by the following powers of λ ∈ U(1): ↑ ⊗10 ↓ ⊗10 ↑ ⊗30 ↓ ⊗30 2L



−1



−1



1 3



1 3



2R



0



−2



4 3



− 23



(2.27)



Proof. (1) Let u = (λ, q, m) ∈ U (AF ). The determinant of the action of u on the subspace Hf is equal to 1 by construction, since a unitary quaternion has determinant 1. Thus det(u) is the determinant of the action π  (u) on Hf¯. This representation is given by 4 × 3 = 12 copies of the irreducible representations 1 of C and 3 of M3 (C). (The 4 is from 20L ⊕ 20R and the 3 is the additional overall multiplicity of the representation given by the number N = 3 of generations.) Thus, we have det(u) = λ12 det(m)12 . Thus, SU(AF ) is the product of the group SU(2), which is the unitary group of H, by the ﬁbered product G = U (1) ×12 U (3) of pairs (λ, m) ∈ U (1) × U (3) such that λ12 det(m)12 = 1. One has an exact sequence μ



1 → μ3 → U (1) × SU(3) → G → μ12 → 1,



(2.28)



where μN is the group of roots of unity of order N and the maps are as follows. The last map μ is given by μ(λ, m) = λ det(m). By deﬁnition of G, the image of the map μ is the group μ12 of 12th roots of unity. The kernel of μ is the subgroup G0 ⊂ G of pairs (λ, m) ∈ U (1) × U (3) such that λ det(m) = 1. The map U (1) × SU(3) → G is given by (λ, m) → (λ3 , λ−1 m). Its image is G0 . Its kernel is the subgroup of U (1) × SU(3) of pairs (λ, λ 13 ), where λ ∈ μ3 is a cubic root of 1 and 13 is the unit 3 × 3 matrix. Thus we obtain an exact sequence of the form 1 → μ3 → U (1) × SU(2) × SU(3) → SU(AF ) → μ12 → 1.



(2.29)



(2) Up to a ﬁnite abelian group, the U (1) factor of SU(AF ) is the subgroup of elements of SU(AF ) of the form u(λ) = (λ, 1, λ−1/3 13 ), where λ ∈ C, with |λ| = 1. We ignore the ambiguity in the cubic root. Let us compute the action of Ad(u(λ)). One has Ad(u) = u (u∗ )0 = ¯ 1, λ1/3 13 ). u b0 with b = (λ,
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This gives the required table as in (2.27) for the restriction to the multiples of the left action 2L . In fact, the left action of u is trivial there. ¯ 1, λ1/3 13 ) is by λ ¯ on the multiples of 10 The right action of b = (λ, and by λ1/3 1t3 on multiples of 30 . For the restriction to the multiples of the left action 2R , one needs to take into account the left action of u. This acts by λ on ↑ and ¯ on ↓. This adds a ±1 according to whether the arrow points up λ or down.  Remark 2.17. Notice how the ﬁnite groups μ3 and μ12 in the exact sequence (2.29) are of diﬀerent nature from the physical viewpoint, the ﬁrst arising from the center of the color U (3), while the latter depends upon the presence of three generations.



We consider the linear basis for the ﬁnite-dimensional Hilbert space HF κ κ obtained as follows. We denote by f↑,3,L the basis of ↑L ⊗30 , by f↑,3,R κ κ the basis of ↑R ⊗30 , by f↓,3,L the basis of ↓L ⊗30 , and by f↓,3,R the basis 0 κ 0 κ of ↓R ⊗3 . Similarly, we denote by f↑,1,L the basis of ↑L ⊗1 , by f↑,1,R 0 κ 0 κ the basis of ↑R ⊗1 , by f↓,1,L the basis of ↓L ⊗1 , and by f↓,1,R the basis of ↓R ⊗10 . Here each ↑L , ↑R , ↓L , ↓R refers to an N = 3-dimensional space corresponding to the number of generations. Thus, the elements listed above κ form a basis of Hf , with κ = 1, 2, 3 the ﬂavor index. We denote by f¯↑,3,L , etc. the corresponding basis of Hf¯. Remark 2.18. The result of Proposition 2.16 shows that we can identify κ κ κ κ , f↑,3,R and f↓,3,L and f↓,3,R of the linear basis of the basis elements f↑,3,L HF with the quarks, where κ is the ﬂavor index. Thus, after suppressing 1 , f 2 , f 3 with the up, the chirality index L,R for simplicity, we identify f↑,3 ↑,3 ↑,3 1 , f 2 , f 3 are the down, strange, and bottom charm, and top quarks and f↓,3 ↓,3 ↓,3 κ and f κ are identiﬁed with the quarks. Similarly, the basis elements f↑,1 ↓,1 1 , f 2 , f 3 are identiﬁed with the neutrinos ν , ν , and leptons. Thus, f↑,1 e μ ↑,1 ↑,1 1 , f 2 , f 3 are identiﬁed with the charged leptons e, μ, τ . ντ , and the f↓,1 ↓,1 ↓,1 The identiﬁcation is dictated by the values of (2.16), which agree with the hypercharges of the basic fermions of the standard model. Notice that, in choosing the basis of fermions, there is an ambiguity on whether one multiplies by the mixing matrix for the down particles. This point will be discussed more explicitly in § 4 below, see (4.20).
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ALI H. CHAMSEDDINE ET AL. The classiﬁcation of Dirac operators



We now characterize all operators DF which qualify as Dirac operators and moreover commute with the subalgebra CF ⊂ AF ,



CF = {(λ, λ, 0), λ ∈ C}.



(2.30)



Remark 2.19. The physical meaning of the commutation relation of the Dirac operator with the subalgebra of (2.30) is to ensure that the photon will remain massless. We have the following general notion of Dirac operator for the ﬁnite noncommutative geometry with algebra AF and Hilbert space HF . Deﬁnition 2.20. A Dirac operator is a self-adjoint operator D in HF commuting with JF , CF , anticommuting with γF and fulﬁlling the order one condition [[D, a], b0 ] = 0 for any a, b ∈ AF . In order to state the classiﬁcation of such Dirac operators, we introduce the following notation. Let Y(↓1) , Y(↑1) , Y(↓3) , Y(↑3) and YR be 3 × 3 matrices. We then let D(Y ) be the operator in HF given by 



S T∗ , (2.31) D(Y ) = T S¯ where S = S1 ⊕ (S3 ⊗ 13 ). (2.32) In the decomposition (↑R , ↓R , ↑L , ↓L ) we have ⎤ ⎤ ⎡ ⎡ ∗ ∗ 0 0 Y(↑1) 0 0 Y(↑3) 0 0 ⎥ ⎥ ⎢ ⎢ ∗ ∗ ⎥ ⎥ ⎢ 0 ⎢ 0 0 0 Y(↓1) 0 0 Y(↓3) ⎥ S3 = ⎢ ⎥. S1 = ⎢ ⎥ ⎥ ⎢ ⎢ 0 0 0 0 0 0 ⎦ ⎦ ⎣Y(↑1) ⎣Y(↑3) 0 0 0 0 0 Y(↓1) 0 Y(↓3) (2.33) The operator T maps the subspace ER =↑R ⊗10 ⊂ HF to the conjugate JF ER by the matrix YR , and is zero elsewhere. Namely, T |ER : ER → JF ER , T |ER f = YR JF f, T |HF ER = 0.



(2.34)



We then obtain the classiﬁcation of Dirac operators as follows. Theorem 2.21. (1) Let D be a Dirac operator. There exist 3 × 3 matrices Y(↓1) , Y(↑1) , Y(↓3) , Y(↑3) , and YR , with YR symmetric, such that D = D(Y ). (2) All operators D(Y ) (with YR symmetric) are Dirac operators.
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(3) The operators D(Y ) and D(Y  ) are conjugate by a unitary operator commuting with AF , γF and JF iﬀ there exist unitary matrices Vj and Wj such that     = V1 Y(↓1) V3∗ , Y(↑1) = V2 Y(↑1) V3∗ , Y(↓3) = W1 Y(↓3) W3∗ , Y(↑3) Y(↓1) = W2 Y(↑3) W3∗ , YR = V2 YR V¯2∗ .



Proof. The proof relies on the following lemma, which determines the commutant AF of AF in HF .



 P11 P12 Lemma 2.22. Let P = be an operator in HF = Hf ⊕ Hf¯. Then P21 P22  P ∈ AF iﬀ the following hold: • P11 is block diagonal with three blocks in M12 (C), M12 (C), and 12 ⊗ M12 (C) corresponding to the subspaces where the action of (λ, q, m) is ¯ and q. by λ, λ • P12 has support in 1 ⊗ 20L ⊕ 1 ⊗ 20R and range in ↑R ⊗10 ⊕ ↑R ⊗30 . • P21 has support in ↑R ⊗10 ⊕ ↑R ⊗30 and range in 1 ⊗ 20L ⊕ 1 ⊗ 20R . • P22 is of the form P22 = T1 ⊕ (T2 ⊗ 13 ). Proof. The action of AF on HF = Hf ⊕ Hf¯ is of the form 



π(λ, q, m) 0 . 0 π  (λ, q, m)



(2.35)



(2.36)



On the subspace Hf and in the decomposition (↑R , ↓R , ↑L , ↓L ), one has ⎤ ⎡ λ 0 0 0 ⎢0 λ 0 0 ⎥ ⎥ π(λ, q, m) = ⎢ (2.37) ⎣ 0 0 α β ⎦ ⊗ 112 , 0 0 −β α where the 12 corresponds to (10 ⊕ 30 ) × 3. Since (2.36) is diagonal, the condition P ∈ AF is expressed independently on the matrix elements Pij . First, let us consider the case of the element P11 . This must commute with operators of the form π(λ, q, m) ⊗ 112 with π as in (2.37), and 112 the unit matrix in a 12-dimensional space. This means that the matrix of P11 is block diagonal with three blocks in M12 (C), M12 (C), and 12 ⊗ M12 (C), ¯ and q. corresponding to the subspaces where the action of (λ, q, m) is by λ, λ We consider next the case of P22 . The action of (λ, q, m) ∈ AF in the subspace Hf¯ is given by multiplication by λ or by m; thus the only condition on P22 is that it is an operator of the form (2.35).
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The oﬀ-diagonal terms P12 and P21 must intertwine the actions of (λ, q, m) ∈ AF in Hf and Hf¯. However, the actions of q or m are disjoint in these two spaces, while only the action by λ occurs in both. The subspace of Hf on which (λ, q, m) acts by λ is ↑R ⊗10 ⊕ ↑R ⊗30 . The subspace of Hf¯ on which (λ, q, m) acts by λ is 1 ⊗ 20L ⊕ 1 ⊗ 20R . Thus the conclusion follows from the intertwining condition. 



Let us now continue with the proof of Theorem 2.21. (1) Let us ﬁrst consider the



 oﬀ-diagonal part of D(Y ) in (2.31), which 0 YR∗ is of the form . Anticommutation with γF holds since the YR 0 



−1 0 . Moreover operator γF restricted to ER ⊕ JF ER is of the form 0 1 the oﬀ-diagonal part of D(Y ) commutes with JF iﬀ (YR ξ) = YR∗ ξ¯ for all ξ, i.e., iﬀ YR is a symmetric matrix. The order-one condition is automatic since, in fact, the commutator with elements of AF vanishes exactly. 



S 0 of D(Y ). It comWe can now consider the diagonal part 0 S¯ mutes with J and anticommutes with γF by construction. It is enough to check the commutation with CF ⊂ AF and the order-one condition on the subspace Hf . Since S exactly commutes with the action of A0F the order-one condition follows. In fact for any b ∈ AF , the action of b0 commutes with any operator of the form (2.35) and this makes it possible to check the order-one condition since P = [S, π(a)] is of this form. The action of AF on the subspace HF is given by (2.37), and one checks that π(λ, λ, 0) commutes with S since the matrix of S has no non-zero element between the ↑ and ↓ subspaces. (2) Let D be a Dirac operator. Since D is self-adjoint and commutes with JF , it is of the form 



S T∗ , D= T S¯ where T = T t is symmetric. Let v = (−1, 1, 1) ∈ AF . One has γF ξ = v ξ,



∀ ξ ∈ Hf .



Notice that this equality fails on Hf¯.



(2.38)
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The anticommutation of D with γF implies that D = −1/2 γF [D, γF ]. Notice that γF is given by a diagonal matrix of the form 



g 0 . γF = 0 −¯ g Thus, we get 1 1 S = − g [S, g] = − v [S, v] 2 2 using (2.38). The action of v in HF is given by a diagonal matrix (2.36), hence v [S, v] coincides with the A11 block of the matrix of A = v[D, v]. Thus, the order-one condition implies that S commutes with all operators b0 , hence that it is of the form (2.32). The anticommutation with γF and the commutation with CF then imply that the self-adjoint matrix S can be written in the form (2.33). It remains to determine the form of the matrix T . The conditions on the oﬀ-diagonal elements of a matrix



 P11 P12 P = , P21 P22 which ensure that P belongs to the commutant of A0F = JF AF JF , are • P12 has support in 1 ⊗ ↑0R ⊕ 3 ⊗ ↑0R and range in 2L ⊗ 10 ⊕ 2R ⊗ 10 . • P21 has support in 2L ⊗ 10 ⊕ 2R ⊗ 10 and range in 1 ⊗ ↑0R ⊕ 3 ⊗ ↑0R . This follows from Lemma 2.22, using JF . Let then e = (0, 1, 0). One has π  (e) = 0 and π(e) is the projection on the eigenspace γF = 1 in HF . Thus, since [D, e] belongs to the commutant of A0F = JF AF JF by the order-one condition, one gets that π  (e)T − T π(e) = −T π(e) has support in 2L ⊗ 10 ⊕ 2R ⊗ 10 and range in 1 ⊗ ↑0R ⊕ 3 ⊗ ↑0R . In particular γF = 1 on the range. Thus, the anticommutation with γF shows that the support of T π(e) is in the eigenspace γF = −1, so that T π(e) = 0. Let e3 = (0, 0, 1) ∈ AF . Let us show that T e03 = 0. By Deﬁnition 2.20, T commutes with the actions of v(λ) = (λ, λ, 0) ∈ AF and of Jv(λ)J −1 = v(λ)0 . Thus, it commutes with e03 . The action of e03 on Hf is the projection on the subspace • ⊗ 30 . The action of e03 on Hf¯ is zero. Thus, [T, e03 ] = T e03 is the restriction of T to the subspace • ⊗ 30 . Since [T, e03 ] = 0 we get T e03 = 0. We have shown that the support of T is contained in 2R ⊗ 10 . Since T is symmetric, i.e., T = T¯∗ the range of T is contained in 1 ⊗ 20R . The left and right actions of (λ, q, m) on these two subspaces coincide with the left and right actions of v(λ). Thus, we get that T commutes with AF and A0F . Thus, by Lemma 2.22, it has support in ↑R ⊗10 and range in 1⊗ ↑0R .



1012



ALI H. CHAMSEDDINE ET AL.



This means that T is given by a symmetric 3 × 3 matrix YR and the operator D is of the form D = D(Y ). (3) By Lemma 2.22, the commutant of the algebra generated by AF and A0F is the algebra of matrices 



P11 P12 P = P21 P22 such that • P12 has support in 1⊗ ↑0R and range in ↑R ⊗10 . • P21 has support in ↑R ⊗10 and range in 1⊗ ↑0R . • Pjj is of the form 1 3 Pjj = Pjj ⊕ (Pjj ⊗ 13 ),



where a Pjj



⎤ ⎡ a 0 0 Pj (1) ⎦ 0 Pja (2) =⎣ 0 a 0 0 12 ⊗ Pj (3)



a = 1, 3, j = 1, 2.



A unitary operator U acting in HF commuting with AF and J is in the commutant of the algebra generated by AF and A0F . If it commutes with γF , then the oﬀ-diagonal elements Uij vanish, since γF = −1 on ↑R ⊗10 and γF = 1 on 1⊗ ↑0R . Thus U is determined by the six 3 × 3 ¯ a (k) . One matrices U1a (k) since it commutes with J so that U2a (k) = U 1 checks that conjugating by U gives relation (3) of Theorem 2.21.  Remark 2.23. It is a consequence of the classiﬁcation of Dirac operators obtained in this section that color is unbroken in our model, as is physically expected. In fact, this follows from the fact that Dirac operators are of the form (2.31), with the S term of the form (2.32).



2.7



The moduli space of Dirac operators and the Yukawa parameters



Let us start by considering the moduli space C3 of pairs of invertible 3 × 3 matrices (Y(↓3) , Y(↑3) ) modulo the equivalence relation  = W1 Y(↓3) W3∗ , Y(↓3)



 Y(↑3) = W2 Y(↑3) W3∗ ,



(2.39)



where the Wj are unitary matrices. Proposition 2.24. The moduli space C3 is the double-coset space C3 ∼ = (U (3) × U (3))\(GL3 (C) × GL3 (C))/U (3) of real dimension 10.



(2.40)
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Proof. This follows from the explicit form of the equivalence relation (2.39). The group U (3) acts diagonally on the right.  Remark 2.25. Notice that the 3 in C3 corresponds to the color charge for quarks (like the 1 in C1 below will correspond to leptons), while in the righthand side of (2.40) the 3 of GL3 (C) and U (3) corresponds to the number of generations. Each equivalence class under (2.39) contains a pair (Y(↓3) , Y(↑3) ), where Y(↑3) is diagonal (in the given basis) and with positive entries, while Y(↓3) is positive. Indeed, the freedom to chose W2 and W3 makes it possible to take Y(↑3) positive and diagonal and the freedom in W1 then makes it possible to take Y(↓3) positive. The eigenvalues are the characteristic values (i.e., the eigenvalues of the absolute value in the polar decomposition) of Y(↑3) and Y(↓3) and are invariants of the pair. Thus, we can ﬁnd diagonal matrices δ↑ and δ↓ and a unitary matrix C such that Y(↑3) = δ↑ , Y(↓3) = C δ↓ C ∗ . Since multiplying C by a scalar does not aﬀect the result, we can assume that det(C) = 1. Thus, C ∈ SU(3) depends a priori upon 8 real parameters. However, only the double coset of C modulo the diagonal subgroup N ⊂ SU(3) matters, by the following result. Lemma 2.26. Suppose diagonal matrices δ↑ and δ↓ with positive and distinct eigenvalues are given. Two pairs of the form (δ↑ , C δ↓ C ∗ ) are equivalent iﬀ there exist diagonal unitary matrices A, B ∈ N such that A C = C  B. Proof. For A C = C  B one has  A Y(↑3) A∗ = Y(↑3) ,



 A Y(↓3) A∗ = Y(↓3)



and the two pairs are equivalent. Conversely, with Wj as in (2.39) one gets W1 = W3 from the uniqueness of the polar decomposition δ↓ = (W1 W3∗ ) (W3 δ↓ W3∗ ). Similarly, one obtains W2 = W3 . Thus, W3 = W is diagonal and we get W C δ↓ C ∗ W ∗ = C  δ↓ C ∗ , so that W C = C  B for some diagonal matrix B. Since W and B have the same determinant one can assume that they both belong to N . 
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The dimension of the moduli space is thus 3 + 3 + 4 = 10, where the 3 + 3 comes from the eigenvalues and the 4 = 8 − 4 from the above double-coset space of Cs. One way to parameterize the representatives of the double cosets of the matrix C is by means of three angles θi and a phase δ, ⎤ ⎡ c1 −s1 c3 −s1 s3 (2.41) C = ⎣s1 c2 c1 c2 c3 − s2 s3 eδ c1 c2 s3 + s2 c3 eδ ⎦ , s1 s2 c1 s2 c3 + c2 s3 eδ c1 s2 s3 − c2 c3 eδ for ci = cos θi , si = sin θi , and eδ = exp(iδ). One has by construction the factorization C = R23 (θ2 ) d(δ) R12 (θ1 ) R23 (−θ3 ), (2.42) where Rij (θ) is the rotation of angle θ in the ij-plane and d(δ) the diagonal matrix ⎡ ⎤ 1 0 0 0 ⎦. d(δ) = ⎣0 1 0 0 −eiδ Let us now consider the moduli space C1 of triplets (Y(↓1) , Y(↑1) , YR ), with YR symmetric, modulo the equivalence relation  Y(↓1) = V1 Y(↓1) V3∗



 Y(↑1) = V2 Y(↑1) V3∗



YR = V2 YR V¯2∗ . Lemma 2.27. The moduli space C1 is given by the quotient C1 ∼ = (U (3) × U (3))\(GL3 (C) × GL3 (C) × S)/U (3),



(2.43) (2.44)



(2.45)



where S is the space of symmetric complex 3 × 3 matrices and • the action of U (3) × U (3) on the left is given by left multiplication on GL3 (C) × GL3 (C) and by (2.44) on S; • the action of U (3) on the right is trivial on S and by diagonal right multiplication on GL3 (C) × GL3 (C). It is of real dimension 21 and ﬁbers over C3 , with generic ﬁber the quotient of symmetric complex 3 × 3 matrices by U (1). Proof. By construction, one has a natural surjective map π : C1 −→ C3 , just forgetting about YR . The generic ﬁber of π is the space of symmetric complex 3 × 3 matrices modulo the action of a complex scalar λ of absolute value one by YR −→ λ2 YR . The (real) dimension of the ﬁber is 12 − 1 = 11. The total real dimension  of the moduli space C1 is then 21.
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The total 31-dimensional moduli space of Dirac operators is given by the product C1 × C3 . (2.46) Remark 2.28. The 31 real parameters of (2.46) correspond to the Yukawa parameters in the standard model with neutrino mixing and Majorana mass terms. In fact, the parameters in C3 correspond to the masses of the quarks and the quark mixing angles of the CKM matrix, while the additional parameters of C1 give the lepton masses, the angles of the PMNS mixing matrix and the Majorana mass terms.



