GX3190 146 x 290 3.5Gb/s Crosspoint Switch with Trace Equalization and Output De-emphasis Key Features

Description



The GX3190 is a low-power, high-speed 146 x 290 crosspoint switch, with robust signal conditioning circuits for driving and receiving high-speed signals through backplanes.

• • • • • • • • • • • • • •

146 x 290 crosspoint switch architecture supporting broadcast and multi-cast modes Supports all data rates up to 3.5Gb/s Low power consumption: 31.51W typical (all channels active) Sophisticated, dynamic on-chip power management control Independent, programmable input trace equalization to reduce deterministic jitter (ISI) Independent, programmable output de-emphasis for driving long board traces High-speed, video-optimized control for multi-format applications Built-in system test features with on-chip PRBS generators and analyzers 2.5V analog core voltage, 1.8V digital core voltage Input and output voltages support either 1.2V, 1.8V or 2.5V CML JTAG-controlled boundary scan Selectable parallel/serial host interface 50mm x 50mm BGA (2377 ball) Operating temperature range: 0°C to +85°C RoHS compliant

Applications Large m x n cascaded routers/switch fabrics for: • • • •

Professional broadcast applications Enterprise and carrier applications High-speed automated test equipment 10GbE and InfiniBand networks

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

The device typically consumes 31.51W of power with all channels operational, and features sophisticated, dynamically scalable power management. Unused portions of the core are automatically turned off without affecting the operation of the remaining channels. The signal conditioning features of the GX3190 include per-input programmable equalization and per-output programmable de-emphasis. The input equalizer removes ISI jitter—typically caused by PCB trace losses—by opening the input data eye in applications where long PCB traces are used. There are four settings available for the input equalizer, allowing flexibility in adjusting the equalization level on a per-input basis. Output de-emphasis capability provides a boost of the high-frequency content of the output signal, such that the data eye remains open after passing through a long interconnect of PCB traces and connectors. There are four de-emphasis settings that can be enabled on a per-output basis. Two integrated programmable pattern generators, and two pattern checkers are provided to assist in system test and configuration. The pattern generators can each be routed to any output of the device without impacting the normal operation of any other channel. Any input can be routed to each of the pattern checkers. The chip features eight independent strobe inputs, UPDATE_EN[7:0], which are used to determine the timing of the output updates. Any output can be linked to any strobe.

www.semtech.com

1 of 47 Proprietary & Confidential

TDI TMS

TCK TDO

JTAG and Boundary Scan

SDIN

HOST_S/P RESET

S_CS

SCLK

SDOUT

P_DAT [15:0] P_ADD P_R/W [11:0]

P_ADS P_CS

Parallel/Serial Interfaces and General Registers

Input Configuration Latch Active Configuration Latch

UPDATE_EN[7:0]

Trace EQ

SDI[0]/SDI[0]

Output 0

Input 0

Trace EQ

SDI[287]/SDI[287]

Input 143 EXT_PG0/EXT_PG0

EXT_PG1/EXT_PG1

SDO[0]/SDO[0]

De-Emp

146 x 290 Differential Cross-point Switch Matrix

SDO[287]/SDO[287]

De-Emp

Output 287

Trace EQ

De-Emp

Input 144

Output 288

Trace EQ

De-Emp

Input 145

Output 289

Programmable Pattern Generator 1

Pattern Checker & Status Monitor 1

Programmable Pattern Generator 0

Pattern Checker & Status Monitor 0

MON0/MON0

MON1/MON1

Reference Clock/Crystal Buffer

REF_CLK_IN

REF_CLK_OUT

GX3190 Functional Block Diagram

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

2 of 47 Proprietary & Confidential

Revision History

Version

ECO

PCN

Date

2

011798



March 2013

Corrected second bullet in Section 4.7.1, and added a note in Section 4.4. Included ESD Voltage Sensitivity in Table 2-1. Modifications to Table 4-18 and Section 4.12.2 to include Auto-Increment Timing and functionality. Updates to Appendix - Relevant Documentation with clear reference to correct documents. Converted document to Data Sheet.