2.8



Dimension, KO-theory, and Poincar´ e duality



In [14], Chapter 6, § 4, the notion of manifold in noncommutative geometry was discussed in terms of Poincar´e duality in KO-homology. In [16] this Poincar´e duality was shown to hold rationally for the ﬁnite noncommutative geometry used there. We now investigate how the new ﬁnite noncommutative geometry F considered here behaves with respect to this duality. We ﬁrst notice that now, the dimension being equal to 6 modulo 8, the intersection pairing is skew symmetric. It is given explicitly as follows. Proposition 2.29. The expression e, f  = Tr(γ e Jf J −1 )



(2.47)



deﬁnes an antisymmetric bilinear pairing on K0 × K0 . The group K0 (AF ) is the free-abelian group generated by the classes of e1 = (1, 0, 0), e2 = (0, 1, 0), and f3 = (0, 0, f ), where f ∈ M3 (C) a minimal idempotent. Proof. The pairing (2.47) is obtained from the composition of the natural map K0 (AF ) × K0 (AF ) −→ K0 (AF ⊗ A0F ) with the graded trace Tr(γ ·). Since J anticommutes with γ, one checks that f, e  = Tr(γ f JeJ −1 ) = −Tr(γ J −1 f J e) = −Tr(γ e Jf J −1 ) = −e, f , so that the pairing is antisymmetric. By construction, AF is the direct sum of the ﬁelds C, H and of the algebra M3 (C) ∼ C (up to Morita equivalence). The projections e1 = (1, 0, 0), e2 = (0, 1, 0), and f3 = (0, 0, f ) are the three minimal idempotents in AF .  By construction the KO-homology class given by the representation in HF with the Z/2-grading γ and the real structure JF splits as a direct sum of two pieces, one for the leptons and one for the quarks.
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Proposition 2.30. (1) The representation of the algebra generated by (AF , DF , JF , γF ) in HF splits as a direct sum of two subrepresentations (1) (3) HF = HF ⊕ HF . (2) In the generic case (i.e., when the matrices in DF have distinct eigenvalues) each of these subrepresentations is irreducible. (3) In the basis (e1 , e2 , f3 ), the pairing (2.47) is (up to an overall multiplicity three corresponding to the number of generations) given by ⎤ ⎤ ⎡ ⎡ 0 2 0 0 0 2 (2.48) ·, ·|H(1) = ⎣−2 0 0⎦ ·, ·|H(3) = ⎣ 0 0 −2⎦ F F 0 0 0 −2 2 0 Proof.



(1)



(1) Let HF correspond to 2L ⊗ 10 ⊕ 2R ⊗ 10 ⊕ 1 ⊗ 20L ⊕ 1 ⊗ 20R



(2.49)



2L ⊗ 30 ⊕ 2R ⊗ 30 ⊕ 3 ⊗ 20L ⊕ 3 ⊗ 20R .



(2.50)



(3)



and HF to By construction, the action of AF in HF is block diagonal in the (1) (3) decomposition HF = HF ⊕ HF . Both the actions of JF and of γF are also block diagonal. Theorem 2.21 shows that DF is also block diagonal, since it is of the form D = D(Y ). (2) It is enough to show that a unitary operator that commutes with AF , (3) γF , JF , and DF is a scalar. Let us start with HF . By Theorem 2.21 (3), such a unitary is given by three unitary matrices Wj ∈ M3 (C) such that Y(↓3) = W1 Y(↓3) W3∗ , Y(↑3) = W2 Y(↑3) W3∗ . We can assume that both Y(↑3) and Y(↓3) are positive. Assume also that Y(↑3) is diagonal. The uniqueness of the polar decomposition shows that Y(↓3) = (W1 W3∗ ) (W3 Y(↓3) W3∗ ) ⇒ W1 W3∗ = 1,



W3 Y(↓3) W3∗ = Y(↓3)



Thus, we get W1 = W2 = W3 . Since generically all the eigenvalues of Y(↑3) or Y(↓3) are distinct, we get that the matrices Wj are diagonal in the basis of eigenvectors of the matrices Y(↑3) and Y(↓3) . However, generically these bases are distinct, hence we conclude that Wj = 1 for (1) all j. The same result holds “a fortiori” for HF where the conditions imposed by Theorem 2.21(3) are in fact stronger. (1) (3) One computes the pairing directly using the deﬁnition of γF . On HF , the subalgebra M3 (C) acts by zero which explains why the last line
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and columns of the pairing matrix vanish. By antisymmetry, one just needs to evaluate e, eL  = −eL , e = −Tr(γ eL JeJ −1 ) = −Tr(γ eL ) = 2 × 3, (3)



where 3 is the number of generations. On HF the same pair gives e, eL  = 0, since now the right action of e is zero on Hf . In the same way one gets f3 , eL  = 2 × 3. Finally one has e, f3  = Tr(γ e Jf3 J −1 ) = 2 × 3.







Of course an antisymmetric 3 × 3 matrix is automatically degenerate since its determinant vanishes. Thus it is not possible to obtain a nondegenerate Poincar´e duality pairing with a single KO-homology class. One checks however that the above pair of KO-homology classes suﬃces to obtain a nondegenerate pairing in the following way. Corollary 2.31. The pairing K0 (AF ) ⊕ K0 (AF ) → R ⊕ R given by ·, ·HF := ·, ·|H(1) ⊕ ·, ·|H(3) F



(2.51)



F



is nondegenerate. Proof. We need to check that, for any e in K0 (AF ) there exists an f ∈ K0 (AF ) such that e, f HF = (0, 0). This can be seen by the explicit form of ·, ·|H(1) and ·, ·|H(3) in (2.48).  F



F



Remark 2.32. The result of Corollary 2.31 can be reinterpreted as the fact that in our case KO-homology is not singly generated as a module over K0 but it is generated by two elements.



3



The spectral action and the standard model



In this section and in the one that follows we show that the full Lagrangian of the standard model with neutrino mixing and Majorana mass terms, minimally coupled to gravity, is obtained as the asymptotic expansion of the spectral action for the product of the ﬁnite geometry (AF , HF , DF ) described above and a spectral triple associated to 4-dimensional space-time.



3.1



Riemannian geometry and spectral triples



A spin Riemannian manifold M gives rise in a canonical manner to a spectral triple. The Hilbert space H is the Hilbert space L2 (M, S) of square
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integrable spinors on M and the algebra A = C ∞ (M ) of smooth functions on M acts in H by multiplication operators: (f ξ)(x) = f (x) ξ(x),



∀ x ∈ M.



(3.1)



The operator D is the Dirac operator ∂/M =



√



−1 γ μ ∇sμ ,



(3.2)



where ∇s is the spin connection which we express in a vierbein e so that γ μ = γ a eμa , 1 ∇sμ = ∂μ + ωμab (e) γab . 4



(3.3)



The grading γ is given by the chirality operator which we denote by γ5 in the 4-dimensional case. The operator J is the charge conjugation operator and we refer to [22] for a thorough treatment of the above notions.



3.2



The product geometry



We now consider a 4-dimensional smooth compact Riemannian manifold M with a ﬁxed spin structure. We consider its product with the ﬁnite geometry (AF , HF , DF ) described above. With (Aj , Hj , γj ) of KO-dimensions 4 for j = 1 and 6 for j = 2, the product geometry is given by the rules A = A1 ⊗ A2 , H = H1 ⊗ H2 , D = D1 ⊗ 1 + γ1 ⊗ D2 , γ = γ1 ⊗ γ2 , J = J1 ⊗ J2 . Notice that it matters here that J1 commutes with γ1 , in order to check that J commutes with D. One checks that the order-one condition is fulﬁlled by D if it is fulﬁlled by the Dj . For the product of the manifold M by the ﬁnite geometry F , we then have A = C ∞ (M ) ⊗ AF = C ∞ (M, AF ), H = L2 (M, S) ⊗ HF = L2 (M, S ⊗ HF ), and D = ∂/M ⊗ 1 + γ5 ⊗ DF , where ∂/M is the Dirac operator on M . It is given by equations (3.2) and (3.3).
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The real part of the product geometry



The next proposition shows that a noncommutative geometry automatically gives rise to a commutative one playing in essence the role of its center (cf. Remark 3.3 below). Proposition 3.1. Let (A, H, D) be a real spectral triple in the sense of Deﬁnition 2.7. Then the following hold. (1) The equality AJ = {x ∈ A ; x J = J x} deﬁnes an involutive commutative real subalgebra of the center of A. (2) (AJ , H, D) is a real spectral triple. (3)  Any a ∈ AJ commutes with the algebra generated by the sums ai [D, bi ] for ai , bi in A. Proof. (1) By construction AJ is a real subalgebra of A. Since J is isometric, one has (JaJ −1 )∗ = Ja∗ J −1 for all a. Thus if x ∈ AJ , one has JxJ −1 = x and Jx∗ J −1 = x∗ , so that x∗ ∈ AJ . Let us show that AJ is contained in the center of A. For x ∈ AJ and b ∈ A one has [b, x0 ] = 0 from (2.9). But x0 = Jx∗ J −1 = x∗ and thus we get [b, x∗ ] = 0. (2) This is automatic since we are just dealing with a subalgebra. Notice that it continues to hold for the complex algebra AJ ⊗R C generated by AJ . (3) The order-one condition (2.11) shows that [D, b] commutes with (a∗ )0  and hence with a since (a∗ )0 = a as we saw above. While the real part AJ is contained in the center Z(A) of A, it can be much smaller as one sees in the example of the ﬁnite geometry F . Indeed, one has the following result. Lemma 3.2. Let F be the ﬁnite noncommutative geometry. • The real part of AF is R = {(λ, λ, λ), λ ∈ R} ⊂ AF . • The real part of C ∞ (M, AF ) for the product geometry M × F is C ∞ (M, R). Proof. Let x = (λ, q, m) ∈ AF . Then if x commutes with JF , its action in Hf ⊂ HF coincides with the right action of x∗ . Looking at the action on (1) ¯ and that the action of the quaternion q coincides HF , it follows that λ = λ (3) with that of λ. Thus λ ∈ R and q = λ. Then looking at the action on HF ∞ gives m = λ. The same proof applies to C (M, AF ).  Remark 3.3. The notion of real part AJ can be thought of as a reﬁnement of the center of the algebra in this geometric context. For instance, even
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though the center of AF is non-trivial, this geometry can still be regarded as “central” in this perspecive, since the real part of AF is reduced to just the scalars R. 3.4



The adjoint representation and the gauge symmetries



In this section we display the role of the gauge group C ∞ (M, SU(AF )) of smooth maps from the manifold M to the group SU(AF ). Proposition 3.4. Let (A, H, D) be the real spectral triple associated to M × F. • Let U be a unitary in H commuting with γ and J and such that U A U ∗ = A. Then there exists a unique diﬀeomorphism ϕ ∈ Diﬀ(M ) such that U f U∗ = f ◦ ϕ



∀f ∈ AJ .



(3.4)



• Let U be as above and such that ϕ = id. Then, possibly after passing to a ﬁnite abelian cover of M , there exists a unitary u ∈ C ∞ (M, SU(AF )) such that U Ad(u)∗ ∈ C, where C is the commutant of the algebra of operators in H generated by A and JAJ −1 . We refer to [31] for ﬁner points concerning the lifting of diﬀeomorphisms preserving the given spin structure. Proof. The ﬁrst statement follows from the functoriality of the construction of the subalgebra AJ and the classical result that automorphisms of the algebra C ∞ (M, R) are given by composition with a diﬀeomorphism of M . Let us prove the second statement. One has H = L2 (M, S) ⊗ HF = L2 (M, S ⊗ HF ). Since ϕ = id, we know by (3.4) that U commutes with the algebra AJ = C ∞ (M, R). This shows that U is given by an endomorphism x → U (x) of the vector bundle S ⊗ HF on M . Since U commutes with J, the unitary U (x) commutes with Jx ⊗ JF . The equality U A U ∗ = A shows that, for all x ∈ M , one has U (x) (id ⊗ AF ) U ∗ (x) = id ⊗ AF .



(3.5)



Here we identify AF with a subalgebra of operators on S ⊗ HF , through the algebra homomorphism T → id ⊗ T .
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Let α be an arbitrary automorphism of AF . The center of AF contains three minimal idempotents, and the corresponding reduced algebras C, H, M3 (C) are pairwise non-isomorphic. Thus α preserves these three idempotents and is determined by its restriction to the corresponding reduced algebras C, H, M3 (C). In particular, such an automorphism will act on the subalgebra C either as the identity or as complex conjugation. Now consider the automorphism αx of AF determined by (3.5). It is unitarily implemented by (3.5). The action of C ⊂ AF on S ⊗ HF is not unitarily equivalent to its composition with complex conjugation. This can be seen from the fact that, in this representation, the dimension of the space on which C acts by λ is larger than the one of the space on which it acts ¯ It then follows that the restriction of αx to C ⊂ AF has to be the by λ. identity automorphism. Similarly, the restriction of αx to M3 (C) ⊂ AF is given by an inner automorphism of the form f → vx f vx∗ , where vx ∈ SU(3) is only determined modulo the center Z3 ∼ μ3 of SU(3). The restriction of αx to H ⊂ AF is given by an inner automorphism of the form f → qx f qx∗ , where qx ∈ SU(2) is only determined modulo the center Z2 ∼ μ2 of SU(2). Thus passing to ˜ of M corresponding to the morphism π1 (M ) → the ﬁnite abelian cover M Z2 × Z3 ∼ μ6 , one gets a unitary element u = (1, q, v) ∈ C ∞ (M, SU(AF )) such that α(f ) = Ad(u)f Ad(u)∗ for all f ∈ C ∞ (M, AF ). Replacing U by U Ad(u)∗ one can thus assume that U commutes with all f ∈ C ∞ (M, AF ), and the commutation with J still holds so that U Ad(u)∗ ∈ C, where C is the commutant of the algebra of operators in H generated by A and JAJ −1 . 



3.5



Inner ﬂuctuations and bosons



Let us show that the inner ﬂuctuations of the metric give rise to the gauge bosons of the standard model with their correct quantum numbers. We ﬁrst have to compute A = Σ ai [D, ai ], ai , ai ∈ A. Since D = ∂/M ⊗ 1 + γ5 ⊗ DF decomposes as a sum of two terms, so does A and we ﬁrst consider the discrete part A(0,1) coming from commutators with γ5 ⊗ DF .



3.5.1



The discrete part A(0,1) of the inner ﬂuctuations



Letx ∈ M and let ai (x) = (λi , qi , mi ), ai (x) = (λi , qi , mi ); the computation of ai [γ5 ⊗ DF , ai ] at x on the subspace corresponding to Hf ⊂ HF gives
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(0,1)



γ5 tensored by the matrices A3 and A1 deﬁned below. We set   ∗ 



∗ ϕ Y(↑3) ϕ1 Y(↑3) 2 0 X (0,1) ⊗ 13 , X = , = A3 ∗ ϕ ∗ ϕ X 0 −Y(↓3) ¯2 Y(↓3) ¯1     ϕ Y ϕ Y (↑3) (↓3) 1 2 X = −Y(↑3) ϕ¯2 Y(↓3) ϕ¯1



(3.6)



(3)



for the HF part, with   ϕ1 = λi (αi − λi ), ϕ2 = λi βi   ¯ − α ϕ1 = αi (λi − αi ) + βi β¯i , ϕ2 = (−αi βi + βi (λ ¯ i )), i where we used the notation 



q=



α β ¯ −β¯ α



(3.7) (3.8)







(1)



for quaternions. For the HF part one obtains in the same way  ∗  



∗ ϕ Y(↑1) ϕ1 Y(↑1) 2 0 Y (0,1) , Y = , = A1 ∗ ϕ ∗ ϕ Y 0 −Y(↓1) ¯2 Y(↓1) ¯1     ϕ Y ϕ Y (↑1) (↓1) 1 2 . Y = −Y(↑1) ϕ¯2 Y(↓1) ϕ¯1



(3.9)



Here the ϕ are given as above by (3.7) and (3.8). The oﬀ-diagonal part of DF , which involves YR , does not contribute to the inner ﬂuctuations, since it exactly commutes with the algebra AF . Since the action of AF on Hf¯ exactly commutes with DF , it does not contribute to A(0,1) . One lets q = ϕ1 + ϕ2 j,



 0 1 where j is the quaternion . −1 0



q  = ϕ1 + ϕ2 j,



(3.10)



Proposition 3.5. (1) The discrete part A(0,1) of the inner ﬂuctuations of the metric is parameterized by an arbitrary quaternion valued function H ∈ C ∞ (M, H),



H = ϕ1 + ϕ2 j,



ϕj ∈ C ∞ (M, C)



(2) The role of H in the coupling of the ↑-part is related to its role in the coupling of the ↓-part by the replacement ˜ = j H. H −→ H
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Proof. (1) First one checks that there are no linear relations between the four terms (3.7) and (3.8). We consider a single term a[DF , a ]. Taking a = (λ, 0, 0) and a = (λ , 0, 0) gives ϕ1 = −λλ ,



ϕ2 = ϕ1 = ϕ2 = 0.



Taking a = (λ, 0, 0) and a = (0, j β¯ , 0) gives ϕ1 = λβ  ,



ϕ1 = ϕ1 = ϕ2 = 0.



Similarly, taking a = (0, α, 0) and a = (λ , 0, 0) gives ϕ1 = αλ ,



ϕ1 = ϕ2 = ϕ2 = 0,



¯ 0) and a = (λ , 0, 0) gives while taking a = (0, j β, ¯, ϕ2 = β λ



ϕ1 = ϕ2 = ϕ1 = 0. (0,1)



of linear combinations This shows that the vector space ΩD   ] is the space of pairs of quaternion valued functions q(x) a [D , a i F i i and q  (x). The selfadjointness condition A = A∗ is equivalent to q  = q ∗ , and we see that the discrete part A(0,1) is exactly given by a quaternion valued function, H(x) ∈ H on M . (2) The transition is given by (ϕ1 , ϕ2 ) → (−ϕ¯2 , ϕ¯1 ), which corresponds to  the multiplication of H = ϕ1 + ϕ2 j by j on the left.



For later purposes let us compute the trace of powers of (D + A(0,1) + JA(0,1) J). Let us deﬁne D(0,1) = D + A(0,1) + JA(0,1) J. Lemma 3.6.