1

158397



October 2012

0

157405



March 2012

A

157287



November 2011

Changes and/or Modifications

Converted document to Preliminary Data Sheet. Updates throughout. New document.

Contents Key Features ........................................................................................................................................................1 Applications.........................................................................................................................................................1 Description...........................................................................................................................................................1 Revision History .................................................................................................................................................3 1. Ball Out .............................................................................................................................................................5 1.1 Ball Assignment ................................................................................................................................5 1.2 Ball Descriptions ...............................................................................................................................6 2. Electrical Characteristics ............................................................................................................................9 2.1 Absolute Maximum Ratings ..........................................................................................................9 2.2 Recommended Operating Conditions .................................................................................... 10 2.3 DC Electrical Characteristics ..................................................................................................... 11 2.4 AC Electrical Characteristics ..................................................................................................... 15 3. Input/Output Equivalent Circuits ......................................................................................................... 17 4. Detailed Description.................................................................................................................................. 20 4.1 Serial Data Input ............................................................................................................................ 20 4.2 Serial Data Output ......................................................................................................................... 21 4.3 Crosspoint Switch Matrix Operation ...................................................................................... 23 4.4 Propagation Delay ......................................................................................................................... 24 4.5 Using Multiple Strobes ................................................................................................................. 24 4.6 Pattern Generator and Pattern Checker ................................................................................ 25 4.6.1 Pattern Generator.............................................................................................................. 25 4.6.2 Pattern Checker.................................................................................................................. 26 4.7 Horizontal Eye Measurement .................................................................................................... 30 4.7.1 Configuration for Horizontal Eye Measurement .................................................... 30 4.8 Temperature Sensors .................................................................................................................... 30 4.9 27MHz Reference Clock .............................................................................................................. 33

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

3 of 47 Proprietary & Confidential

4.10 Device Power-Up ........................................................................................................................ 33 4.11 Device Reset .................................................................................................................................. 34 4.12 Host Interface ............................................................................................................................... 34 4.12.1 Parallel Host Interface Specifications ...................................................................... 34 4.12.2 Serial Host Interface Specifications .......................................................................... 39 5. Application Information .......................................................................................................................... 41 5.1 Power Supply Filtering and Recommendations .................................................................. 41 5.2 Estimated Worst-Case Load Current Steps ........................................................................... 42 5.2.1 VCC_25_A Supply............................................................................................................. 42 5.2.2 VCC_OUT1, VCC_OUT2 Supplies ................................................................................ 42 5.2.3 VCC_IN1, VCC_IN2 Supplies......................................................................................... 43 6. Package and Ordering Information...................................................................................................... 44 6.1 Package Dimensions ..................................................................................................................... 44 6.2 Package Thermal Data and Information ................................................................................ 45 6.3 Marking Diagram ........................................................................................................................... 45 6.4 Solder Reflow Profile .................................................................................................................... 46 6.5 Ordering Information ................................................................................................................... 46 Appendix - Relevant Documentation...................................................................................................... 46