(3.11)



(3)



(1) On HF ⊂ HF one has ∗ ∗ ) ) = 12 |1 + H|2 Tr(Y(↑3) Y(↑3) + Y(↓3) Y(↓3) )



(0,1) 2



Tr((D3



∗ ∗ ) ) = 12 |1 + H|4 Tr((Y(↑3) Y(↑3) )2 + (Y(↓3) Y(↓3) )2 )



(0,1) 4



Tr((D3



(3.12)
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(2) On HF ⊂ HF one has ∗ ∗ ) ) = 4 |1 + H|2 Tr(Y(↑1) Y(↑1) + Y(↓1) Y(↓1) ) + 2 Tr(YR∗ YR )



(0,1) 2



Tr((D1



∗ ∗ ) ) = 4 |1 + H|4 Tr((Y(↑1) Y(↑1) )2 + (Y(↓1) Y(↓1) )2 ) + 2 Tr((YR∗ YR )2 )



(0,1) 4



Tr((D1



∗ + 8 |1 + H|2 Tr(YR∗ YR Y(↑1) Y(↑1) )



(3.13)



(0,1)



Proof. (1) The left-hand side of (3.13) is given by 2 Tr((A3 )2 ), after replacing H by 1 + H to take into account the operator D3 . The product X X ∗ is given by the diagonal matrix  ∗ Y Y (ϕ ϕ ¯ + ϕ ϕ ¯ ) 0 1 1 2 2 (↑3) X X ∗ = (↑3) ∗ Y 0 Y(↓3) ¯1 + ϕ2 ϕ¯2 ) (↓3) (ϕ1 ϕ   ∗ Y Y(↑3) 0 (↑3) = |H|2 ∗ 0 Y(↓3) Y(↓3) 



One has Tr((A3 )2 ) = 3 Tr(X X ∗ + X ∗ X) = 6 Tr(X X ∗ ). This gives (0,1) the ﬁrst equality. Similarly, one has Tr((A3 )4 ) = 3 Tr((X X ∗ )2 + (X ∗ X)2 ) = 6 Tr((X X ∗ )2 ), which gives the second identity. (2) Let us write the matrix of (D + A(0,1) + JA(0,1) J)1 in the decomposition (↑R , ↓R , ↑L , ↓L , ¯ ↑R , ¯ ↓R , ¯ ↑L , ¯ ↓L ). We have (0,1)



⎡



0 0



0 0



⎢ ⎢ ⎢Y ϕ¯ −Y (↓1) ϕ2 ⎢ (↑1) 1 ⎢Y ϕ¯ Y 2 (↓1) ϕ1 ⎢ (↑1) ⎢ Y 0 R ⎢ ⎢ 0 0 ⎢ ⎣ 0 0 0 0 0 0 0 0



∗ ϕ Y¯(↑1) ¯1 ∗ −Y¯ ϕ2 (↓1)



0 0



0 0 0 0



∗ ϕ ∗ ϕ Y(↑1) YR∗ 0 Y(↑1) 1 2 ∗ ∗ −Y(↓1) ϕ¯2 Y(↓1) ϕ¯1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y¯(↑1) ϕ1 −Y¯(↓1) ϕ¯2 0 0 Y¯(↑1) ϕ2 Y¯(↓1) ϕ¯1 ⎤



⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ∗ ϕ ¯2 ⎥ . Y¯(↑1) ⎥ ∗ ϕ ⎥ Y¯(↓1) 1⎥ 0 ⎦ 0
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The only matrix elements of the square of (D + A(0,1) + JA(0,1) J)1 involving YR or YR∗ are ⎡ ∗ ∗ Y 2 0 YR YR + Y(↑1) 0 0 (↑1) |H| ⎢ 0 0 0 0 ⎢ ⎢ 0 0 0 0 ⎢ ⎢ 0 0 0 0 ⎢ ∗ ϕ ∗ ⎢ 0 0 Y Y Y Y R (↑1) 1 R (↑1) ϕ2 ⎢ ⎢ 0 0 0 0 ⎢ ⎣ Y¯(↑1) YR ϕ1 0 0 0 ¯ 0 0 0 Y(↑1) YR ϕ2 0 0 Y(↑1) YR∗ ϕ¯1 Y(↑1) YR∗ ϕ¯2 ∗ Y ¯(↑1) |H|2 + YR Y ∗ Y¯(↑1) R 0 0 0



⎤ ∗ ϕ ∗ ϕ 0 YR∗ Y¯(↑1) ¯1 YR∗ Y¯(↑1) ¯2 ⎥ 0 0 0 ⎥ ⎥ 0 0 0 ⎥ ⎥ 0 0 0 ⎥. ⎥ 0 0 0 ⎥ ⎥ 0 0 0 ⎥ ⎦ 0 0 0 0 0 0



This shows that one only gets two additional terms involving YR for Tr((D + A(0,1) + JA(0,1) J)21 ) and each gives Tr(YR YR∗ ). The trace Tr((D + A(0,1) + JA(0,1) J)41 ) is the Hilbert–Schmidt norm square of (D + A(0,1) + JA(0,1) J)21 and we just need to add to the terms coming from the same computation as (3.12), the contribution of the ∗ Y 2 terms involving YR . The term YR∗ YR + Y(↑1) (↑1) |H| contributes (after ∗ Y replacing H → 1 + H) by 2|1 + H|2 Tr(YR∗ YR Y(↑1) and (↑1) ) ∗ 2 ∗ 2 ∗ ¯ ¯ Tr((YR YR ) ). The term Y(↑1) Y(↑1) |H| + YR YR gives a similar contribution. All the other terms give simple additive contributions. One gets the result using ∗ ∗ ) = Tr(YR∗ YR Y(↑1) Y(↑1) ), Tr(Y¯(↑1) YR YR∗ Y¯(↑1)



which follows using complex conjugation from the symmetry of YR ,  i.e., Y¯R = YR∗ . Thus, we obtain for the trace of powers of D(0,1) the formulae Tr((D(0,1) )2 ) = 4 a |1 + H|2 + 2 c



(3.14)



Tr((D(0,1) )4 ) = 4 b |1 + H|4 + 2 d + 8 e |1 + H|2 ,



(3.15)



and
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where ∗ ∗ ∗ ∗ a = Tr(Y(↑1) Y(↑1) + Y(↓1) Y(↓1) + 3(Y(↑3) Y(↑3) + Y(↓3) Y(↓3) )), ∗ ∗ ∗ ∗ b = Tr((Y(↑1) Y(↑1) )2 + (Y(↓1) Y(↓1) )2 + 3(Y(↑3) Y(↑3) )2 + 3(Y(↓3) Y(↓3) )2 ),



c = Tr(YR∗ YR ), d= e=



(3.16)



Tr((YR∗ YR )2 ), ∗ Y(↑1) ). Tr(YR∗ YR Y(↑1)



Remark 3.7. The coeﬃcients in (3.16) appear in the physics literature in the renormalization group equation for the Yukawa parameters. For instance, one can recognize the coeﬃcients a and b, respectively, as the Y2 (S) and H(S) of [1]. 3.5.2



The vector part A(1,0) of inner ﬂuctuations



Let us now determine the other part A(1,0) of A, i.e.,  ai [(∂/M ⊗ 1), ai ]. A(1,0) =



(3.17)



We let ai = (λi , qi , mi ), ai = (λi , qi , mi ) be elements of A = C ∞ (M, AF ). We obtain the following: (1) a U (1) gauge ﬁeld







Λ= (2) an SU (2) gauge ﬁeld Q= (3) a U (3) gauge ﬁeld V =











λi dλi ,



(3.18)



qi dqi ,



(3.19)



mi dmi .



(3.20)



For (1), notice that we have two expressions to compute since there are two diﬀerent actions of λ(x) in L2 (M, S) given, respectively, by ¯ ξ(x) → λ(x) ξ(x), ξ(x) → λ(x) ξ(x).  For the ﬁrst one, using (3.2), the expression Λ = λj [(∂/M ⊗ 1), λj ] is of the form  √ Λ = −1 λj ∂μ λj γ μ = Λμ γ μ and it is self-adjoint when the scalar functions  √ λj ∂μ λj Λμ = −1 are real valued. It follows then that the second one is given by   √ ¯  ] = −1 ¯ j ∂μ λ ¯  γ μ = −Λμ γ μ . ¯ j [(∂/ ⊗ 1), λ λ λ j j M
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Thus, we see that, even though we have two representations of the λ(x), these generate only one U (1) gauge potential. We use the notation Λμ =



g1 Bμ 2



(3.21)



for this U (1) gauge potential, which will play the role of the generator of hypercharge (not to be confused with the electromagnetic vector potential). For (2) notice that the action of quaternions H can be represented in the form  i fα σ α , f0 , fα ∈ C ∞ (M, R), q = f0 + where σ α are the Pauli matrices   



0 1 0 −i , σ2 = , σ1 = 1 0 i 0







1 0 σ3 = . 0 −1



(3.22)



The Pauli matrices are self-adjoint. Thus the terms of the form f0 [(∂/M ⊗ 1), i fα σ α ] are self-adjoint. The algebra of quaternions admits the basis (1, iσ α ). Thus, since the elements of this basis commute with ∂/M , one can rewrite    f0 [(∂/M ⊗ 1), f0 ] + fα [(∂/M ⊗ 1), i fα σ α ], qi [(∂/M ⊗ 1), qi ] = where all f and f  are real-valued functions. Thus, the self-adjoint part of this expression is given by  Q= fα [(∂/M ⊗ 1), i fα σ α ], which is an SU(2) gauge ﬁeld. We write it in the form Q = Qμ γ μ ,



Qμ =



g2 α α W σ . 2 μ



(3.23)



Using (3.2), we see that its eﬀect is to generate the covariant derivatives ∂μ −



i g2 Wμα σ α . 2



(3.24)



For (3), this follows as a special case of the computation of the expressions of the form  A= ai [(∂/M ⊗ 1), ai ], ai , ai ∈ C ∞ (M, MN (C)). One obtains Cliﬀord multiplication by all matrix valued 1-forms on M in this manner. The self-adjointness condition A = A∗ then reduces them to take
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values in the Lie algebra of U(N ) through the identiﬁcations A = i H and Lie(U(N )) = {H ∈ MN (C), H ∗ = −H}. We now explain how to reduce V  to the Lie subalgebra SU(3) of U (3). We consider the following analogue of Deﬁnition 2.13 of the unimodular subgroup SU(AF ). Deﬁnition 3.8. A gauge potential A is “unimodular” iﬀ Tr(A) = 0. We can now parameterize the unimodular gauge potentials and their adjoint action, i.e., the combination A + J A J −1 . Proposition 3.9. (1) The unimodular gauge potentials are parameterized by a U (1) gauge ﬁeld B, an SU(2) gauge ﬁeld W and an SU(3) gauge ﬁeld V . (2) The adjoint action A + J A J −1 on Hf is obtained by replacing ∂μ by ∂μ + Aμ , where Aμ = (Aμq ⊕ Aμ ) ⊗ 13 (where the 13 is for the three generations), and ⎡ 2i − g1 Bμ ⊗ 13 0 ⎢ 3 ⎢ i 0 g1 Bμ ⊗ 13 Aμq = ⎢ ⎢ 3  ⎣ i 0 0 − g2 Wμα σ α − 2  i i i + 14 ⊗ − g3 Vμ λ , 2 ⎤ ⎡ 0 0 0 ⎥ ⎢0 i g1 Bμ 0 ⎥  Aμ = ⎢ ⎦. ⎣ i i α α 0 0 − g2 Wμ σ + g1 Bμ ⊗ 12 2 2 Here the σ α are the Pauli matrices (3.22) and λi ⎤ ⎤ ⎡ ⎡ ⎡ 0 1 0 0 i 0 1 ⎦ ⎦ ⎣ ⎣ ⎣ 1 0 0 −i 0 0 , λ2 = , λ3 = 0 λ1 = 0 0 0 0 0 0 0 ⎤ ⎤ ⎡ ⎡ ⎡ 0 0 −i 0 0 0 0 λ5 = ⎣0 0 0 ⎦, λ6 = ⎣0 0 1⎦, λ7 = ⎣0 i 0 0 0 1 0 0



⎤ 0 0 i g1 Bμ ⊗ 12 ⊗ 13 6



⎥ ⎥ ⎥ ⎥ ⎦



are the Gell-mann matrices ⎤ ⎤ ⎡ 0 0 0 0 1 −1 0⎦, λ4 = ⎣0 0 0⎦ 0 0 1 0 0 ⎤ 0 0 0 −i⎦, (3.25) i 0
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⎤ ⎡ 1 0 0 1 λ8 = √ ⎣0 1 0 ⎦ 3 0 0 −2 which are self-adjoint and satisfy the relation Tr(λi λj ) = 2δ ij . Proof.



(3.26)



(1) The action of A on the subspace Hf is of the form ⎤ ⎡ Λ 0 0 0 ⎢ 0 −Λ 0 0 ⎥ ⎥ ⎢ ⎣ 0 0 Q11 Q12 ⎦ 0 0 Q21 Q22



on leptons and quarks. Thus, it is traceless, since Q is traceless as a linear combination of the Pauli matrices. The action of A on the subspace Hf¯ is given by Λ on the subspace of leptons and by V  on the space of quarks. One has 4 leptons and 4 quarks per generation (because of the two possible chiralities) and the color index is taken care of by V  . Thus, the unimodularity condition means that we have 3 · 4 · (Λ + Tr(V  )) = 0. Thus, we can write V  as a sum ⎡ Λ 0 1 V  = −V − ⎣ 0 Λ 3 0 0



of the form ⎤ 0 1 0 ⎦ = −V − Λ 13 , 3 Λ



(3.27)



where V is traceless, i.e., it is an SU(3) gauge potential. (2) Since the charge conjugation antilinear operator JM commutes with ∂/M , it anticommutes with the γμ and the conjugation by J introduces an additional minus sign in the gauge potentials. The computation of A + J A J −1 gives, on quarks and leptons respectively, the matrices ⎡ ⎤ Λ−V 0 0 0 ⎢ 0 ⎥ −Λ − V  0 0 ⎢ ⎥,  ⎣ 0 0 Q11 − V Q12 ⎦ 0 0 Q21 Q22 − V  ⎤ ⎡ 0 0 0 0 ⎥ ⎢0 −2Λ 0 0 ⎥. ⎢ ⎣0 0 Q11 − Λ Q12 ⎦ 0 0 Q21 Q22 − Λ
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ALI H. CHAMSEDDINE ET AL. Thus, using (3.27), we obtain for the (1, 0)-part of the inner ﬂuctuation A + J A J −1 of the metric the matrices ⎡4 ⎤ 0 0 0 3Λ+V ⎢ 0 ⎥ − 23 Λ + V 0 0 ⎢ ⎥, 1 ⎣ 0 ⎦ 0 Q11 + 3 Λ + V Q12 1 0 0 Q21 Q22 + 3 Λ + V ⎤ ⎡ 0 0 0 0 ⎥ ⎢0 −2Λ 0 0 ⎥. ⎢ ⎣0 0 Q11 − Λ Q12 ⎦ 0 0 Q21 Q22 − Λ This completes the proof.







Remark 3.10. Thus, we have obtained exactly the gauge bosons of the standard model, coupled with the correct hypercharges YL , YR . They are such that the electromagnetic charge Qem is determined by 2 Qem = YR for right-handed particles. One also has 2 Qem = YL + 2 I3 , where I3 is the third generator of the weak isospin group SU(2). For Qem one gets the same answer for the left and right components of each particle and 2/3, −1/3 for the u, d quarks, respectively, and 0 and −1 for the ν and the e leptons, respectively. 3.5.3



Independence



It remains to explain why the ﬁelds H = ϕ1 + j ϕ2 of Proposition 3.5 and B, W, V of Proposition 3.9 are independent of each other. Proposition 3.11. The unimodular inner ﬂuctuations of the metric are parameterized by independent ﬁelds ϕ1 , ϕ2 , B, W , V , as in Propositions 3.5 and 3.9. Proof. Let Z be the real vector bundle over M , with ﬁber at x C ⊕ C ⊕ Tx∗ M ⊕ Tx∗ M ⊗ Lie(SU(2)) ⊕ Tx∗ M ⊗ Lie(SU(3)). By construction the inner ﬂuctuations are sections of the bundle Z. The space of sections S obtained from inner ﬂuctuations is in fact not just a linear space over R, but also a module over the algebra C ∞ (M, R) which is the real part of C ∞ (M, AF ) (Lemma 3.2).  Indeed, the inner ﬂuctuations are obtained as expressions of the form A = aj [D, aj ]. One has to check that left multiplication by f ∈ C ∞ (M, R) does not alter the self-adjointness condition A = A∗ . This follows from Proposition 3.1, since we are replacing aj by f aj , where f commutes with A and is real so that f = f ∗ .
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To show that S = C ∞ (M, Z) it is enough to know that one can ﬁnd sections in S that span the full vector space Zx at any given point x ∈ M . Then C ∞ (M, R)-linearity shows that the same sections continue to span the nearby ﬁbers. Using a partition of unity, one can then express any global section of Z as an element of S. Choose ﬁrst the elements ai (y) = (λi , qi , mi ), ai (y) = (λi , qi , mi ) independent of y ∈ N (x) in a neighborhood of x. Using Proposition 3.5, one knows that H(x) can be an arbitrary element of H, while B(x), W (x), V (x) all vanish because they are diﬀerential expressions of the ai . The independence of λ, q and m in the formulae (3.18), (3.19), (3.20) implies that one can construct arbitrary B(x), W (x), V (x) in the form   i ai [D, ai ]. These, however, will not suﬃce to give an arbitary value for ϕ1 and ϕ2 , but this can be corrected by adding an element of the form described above, with vanishing B, W , and V . 



3.6



The Dirac operator and its square



The Dirac operator DA that takes the inner ﬂuctuations into account is given by the sum of two terms DA = D(1,0) + γ5 ⊗ D(0,1) , where D(0,1) is given by (3.11) and D(1,0) is of the form √ D(1,0) = −1 γ μ (∇sμ + Aμ ),



(3.28)



(3.29)



where ∇s is the spin connection (cf. (3.2)). The gauge potential Aμ splits as a direct sum in the decomposition associated to HF = Hf ⊕ Hf¯, and its restriction to Hf is given by Proposition 3.9. In order to state the next step, i.e., the computation of the square of DA , we introduce the notations ⎤ ⎡ 0 0 M1∗ ϕ1 M1∗ ϕ2 ⎢ 0 0 −M2∗ ϕ¯2 M2∗ ϕ¯1 ⎥ ⎥ (3.30) T (M1 , M2 , ϕ) = ⎢ ⎣M1 ϕ¯1 −M2 ϕ2 0 0 ⎦ M1 ϕ¯2 M2 ϕ1 0 0 with ϕ = (ϕ1 , ϕ2 ) and Mj a pair of matrices, and M(ϕ) = T (Y(↑3) , Y(↓3) , ϕ) ⊗ 13 ⊕ T (Y(↑1) , Y(↓1) , ϕ) ⊕ T (Y(↑3) , Y(↓3) , ϕ) ⊗ 13 ⊕ T (Y(↑1) , Y(↓1) , ϕ)



(3.31)
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By construction M(ϕ) is self-adjoint and one has Tr(M(ϕ)2 ) = 4 a |ϕ|2 ,



∗ ∗ ∗ a = Tr(Y(↑1) Y(↑1) + Y(↓1) Y(↓1) + 3(Y(↑3) Y(↑3)



∗ + Y(↓3) Y(↓3) ))



(3.32)



Lemma 3.12. The square of DA is given by 2 DA = ∇∗ ∇ − E,



(3.33)



where ∇∗ ∇ is the connection Laplacian for the connection ∇ = ∇s + A



(3.34)



and the endomorphism E is given, with s = −R the scalar curvature, by  1 −E = s ⊗ id + γ μ γ ν ⊗ Fμν − i γ5 γ μ ⊗ M(Dμ ϕ) + 14 ⊗ (D0,1 )2 4 μ


i i g2 Wμα ϕ σ α − g1 Bμ ϕ. 2 2



(3.36)



Proof. By construction D1,0 anticommutes with γ5 . Thus, one has 2 DA = (D1,0 )2 + 14 ⊗ (D0,1 )2 − γ5 [D1,0 , 14 ⊗ D0,1 ].



The last term is of the form [D1,0 , 14 ⊗ D0,1 ] =



√



−1 γ μ [(∇sμ + Aμ ), 14 ⊗ D0,1 ].