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

4 of 47 Proprietary & Confidential

1. Ball Out 1.1 Ball Assignment A

1

2

3

4

5

6

7

8

9

13

14

29

30

33

34

37

38

48

49

NC

NC

NC

GND

SDO_ 268

SDO_ 268

SDO_ 244

SDO_ 244

SDO_ 264

SDO_ 264

SDO_ 248

SDO_ 248

SDO_ 228

SDO_ 228

GND

SDO_ 208

SDO_ 208

SDO_ 192

SDO_ SDO_ 176 192

SDO_ 176

SDO_ 160

SDO_ 160

GND

SDO_ 144

SDO_ 144

SDO_ 124

SDO_ 124

SDO_ 112

SDO_ 112

SDO_ 96

SDO_ 96

SDO_ 80

SDO_ 80

GND

SDO_ 60

SDO_ 60

SDO_ 44

SDO_ SDO_ 44 28

SDO_ 28

SDO_ 12

SDO_ MON0 MON0 12

GND

NC

NC

NC

A

SDO_ 280

SDO_ 236

SDO_ 236

SDO_ 240

10

SDO_ 240

11 12

SDO_ 232

SDO_ 232

15

GND

SDO_ 212

SDO_ 212

16

SDO_ 188

17 18

SDO_ 188

SDO_ 172

19

SDO_ 172

20

SDO_ 156

21

SDO_ 156

22 23

GND

SDO_ 140

24

SDO_ 140

25

SDO_ 128

26

SDO_ 128

27 28

SDO_ 108

SDO_ 108

SDO_ 92

SDO_ 92

31 32

SDO_ 76

SDO_ 76

GND

SDO_ 64

35 36

SDO_ 64

SDO_ 48

SDO_ 48

SDO_ 32

39

SDO_ 32

40

SDO_ 16

41 42

SDO_ 16

SDO_ 0

43 44

SDO_ RSV _DNC 0

45 46

47

GND

GND

NC

NC

B

B

NC

NC

GND

GND

GND

SDO_ 280

C

NC

GND

GND

GND

GND

VCC_ OUT1

SDO_ 284

SDO_ 284

SDO_ 272

SDO_ 272

SDO_ 204

SDO_ 204

GND

SDO_ 216

SDO_ 216

SDO_ 196

SDO_ 196

SDO_ 180

SDO_ 180

SDO_ 164

SDO_ 164

GND

SDO_ 148

SDO_ 148

SDO_ 132

SDO_ 132

SDO_ 116

SDO_ 116

SDO_ 100

SDO_ 100

SDO_ 84

SDO_ 84

GND

SDO_ 68

SDO_ 68

SDO_ 52

SDO_ 52

SDO_ 36

SDO_ 36

SDO_ 20

SDO_ 20

SDO_ 4

SDO_ RSV _DNC 4

GND

GND

GND

GND

NC

C

D

GND

GND

GND

GND

GND

GND

RSV _DNC

SDO_ 260

SDO_ 260

SDO_ 252

SDO_ 252

SDO_ 224

SDO_ 224

GND

SDO_ 200

SDO_ 200

SDO_ 184

SDO_ 184

SDO_ 168

SDO_ 168

SDO_ 152

SDO_ 152

GND

SDO_ 136

SDO_ 136

SDO_ 120

SDO_ 120

SDO_ 104

SDO_ 104

SDO_ 88

SDO_ 88

GND

SDO_ 72

SDO_ 72

SDO_ 56

SDO_ 56

SDO_ 40

SDO_ SDO_ 24 40

SDO_ 24

SDO_ 8

SDO_ 8

GND

GND

GND

GND

GND

GND

D

E

EXT _PG1

RSV _DNC

GND

GND

GND

GND

GND

DTHERMA 3

SDO_ 276

SDO_ SDO_ 276 256

SDO_ SDO_ 220 256

SDO_ 220

GND

SDO_ 258

SDO_ 258

SDO_ 210

SDO_ 210

SDO_ 186

SDO_ 186

SDO_ 178

SDO_ 178

GND

SDO_ 150

SDO_ 150

SDO_ 138

SDO_ 138

SDO_ 122

SDO_ 122

SDO_ 98

SDO_ 98

GND

SDO_ 74

SDO_ 74

SDO_ 50

SDO_ 50

SDO_ 26

SDO_ 26

SDO_ 2

SDO_ 2

VCC_ OUT1

GND

GND

GND

GND

GND

GND

SDI _0

E

F

EXT _PG1

SDI_ 3

RSV _DNC

GND

GND

GND

GND

GND

DTHERMK 3

SDO_ 282

SDO_ 274

SDO_ 274

SDO_ 234

SDO_ 234

GND

SDO_ 242

SDO_ 242

SDO_ 190

SDO_ 190

SDO_ 198

SDO_ 198