Using (3.3), one can replace ∇sμ by ∂μ without changing the result. In order to compute the commutator [Aμ , D0,1 ], notice ﬁrst that the oﬀ-diagonal term of D0,1 does not contribute, since the corresponding matrix elements of Aμ are zero. Thus, it is enough to compute the commutator of the matrix ⎡ i ⎤ − 2 g1 Bμ 0 0 0 i ⎢ ⎥ 0 0 0 2 g1 Bμ ⎥ (3.37) W=⎢ i i 3 1 2 ⎣ − 2 g2 (Wμ − iWμ )⎦ 0 0 − 2 g2 Wμ i 3 0 0 − 2i g2 (Wμ1 + iWμ2 ) 2 g2 Wμ with a matrix of the form ⎡



⎤ 0 0 M1∗ ϕ1 M1∗ ϕ2 ⎢ 0 0 −M2∗ ϕ¯2 M2∗ ϕ¯1 ⎥ ⎥. T (M1 , M2 , ϕ) = ⎢ ⎣M1 ϕ¯1 −M2 ϕ2 0 0 ⎦ M1 ϕ¯2 M2 ϕ1 0 0



(3.38)
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One gets [W, T (M1 , M2 , ϕ)] = T (M1 , M2 , ψ),



(3.39)



i i (ψ1 , ψ2 ) = − g1 Bμ (ϕ1 , ϕ2 ) + g2 Wμα (ϕ1 , ϕ2 ) σ α . 2 2



(3.40) 



where



3.7



The spectral action and the asymptotic expansion



In this section we compute the spectral action for the inner ﬂuctuations of the product geometry M × F . Theorem 3.13. The spectral action is given by   f0 1 √ 4 4 2 d gd x S = 2 48 f4 Λ − f2 Λ c + π 4  96 f2 Λ2 − f0 c √ + R g d4 x 24π 2   f0 11 ∗ ∗ √ 4 μνρσ + gd x R R − 3 Cμνρσ C 10 π 2 6  (−2 a f2 Λ2 + e f0 ) √ + |ϕ|2 g d4 x (3.41) 2 π  f0 √ a |Dμ ϕ|2 g d4 x + 2 2π  f0 √ a R |ϕ|2 g d4 x − 2 12 π   f0 5 2 √ 4 2 i μνi 2 α μνα μν + g3 Gμν G + g2 Fμν F + g1 Bμν B gd x 2 2π 3  f0 √ b |ϕ|4 g d4 x, + 2 2π where 1 αβ γδ R∗ R∗ = μνρσ αβγδ Rμν Rρσ 4 is the topological term that integrates to the Euler characteristic. The coefﬁcients (a, b, c, d, e) are deﬁned in (3.16) and Dμ ϕ is deﬁned in (3.36). Proof. To prove Theorem 3.13 we use (3.33), and we apply Gilkey’s theorem (see Theorem A.1 below) to compute the spectral action. By Remark A.2
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below, the relevant term is −1/6 R + E, which is the sum  R R  0,1 2 id − 14 ⊗ (D ) E = − id + E = 6 12  γ μ γ ν ⊗ Fμν + i γ5 γ μ ⊗ M(Dμ ϕ). −



(3.42)



μ


We need to compute the sum Σ=



f0 f2 2 Λ Tr(E  ) + Tr((E  )2 ). 2 8π 32 π 2



(3.43)



Lemma 3.14. The term Σ in (3.43) is given by Σ=



f2 2 f0 4 f2 2 Λ R− Λ Tr((D0,1 )2 ) + Tr(M(Dμ ϕ)2 ) 2 2 2 π 2 π 8 π  2  f0 R f0 − (D0,1 )2 + Tr Tr(Fμν Fμν ). + 2 8π 12 16 π 2



(3.44)



Proof. The contribution of Tr(E  ) is only coming from the ﬁrst term of (3.42), since the trace of the two others vanishes due to the Cliﬀord algebra terms. The coeﬃcient of (f2 Λ2 /π 2 ) R is 1/8 · 1/12 · 4 · 96 = 4. To get the contribution of Tr((E  )2 ), notice that the three terms of the sum (3.42) are pairwise orthogonal in the Cliﬀord algebra, so that the trace of the square is just the sum of the three contributions from each of these terms. Again the factor of 4 comes from the dimension of spinors and the summation on all indices μν gives a factor of two in the denominator for f0 /(16 π 2 ).  Notice also that the curvature Ωμν of the connection ∇ is independent of the additional term D(0,1) . We now explain the detailed computation of the various terms of the spectral action. 3.7.1



Λ4 -terms



The presence of the additional oﬀ-diagonal term in the Dirac operator of the ﬁnite geometry adds two contributions to the cosmological term of [8]. Thus while the dimension N = 96 contributes by the term  48 √ 4 4 f4 Λ g d x, 2 π we get the additional coeﬃcients −



c f2 f2 2 Λ Tr(YR∗ YR ) = − 2 Λ2 , 2 π π
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which are obtained from the second term of (3.44), using (3.14). Finally, we also get d f0 f0 Tr((YR∗ YR )2 ) = , 4 π2 4 π2 which comes from the ﬁfth term in (3.44). Thus, the cosmological term gives 1 f0 Tr((YR∗ YR )2 )) (48 f4 Λ4 − f2 Λ2 Tr(YR∗ YR ) + 2 π 4 3.7.2







√



g d4 x.



(3.45)



Riemannian curvature terms



The computation of the terms that only depend upon the Riemann curvature tensor is the same as in [8]. It gives the additive contribution 1 π2



 (4 f2 Λ2 R −



3 √ f0 Cμνρσ C μνρσ ) g d4 x, 10



(3.46)



together with topological terms. Ignoring boundary terms, the latter is of the form  11 f0 √ R∗ R∗ g d4 x. (3.47) 2 60 π There is, however, an additional contribution from the fourth term of (3.44). Using (3.14), this gives −



f0 f0 f0 R Tr((D0,1 )2 ) = − a R |ϕ|2 − c R. 2 2 48 π 12 π 24 π 2



(3.48)



Notice the presence of the terms in R |ϕ|2 (cf. [21], equation 10.3.3). 3.7.3



Scalar minimal coupling



These terms are given by f0 f0 Tr(M(Dμ ϕ)2 ) = a |Dμ ϕ|2 2 8π 2 π2



(3.49)



using (3.32) and (3.44). Notice that there is a slight change of notation with respect to [7] since ˜ instead of H with the notations of [7]. we are using the Higgs doublet H
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There are two contributions with opposite signs. The second term in (3.44), i.e., f2 − 2 Λ2 Tr((D0,1 )2 ) 2π gives, using (3.14), a term in −



2 f2 2 Λ a |ϕ|2 . π2



The fourth term in (3.44) gives, using (3.15), f0 e f0 8 e |ϕ|2 = |ϕ|2 . 2 8π π2 Thus, the mass term gives 1 (−2 a f2 Λ2 + e f0 ) |ϕ|2 . π2 3.7.5



(3.50)



Scalar quartic potential



The only contribution, in this case, comes from the fourth term in (3.44), i.e., from the term f0 Tr((D0,1 )4 ). 8 π2 Using (3.15), this gives f0 b |ϕ|4 . (3.51) 2 π2 3.7.6



Yang–Mills terms



For the Yang–Mills terms the computation is the same as in [8]. Thus, we get the coeﬃcient f0 /24π 2 in front of the trace of the square of the curvature. For the gluons, i.e., the term Giμν Gμνi , we get the additional coeﬃcient 3 · 4 · 2 = 24, since there are three generations, 4 quarks per generation (uR , dR , uL , dL ), and a factor of two coming from the sectors Hf and Hf¯. In other words, because of the coeﬃcient g3 /2, we get f0 g32 i f0 g32 i f0 g32 μν μν Tr(G G ) = 2 G G = G Gμν , μν μν i 4π 2 4π 2 2π 2 μν i where we use (3.26). For the weak interaction bosons W α we get the additional coeﬃcient 3 · 4 · 2 = 24 with the 3 for 3 generations, the 4 for the 3 colors of quarks and 1 lepton per isodoublet and per generation
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(ujL , djL , νL , eL ), and the factor of 2 from the sectors Hf and Hf¯. Thus, using Tr(σa σb ) = 2δab , we obtain the similar term f0 g22 f0 g22 a μν f0 g22 a μν μν Tr(F F ) = 2 F F = F F . μν 4π 2 4π 2 μν a 2π 2 μν a For the hypercharge generator Bμ , we get the additional coeﬃcient    2  2  2 1 4 2 · 3 + (22 + 2) · 3 = 80, + +2 2· 3 3 3 which gives an additional coeﬃcient of 10/3 in the corresponding term 10 f0 g12 5 f0 g12 Bμν B μν = Bμν B μν . 2 3 4π 3 2π 2 This completes the proof of Theorem 3.13.



4







The Lagrangian



The KO-dimension of the ﬁnite space F is 6 ∈ Z/8, hence the KO-dimension of the product geometry M × F (for M a spin 4-manifold) is now 2 ∈ Z/8. In other words, according to Deﬁnition 2.7, the commutation rules are J 2 = −1,



JD = DJ,



and Jγ = −γJ.



(4.1)



Let us now explain how these rules deﬁne a natural antisymmetric bilinear form on the even part H+ = {ξ ∈ H, γ ξ = ξ}



(4.2)



of H. Proposition 4.1. On a real spectral triple of KO-dimension 2 ∈ Z/8, the expression AD (ξ  , ξ) = J ξ  , D ξ,



∀ξ, ξ  ∈ H+



(4.3)



deﬁnes an antisymmetric bilinear form on H+ = {ξ ∈ H, γ ξ = ξ}. The trilinear pairing (4.3) between D, ξ and ξ  is gauge-invariant under the adjoint action of the unitary group of A, namely AD (ξ  , ξ) = ADu (Ad(u)ξ  , Ad(u)ξ),



Du = Ad(u) D Ad(u∗ ).



(4.4)



Proof. (1) We use an inner product which is antilinear in the ﬁrst variable. Thus, since J is antilinear, A is a bilinear form. Let us check that A



1038



ALI H. CHAMSEDDINE ET AL. is antisymmetric. One has



AD (ξ, ξ  ) =  J ξ, D ξ   = − J ξ, J 2 D ξ   = − J D ξ  , ξ = − D J ξ  , ξ = − J ξ  , D ξ, where we used the unitarity of J, i.e., the equality  J ξ, J η = η, ξ,



∀ξ, η ∈ H.



(4.5)



Finally, one can restrict the antisymmetric form AD to H+ without automatically getting zero since one has γ JD = JD γ. (2) Let us check that Ad(u) commutes with J. By deﬁnition Ad(u) = u (u∗ )0 = u JuJ −1 . Thus J Ad(u) = J u JuJ −1 = u J u JJ −1 = u J u = Ad(u) J, where we used the commutation of u with J u J. Since Ad(u) is uni tary, one gets (4.4). Now the Pfaﬃan of an antisymmetric bilinear form is best expressed in terms of the functional integral involving anticommuting “classical fermions” (cf. [38, § 5.1]) At the formal level, this means that we write  1 ˜ ˜ Pf(A) = e− 2 A(ξ) D[ξ] (4.6) ˜ ξ) ˜ = 0 when Notice that A(ξ, ξ) = 0 when applied to a vector ξ, while A(ξ, ˜ applied to anticommuting variables ξ. We deﬁne + = {ξ˜ : ξ ∈ H+ } Hcl



(4.7)



to be the space of classical fermions (Grassman variables) corresponding to H+ of (4.2). As the simplest example, let us consider a 2-dimensional vector space E with basis ej and the antisymmetric bilinear form A(ξ  , ξ) = a(ξ1 ξ2 − ξ2 ξ1 ). For ξ˜1 anticommuting with ξ˜2 , using the basic rule (cf. [38, § 5.1])  ξ˜j dξ˜j = 1, one gets



 e



˜ −(1/2)A(ξ)



 ˜ = D[ξ]



˜ ˜ e−a ξ1 ξ2 dξ˜1 dξ˜2 = a.
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Remark 4.2. It is the use of the Pfaﬃan as a square root of the determinant that makes it possible to solve the Fermion doubling puzzle which was pointed out in [32]. We discuss this in § 4.4.1 below. The solution obtained by a better choice of the KO-dimension of the space F and hence of M × F is not unrelated to the point made in [25]. We now state our main result as follows. Theorem 4.3. Let M be a Riemannian spin 4-manifold and F the ﬁnite noncommutative geometry of KO-dimension 6 described above. Let M × F be endowed with the product metric. (1) The unimodular subgroup of the unitary group acting by the adjoint representation Ad(u) in H is the group of gauge transformations of SM. (2) The unimodular inner ﬂuctuations of the metric give the gauge bosons of SM. (3) The full standard model (with neutrino mixing and seesaw mechanism) minimally coupled to Einstein gravity is given in Euclidean form by the action functional 1 + ˜ DA ξ, ˜ S = Tr(f (DA /Λ)) +  J ξ, , (4.8) ξ˜ ∈ Hcl 2 where DA is the Dirac operator with the unimodular inner ﬂuctuations. Remark 4.4. Notice that the action functional (4.8) involves all the data of the spectral triple, including the grading γ and the real structure J. Proof. We split the proof of the theorem in several subsections. To perform the comparison, we look separately at the terms in the SM Lagrangian. After dropping the ghost terms, one has ﬁve diﬀerent groups of terms: (1) (2) (3) (4) (5) 4.1



Yukawa coupling LHf , gauge fermion couplings, Lgf Higgs self-coupling, LH self-coupling of gauge ﬁelds Lg , minimal coupling of Higgs ﬁelds LHg .







Notation for the standard model



The spectral action naturally gives a Lagrangian for matter minimally coupled with gravity, so that we would obtain the standard model Lagrangian
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on a curved space-time. By covariance, it is in fact suﬃcient to check that we obtain the standard model Lagrangian in ﬂat space-time. This can only be done by a direct calculation, which occupies the remaining of this section. In ﬂat space and in Lorentzian signature, the Lagrangian of the standard model with neutrino mixing and Majorana mass terms, written using the Feynman gauge ﬁxing, is of the form 1 1 LSM = − ∂ν gμa ∂ν gμa − gs f abc ∂μ gνa gμb gνc − gs2 f abc f ade gμb gνc gμd gνe 2 4 1 1 − ∂ν Wμ+ ∂ν Wμ− − M 2 Wμ+ Wμ− − ∂ν Zμ0 ∂ν Zμ0 − 2 M 2 Zμ0 Zμ0 2 2cw 1 − ∂μ Aν ∂μ Aν − igcw (∂ν Zμ0 (Wμ+ Wν− − Wν+ Wμ− ) 2 − Zν0 (Wμ+ ∂ν Wμ− − Wμ− ∂ν Wμ+ ) + Zμ0 (Wν+ ∂ν Wμ− − Wν− ∂ν Wμ+ )) − igsw (∂ν Aμ (Wμ+ Wν− − Wν+ Wμ− ) − Aν (Wμ+ ∂ν Wμ− − Wμ− ∂ν Wμ+ ) 1 + Aμ (Wν+ ∂ν Wμ− − Wν− ∂ν Wμ+ )) − g 2 Wμ+ Wμ− Wν+ Wν− 2 1 2 + − + − + g Wμ Wν Wμ Wν + g 2 c2w (Zμ0 Wμ+ Zν0 Wν− − Zμ0 Zμ0 Wν+ Wν− ) 2 + g 2 s2w (Aμ Wμ+ Aν Wν− − Aμ Aμ Wν+ Wν− ) + g 2 sw cw (Aμ Zν0 (Wμ+ Wν− − Wν+ Wμ− ) − 2Aμ Zμ0 Wν+ Wν− ) 1 1 − ∂μ H∂μ H − 2M 2 αh H 2 − ∂μ φ+ ∂μ φ− − ∂μ φ0 ∂μ φ0 2  2 2 1 2 2M 2M 0 0 + − H + (H + φ φ + 2φ φ ) − βh + g2 g 2 4   2M + 2 αh − gαh M H 3 + Hφ0 φ0 + 2Hφ+ φ− g  1 − g 2 αh H 4 + (φ0 )4 + 4(φ+ φ− )2 8  + 4(φ0 )2 φ+ φ− + 4H 2 φ+ φ− + 2(φ0 )2 H 2 1 M − gM Wμ+ Wμ− H − g 2 Zμ0 Zμ0 H 2 cw  1  − ig Wμ+ (φ0 ∂μ φ− − φ− ∂μ φ0 ) − Wμ− (φ0 ∂μ φ+ − φ+ ∂μ φ0 ) 2  1  + + g Wμ (H∂μ φ− − φ− ∂μ H) + Wμ− (H∂μ φ+ − φ+ ∂μ H) 2 1 1 0 + g Zμ (H∂μ φ0 − φ0 ∂μ H) 2 cw
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1 0 Z ∂μ φ0 + Wμ+ ∂μ φ− + Wμ− ∂μ φ+ ) cw μ



s2w M Zμ0 (Wμ+ φ− − Wμ− φ+ ) + igsw M Aμ (Wμ+ φ− − Wμ− φ+ ) cw



1 − 2c2w 0 + Zμ (φ ∂μ φ− − φ− ∂μ φ+ ) + igsw Aμ (φ+ ∂μ φ− − φ− ∂μ φ+ ) 2cw   1 − g 2 Wμ+ Wμ− H 2 + (φ0 )2 + 2φ+ φ− 4  1 2 1 0 0 2 − g 2 Zμ Zμ H + (φ0 )2 + 2(2s2w − 1)2 φ+ φ− 8 cw



− ig



1 s2 1 s2 − g 2 w Zμ0 φ0 (Wμ+ φ− + Wμ− φ+ ) − ig 2 w Zμ0 H(Wμ+ φ− − Wμ− φ+ ) 2 cw 2 cw 1 1 + g 2 sw Aμ φ0 (Wμ+ φ− + Wμ− φ+ ) + ig 2 sw Aμ H(Wμ+ φ− − Wμ− φ+ ) 2 2 s w − g 2 (2c2w − 1)Zμ0 Aμ φ+ φ− − g 2 s2w Aμ Aμ φ+ φ− cw 1 + igs λaij (¯ qiσ γ μ qjσ )gμa 2 − e¯λ (γ∂ + mλe )eλ − ν¯λ (γ∂ + mλν )ν λ − u ¯λj (γ∂ + mλu )uλj − d¯λj (γ∂ + mλd )dλj + igsw Aμ  2 λ μ λ 1 × −(¯ eλ γ μ eλ ) + (¯ uj γ uj ) − (d¯λj γ μ dλj ) 3 3 ig 0 λ μ Z {(¯ ν γ (1 + γ 5 )ν λ ) + (¯ eλ γ μ (4s2w − 1 − γ 5 )eλ ) + 4cw μ 4 8 + (d¯λj γ μ ( s2w − 1 − γ 5 )dλj ) + (¯ uλj γ μ (1 − s2w + γ 5 )uλj )} 3 3   ig uλj γ μ (1 + γ 5 )Cλκ dκj ) ν λ γ μ (1 + γ 5 )U lep λκ eκ ) + (¯ + √ Wμ+ (¯ 2 2   ig † † eκ U lep κλ γ μ (1 + γ 5 )ν λ ) + (d¯κj Cκλ γ μ (1 + γ 5 )uλj ) + √ Wμ− (¯ 2 2   ig √ φ+ −mκe (¯ ν λ U lep λκ (1 − γ 5 )eκ ) + mλν (¯ ν λ U lep λκ (1 + γ 5 )eκ ) + 2M 2   ig † † √ φ− mλe (¯ eλ U lep λκ (1 + γ 5 )ν κ ) − mκν (¯ eλ U lep λκ (1 − γ 5 )ν κ ) + 2M 2 g mλe ig mλν 0 λ 5 λ g mλν H(¯ ν λν λ) − H(¯ eλ eλ ) + φ (¯ ν γ ν ) − 2M 2M 2 M ig mλe 0 λ 5 λ 1 1 R R (1 − γ )ˆ φ (¯ − e γ e ) − ν¯λ Mλκ (1 − γ5 )ˆ νκ − ν¯λ Mλκ 5 νκ 2 M 4 4
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ALI H. CHAMSEDDINE ET AL.   ig + κ λ 5 κ λ λ 5 κ √ + uj Cλκ (1 − γ )dj ) + mu (¯ uj Cλκ (1 + γ )dj ) φ −md (¯ 2M 2   ig † † √ φ− mλd (d¯λj Cλκ (1 + γ 5 )uκj ) − mκu (d¯λj Cλκ (1 − γ 5 )uκj ) + 2M 2 g mλd ig mλu 0 λ 5 λ g mλu H(¯ uλj uλj ) − H(d¯λj dλj ) + φ (¯ uj γ uj ) 2M 2M 2 M ig mλd 0 ¯λ 5 λ − φ (dj γ dj ). 2 M −



Here the notation is as in [42], as follows: • • • • • • • • • • • •



gauge bosons: Aμ , Wμ± , Zμ0 , gμa ; quarks: uκj , dκj , collective : qjσ ; leptons: eλ , ν λ ; Higgs ﬁelds: H, φ0 , φ+ , φ− ; ghosts: Ga , X 0 , X + , X − , Y ; masses: mλd , mλu , mλe , mh , M√(the latter is the mass of the W ); coupling constants gsw = 4πα (ﬁne structure), gs = strong, αh = (m2h )/(4M 2 ); tadpole constant βh ; cosine and sine of the weak mixing angle cw , sw ; cabibbo–Kobayashi–Maskawa mixing matrix: Cλκ ; structure constants of SU(3): f abc ; the gauge is the Feynman gauge.



Remark 4.5. Notice that, for simplicity, we use for leptons the same convention usually adopted for quarks, namely to have the up particles in diagonal form (in this case the neutrinos) and the mixing matrix for the down particles (here the charged leptons). This is diﬀerent from the convention usually adopted in neutrino physics (cf., e.g., [33, § 11.3]), but it is convenient here, in order to write the Majorana mass matrix in a simpler form. Our goal is to compare this Lagrangian with the one we get from the spectral action, when dealing with ﬂat space and Euclidean signature. All the results immediately extend to curved space since our formalism is fully covariant. 4.2



The asymptotic formula for the spectral action



The change of variables from the standard model to the spectral model is summarized in Table 1.