SDO_ 174

SDO_ 174

GND

SDO_ 146

SDO_ 146

SDO_ 126

SDO_ 126

SDO_ 102

SDO_ 102

SDO_ 78

SDO_ 78

GND

SDO_ 54

SDO_ 54

SDO_ 34

SDO_ 34

SDO_ 6

SDO_ 6

GND

GND

GND

GND

GND

GND

VCC _IN1

SDI_ 4

SDI_ 0

F

G

SDI_ 7

SDI_ 3

SDI_ 11

GND

GND

GND

GND

GND

GND

VCC_ SDO_ OUT1 286

SDO_ 286

SDO_ 270

SDO_ 270

SDO_ 250

SDO_ 250

GND

SDO_ 214

SDO_ SDO_ 218 214

SDO_ 218

SDO_ 194

SDO_ 194

SDO_ 170

SDO_ 170

GND

SDO_ 130

SDO_ SDO_ 130 106

SDO_ 106

SDO_ 82

SDO_ 82

SDO_ 58

SDO_ 58

GND

SDO_ 30

SDO_ SDO_ 30 10

SDO_ 10

VCC_ OUT1

GND

GND

GND

GND

GND

RSV _DNC

SDI_ 8

SDI_ 4

SDI_ 20

G

H

SDI_ 7

SDI_ 19

SDI_ 11

SDI_ 23

VCC _IN2

GND

GND

GND

GND

GND

GND

SDO_ 278

SDO_ 278

SDO_ 254

SDO_ SDO_ 246 254

SDO_ 246

GND

SDO_ 206

SDO_ 206

SDO_ 182

SDO_ SDO_ 158 182

SDO_ 158

SDO_ 134

SDO_ 134

GND

SDO_ 110

SDO_ 110

SDO_ 86

SDO_ 86

SDO_ 62

SDO_ 62

SDO_ 38

SDO_ 38

GND

SDO_ 14

SDO_ 14

GND

GND

GND

GND

GND

GND

DTHERMA 0

SDI_ 12

SDI_ 8

SDI_ 24

SDI_ 20

H

J

SDI_ 15

SDI_ 19

SDI_ 43

SDI_ 23

RSV _IO

GND

GND

GND

GND

GND

GND

VCC_ SDO_ OUT1 262

SDO_ 262

SDO_ 266

SDO_ 266

SDO_ 226

SDO_ 226

GND

SDO_ 202

SDO_ 202

SDO_ 162

SDO_ SDO_ 154 162

SDO_ 154

SDO_ 114

SDO_ 114

GND

SDO_ 90

SDO_ 90

SDO_ 66

SDO_ 66

SDO_ 42

SDO_ 42

SDO_ 18

SDO_ 18

GND

VCC_ OUT1

GND

GND

GND

GND

GND

DTHERMK 0

SDI_ 16

SDI_ 12

SDI_ 28

SDI_ 24

SDI_ 40

J

K

SDI_ 15

SDI_ 35

SDI_ 43

SDI_ 27

RSV _IO

RSV _IO

VCC _IN2

GND

GND

GND

GND

GND

GND

SDO_ 238

SDO_ 238

SDO_ 230

SDO_ SDO_ 222 230

SDO_ 222

GND

SDO_ 166

SDO_ 166

SDO_ 142

SDO_ SDO_ 142 118

SDO_ 118

SDO_ 94

SDO_ 94

GND

SDO_ 70

SDO_ 70

SDO_ 46

SDO_ 46

SDO_ 22

SDO_ 22

GND

GND

GND

GND

GND

GND

GND

VCC _IN1

RSV _IO

SDI_ 16

SDI_ 32

SDI_ 28

SDI_ 44

SDI_ 40

K

L

SDI_ 31

SDI_ 35

SDI_ 59

SDI_ 27

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

GND

GND

GND

VCC_ VCC_ OUT1 OUT1

VCC_ OUT1

VCC_ VCC_ OUT1 OUT1

VCC_ VCC_ OUT1 OUT1

VCC_ OUT1

VCC_ VCC_ OUT1 OUT1

VCC_ VCC_ OUT1 OUT1

VCC_ VCC_ OUT1 OUT1

GND

GND

GND

GND

GND

GND

GND

RSV _IO

RSV _IO

SDI_ 36

SDI_ 32

SDI_ 48

SDI_ 44

SDI_ 60

L

M

SDI_ 31

SDI_ 51

SDI_ 59

SDI_ 39

RSV _IO

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

SDI_ 36

SDI_ 52

SDI_ 48

SDI_ 64

SDI_ 60

M N

SDO_ 282

VCC_ OUT1

VCC_ OUT1

VCC_ OUT1

VCC_ VCC_ VCC_ OUT1 OUT1 OUT1

VCC_ OUT1

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

N

SDI_ 47

SDI_ 51

SDI_ 71

SDI_ 39