Higgs scattering parameter Tadpole constant Graviton



g 2 αh , αh =



βh , (−αh M 2 + gμν



1 8 βh 2 2 ) |ϕ|



m2h 4M 2



g1 = g tan(θw ), g2 = g, g3 = gs



b a2



5 3



e a



g12



μ20 = 2 f2fΛ0 − ∂/M



2



λ0 = g 2



g32 = g22 =



YR



MR



Fixed at uniﬁcation −μ20 |H|2 Dirac(1,0)



Dirac(0,1) on ER ⊕ JF ER Fixed at uniﬁcation



Dirac(0,1) in (↓ 1)



Y(↓1) = U lep δ(↓1) U lep



U lep λκ , me



†



Dirac(0,1) in (↓ 3)



Y(↓3) = C δ3, ↓ C †



Cλκ , md



CKM matrix masses down Lepton mixing Masses leptons e Majorana mass matrix Gauge couplings



Inner metric(1,0)



Spectral action Inner metric(0,1) Dirac(0,1) in ↑



(B, W, V )



Notation √ H = √12 ga (1 + ψ) Y(↑3) = δ(↑3) , Y(↑1) = δ(↑1)



Aμ , Zμ0 , Wμ± , gμa



Notation √ + H − iφ0 , −i 2φ+ ) mu , mν



ϕ=



( 2M g



Fermion masses u, ν



Gauge bosons



Standard model Higgs boson



Table 1: Conversion from spectral action to standard model.
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We ﬁrst perform a trivial rescaling of the Higgs ﬁeld ϕ so that kinetic terms are normalized. To normalize the Higgs ﬁeld kinetic energy we have to rescale ϕ to √ a f0 H= ϕ, (4.9) π so that the kinetic term becomes  1 √ |Dμ H|2 g d4 x. 2 The normalization of the kinetic terms, as in Lemma 4.10 below, imposes a relation between the coupling constants g1 , g2 , g3 and the coeﬃcient f0 , of the form g32 f0 1 5 = , g32 = g22 = g12 . (4.10) 2 2π 4 3 The bosonic action (3.41) then takes the form   1 S= R + α0 Cμνρσ C μνρσ + γ0 + τ0 R∗ R∗ 2κ20 + +



1 i 1 α μνα 1 F + Bμν B μν Gμν Gμνi + Fμν 4 4 4



1 √ 4 |Dμ H|2 − μ20 |H|2 − ξ0 R |H|2 + λ0 |H|4 g d x, 2



(4.11)



where 96 f2 Λ2 − f0 c 1 = , 12 π 2 κ20 μ20 = 2



f2 Λ2 e − , f0 a



α0 = − τ0 = γ0 =



3 f0 , 10 π 2



11 f0 , 60 π 2 1 f0 d), (48 f4 Λ4 − f2 Λ2 c + 2 π 4



λ0 =



π2 b , 2 f0 a2



ξ0 =



1 . 12



(4.12)
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Notice that the matrices Y(↑3) , Y(↓3) , Y(↑1) and Y(↓1) are only relevant up to an overall scale. Indeed they only enter in the coupling of the Higgs with fermions and because of rescaling (4.9) only by the terms π Yx , x ∈ {(↑↓, j)} (4.13) kx = √ a f0 which are dimensionless matrices by construction. In fact, by (3.16) ∗ ∗ ∗ ∗ Y(↑1) + Y(↓1) Y(↓1) + 3(Y(↑3) Y(↑3) + Y(↓3) Y(↓3) )) a = Tr(Y(↑1)



has the physical dimension of a (mass)2 . √



√



Using (4.10) to replace aπf0 by √12 ga , the change of notations for the Higgs ﬁelds is  √ √ + 2M 1 a 0 (1 + ψ) = + H − iφ , −i 2φ H= √ , (4.14) g 2 g 4.3



The mass relation



The relation between the mass matrices comes from the equality of the Yukawa coupling terms LHf . For the standard model these terms are given by Lemma 4.7 below. For the spectral action they are given by γ5 M(ϕ) with the notations of (3.28) and (3.31). After Wick rotation to Euclidean and the chiral transformation U = π ei 4 γ5 ⊗ 1, they are the same (cf. Lemma 4.9 below), provided the following equalities hold: g mσ δ κ , (k(↑3) )σκ = 2M u σ g † mμd Cσμ δμρ Cρκ (k(↓3) )σκ = , 2M g mσ δ κ , (k(↑1) )σκ = 2M ν σ g † mμe U lep σμ δμρ U lep ρκ . (4.15) (k(↓1) )σκ = 2M Here the symbol δij is the Kronecker delta (not to be confused with the previous notation δ↑↓ ). Lemma 4.6. The mass matrices of (4.15) satisfy the constraint  (mσν )2 + (mσe )2 + 3 (mσu )2 + 3 (mσd )2 = 8 M 2 . σ



(4.16)
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Proof. It might seem at ﬁrst sight that one can simply use (4.15) to deﬁne the matrices kx , but this overlooks the fact that (4.13) implies the constraint ∗ ∗ ∗ ∗ Tr(k(↑1) k(↑1) + k(↓1) k(↓1) + 3(k(↑3) k(↑3) + k(↓3) k(↓3) )) = 2 g 2 ,



(4.17)



2



where we use (4.10) to replace πf0 by 2 g 2 . Using (4.15), we then obtain the constraint (4.16), where summation is performed with respect to the ﬂavor index σ. Notice that g 2 appeared in the same way on both sides and drops out of the equation. 



We discuss in § 5.4 below the physical interpretation of the imposition of this constraint at uniﬁcation scale.



4.4



The coupling of fermions



Let us isolate the Yukawa coupling part of the standard model Lagrangian, ignoring ﬁrst the right-handed neutrinos (i.e. using the minimal standard model as in [42]). We consider the additional terms later in Lemma 4.8. In the minimal case, one has ig mλe eλ mλe eλ − u LHf = −¯ ¯λj mλu uλj − d¯λj mλd dλj + √ 2 2M   + λ 5 λ − λ −φ (¯ ν (1 − γ )e ) + φ (¯ e (1 + γ 5 )ν λ )  g mλe  H(¯ eλ eλ ) + iφ0 (¯ eλ γ 5 eλ ) − 2M   ig √ φ+ −mκd (¯ + uλj Cλκ (1 − γ 5 )dκj ) + mλu (¯ uλj Cλκ (1 + γ 5 )dκj ) 2M 2   ig † † √ φ− mλd (d¯λj Cλκ (1 + γ 5 )uκj ) − mκu (d¯λj Cλκ (1 − γ 5 )uκj ) + 2M 2 g mλu g mλd ig mλu 0 λ 5 λ H(¯ uλj uλj ) − H(d¯λj dλj ) + φ (¯ − uj γ uj ) 2M 2M 2 M ig mλd 0 ¯λ 5 λ φ (dj γ dj ) (4.18) − 2 M The matrix Cλκ is the mixing matrix. It does enter in the Lagrangian elsewhere but only in the two gauge coupling terms where the down and up
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fermions are involved together and which are part of the expression  σ μ σ a 1 Lgf = igs λij ¯i γ qj gμ − e¯λ (γ∂) eλ − ν¯λ γ∂ν λ − u ¯λj (γ∂) uλj − d¯λj (γ∂) dλj a q 2    2  1  λ μ λ λ μ λ λ μ λ ¯ u ¯ γ uj − d γ dj + igsw Aμ − e¯ γ e + 3 j 3 j       ig 0  λ μ  Zμ ν¯ γ 1 + γ 5 ν λ + e¯λ γ μ 4s2w − 1 − γ 5 eλ + 4c   w  4 2 8 ¯λj γ μ 1 − s2w + γ 5 uλj + d¯λj γ μ sw − 1 − γ 5 dλj + u 3 3         ig ¯λj γ μ 1 + γ 5 Cλκ dκj + √ Wμ+ ν¯λ γ μ 1 + γ 5 eλ + u 2 2         ig † γ μ 1 + γ 5 uλj . (4.19) + √ Wμ− e¯λ γ μ 1 + γ 5 ν λ + d¯κj Cκλ 2 2 Since the matrix Cλκ is unitary, the quadratic expressions in dλj are unchanged by the change of variables given by dλj = Cλκ dκj ,



† ¯κ d¯λj = C¯λκ d¯κj = Cκλ dj



(4.20)



and in this way one can eliminate Cλκ in Lgf . Once written in terms of the new variables, the term Lgf reﬂects the kinetic terms of the fermions and their couplings to the various gauge ﬁelds. The latter is simple for the color ﬁelds, where it is of the form 1 igs λij qiσ γ μ qjσ )gμa , a (¯ 2 where the λ are the Gell-mann matrices (3.25). It is more complicated for the (A, W ± , Z 0 ). This displays in particular the complicated hypercharges assigned to the diﬀerent fermions, quarks and leptons, which depend upon their chirality. At the level of electromagnetic charges themselves, the assignment is visible in the coupling with Aμ . There one sees that the charge of the electron is −1, while it is 2/3 for the up quark and −(1/3) for the down quark. Lemma 4.7. Let the fermions f be obtained from the quarks and leptons by performing the change of basis (4.20) on the down quarks. Then the following hold.



1048



ALI H. CHAMSEDDINE ET AL.



1) The terms Lgf are of the form   σa μ  YL  λb Bμ − ig Vμb fL Lgf = − f L γ ∂μ − ig Wμa − ig 2 2 2 f  μ  YR  Bμ − ig λb Vμb )fR (4.21) + f R γ (∂μ − ig 2 and



similar



Wμ− =



terms



Wμ1 +iWμ2 √ , 2



for



the



leptons,



with



Wμ+ =



Wμ1 −iWμ2 √ , 2



and



g  = g tan(θw ), g  = gs , Bμ = cw Aμ − sw Zμ0 , Wμ3 = sw Aμ + cw Zμ0 . (4.22) 2) The terms LHf are given with the notation (3.30) by LHf = −f¯ T (0, Ke , ϕ) f − f¯ T (Ku , Kd , ϕ) f, where ϕ1 =



2M + H − iφ0 , g



(4.23)



√ ϕ2 = −i 2φ+ ,



(4.24)



and g mμ δ ρ , 2M e μ g mμ δ ρ , = 2M u μ g † = . mλ Cμλ δλκ Cκρ 2M d



(Ke )μρ = (Ku )μρ (Kd )μρ



(4.25)



Proof. (1) In Minkowski space a quark q is represented by a column vector and one has the relation q¯ = q ∗ γ0



(4.26)



between q and q¯. Thus, q and q¯ have opposite chirality. Since the γ μ switch the chirality to its opposite and all the terms in (4.19) involve the γ μ , they can be separated as a sum of terms only involving fL , f¯L and terms only involving fR , f¯R . The neutrinos ν λ only appear as lefthanded, i.e., as the combination (1 + γ 5 )ν λ . a



The last two lines of (4.19) correspond to the terms in ig σ2 Wμa for the oﬀ diagonal Pauli matrices σ1 , σ2 . The ﬁrst line of (4.19) corresponds to the gluons and the kinetic terms. The terms involving the gluons gμa in (4.19) give the strong coupling constant g  = gs . The second and third lines of
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(4.19) use the electromagnetic ﬁeld Aμ related to Bμ by g sw (Aμ − tan(θw ) Zμ0 ) = g  Bμ .



(4.27)



This gives (note the sign − × − = + in (4.21)) the terms ig 



s2 YR Bμ = ig sw Aμ Qem − ig w Zμ0 Qem 2 cw



(4.28)



for the right-handed part. On the left-handed sector, one has YL σ3 + . 2 2 The diagonal terms for the left-handed part Qem =



ig



YL σ3 Wμ3 + ig  Bμ 2 2



are then of the form σ3 σ1 ig Wμ3 + ig sw (Aμ − tan(θw ) Zμ0 )(Qem − ) 2 2 s2w 0 σ3 = ig sw Aμ Qem − ig Zμ Qem + (igWμ3 − ig sw (Aμ − tan(θw ) Zμ0 )) . cw 2 The relation (igWμ3 − ig sw (Aμ − tan(θw ) Zμ0 )) =



ig 0 Z cw μ



(4.29)



then determines Wμ3 as a function of Aμ and Zμ0 . It gives Wμ3 = sw (Aμ − tan(θw ) Zμ0 ) +



1 0 Z , cw μ



i.e., Wμ3 = sw Aμ + cw Zμ0 .



(4.30)



The diagonal terms for the left-handed sector can then be written in the form s2 ig 0 σ3 . (4.31) ig sw Aμ Qem − ig w Zμ0 Qem + Z cw cw μ 2 This matches with the factor 4cigw in (4.19) multiplying (1 + γ 5 ). The latter is twice the projection on the left-handed particles. This takes care of one factor of two, while the other comes from the denominator in σ3 /2. The term ig 0 λ μ Z {(¯ ν γ (1 + γ 5 )ν λ ) + (¯ eλ γ μ (4s2w − 1 − γ 5 )eλ ) 4cw μ is ﬁne, since the neutrino has no electromagnetic charge and one gets the term −ig s2w /cw Zμ0 Qem for the electron, while the left-handed neutrino has
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σ3 = 1 and the left-handed electron has σ3 = −1. The other two terms ig 0 Z 4cw μ



!



 d¯λj γ μ



  4 2 8 2 5 λ λ μ 5 ¯j γ 1 − sw + γ uλj s − 1 − γ dj + u 3 w 3



give the right answer, since the electromagnetic charge of the down is − 13 and it has σ3 = −1, while for the up the electromagnetic charge is 23 and σ3 = 1. (2) We rely on [33] equation (2.14) at the conceptual level, while we perform the computation in full details. The ﬁrst thing to notice is that, by (4.26), the q¯ have opposite chirality. Thus, when we spell out the various terms in terms of chiral ones, we always get combinations of the form q¯L X qR or q¯R X qL . We ﬁrst look at the lepton sector. This gives  ig mλe  + λ −φ (¯ ν (1 − γ 5 )eλ ) + φ− (¯ eλ (1 + γ 5 )ν λ ) − e¯λ mλe eλ + √ 2 2M   λ g me H(¯ eλ eλ ) + iφ0 (¯ eλ γ 5 eλ ) . − 2M The terms in e¯ X e are of two types. The ﬁrst gives  −¯ eλ mλe



1+



gH 2M







 eλ = −¯ eλL mλe



1+



gH 2M







 eλR − e¯λR mλe



1+



gH 2M



eλL



The second type gives −



g mλe 0 λ λ g mλe 0 λ λ g mλe 0 λ 5 λ iφ (¯ iφ (¯ e γ e )= eL eR ) − eR eL ). iφ (¯ 2M 2M 2M



Thus, they combine together using the complex ﬁeld ψ1 = H − iφ0



(4.32)



and give  −¯ eλL mλe



g ψ1 1+ 2M







 eλR



−



e¯λR mλe



g ψ¯1 eλL . 1+ 2M



The terms where both e and ν appear involve only νL , hence only eR . The ﬁelds φ± are complex ﬁelds that are complex conjugates of each other.
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√ ψ2 = −i 2 φ+ .



(4.33)



The contribution of the terms involving both e and ν is then   ¯ g ψ2 g ψ2 λ λ λ λ λ eR + e¯R me νLλ ν¯L me 2M 2M We use the notation (3.30), that is, ⎤ ⎡ 0 0 K1∗ ϕ1 K1∗ ϕ2 ⎢ 0 0 −K2∗ ϕ¯2 K2∗ ϕ¯1 ⎥ ⎥. T (K1 , K2 , ϕ) = ⎢ ⎣K1 ϕ¯1 −K2 ϕ2 0 0 ⎦ K1 ϕ¯2 K2 ϕ1 0 0 We then get that, for the lepton sector, the terms LHf are of the form −f¯ T (0, Ke , ϕ) f,



ϕ1 = ψ1 +



2M , g



ϕ2 = ψ2 ,



where Ke is the diagonal matrix with diagonal entries the



g 2M



(4.34) mλe .



Let us now look at the quark sector, i.e., at the terms ig √ φ+ −u ¯λj mλu uλj − d¯λj mλd dλj + 2M 2   κ λ × −md (¯ uj Cλκ (1 − γ 5 )dκj ) + mλu (¯ uλj Cλκ (1 + γ 5 )dκj   ig † † √ φ− mλd (d¯λj Cλκ (1 + γ 5 )uκj ) − mκu (d¯λj Cλκ (1 − γ 5 )uκj + 2M 2 g mλu g mλd ig mλu 0 λ 5 λ − φ (¯ uj γ uj ) H(¯ uλj uλj ) − H(d¯λj dλj ) + 2M 2M 2 M ig mλd 0 ¯λ 5 λ φ (dj γ dj ). − 2 M Notice that we have to write it in terms of the dλj given by (4.20) instead of the dλj . The terms of the form u ¯ X u are −¯ uλj mλu uλj −



g mλu ig mλu 0 λ 5 λ H(¯ uλj uλj ) + φ (¯ uj γ uj ). 2M 2 M



They are similar to the terms in e¯ X e for the leptons but with an opposite sign in front of φ0 . Thus, if we let Ku be the diagonal matrix with g diagonal entries the 2M mλu , we get the terms depending on ϕ1 and Ku
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in the expression −f¯ T (Ku , Kd , ϕ) f, (4.35) where Kd remains to be determined. There are two other terms involving the mλu , which are directly written in terms of the dλj . They are of the form ig ig √ φ+ mλu (¯ √ φ− mκu (d¯κj (1 − γ 5 )uκj ). uλj (1 + γ 5 )dλj ) − 2M 2 2M 2 This is the same as  ¯  g ψ2 g ψ2 λ λ λ λ ¯ ujR − u dλjL , −dλjL mu ¯jR mu 2M 2M which corresponds to the other terms involving Ku in (4.35). The remaining terms are ig mκd † √ (−φ+ (¯ uλj Cλκ (1 − γ 5 )dκj ) + φ− (d¯λj Cλκ (1 + γ 5 )uκj )) − d¯λj mλd dλj + 2M 2 g mλd − (4.36) (H(d¯λj dλj ) + i φ0 (d¯λj γ 5 dλj )). 2M Except for the transition to the the dλj , these terms are the same as for the lepton sector. Thus, we deﬁne the matrix Kd in such a way that it satisﬁes g ¯λ λ λ d¯λjL Kdλκ dκjR + d¯λjR Kd†λκ dκjL = d m d . 2M j d j We can just take the positive matrix obtained as the conjugate g † mλ Cμλ δλκ Cκρ (Kd )μρ = 2M d as in (4.25).



(4.37)



The only terms that remain to be understood are then the cross terms (with up and down quarks) in (4.36). It might seem at ﬁrst that one recognizes the expression for dλj = Cλκ dκj , but this does not hold, since the summation index κ also appears elsewhere, namely in mκd . One has in fact g g † mκ Cλκ dκj = mμ Cλμ δμκ Cκρ dρj = (Kd d)λj . 2M d 2M d Thus, the cross terms in (4.36) can be written in the form i √ (−φ+ (¯ uλj Kdλκ (1 − γ 5 )dκj ) + φ− (d¯λj (Kd† )λκ (1 + γ 5 )uκj )). 2 Thus, we get the complete expression (4.35).







We still need to add the new terms that account for neutrino masses and mixing. We have the following result.
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Lemma 4.8. The neutrino masses and mixing are obtained in two additional steps. The ﬁrst is the replacement T (0, Ke , ϕ) → T (Kν , Ke , ϕ), where the Ke of (4.25) is replaced by (Ke )λκ =



g † mμe U lep λμ δμρ U lep ρκ , 2M



while Kν is the neutrino Dirac mass matrix g (Kν )λκ = mλ δ κ . 2M ν λ



(4.38)



(4.39)



The second step is the addition of the Majorana mass term 1 1 νκ − ν¯ˆλ (MR )λκ (1 + γ5 )νκ . Lmass = − ν¯λ (MR )λκ (1 − γ5 )ˆ 4 4



(4.40)



Proof. After performing the inverse of the change of variables (4.20) for the leptons, using the matrix U lep instead of the CKM matrix, the new Dirac Yukawa coupling terms for the leptons imply the replacement of  g mλe  H(¯ eλ eλ ) + iφ0 (¯ − eλ γ 5 eλ ) 2M by −



g mλe ig mλν 0 λ 5 λ ig mλe 0 λ 5 λ g mλν φ (¯ φ (¯ ν γ ν )− e γ e ) H(¯ ν λν λ) − H(¯ eλ eλ ) + 2M 2M 2 M 2 M



and of



 ig mλe  + λ √ −φ (¯ ν (1 − γ 5 )eλ ) + φ− (¯ eλ (1 + γ 5 )ν λ ) 2 2M



by   ig √ φ+ −mκe (¯ ν λ U lep λκ (1 − γ 5 )eκ ) + mλν (¯ ν λ U lep λκ (1 + γ 5 )eκ 2M 2   ig † † √ φ− mλe (¯ eλ U lep λκ (1 + γ 5 )ν κ ) − mκν (¯ eλ U lep λκ (1 − γ 5 )ν κ , + 2M 2 where the matrix U lep plays the same role as the CKM matrix. Since the structure we obtained in the lepton sector is now identical to that of the quark sector, the result follows from Lemma 4.7. The Majorana mass terms are of the form (4.40), where the coeﬃcient 1/4 instead of 1/2 comes from the chiral projection (1 − γ5 ) = 2R. The mass matrix MR is a symmetric matrix in the ﬂavor space. 
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In order to understand the Euclidean version of the action considered above, we start by treating the simpler case of the free Dirac ﬁeld. It is given in Minkowski space by the action functional associated to the Lagrangian −¯ u γ∂ u − u ¯ m u. (4.41) In Euclidean space the action functional becomes (cf. [13], “The use of instantons”, § 5.2)  S = − ψ¯ (i γ μ ∂μ − im) ψ d4 x, (4.42) where the symbols ψ and ψ¯ now stand for classical fermions, i.e., independent anticommuting Grassman variables. Notice that, √ in (4.42), the gamma matrices γ μ are self-adjoint and the presence of i = −1 in the mass term is crucial to ensure that the Euclidean propagator is of the form p/ + im . p 2 + m2 In our case, consider the Dirac operator DA that incorporates the inner ﬂuctuations. Recall that DA is given by the sum of two terms DA = D(1,0) + γ5 ⊗ D(0,1) , where D(0,1) is given by (3.11) and D(1,0) is of the form √ D(1,0) = −1 γ μ (∇sμ + Aμ ),



(4.43) (4.44)



is the spin connection (cf. (3.2)), while the Aμ are as in where Proposition 3.9. ∇s



Lemma 4.9. The unitary operator U = eiπ/4γ5 ⊗ 1 commutes with A and γ. One has JU = U ∗ J and U DA U = D(1,0) + i ⊗ D(0,1) .