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

GND

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 56

SDI_ 52

GND

SDI_ 64

SDI_ 76

P

SDI_ 47

SDI_ 67

SDI_ 71

SDI_ 55

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

GND

GND

GND

GND

GND

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

VCC_ OUT1

GND

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 56

GND

SDI_ 68

GND

SDI_ 76

P

LDO0

VCC _25_ VCO0

EXT CLK0

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

SDI_ 72

SDI_ 68

SDI_ 80

GND

R

R

GND

SDI_ 67

SDI_ 75

SDI_ 55

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

VCC EXT _25_ LDO2 _CLK2 VCO2

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

T

SDI_ 63

GND

SDI_ 75

SDI_ 87

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

EXT _CLK2

GND

LF2

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

LF0

GND

EXT CLK0

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

SDI_ 72

SDI_ 84

SDI_ 80

SDI_ 92

T

U

SDI_ 63

SDI_ 83

GND

SDI_ 87

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

GND

GND

GND

GND

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

GND

GND

GND

GND

GND

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

SDI_ 88

SDI_ 84

SDI_ 96

SDI_ 92

U

V

SDI_ 79

SDI_ 83

SDI_ 91

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

VDD _25

GND

VDD_ 18

VDD_ 18

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VDD_ 18

VDD_ 18

GND

VDD_ 25

GND

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

SDI_ 88

SDI_ 100

SDI_ 96

SDI_ 108

V

W

SDI_ 79

SDI_ 99

SDI_ 91

SDI_ 103

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

GND

GND

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 104

SDI_ 100

SDI_ 112

SDI_ 108

W

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 104

SDI_ 116

SDI_ 112

SDI_ 128

Y

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

GND

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 120

SDI_ 116

SDI_ 124

SDI_ 128

AA AB

Y

SDI_ 95

SDI_ 99

SDI_ 107

SDI_ 103

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

AA

SDI_ 95

SDI_ 115

SDI_ 107

SDI_ 119

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

VCC _IN2

VCC _IN2

GND

GND

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

AB

SDI_ 111

SDI_ 115

SDI_ 123

SDI_ 119

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

GND

GND

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ VCC_ 25_A 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 120