(4.45)



Proof. Since γ5 anticommutes with the γ μ , one has D(1,0) eiπ/4γ5 = e−iπ/4γ5 D(1,0) . Moreover U (γ5 ⊗ D(0,1) ) U = (γ5 eiπ/2γ5 ) ⊗ D(0,1) = i ⊗ D(0,1)







The result of Lemma 4.9 can be restated as the equality of antisymmetric bilinear forms JU ξ  , DA U ξ = Jξ  , (D(1,0) + i ⊗ D(0,1) )ξ.



(4.46)
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The Fermion doubling problem



We can now discuss the Fermion doubling issue of [32]. As explained there the number of fermion degrees of freedom when one simply writes ¯ Dψ in our context is in fact 4 times what it should the Euclidean action ψ, be. The point is that we have included one Dirac fermion for each of the chiral degrees of freedom such as eR and that we introduced the mirror fermions f¯ to obtain the Hilbert space HF . Thus, we now need to explain how the action functional (4.8) divides the number of degrees of freedom by 4 by taking a 4th root of a determinant. By Proposition 4.1 we are dealing with an antisymmetric bilinear form and the functional integral involving anticommuting Grassman variables delivers the Pfaﬃan, which takes care of a square root. Again by Proposition 4.1, we can restrict the functional integration to the + of (4.7), hence gaining another factor of two. chiral subspace Hcl Let us spell out what happens ﬁrst with quarks. With the basis qL , qR , q¯L , q¯R in HF , the reduction to H+ makes it possible to write a generic vector as ζ = ξL ⊗ qL + ξR ⊗ qR + ηR ⊗ q¯L + ηL ⊗ q¯R ,



(4.47)



where the subscripts L and R indicate the chirality of the usual spinors ξL . . . ∈ L2 (M, S). Similarly, one has   J ζ  = JM ξL ⊗ q¯L + JM ξR ⊗ q¯R + JM ηR ⊗ qL + JM ηL ⊗ qR



(4.48)



and ζ  = (∂/M ⊗ 1) J ζ    = ∂/M JM ξL ⊗ q¯L + ∂/M JM ξR ⊗ q¯R + ∂/M JM ηR ⊗ qL + ∂/M JM ηL ⊗ qR . (4.49)



Thus, since the operator ∂/M JM anticommutes with γ5 in L2 (M, S), we see that the vector ζ  still belongs to H+ , i.e., is of the form (4.47). One gets   (∂/M ⊗ 1) J ζ  , ζ = ∂/M JM ξL , ηR  + ∂/M JM ξR , ηL  + ∂/M JM ηR , ξL 



+ ∂/M JM ηL , ξR . The right-hand side can be written, using the spinors ξ = ξL + ξR etc., as (∂/M ⊗ 1) J ζ  , ζ = ∂/M JM ξ  , η + ∂/M JM η  , ξ.



(4.50)



This is an antisymmetric bilinear form in L2 (M, S) ⊕ L2 (M, S). Indeed if ζ  = ζ, i.e., ξ  = ξ and η  = η one has ∂/M JM ξ, η = −∂/M JM η, ξ, since JM commutes with ∂/M and has square −1.



(4.51)
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At the level of the fermionic functional integral the classical fermions ξ˜ and η˜ anticommute. Thus, up to the factor 2 taken care of by the 12 in front of the fermionic term, one gets  ˜ ˜ e JM η˜, /∂M ξ , D[˜ η ]D[ξ], where ξ˜ and η˜ are independent anticommuting variables. (Here we use the same notation as in (4.7).) This coincides with the prescription for the Euclidean functional integral given in [13] (see “The use of instantons”, § 5.2) when using JM to identify L2 (M, S) with its dual. The Dirac Yukawa terms simply replace ∂/M ⊗ 1 in the expression above by an operator of the form ∂/M ⊗ 1 + γ5 ⊗ T, where T = T (x) acts as a matrix valued function on the bundle S ⊗ HF . By construction, T preserves Hf and anticommutes with γF . Thus, one gets an equation of the form   (γ5 ⊗ T )J ζ  = T1 JM ξL ⊗ q¯R + T2 JM ξR ⊗ q¯L + T3 JM ηR ⊗ qR



+ T4 JM ηL ⊗ qL , where the Tj are endomorphisms of the spinor bundle commuting with the γ5 matrix. In particular, it is a vector in H+ . Thus, one gets   (γ5 ⊗ T ) J ζ  , ζ = T1 JM ξL , ηL  + T2 JM ξR , ηR  + T3 JM ηR , ξR 



+ T4 JM ηL , ξL . Expression (4.50) remains valid for the Dirac operator with Yukawa couplings, with the JM ξ  , JM η  on the left, paired with the η and ξ, respectively. Thus, the Pfaﬃan of the corresponding classical fermions as Grassman variables delivers the determinant of the Dirac operator. We now come to the contribution of the piece of the operator D which in the subspace νR , ν¯R is of the form 



0 MR∗ , T = MR 0 where MR is a symmetric matrix in the ﬂavor space. We use (4.47) and (4.48), replacing quarks by leptons, and we assume for simplicity that the
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matrix MR is diagonal. We denote the corresponding eigenvalues still by MR . We get ζ = ξL ⊗ νL + ξR ⊗ νR + ηR ⊗ ν¯L + ηL ⊗ ν¯R , 



  J ζ = JM ξL ⊗ ν¯L + JM ξR ⊗ ν¯R + JM ηR ⊗ νL + JM ηL ⊗ νR



so that  ¯ R JM ξR (γ5 ⊗ T ) J ζ  = γ5 M ⊗ νR + γ5 MR JM ηL ⊗ ν¯R ,   ¯ R γ5 JM ηR (γ5 ⊗ T ) J ζ  , ζ = MR γ5 JM ξR , ξR  + M , ηR .



(4.52)



The only eﬀect of the γ5 is an overall sign. The charge conjugation operator JM is now playing a key role in the terms (4.52), where it deﬁnes an antisymmetric bilinear form on spinors of a given chirality (here right-handed ones). For a detailed treatment of these Majorana terms in Minkowski signature we refer to the independent work of John Barrett [4]. Notice also that one needs an overall factor of 12 in front of the fermionic action, since in the Dirac sector the same expression repeats itself twice, see (4.51). Thus, in the Majorana sector we get a factor 12 in front of the kinetic term. This corresponds to equation (4.20) of [33]. For the treatment of Majorana fermions in Euclidean functional integrals see, e.g., [27, 34].



4.5



The self-interaction of the gauge bosons



The self-interaction terms for the gauge ﬁelds have the form 1 1 Lg = − ∂ν gμa ∂ν gμa − gs f abc ∂μ gνa gμb gνc − gs2 f abc f ade gμb gνc gμd gνe 2 4 1 1 − ∂ν Wμ+ ∂ν Wμ− − M 2 Wμ+ Wμ− − ∂ν Zμ0 ∂ν Zμ0 − 2 M 2 Zμ0 Zμ0 2 2cw 1 − ∂μ Aν ∂μ Aν − igcw (∂ν Zμ0 (Wμ+ Wν− − Wν+ Wμ− ) 2 − Zν0 (Wμ+ ∂ν Wμ− − Wμ− ∂ν Wμ+ ) + Zμ0 (Wν+ ∂ν Wμ− − Wν− ∂ν Wμ+ )) − igsw (∂ν Aμ (Wμ+ Wν− − Wν+ Wμ− ) − Aν (Wμ+ ∂ν Wμ− − Wμ− ∂ν Wμ+ ) 1 + Aμ (Wν+ ∂ν Wμ− − Wν− ∂ν Wμ+ )) − g 2 Wμ+ Wμ− Wν+ Wν− 2 1 2 + − + − + g Wμ Wν Wμ Wν + g 2 c2w (Zμ0 Wμ+ Zν0 Wν− − Zμ0 Zμ0 Wν+ Wν− ) 2 + g 2 s2w (Aμ Wμ+ Aν Wν− − Aμ Aμ Wν+ Wν− ) + g 2 sw cw (Aμ Zν0 (Wμ+ Wν− − Wν+ Wμ− ) − 2Aμ Zμ0 Wν+ Wν− ).



(4.53)



1058



ALI H. CHAMSEDDINE ET AL.



We show that they can be written as a sum of terms of the following form: (1) mass terms for the W ± and the Z 0 ; a F μν for the gauge ﬁelds B , W a , g a ; (2) Yang–Mills interaction −(1/4) Fμν a μ μ μ (3) Feynman gauge ﬁxing terms Lfeyn for all gauge ﬁelds; Lemma 4.10. One has



 2   1 1 1 a Faμν − ∂μ Gaμ Lg = −M 2 Wμ+ Wμ− − 2 M 2 Zμ0 Zμ0 − Fμν 2cw 4 2 a μ (4.54)



Proof. It is enough to show that the expression 1 − ∂ν Wμ+ ∂ν Wμ− − ∂ν (cw Zμ0 + sw Aμ )∂ν (cw Zμ0 + sw Aμ ) 2 − igcw (∂ν Zμ0 (Wμ+ Wν− − Wν+ Wμ− ) − Zν0 (Wμ+ ∂ν Wμ− − Wμ− ∂ν Wμ+ ) + Zμ0 (Wν+ ∂ν Wμ− − Wν− ∂ν Wμ+ )) − igsw (∂ν Aμ (Wμ+ Wν− − Wν+ Wμ− ) − Aν (Wμ+ ∂ν Wμ− − Wμ− ∂ν Wμ+ ) + Aμ (Wν+ ∂ν Wμ− − Wν− ∂ν Wμ+ )) 1 1 − g 2 Wμ+ Wμ− Wν+ Wν− + g 2 Wμ+ Wν− Wμ+ Wν− 2 2 + g 2 c2w (Zμ0 Wμ+ Zν0 Wν− − Zμ0 Zμ0 Wν+ Wν− ) + g 2 s2w (Aμ Wμ+ Aν Wν− − Aμ Aμ Wν+ Wν− ) + g 2 sw cw (Aμ Zν0 (Wμ+ Wν− − Wν+ Wμ− ) − 2Aμ Zμ0 Wν+ Wν− ) coincides with the Yang–Mills action of the SU(2)-gauge ﬁeld. In fact, the kinetic terms will then combine with those of the B-ﬁeld, namely 1 − ∂ν (−sw Zμ0 + cw Aμ )∂ν (−sw Zμ0 + cw Aμ ). 2 One can rewrite the above in terms of Wμ3 = sw Aμ + cw Zμ0 . This gives 1 − ∂ν Wμ+ ∂ν Wμ− − ∂ν Wμ3 ∂ν Wμ3 − ig(∂ν Wμ3 (Wμ+ Wν− − Wν+ Wμ− ) 2 − Wν3 (Wμ+ ∂ν Wμ− − Wμ− ∂ν Wμ+ ) + Wμ3 (Wν+ ∂ν Wμ− − Wν− ∂ν Wμ+ )) 1 1 − g 2 Wμ+ Wμ− Wν+ Wν− + g 2 Wμ+ Wν− Wμ+ Wν− 2 2 + g 2 (Wμ3 Wμ+ Wν3 Wν− − Wμ3 Wμ3 Wν+ Wν− ). √ √ Using Wμ+ = (Wμ1 − iWμ2 )/ 2 and Wμ− = (Wμ1 + iWμ2 )/ 2, one checks a F μν of that it coincides with the Yang-Mills action functional −(1/4) Fμν a the SU(2)-gauge ﬁeld Wμj .
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More precisely, let g ∇μ = ∂μ − i Waμ σa . 2 One then has  g 2 g [∇μ , ∇ν ] = −i (∂μ Waν − ∂ν Waμ )σa + −i (Wbμ Wcν σb σc − Wcν Wbμ σc σb ) 2 2 and, with σb σc − σc σb = 2i abc σa , this gives a = ∂μ Waν − ∂ν Waμ + g abc Wbμ Wcν . Fμν



(4.55)



One then checks directly that the above expression coincides with  2 1 a μν 1   a ∂μ Wμ . − Fμν Fa − 4 2 a μ



(4.56)



 Notice that the addition of the Feynman gauge ﬁxing term −1/2( μ ∂μ Gμ )2 to the kinetic term −(1/4) |dG|2 of the Yang–Mills action for each of the gauge ﬁelds Gμ gives kinetic terms of the form −1/2 ∂ν Gμ ∂ν Gμ and very simple propagators. This addition of the gauge ﬁxing term is not obtained from the spectral action, but has to be added afterwards together with the ghost ﬁelds. 



4.6



The minimal coupling of the Higgs ﬁeld



We add the mass terms (4.54) to the minimal coupling terms of the Higgs ﬁelds, with the gauge ﬁelds which is of the form 1 1 LHg = − ∂μ H∂μ H − ∂μ φ+ ∂μ φ− − ∂μ φ0 ∂μ φ0 − gM Wμ+ Wμ− H 2 2  1 1 M − g 2 Zμ0 Zμ0 H − ig Wμ+ (φ0 ∂μ φ− − φ− ∂μ φ0 ) 2 cw 2  1  −Wμ− (φ0 ∂μ φ+ − φ+ ∂μ φ0 ) + g Wμ+ (H∂μ φ− − φ− ∂μ H) 2  1 1 +Wμ− (H∂μ φ+ − φ+ ∂μ H) + g Zμ0 (H∂μ φ0 − φ0 ∂μ H) 2 cw 2 s − ig w M Zμ0 (Wμ+ φ− − Wμ− φ+ ) + igsw M Aμ (Wμ+ φ− − Wμ− φ+ ) cw
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ALI H. CHAMSEDDINE ET AL. 1 − 2c2w 0 + Zμ (φ ∂μ φ− − φ− ∂μ φ+ ) + igsw Aμ (φ+ ∂μ φ− − φ− ∂μ φ+ ) 2cw   1 − g 2 Wμ+ Wμ− H 2 + (φ0 )2 + 2φ+ φ− 4   1 1 − g 2 2 Zμ0 Zμ0 H 2 + (φ0 )2 + 2(2s2w − 1)2 φ+ φ− 8 cw − ig



1 s2 1 s2 − g 2 w Zμ0 φ0 (Wμ+ φ− + Wμ− φ+ ) − ig 2 w Zμ0 H(Wμ+ φ− − Wμ− φ+ ) 2 cw 2 cw 1 1 + g 2 sw Aμ φ0 (Wμ+ φ− + Wμ− φ+ ) + ig 2 sw Aμ H(Wμ+ φ− − Wμ− φ+ ) 2 2 s w − g 2 (2c2w − 1)Zμ0 Aμ φ+ φ− − g 2 s2w Aμ Aμ φ+ φ− cw +M(



1 0 Z ∂μ φ0 + Wμ+ ∂μ φ− + Wμ− ∂μ φ+ ). cw μ



(4.57)



This is, by construction, a sum of terms labeled by μ. Each of them contains three kinds of terms, according to the number of derivatives. We now compare this expression with the minimal coupling terms which we get from the spectral action. Lemma 4.11. With the notation (4.22) of Lemma 4.7, the minimal coupling terms (4.57) are given by 1 LHg = − |Dμ ϕ|2 2



(4.58)



with Dμ ϕ given by (3.36), with g2 = g, g1 = g  .



Proof. We have from (3.36) i i Dμ ϕ = ∂μ ϕ + gWμα ϕσ α − g  Bμ ϕ, 2 2 where, by Lemma 4.7, we have  √ 2M + H − iφ0 , −i 2φ+ , ϕ = (ϕ1 , ϕ2 ) = g Wμ3 = sw Aμ + cw Zμ0 ,



g  = tan(θw )g



Bμ = cw Aμ − sw Zμ0 ,
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and the matrix Wμα σ α is given by 



sw Aμ + cw Zμ0 Wμ1 − i Wμ2 Wμ1 + i Wμ2 −sw Aμ − cw Zμ0 √ 



0 2 Wμ+ sw A μ + cw Zμ √ . = 2 Wμ− −sw Aμ − cw Zμ0



Wμα σ α =



The kinetic terms are simply 1 1 − ∂μ H∂μ H − ∂μ φ+ ∂μ φ− − ∂μ φ0 ∂μ φ0 , 2 2 and one checks that they are obtained. Let us consider the terms with no derivatives. The combination Wμα ϕ σ α is given by 2M 0 + H − iφ (sw Aμ + cw Zμ0 ) − 2iφ+ Wμ− , g  √ √ 2M + H − iφ0 2Wμ+ + i 2φ+ (sw Aμ + cw Zμ0 ) . g







The term Bμ ϕ is given by  Bμ ϕ =



√ + 2M 0 0 0 + H − iφ (cw Aμ − sw Zμ ), −i 2φ (cw Aμ − sw Zμ ) . g



The dangerous term in M Aμ (which would give a mass to the photon) has to disappear. This follows from g  = tan(θw ) g. This means that we consider the expression Wμα ϕ σ α − tan(θw ) Bμ ϕ. It gives 1 0 2M 0 + H − iφ − tan(θw ) Bμ ϕ = (X1 , X2 ) = Z g cw μ  √ 2M + − 0 + H − iφ − 2i φ Wμ , 2 Wμ+ g √ + s2w 0 +i 2 φ (2 sw Aμ + (cw − ) Z ) . (4.59) cw μ 



Wμα ϕ σ α
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One has to multiply by direct computation gives − M 2 Wμ+ Wμ− −



g√ 2 −1



and then take − 12 of the norm square. The



1 1 M M 2 Zμ0 Zμ0 − gM Wμ+ Wμ− H − g 2 Zμ0 Zμ0 H 2c2w 2 cw



s2w M Zμ0 (Wμ+ φ− − Wμ− φ+ ) + igsw M Aμ (Wμ+ φ− − Wμ− φ+ ) cw   1 1  1 − g 2 Wμ+ Wμ− H 2 + (φ0 )2 + 2φ+ φ− − g 2 2 Zμ0 Zμ0 H 2 + (φ0 )2 4 8 cw 2  1 s +2(2s2w − 1)2 φ+ φ− − g 2 w Zμ0 φ0 (Wμ+ φ− + Wμ− φ+ ) 2 cw 2 s 1 1 − ig 2 w Zμ0 H(Wμ+ φ− − Wμ− φ+ ) + g 2 sw Aμ φ0 (Wμ+ φ− + Wμ− φ+ ) 2 cw 2 1 sw + ig 2 sw Aμ H(Wμ+ φ− − Wμ− φ+ ) − g 2 (1 − 2s2w )Zμ0 Aμ φ+ φ− 2 cw 2 2 + − − g sw Aμ Aμ φ φ . − ig



Taking into account the terms (4.54), the terms with no derivatives in (4.57) are − M 2 Wμ+ Wμ− −



1 1 M M 2 Zμ0 Zμ0 − gM Wμ+ Wμ− H − g 2 Zμ0 Zμ0 H 2 2cw 2 cw



s2w M Zμ0 (Wμ+ φ− − Wμ− φ+ ) + igsw M Aμ (Wμ+ φ− − Wμ− φ+ ) cw   1 1  1 − g 2 Wμ+ Wμ− H 2 + (φ0 )2 + 2φ+ φ− − g 2 2 Zμ0 Zμ0 H 2 + (φ0 )2 4 8 cw 2  1 s +2(2s2w − 1)2 φ+ φ− − g 2 w Zμ0 φ0 (Wμ+ φ− + Wμ− φ+ ) 2 cw 2 s 1 1 − ig 2 w Zμ0 H(Wμ+ φ− − Wμ− φ+ ) + g 2 sw Aμ φ0 (Wμ+ φ− + Wμ− φ+ ) 2 cw 2 1 2 sw + ig sw Aμ H(Wμ+ φ− − Wμ− φ+ ) − g 2 (2c2w − 1)Zμ0 Aμ φ+ φ− 2 cw − g 2 s2w Aμ Aμ φ+ φ− . − ig



Thus, there is only one diﬀerence with respect to the above, namely the replacement (2c2w − 1) → (1 − 2s2w ) in the 13th term. This has no eﬀect since s2w + c2w = 1.
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We now need to take care of the terms with one derivative. With the notation as above, we compute the cross terms of " "2 " 1 "" ig − "(∂μ ϕ1 , ∂μ ϕ2 ) + (X1 , X2 )"" , 2 2 i.e., the terms  ig ig ¯ ig ig ¯ 1 ∂μ ϕ¯1 X1 − ∂μ ϕ1 X1 + ∂μ ϕ¯2 X2 − ∂μ ϕ2 X2 . − 2 2 2 2 2 The computation gives  1  − ig Wμ+ (φ0 ∂μ φ− − φ− ∂μ φ0 ) − Wμ− (φ0 ∂μ φ+ − φ+ ∂μ φ0 ) 2  1  + g Wμ+ (H∂μ φ− − φ− ∂μ H) + Wμ− (H∂μ φ+ − φ+ ∂μ H) 2 1 1 0 1 − 2c2w 0 + + g Zμ (H∂μ φ0 − φ0 ∂μ H) − ig Zμ (φ ∂μ φ− − φ− ∂μ φ+ ) 2 cw 2cw + igsw Aμ (φ+ ∂μ φ− − φ− ∂μ φ+ )  1 0 0 + − − + , Z ∂μ φ + Wμ ∂μ φ + Wμ ∂μ φ +M cw μ which agrees with the sum of terms with one derivative in (4.57).



4.7







The Higgs ﬁeld self-interaction



The Higgs self-coupling terms of the standard model are of the form  2M 2 2M 1 1 2 0 0 + − + + φ φ + 2φ φ ) H + (H LH = − m2h H 2 − βh 2 g2 g 2 4   2M + 2 αh − gαh M H 3 + Hφ0 φ0 + 2Hφ+ φ− g 1 2 − g αh (H 4 + (φ0 )4 + 4(φ+ φ− )2 + 4(φ0 )2 φ+ φ− 8 + 4H 2 φ+ φ− + 2(φ0 )2 H 2 ). (4.60) Lemma 4.12. Let ϕ be given by (4.34) and assume that αh = Then one has LH



m2h . 4 M2



 1 2 βh 4 2 |ϕ|2 . = − g αh |ϕ| + αh M − 8 2



(4.61)



(4.62)
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Proof. Expression (4.60) can be simpliﬁed in terms of the ﬁeld ψ. The quartic term is simply given by   1 − g 2 αh H 4 + (φ0 )4 + 4(φ+ φ− )2 + 4(φ0 )2 φ+ φ− + 4H 2 φ+ φ− + 2(φ0 )2 H 2 8 1 = − g 2 αh |ψ|4 , 8 since



|ψ|2 = |ψ1 |2 + |ψ2 |2 = H 2 + (φ0 )2 + 2 φ+ φ− . The cubic term is   −gαh M H 3 + Hφ0 φ0 + 2Hφ+ φ− = −gαh M H |ψ|2 , which arises in the expansion of 1 − g 2 αh |ϕ|4 , 8



(4.63)



with ϕ given by (4.34), so that |ϕ|2 = |ψ|2 +



4M 2 4M H+ 2 g g



and 8M 16M 2 2 8M 2 16M 4 32M 3 2 H |ψ|2 + H + |ψ| + + H. g g2 g2 g4 g3 Thus, the natural invariant expression with no tadpole (i.e., with the expansion in H at an extremum) is 1 (4.64) − g 2 αh |ϕ|4 + αh M 2 |ϕ|2 . 8 It expands as |ϕ|4 = |ψ|4 +



2M 4 1 − g 2 αh |ψ|4 − gαh M H |ψ|2 − 2αh M 2 H 2 + 2 αh , 8 g



(4.65)



4



αh in (4.60). Thus, we get which takes care of the constant term + 2M g2   1 2 1 2 βh 4 2 2 2 |ϕ|2 , LH = − g αh |ϕ| + αh M |ϕ| + 2αh M − mh H 2 − 8 2 2 (4.66) since the quadratic “tadpole” term in (4.60) is  1 2 2M 2 2M βh 0 0 + − H + (H + φ φ + 2φ φ ) = − |ϕ|2 . + −βh g2 g 2 2



(4.67)



The assumption (4.61) of the lemma implies that the coeﬃcient of the term in H 2 in (4.66) vanishes. 
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Remark 4.13. The tadpole term (4.67) is understandable, since in renormalizing the terms one has to maintain the vanishing of the term in H. The assumption (4.61) is a standard relation giving the Higgs mass (cf. [42]).



4.8



The coupling with gravity



By construction the spectral action delivers the standard model minimally coupled with Einstein gravity. Thus the Lagrangian of the standard model of § 4.1 is now written using the Riemannian metric gμν and the corresponding Dirac operator ∂/M in curved space–time. We shall check below that the Einstein term (the scalar curvature) admits the correct physical sign and size for the functional integral in Euclidean signature. The addition of the minimally coupled standard model gives the Einstein equation when one writes the equations of motion by diﬀerentiating with respect to gμν (cf., for instance, [43, Chapter 12, § 2]). The spectral action contains one more term that couple gravity with the standard model, namely the term in R H2 . This term is unavoidable as soon as one considers gravity simultaneously with scalar ﬁelds as explained in [21]. The only other new term is the Weyl curvature term 3f0 − 10π 2







√ Cμνρσ C μνρσ gd4 x



(4.68)



This completes the proof of Theorem 4.3.



5 5.1



Phenomenology and predictions Coupling constants at uniﬁcation



The relations 5 g22 = g32 = g12 3 we derived in (4.10) among the gauge coupling constants coincide with those obtained in grand uniﬁcation theories (cf. [11, 33, § 9]). This indicates that the action functional (4.11) should be taken as the bare action at the uniﬁcation cutoﬀ scale Λ and we ﬁrst brieﬂy recall how this scale is computed.
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The electromagnetic coupling constant is given by (4.28) and is g sin(θw ). The ﬁne structure constant αem is thus given by αem = sin(θw )2 α2 ,



αi =



gi2 4π



(5.1)



Its infrared value is ∼ 1/137.036 but it is running as a function of the energy and increases to the value αem (MZ ) = 1/128.09 already, at the energy MZ ∼ 91.188 GeV. Assuming the “big desert” hypothesis, the running of the three couplings αi is known. With 1-loop corrections only, it is given by [1, 29]



−2



βgi = (4π)



 bi gi3 ,



with b =



41 19 , − , −7 , 6 6



(5.2)



so that [40] Λ 41 log , 12π MZ Λ 19 log α2−1 (Λ) = α2−1 (MZ ) + , 12π MZ 42 Λ α3−1 (Λ) = α3−1 (MZ ) + log 12π MZ α1−1 (Λ) = α1−1 (MZ ) −



(5.3)



where MZ is the mass of the Z 0 vector boson. For 2-loop corrections, see [1]. It is known that the predicted uniﬁcation of the coupling constants does not hold exactly, which points to the existence of new physics, in contrast with the “big desert” hypothesis. In fact, if one considers the actual experimental values g1 (MZ ) = 0.3575,



g2 (MZ ) = 0.6514,



g3 (MZ ) = 1.221,



(5.4)



α2 (MZ ) = 0.0337,



α3 (MZ ) = 0.1186.



(5.5)



one obtains the values α1 (MZ ) = 0.0101,



Thus, one sees that the graphs of the running of the three constants αi do not meet exactly, hence do not specify a unique uniﬁcation energy (cf. ﬁgure 1 where the horizontal axis labels the logarithm in base 10 of the scale measured in GeV).
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Figure 1: The running of the three couplings. 5.2



The Higgs scattering parameter and the Higgs mass



When written in terms of H, and using (4.10), the quartic term   π2 b f0 √ 4√ 4 b|ϕ| gd x = |H|4 gd4 x 2 2 2π 2f0 a ˜ 4 coupling and the gives a further relation in our theory between the λ|H| gauge couplings to be imposed at the scale Λ (ﬁgure 2). This is of the form b ˜ λ(Λ) = g32 2 . a



(5.6)



We introduce the following notation. For v = 2M /g we deﬁne the elements (y·σ ) with σ = 1, 2, 3 the generation index and · = u, d, ν, e by the relation v √ (y·σ ) = (mσ· ), (5.7) 2 where the (mσ· ) are deﬁned as in (4.15). In particular, yuσ for σ = 3 gives the top quark Yukawa coupling. We also set  Λ t = log and μ = MZ et . (5.8) MZ We consider the Yukawa couplings (y·σ ) as depending on the energy scale through their renormalization group equation (cf. [1, 6, 37]). We consider in particular the top quark case yuσ (t) for σ = 3. The running of the top
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Figure 2: The running of the quartic Higgs coupling. quark Yukawa coupling (ﬁgure 3) yt = yuσ (t), with σ = 3, is governed by the equation (cf. [41, equation (2.143)] and [1, equation (A9)]) 



   1 9 3  2 17 9 dyt 2 2 = y − ag1 + bg2 + cg3 yt , (a, b, c) = , , 8 . (5.9) dt 16π 2 2 t 12 4 The relation (5.6) could be simpliﬁed if we assume that the top quark Yukawa coupling is much larger than all the other Yukawa couplings. In this case equation (5.6) simpliﬁes. In fact, one gets a ∼ 3 m2top and b ∼ 3 m4top , where mtop = mσu , with σ = 3 in the notation of (4.15), so that 4 ˜ (5.10) λ(Λ) ∼ π α3 (Λ). 3 This agrees with [7] equation (3.31). In fact, the normalization of the Higgs ˜ ﬁeld there is as in the LHS of (5.23) which gives λ(μ) = 4λ(μ), with μ as in (5.8). In terms of the Higgs scattering parameter αh of the standard model, (5.10) reads 8 αh (Λ) ∼ , (5.11) 3 ˜ at the which agrees with [29], equation (1). Therefore, the value of λ = 4 λ 17 uniﬁcation scale of Λ = 10 GeV is λ0 ∼ 0.356 showing that one does not
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Figure 3: The running of the top quark Yukawa coupling.



go outside the perturbation domain. Equation (5.10) can be used, together with the RG equations for λ and yuσ (t), with σ = 3, to determine the Higgs mass at the low-energy scale MZ . For simplicity of notation, in the following we write yt = yuσ (t),



with σ = 3.



(5.12)



We have (cf. [41, equations (2.141), (2.142), (4.2)] and [1, formula (A15)]) the equation dλ 1 = λγ + 2 (12λ2 + B), dt 8π



(5.13)



where 1 (12 yt2 − 9 g22 − 3 g12 ), 16π 2 3 B = (3 g24 + 2g12 g22 + g14 ) − 3 yt4 . 16 γ=



(5.14)
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The Higgs mass is then given by √ 2M M2 , mH = 2λ . (5.15) 2 g g The numerical solution to these equations with the boundary value λ0 = 0.356 at Λ = 1017 GeV gives λ(MZ ) ∼ 0.241 and a Higgs mass of the order of 170 GeV. We refer to [5, 29] for the analysis of variants of the model. m2H = 8λ



Remark 5.1. The estimate of equation (5.10) is obtained under the assumption that the Yukawa coupling for the top quark is the dominant term and the others are negligible. However, due to the see-saw mechanism discussed in § 5.3 below, one should expect that the Yukawa coupling for the tau neutrino is also large and of the same order as the one for the top quark. Thus, the factor of 4/3 in (5.10) should be corrected to 1 as in (5.29) below. One can check by direct calculation that this does not aﬀect substantially the estimate we obtain for the Higgs mass which is then around 168 GeV. 5.3



Neutrino mixing and the see-saw mechanism



Let us brieﬂy explain how the see-saw mechanism appears in our context. Let D = D(Y ) be as in (2.31). The restriction of D(Y ) to the subspace of HF with basis the (νR , νL , ν¯R , ν¯L ) is given by a matrix of the form ⎡ ⎤ 0 Mν∗ MR∗ 0 ⎢ Mν 0 0 0 ⎥ ⎢ ⎥, (5.16) ¯ ⎣MR 0 0 Mν∗ ⎦ ¯ν 0 0 M 0 where Mν =



2M g Kν



with Kν as in (4.39).



The largest eigenvalue of MR is set to the order of the uniﬁcation scale by the equations of motion of the spectral action as in the following result. Lemma 5.2. Assume that the matrix MR is a multiple of a ﬁxed matrix kR , i.e., is of the form MR = x kR . In ﬂat space, and assuming that the Higgs vacuum expectation value is negligible with respect to uniﬁcation scale, the equations of motion of the spectral action ﬁx x to be either x = 0 (unstable) or satisfying ∗k ) 2 f2 Λ2 Tr(kR R x2 = (5.17) ∗ k )2 ) . f0 Tr((kR R Proof. The value of x is ﬁxed by the equations of motion of the spectral action (5.18) ∂u Tr(f (DA /Λ)) = 0, 2 with u = x .
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One can see from (5.16) that x only appears in the coeﬃcients c, d, and e. In the variation (5.18), the terms in the spectral action (3.41) of Theorem 3.13 containing the coeﬃcient c and e produce linear terms in x2 , proportional to the scalar curvature R and the square |ϕ|2 of the Higgs vacuum expectation value, and an additional linear term coming from the cosmological term. The cosmological term also contains the coeﬃcient d, which depends quadratically on x2 . In ﬂat space, and under the assumption that |ϕ|2 is suﬃciently small, (5.18) then corresponds to minimizing the cosmological term. This gives  f0 d = 0, ∂x −f2 Λ2 c + 4



∗ c = x2 Tr(kR kR ),



∗ d = x4 Tr((kR kR )2 ).



(5.19) Thus, we get MR = xkR with x satisfying (5.17). In other words we see that MR∗ MR =



∗ k Tr(k ∗ k ) 2 f2 Λ2 kR R R R . ∗ f0 Tr((kR kR )2 )



(5.20) 



The Dirac mass Mν is of the order of the Fermi energy v and hence much smaller. The eigenvalues of the matrix (5.16) are then given, simplifying to one generation, by  # 1 2 2 ±mR ± mR + 4 v , (5.21) 2 where mR denotes the eigenvalues of MR , which is of the order of Λ by the result of Lemma 5.2, see (5.20). This gives two eigenvalues very close to ±mR and two others very close to ±v 2 /mR as can be checked directly from the determinant of the matrix (5.16), which is equal to |Mν |4 ∼ v 4 (for one generation). Remark 5.3. This is compatible with the scenario proposed by Fukigita and Yanagida (cf. [33]) following the ideas of Sakharov and t’Hooft, to explain the asymmetry between matter and antimatter in the universe. Typical estimates for the large masses of the right handed neutrinos, i.e., the eigenvalues of MR are given (cf. [33]) by (mR )1 ≥ 107 GeV,



(mR )2 ≥ 1012 GeV,



(mR )3 ≥ 1016 GeV.



(5.22)
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There are two diﬀerent normalizations for the Higgs ﬁeld in the literature. 1) In Veltman [42], the kinetic term has a factor of 12 . 2) In Mohapatra–Pal, it has a factor of 1 (cf. [37], equation (1.43)]). One passes from one to the other by 1 ϕmp = √ ϕvelt 2



(5.23)



In [7] we used the second convention. Let us then stick to that for the deﬁnition of the Yukawa couplings (y·σ )(t) which is then given by (5.7) above. The mass of the top quark is governed by the top quark Yukawa coupling yt = yuσ (t) with σ = 3 by the equation 1 2M 1 yt = √ v yt , mtop (t) = √ 2 g 2



(5.24)



where v = 2M g is the vacuum expectation value of the Higgs ﬁeld. The running of the top quark Yukawa coupling yt = yuσ (t), with σ = 3, is governed by equation (5.9). In terms of the Yukawa couplings (y·σ ) of (5.7), the mass constraint (4.16) reads as v2  σ 2 (y ) + (yeσ )2 + 3(yuσ )2 + 3(ydσ )2 = 2 g 2 v 2 , (5.25) 2 σ ν with v =



2M g



the vacuum expectation value of the Higgs, as above.



In the traditional notation for the standard model the combination  (yνσ )2 + (yeσ )2 + 3 (yuσ )2 + 3 (ydσ )2 Y2 = σ



is denoted by Y2 = Y2 (S) (cf. [1]). Thus, the mass constraint (4.16) is of the form Y2 (S) = 4 g 2 .



(5.26)



Assuming that it holds at a uniﬁcation scale of 1017 GeV and neglecting all other Yukawa couplings with respect to the top quark yuσ , with σ = 3, we
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get the following approximate form of (4.16). 2 yuσ = √ g, 3



with σ = 3.



(5.27)



The value of g at a uniﬁcation scale of 1017 GeV is ∼0.517. Thus, neglecting the τ neutrino Yukawa coupling, we get the simpliﬁed relation 2 yt = √ g ∼ 0.597, t ∼ 34.6. (5.28) 3 Thus, in ﬁrst approximation, numerical integration of the diﬀerential equation (5.9) with the boundary condition (5.28) gives the value y0 = ∼1.102 and a top quark mass of the order of √12 y0 v ∼ 173.683 y0 GeV. The see-saw mechanism, however, suggests that the Yukawa coupling for the τ neutrino is of the same order as the top quark Yukawa coupling. Indeed, even if the tau neutrino mass has an upper bound of the order of (cf. [33]) mντ ≤ 18.2 MeV, the see-saw mechanism allows for a large Yukawa coupling term by the relation (5.21) and (5.22). It is then natural to take the Yukawa coupling yνσ , with σ = 3 for the tau neutrino to be the same, at uniﬁcation, # as that of the top quark. This introduces in (5.28) a correction factor of for xt = yνσ (t) and yt = yuσ (t), with σ = 3, we now have Y2 (S) ∼ x2t + 3yt2 ∼



4 · 3yt2 = 4 yt2 ⇒ yt ∼ g 3



3 4.



In fact,



(5.29)



This has the eﬀect of lowering the value of y0 to y0 ∼ 1.04, which yields an acceptable value for the top quark mass, given that we neglected all other Yukawa couplings except for the top and the tau neutrino.



5.5



The gravitational terms



We now discuss the behavior of the gravitational terms in the spectral action, namely   1 μνρσ ∗ ∗ 2 √ R + α0 Cμνρσ C + γ0 + τ0 R R − ξ0 R |H| g d4 x. (5.30) 2κ20 The traditional form of the Euclidean higher derivative terms that are quadratic in curvature is (see, e.g., [12], [19])   ω 2 θ 1 √ 4 μνρσ Cμνρσ C − R + E g d x, (5.31) 2η 3η η
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with E = R∗ R∗ the topological term which is the integrand in the Euler characteristic   1 1 √ 4 √ E R∗ R∗ g d4 x. g d x = χ(M ) = (5.32) 32π 2 32π 2 The running of the coeﬃcients of the Euclidean higher derivative terms in (5.31), determined by the renormalization group equation, is gaugeindependent and is given by (see, e.g., [3, equations 4.49 and 4.71] and [12, 19]) 1 133 2 η , (4π)2 10 1 25 + 1098 ω + 200ω 2 η, βω = − (4π)2 60 1 7(56 − 171θ) η, βθ = (4π)2 90 βη = −



while the graphs are shown in ﬁgures 4, 5, 6. Notice that the infrared behavior of these terms approaches the ﬁxed point η = 0, ω = −0.0228, θ = 0.327. The coeﬃcient η goes to zero in the infrared limit, suﬃciently slowly, so that, up to scales of the order of the size of the universe, its inverse remains O(1). On the other hand, η(t), ω(t), and θ(t) have a common singularity at an energy scale of the order of 1023 GeV, which is above the Planck scale. Moreover, within the energy scales that are of interest to our model η(t) is neither too small nor too large (it does not vary by more than a single order of magnitude between the Planck scale and infrared energies).