GND

SDI_ 124

SDI_ 144

AC

SDI_ 111

SDI_ 131

SDI_ 123

SDI_ 135

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

GND

GND

GND

GND

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

SDI_ 132

GND

SDI_ 144

AC

AD

SDI_ 127

SDI_ 131

SDI_ 139

SDI_ 135

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_ REF_ CLK

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

SDI_ 136

SDI_ 132

SDI_ 140

GND

AD

AE

SDI_ 127

SDI_ 147

SDI_ 139

SDI_ 151

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VDD_ 25

SDI_ 136

SDI_ 148

AE

AF

GND

SDI_ 147

SDI_ 155

SDI_ 151

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

VDD_ 25

GND

VDD_ 18

VDD_ 18

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VDD_ 18

VDD_ 18

GND

AG

SDI_ 143

GND

SDI_ 155

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

GND

GND

GND

AH

SDI_ 143

SDI_ 163

GND

SDI_ 167

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

EXT _CLK1

GND

LF1

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

LF_ DIGITAL

GND

AJ

SDI_ 159

SDI_ 163

SDI_ 171

SDI_ 167

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

EXT _CLK1

VCC_ 25_ VCO1

LDO1

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

VCC_ 25_A

VCC_ 25_A

GND

GND

VCC_ 25_A

VCC_ 25_A

GND

LDO_ DIGITAL

AK

SDI_ 159

SDI_ 175

SDI_ 171

SDI_ 183

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

VDD_ 18

GND

VDD_ 18

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND VCC _IN1

RSV _IO

RSV _IO

GND

GND

VCC _IN1

RSV _IO

RSV _IO

GND

RSV _IO

SDI_ 140

SDI_ 160

GND

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

SDI_ 152

SDI_ 148

SDI_ 156

SDI_ 160

AF

GND

GND

GND

GND

GND

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

SDI_ 152

SDI_ 164

SDI_ 156

SDI_ 176

AG

EXT_ CLK_ DIGITAL

GND

GND

GND

GND

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 168

SDI_ 164

SDI_ 172

SDI_ 176

AH

VCC_ EXT_ VCO_ CLK_ DIGITAL DIGITAL

GND

GND

VCC _IN1

VCC _IN1

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 168

SDI_ 180

SDI_ 172

SDI_ 192

AJ

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 184

SDI_ 180

SDI_ 188

SDI_ 192

AK AL

RSV _DNC

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 184

SDI_ 196

SDI_ 188

P_ADD P_ADD P_ADD P_ADD P_ADD P_ADD P_ADD P_ADD P_ADD P_ADD P_ADD P_ADD UPDATE UPDATE UPDATE UPDATE UPDATE UPDATE UPDATE UPDATE _EN0 _EN1 _EN2 _EN3 _EN4 _EN5 _EN6 _EN7 0 1 2 3 4 5 6 7 8 9 10 11

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

SDI_ 196

SDI_ 204

SDI_ 208

AM

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

SDI_ 200

GND

SDI_ 204

SDI_ 224

AN

GND

VCC _IN1

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

SDI_ 200

SDI_ 212

GND

SDI_ 224

AP

GND

GND

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

SDI_ 232

SDI_ 212

SDI_ 220

GND

AR

GND

RSV _IO

RSV _IO

RSV _IO

SDI_ 232

SDI_ 216

SDI_ 220

SDI_ 240

AT

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 248

SDI_ 216

SDI_ 236

SDI_ 240

AU

AL

SDI_ 179

SDI_ 175

SDI_ 187

SDI_ 183

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

GND

GND

GND

GND

GND

SDI_ 179

SDI_ 191

SDI_ 187

SDI_ 199

RSV _IO

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

GND

AN

SDI_ 195

SDI_ 191

SDI_ 203

SDI_ 199

RSV _IO

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

VCC _IN2

GND

GND

HOST_ SCLK S/P

AP

SDI_ 195

SDI_ 207

SDI_ 203

SDI_ 215

RSV _IO

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

VDD_ 18

AR

GND

SDI_ 207

SDI_ 219

SDI_ 215

GND

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

VDDIO VDDIO VDDIO GND _D _D _D

AT

SDI_ 211

GND

SDI_ 219

GND

SDI_ 231

RSV _IO

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

AU

SDI_ 211

SDI_ 223

GND

SDI_ 235

SDI_ 231

RSV _IO

RSV _IO

RSV _IO

RSV _IO

GND

GND

GND

GND

GND

AV

SDI_ 227

SDI_ 223

SDI_ 239

SDI_ 235

SDI_ 251

RSV _IO

RSV _IO

RSV _IO

VCC _IN2

GND

GND

GND

GND

GND

GND

GND

GND

AW

SDI_ 227

SDI_ 243

SDI_ 239

SDI_ 255

SDI_ 251

RSV _IO

RSV _IO

GND

GND

GND

GND

GND

GND

VCC_ 25_A

VCC_ OUT2

VCC_ OUT2

VCC_ OUT2

GND

CLK_ REF_ IN CLK_ REF_ OUT

SDI_ 208

AM

GND

GND

RSV _DNC

GND

TCK

TMS

TDO

SDIN SDOUT S_CS

VDDIO GND VDDIO _D _D GND

TDI

GND

GND

P_CS P_R/W P_ADS GND

GND

GND

GND

GND

GND

GND

GND

GND RSV _DNC

GND RSV _DNC

GND

P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT P_DAT GND 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GND VDDIO VDDIO GND _D _D VDD_ 18