Figure 4: The running of the Weyl curvature term in (5.31).
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Figure 5: The running of the ratio of the coeﬃcients of the R2 term and the Weyl term in (5.31). The only known experimental constraints on the values of the coeﬃcients of the quadratic curvature terms Rμν Rμν and R2 at low energy are very weak and predict that their value should not exceed 1074 (cf., e.g., [19]). In our case, this is guaranteed by the running described above. Note that we have neglected the coupling R H2 with the Higgs ﬁeld which ought to be taken into account in a ﬁner analysis.



Figure 6: The running of the ratio of the coeﬃcients of the topological term and the Weyl term in (5.31).
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The coeﬃcient of the Einstein term is of the form 1 96f2 Λ2 − f0 c = . 2 12π 2 κ0



(5.33)



With the above notation, by the result of Lemma 5.2, we get ∗ c = x2 Tr(kR kR ) =



∗ k ))2 2f2 Λ2 (Tr(kR R . ∗ f0 Tr((kR kR )2 )



(Tr(k∗ k ))2



Thus, the range of variation of Tr((kR∗ kRR )2 ) for N generations is the interval R [1, N ]. In particular, with N = 3 we get 90f2 Λ2 1 94f2 Λ2 ≤ 2 ≤ . 2 12π 12π 2 κ0



(5.34)



This estimate is not modiﬁed substantially if one takes into account the contribution from the R H2 term using the vacuum expectation value of the Higgs ﬁeld. Thus we see that independently of the choice of kR , the  √ 4 −2 1 coeﬃcient κ0 of the Einstein term 2 R g d x is positive and of the order of f2 Λ2 . Thus the result is similar to what happened for the Einstein– Yang–Mills system [8] and the sign is the correct one. As far as the size is concerned let us now compare the value we get for κ0 with the value given by Newton’s constant. In our case we get  f 2. κ−1 0 ∼Λ Thus if we take for Λ the energy scale of the meeting point of the electroweak and strong couplings, namely Λ ∼ 1.1 × 1017 GeV, we get  17 f 2 GeV κ−1 0 ∼ 1.1 × 10 On the other hand, using the usual form of the gravitational action  1 R dv, (5.35) S(g) = 16πG M and the experimental value of Newton’s constant at ordinary scales one gets the coupling constant √ √ 19 18 κ0 (MZ ) = 8πG, κ−1 0 ∼ 1.221 10 / 8π ∼ 2.43 × 10 GeV. One should expect that the Newton constant runs at higher energies (cf., e.g., [19, 35, 36]) and increases at high energy when one approaches the Planck scale. Thus the ratio ρ = κ0 (Λ)/κ0 (MZ )



(5.36)



for Λ ∼ 1.1 × 1017 GeV, which measures the running at uniﬁcation scale, should be larger than 1.
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By the normalization of the kinetic terms of the gauge ﬁelds, one has (4.10) f0 =



π2 π ∼ 18.45. = 2 g2 8 α2 (Λ)



Thus 1.1 × 1017







f 0 ∼ 4.726 × 1017 .



It follows that if f2 /f0 = τ 2 /ρ2 ,



τ ∼ 5.1,



(5.37)



one obtains the correct physical value for the Newton constant. In fact, starting with a test function g such that g2 = g0 , equality (5.37) holds, provided one performs the transformation  ρx  . g → f, f (x) = g τ 5.6



The cosmological term



The cosmological term depends, in our model, on the remaining parameter f4 . Lemma 5.4. Under the hypothesis of Lemma 5.2, the cosmological term gives  ∗ k )2 Tr(kR 1 f22 R 48f Λ4 . − (5.38) 4 ∗ k )2 ) f π2 Tr((kR 0 R Proof. In (3.45) we have the cosmological term  1 f0 4 2 48f4 Λ − f2 cΛ + d , π2 4 where the coeﬃcients c and d are given by c = Tr(YR∗ YR )



and d = Tr((YR∗ YR )2 )).



We use the result of Lemma 5.2 and (5.20) and obtain c=



∗ k )2 2 f2 Λ2 Tr(kR R ∗ k )2 ) f0 Tr((kR R



and d =



∗ k )2 4f22 Λ4 Tr(kR R ∗ k )2 ) . f02 Tr((kR R







The positivity of the fj , and the freedom in choosing the f4 makes it possible to adjust the value of the cosmological term. Notice that, if one assumes
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that the function f is decreasing (and positive as usual), then the Schwartz inequality gives the constraint f22 ≤ f0 f4 . The Schwartz inequality also gives the estimate ∗ k )2 Tr(kR R ∗ k )2 ) ≤ 3 Tr((kR R



in (5.38). Thus, for a decreasing positive function, this cosmological term is positive. Of course to obtain the physical cosmological constant, one needs to add to this term the contribution from the vacuum expectation value of the various ﬁelds which give an additional contribution of the order of (96 − 28)1/32π 2 Λ4 and generate a ﬁne tuning problem to ensure that the value of the cosmological constant at ordinary scale is small. It is natural in this context to replace the cut-oﬀ Λ by a dynamical dilaton ﬁeld as in [9], cf. § 5.7.3 below. 5.7



The tadpole term and the naturalness problem



The naturalness problem for the standard model arises from the quadratically divergent corrections to the tadpole term  (5.39) cn log(Λ/MZ )n δβh ∼ Λ2 that are required in order to maintain the Higgs vacuum expectation value at the electroweak scale (cf. [39, §II.C.4]). In our set-up, the only natural scale is the uniﬁcation scale. Thus, an explanation for the weak scale still remains to be found. We shall not attempt to address this problem here but make a few remarks. 5.7.1



Naturalness and ﬁne tuning



When the cut-oﬀ regularization method is used, a number of diagrams involving the Higgs ﬁelds are actually quadratically divergent and thus generate huge contributions to the tadpole bare term. To be more speciﬁc, one has the following quadratically divergent diagrams: • minimal coupling with W and B ﬁelds, • quartic self-coupling of Higgs ﬁelds, • Yukawa couplings with fermions. If we want to ﬁx the Higgs vacuum at 2M g in the standard model, we need to absorb the huge quadratic term in Λ in the tadpole term of the action. The
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tadpole constant βh then acquires a quadratically divergent contribution 1 Λ2 δβh ∼ q(t), 2 32π 2



t = log(Λ/MZ ),



(5.40)



where (cf. [20, 28, 39]) q(t) =



9 2 3 2 g + g + 6λ − 6 yt2 , 4 2 4 1



(5.41)



where, as above, yt = yuσ (t), with σ = 3 is the top quark Yukawa coupling. This form of (5.41) holds under the assumption that the contribution coming from the top quark is the dominant term in the Yukawa coupling (see, however, the previous discussion on the term yνσ (t) with σ = 3 in § 5.4). One can check that the contribution yt is suﬃciently large in the standard model so that, for small t, q(t) is negative. However, as shown in ﬁgure 7, the expression q(t) changes sign at energies of the order of 1010 GeV, and is then positive, with a value at uniﬁcation ∼1.61. While ﬁgure 7 uses the known experimental values, one can show directly that our boundary conditions at uniﬁcation scale tunif also imply that q(tunif ) > 0. In fact it is better to replace 3yt2 by Y2 , and we can then use our mass relation at uniﬁcation in the form (5.26) Y2 = 4 g 2 .



Figure 7: The running of the tadpole term.
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Also at uniﬁcation we have a precise form of λ namely (5.6), together with ˜ and get λ = 4λ b λ = 4 g2 2 . a We can thus rewrite (5.41) as (with g = g2 ) b 9 3 (5.42) q(tunif ) = g 2 + g12 + 24 g 2 2 − 8 g 2 , 4 4 a We can now use the inequality b 1 ≥ , 2 a 4 which holds even with a large tau neutrino Yukawa coupling, to get 1 9 3 1 3 q(tunif ) ≥ g 2 + g12 + 24 g 2 − 8 g 2 = g 2 + g12 > 0. (5.43) 4 4 4 4 4 5.7.2



Sign of the quadratic term



In the spectral action, we also have a similar term which is quadratic in Λ namely the term −μ20 H2 of (4.11) where μ20 = 2(f2 Λ2 /f0 ) − e/a. We show that, under the simplifying hypothesis of Lemma 5.2, the coeﬃcient of Λ2 in μ20 in the spectral action is generally positive but can be small and have an arbitrary sign provided there are at least two generations and one chooses suitable Yukawa and Majorana mass matrices. The reason why we can use Lemma 5.2 is that we are interested in small values of μ20 , a more reﬁned analysis would be required to take care of the general case. By Lemma 5.2 we have MR = xkR with x as in (5.17). Lemma 5.5. Under the hypothesis of Lemma 5.2, the coeﬃcient of the Higgs quadratic term −μ20 H2 in the spectral action is given by μ20 = 2Λ2 where X=



f2 4 g 2 Λ2 (1 − X) = (1 − X) f2 , f0 π2



∗ k k ∗ k ) Tr(k ∗ k ) Tr(kR R ν ν R R ∗ k )2 ) Tr(kν∗ kν + ke∗ ke + 3(ku∗ ku + kd∗ kd ))Tr((kR R



(5.44)



(5.45)



Proof. One has μ20 = 2(f2 Λ2 /f0 ) − e/a with e and a as in (3.16). Using (5.20) and (4.13) we then get the ﬁrst equality in (5.44). The second follows from (4.10).  In order to compare X with 1 we need to determine the range of variation ∗ k Tr(k ∗ k )/Tr((k ∗ k )2 )) as a function of of the largest eigenvalue of (kR R R R R R the number of generations.
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Lemma 5.6. The range of variation of the largest eigenvalue, $ $ ∗ ∗ k )$ $ kR kR Tr(kR R $ ρ(kR ) = $ $ Tr((k ∗ kR )2 ) $ R for kR ∈ MN (C), is the interval 



√ 1 1, (1 + N ) . 2



Proof. Notice ﬁrst that one has ∗ ∗ ∗ kR )2 ) ≤ Tr(kR kR ) ||kR kR || Tr((kR



so that the inequality ≥ 1 follows. Moreover this lower bound is reached ∗ k is a multiple of an idempotent which means that k is exactly when kR R R a multiple of a partial isometry. To understand the upper bound, we can ∗ k is diagonal with eigenvalues λ2 . We just need to underassume that kR R  j  stand the range of variation of FN (λ) = (λ21 λ2j / λ4j ). Using Lagrange multipliers one gets that, at an extremum, all the λ2j for j = 1 are equal. Thus, one just needs to get the range of variation of the simpler function 4 fN (u) = u2 (u2 + N − √ 1)/(u + N − 1). Computing the value of fN at the 2  maximum u = 1 + N yields the required answer. ∗ k by We thus see that the maximal value for X obtained by replacing kR R its maximal eigenvalue, yields the inequality



√ Tr(kν∗ kν ) (1 + N ) . X≤ 2 Tr(kν∗ kν + ke∗ ke + 3(ku∗ ku + kd∗ kd ))



(5.46)



As we show now, the range of variation of the simpliﬁed quadratic term (i.e., the right-hand side of equation (5.44)) depends on the number N of generations. Proposition 5.7. Let N be the number of generations. (1) If N = 1, or if kR is a scalar multiple of a partial isometry, the qua2 dratic term (5.44) is positive and its size of the order of f2fΛ . 0 (2) If N ≥ 2, the quadratic term (5.44) can vanish and have arbitrary sign, provided one chooses kR , kν appropriately.
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Proof. (1) By Lemma 5.6 we have ρ(kR ) = 1 and thus by (5.45), X≤



Tr(kν∗ kν ) < 1. Tr(kν∗ kν + ke∗ ke + 3(ku∗ ku + kd∗ kd ))



Thus



f2 (1 − X) f0 is positive and of the same order as (f2 Λ2 /f0 ). μ20 = 2 Λ2



(2) We take N = 3 and explain how to choose kR , kν etc. so that the coeﬃcient of the quadratic term vanishes. √ We choose kR such that the ∗ k are of the form (1 + 3, 1, 1). Then, as in Lemma 5.6, eigenvalues of kR R √ ∗ k Tr(k ∗ k )/Tr((k ∗ k )2 )) are 1/2(1 + 3, 1, 1). We the eigenvalues of (kR R R R R R can now choose kν in such a way that it is diagonal in the same basis as ∗ k with a single, order one, eigenvalue on the ﬁrst basis vector while the kR R two other eigenvalues are small. It follows that √ 1 Tr(kν∗ kν ) X ∼ (1 + 3) ∼ 1, 2 Tr(kν∗ kν + ke∗ ke + 3(ku∗ ku + kd∗ kd )) provided that 1 √ ( 3 − 1) Tr(kν∗ kν ) ∼ Tr(ke∗ ke + 3(ku∗ ku + kd∗ kd )). 2







Neglecting the Yukawa couplings except for the tau neutrino and the top quark, one gets kντ ∼ 2.86 ktop . While the see-saw mechanism allows for a large Yukawa matrix for the neutrinos, the above relation yields a Yukawa coupling for the tau neutrino which is quite a bit larger than the expected one as in GUT theories, where it is similar to the top Yukawa coupling. In summary we have shown that μ20 > 0 except under the above special choice of Yukawa coupling matrices. We have been working under the simplifying hypothesis of Lemma 5.2 and to eliminate that, a ﬁner analysis involving the symmetry breaking of the potential in the variables x and ϕ (after promoting x to a scalar ﬁeld) would be necessary. 5.7.3



The dilaton ﬁeld



In fact there is another scalar ﬁeld which plays a natural role in the above set-up and which has been neglected for simplicity in the above discussion. Indeed as in [9] it is natural when considering the spectral action (in particular on noncompact spaces) to replace the cut-oﬀ Λ by a dynamical dilaton ﬁeld. We refer to [9] for the computation of the spectral action with dilaton and its comparison with the Randall–Sundrum model. Its extension to the present set-up is straightforward using the technique of [9]. One obtains
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a model which is closely related to the model of scale invariant extended inﬂation of [26].



5.7.4



Geometric interpretation



Our geometric interpretation of the standard model gives a picture of space– time as the product of an ordinary spin manifold (in Euclidean signature) by a ﬁnite noncommutative geometry F . The geometry of F is speciﬁed by its Dirac operator DF whose size is governed by the vacuum expectation value of the Higgs ﬁeld. In other words, it is the (inverse of the) size of the space F that speciﬁes the electroweak scale. It is thus tempting to look for an explanation for the smallness of the ratio MZ /MP along the same lines as inﬂation as an explanation for the large size of the observable universe in Planck units.



Appendix A .



Gilkey’s Theorem



The square of the Dirac operator appearing in the spectral triple of a noncommutative space is written in a form suitable to apply the standard local formulas for the heat expansion (see [24, § 4.8]). We now brieﬂy recall the statement of Gilkey’s theorem ([24, Theorem 4.8.16]. One starts with a compact Riemannian manifold M of dimension m, with metric g, and one lets F be a vector bundle on M and P a diﬀerential operator acting on sections of F and with leading symbol given by the metric tensor. Thus locally one has P = −(g μν I ∂μ ∂ν + Aμ ∂μ + B),



(A.1)



where g μν plays the role of the inverse metric, I is the unit matrix, Aμ and B are endomorphisms of the bundle F . The Seeley–De witt coeﬃcients are the terms an (x, P ) in the heat expansion, which is of the form   −tP (n−m)/2 ∼ t an (x, P ) dv(x), (A.2) Tre n≥0



M



where m is the dimension of the manifold and dv(x) = gμν is the metric on M .







det gμν dm x where



By Lemma 4.8.1 of [24], the operator P is uniquely written in the form P = ∇∗ ∇ − E,



(A.3)



where ∇ is a connection on F , ∇∗ ∇ the connection Laplacian and where E is an endomorphism of F . The explicit formulas for the connection ∇ and
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the endomorphism E are ∇μ = ∂μ + ωμ , 1 ωμ = gμν (Aν + Γν · id), 2 E = B − g μν (∂μ ων + ωμ ων − Γρμν ωρ ),



(A.4) (A.5) (A.6)



Γρμν (g)



be the Christoﬀel symbols of the Levi–Civita connecWhere one lets tion of the metric g and Γρ (g) = g μν Γρμν (g). One lets Ω be the curvature of the connection ∇ so that (cf. [24, Lemma 4.8.1]), Ωμν = ∂μ ων − ∂ν ωμ + [ωμ , ων ].



(A.7)



The Seeley–de Witt coeﬃcients an (P ) vanish for odd values of n. The ﬁrst three an s for n even have the following explicit form in terms of the Riemann curvature tensor R, the curvature Ω of the connection ∇ and the endomorphism E. Theorem A.1. [24] One has: a0 (x, P ) = (4π)−m/2 Tr(id),  R −m/2 Tr − id + E , a2 (x, P ) = (4π) 6 1 a4 (x, P ) = (4π)−m/2 Tr(−12R;μ μ + 5R2 − 2Rμν Rμν 360 + 2Rμνρσ Rμνρσ − 60RE + 180E 2 + 60E;μ μ



(A.8) (A.9) (A.10)



+ 30Ωμν Ωμν ). Remark A.2. Notice that E only appears through the terms  2   R R − id + E Tr − id + E , Tr 6 6



(A.11)



and the boundary term Tr(E;μ μ ). Here, R;μ μ = ∇μ ∇μ R and similarly E;μ μ = ∇μ ∇μ E. A.1



The generalized Lichnerowicz formula



Let M be a compact Riemannian spin manifold of dimension m, S the spinor bundle with the canonical riemannian connection ∇S . Let V be a hermitian
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vector bundle over M with a compatible connection ∇V . One lets ∂/V be the Dirac operator on S ⊗ V endowed with the tensor product connection ([30, Proposition 5.10]) ∇(ξ ⊗ v) = (∇S ξ) ⊗ v + ξ ⊗ (∇V v).



(A.12)



Let then RV be the bundle endomorpism of the bundle S ⊗ V deﬁned by RV (ξ ⊗ v) =



m 1  (γj γk ξ) ⊗ (R(V )jk v) 2



(A.13)



j,k=1



where R(V ) is the curvature tensor of the bundle V . One then has ([30, Theorem 8.17]) Theorem A.3. let s = −R be the scalar curvature of M , then the Dirac operator ∂/V satisﬁes 1 ∂/2V = ∇∗ ∇ + s + RV , (A.14) 4 where ∇∗ ∇ is the connection Laplacian of S ⊗ V . Notice that all three terms of the right-hand side of (A.14) are self-adjoint operators by construction. In particular RV is self-adjoint. One can write RV in the following form where the terms in the sum are pairwise orthogonal for the natural inner product on the Cliﬀord algebra (induced by the Hilbert– Schmidt inner product A, B = Tr(A∗ B) in the spin representation)  RV = γj γk ⊗ R(V )j k . (A.15) j


A.2



The asymptotic expansion and the residues



The spectral action can be expanded in decreasing powers of the scale Λ in the form   fk Λk − |D|−k + f (0)ζD (0) + o(1), (A.16) Trace (f (D/Λ)) ∼ k∈Π+



where the function f only appears through the scalars  ∞ f (v)v k−1 dv. fk =



(A.17)



0



The term independent of the parameter Λ is the value at s = 0 (regularity at s = 0 is assumed) of the zeta function ζD (s) = Tr (|D|−s ).



(A.18)
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The terms involving negative powers of Λ involve the full Taylor expansion of f at 0. Let us brieﬂy review the classical relation between residues and the heat kernel expansion in order to check the numerical coeﬃcients. For the positive operator Δ = D2 , one has  ∞ 1 e−tΔ ts/2−1 dt |D|−s = Δ−s/2 = Γ(s/2) 0 and the relation between the asymptotic expansion,  aα tα (t −→ 0) Trace(e−tΔ ) ∼



(A.19)



(A.20)



and the ζ function, ζD (s) = Trace (Δ−s/2 )



(A.21)



is given by the following result. Lemma A.4. −2α with



• A non-zero term aα with α < 0 gives a pole of ζD at



2aα Γ(−α) • The absence of log t terms gives regularity at 0 for ζD with Ress=−2α ζD (s) =



ζD (0) = a0 .



(A.22)



(A.23)



Proof. We just check the coeﬃcients, replacing Trace(e−tΔ ) by aα tα and using  1  s −1 tα+s/2−1 dt = α + , 2 0 one gets the ﬁrst statement. The second follows from the equivalence Γ



1 s s ∼ , 2 2



s→0



so that only the pole part at s = 0 of  ∞ Tr(e−tΔ ) ts/2−1 dt 0



contributes to the value ζD (0). But this pole part is given by  1 2 ts/2−1 dt = a0 a0 s 0 so that one gets (A.23).
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Remark A.5. The relations (A.22) and (A.23), in particular, show that our coeﬃcients f0 , f2 and f4 are related to the coeﬃcients of the asymptotic expansion of the spectral action as written in [8] in the following way. Our f0 is the f4 of [8]. Our f2 is 1/2 of the f2 of [8]. Our f4 is 1/2 of the f0 of [8]. In fact our f (u) = χ(u2 ), for χ as in (2.14) of [8].
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