GND

VDD_ VDD_ 18 18

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

GND

GND

GND

VCC_ VCC_ OUT2 OUT2

GND

GND

GND

GND

GND

GND

VDDIO GND _D

GND

GND

GND

GND

GND

RSV _IO

VDD_ 18

VDDIO VDD_ 18 _D

GND

VDD_ VDDIO 18 _D

GND

VDDIO VDDIO GND VDDIO VDDIO _D _D _D _D

GND

VDD_ 18

GND

VDD_ 18

GND

VDD_ 18

VDD_ 18

VDD_ 18

GND

VDD_ 18

GND

POR_ DFT

RSV _DNC

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

GND

GND

GND

VCC_ 25_A

GND

RSV _IO

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

VCC_ OUT2

GND

GND

GND

GND

VCC_ 25_A

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

VCC_ VCC_ OUT2 OUT2

VCC_ OUT2

VCC_ OUT2

VCC_ VCC_ OUT2 OUT2

RESET

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

VCC _IN1

RSV _IO

RSV _IO

RSV _IO

RSV _IO

SDI_ 248

SDI_ 228

SDI_ 236

SDI_ 256

AV

VCC_ VCC_ VCC_ OUT2 OUT2 OUT2

VCC_ OUT2

VCC_ OUT2

VCC_ VCC_ OUT2 OUT2

VCC_ VCC_ OUT2 OUT2

VCC_ OUT2

GND

GND

GND

GND

GND

GND

GND

RSV _IO

RSV _IO

RSV _IO

SDI_ 260

SDI_ 228

SDI_ 252

SDI_ 256

AW

AY

SDI_ 247

SDI_ 243

SDI_ 259

SDI_ 255

SDI_ 271

RSV _IO

VCC _IN2

GND

GND

GND

GND

GND

VCC_ 25_A

GND

SDO_ 265

SDO_ 265

SDO_ 241

SDO_ 241

SDO_ 217

SDO_ 217

GND

SDO_ 193

SDO_ 193

SDO_ 169

SDO_ 169

SDO_ 145

SDO_ 145

SDO_ 121

SDO_ 121

GND

SDO_ 65

SDO_ 65

SDO_ 57

SDO_ 57

SDO_ 49

SDO_ 49

GND

GND

GND

GND

GND

GND

VCC _IN1

RSV _IO

RSV _IO

SDI_ 260

SDI_ 244

SDI_ 252

SDI_ 272

AY

BA

SDI_ 247

SDI_ 263

SDI_ 259

SDI_ 275

SDI_ 271

DTHERMK 2

GND

GND

GND

GND

GND

VCC_ OUT2

GND

SDO_ 269

SDO_ 269

SDO_ 245

SDO_ 245

SDO_ 221

SDO_ 221

SDO_ 197

SDO_ 197

GND

SDO_ 173

SDO_ 173

SDO_ 133

SDO_ 133

SDO_ 125

SDO_ 125

SDO_ 85

SDO_ 85

GND

SDO_ 61

SDO_ 61

SDO_ 21

SDO_ 21

SDO_ 25

SDO_ 25

VCC_ OUT2

GND

GND

GND

GND

GND

GND

RSV _IO

SDI_ 264

SDI_ 244

SDI_ 268

SDI_ 272

BA

SDI_ 279

SDI_ 275

SDO_ 9

SDI_ 264

SDI_ 276

BB

BB

SDI_ 267

SDI_ 263

DTHERMA 2

GND

GND

GND

GND

GND

GND

SDO_ 273

SDO_ 273

GND

SDO_ 249

SDO_ 249

SDO_ 225

SDO_ 225

SDO_ 201

SDO_ 201

SDO_ 177

SDO_ 177

GND

SDO_ 153

SDO_ 153

SDO_ 129

SDO_ 129

SDO_ 105

SDO_ 105

SDO_ 81

SDO_ 81

GND

SDO_ 41

SDO_ 41

SDO_ 33

SDO_ 33

SDO_ 9

GND

GND

GND

GND

GND

GND

VCC _IN1

SDI_ 268

SDI_ 280

Legend:

BC

SDI_ 267

SDI_ 283

SDI_ 279

RSV _DNC

GND

GND

GND

GND

GND

VCC_ OUT2

SDO_ 277

SDO_ 277

SDO_ 257

SDO_ 257

GND

SDO_ 229

SDO_ 229

SDO_ 205

SDO_ 205

SDO_ 181

SDO_ 181

SDO_ 157

SDO_ 157

GND

SDO_ 117

SDO_ 117

SDO_ 93

SDO_ 93

SDO_ 69

SDO_ 69

SDO_ 73

SDO_ 73

GND

SDO_ 37

SDO_ 37

SDO_ 17

SDO_ 17

SDO_ 1

SDO_ 1

VCC_ OUT2

GND

GND

GND

GND

GND

GND

SDI_ 276

SDI_ 284

SDI_ 280

BC

Power

BD

SDI_ 287

SDI_ 283

VCC _IN2

GND

GND

GND

GND

GND

GND

SDO_ 281

SDO_ 281

SDO_ 253

SDO_ 253

SDO_ 233

SDO_ 233

GND

SDO_ 209

SDO_ 209

SDO_ 185

SDO_ 185

SDO_ 161

SDO_ 161

SDO_ 141

SDO_ 141

GND

SDO_ 113

SDO_ 113

SDO_ 89

SDO_ 89

SDO_ 97

SDO_ 97

SDO_ 45

SDO_ 45

GND

SDO_ 53

SDO_ 53

SDO_ 13

SDO_ 13

SDO_ 5

SDO_ 5

DTHERMK 1

GND

GND

GND

GND

GND

RSV _DNC

SDI_ 284

EXT _PG0

BD

Ground

BE

SDI_ 287

GND

GND

GND

GND

GND

GND

VCC_ OUT2

SDO_ 285

SDO_ 285

SDO_ 261

SDO_ 261

SDO_ 237

SDO_ 237

SDO_ 213

SDO_ 213

GND

SDO_ 189

SDO_ 189

SDO_ 165

SDO_ 165

SDO_ 149

SDO_ 149

SDO_ 137

SDO_ 137

GND

SDO_ 109

SDO_ 109

SDO_ 101

SDO_ 101

SDO_ 77

SDO_ 77

SDO_ 29

SDO_ 29

GND

SDO_ 67

SDO_ 67

SDO_ 31

SDO_ 31

SDO_ 11

SDO_ 11

DTHERMA 1

GND

GND

GND

GND

GND

RSV _DNC

EXT _PG0

BE

Input

BF

GND

GND

GND

GND

GND

GND

GND

SDO_ 279

SDO_ 279

SDO_ 263

SDO_ 263

SDO_ 247

SDO_ 247

SDO_ 231

SDO_ 231

SDO_ 215

SDO_ 215

GND

SDO_ 199

SDO_ 199

SDO_ 183

SDO_ 183

SDO_ 167

SDO_ 167

SDO_ 151

SDO_ 151

GND

SDO_ 135

SDO_ 135

SDO_ 119

SDO_ 119

SDO_ 103

SDO_ 103

SDO_ 87

SDO_ 87

GND

SDO_ 63

SDO_ 63

SDO_ 35

SDO_ 35

SDO_ 27

SDO_ 27

RSV _DNC

GND

GND

GND

GND

GND

GND

BF

SDO_ 283

SDO_ 283

SDO_ 267

SDO_ 267

SDO_ 251

SDO_ 251

SDO_ 235

SDO_ 235

SDO_ 219

SDO_ 219

GND

SDO_ 203

SDO_ 203

SDO_ 187

SDO_ 187

SDO_ 171

SDO_ 171

SDO_ 155

SDO_ 155

SDO_ 139

SDO_ 139

GND

SDO_ 123

SDO_ 123

SDO_ 107

SDO_ 107

SDO_ 91

SDO_ 91

SDO_ 71

SDO_ 71

GND

SDO_ 83

SDO_ 83

SDO_ 15

SDO_ 15

SDO_ 3

SDO_ 3

VCC_ OUT2

GND

GND

GND

GND

NC

BG

SDO_ DIGITAL _CL_SEL GND 7

GND

NC

NC

BH

SDO_ 19

NC

NC

NC

BJ

46 47

48

49

NC

GND

GND

GND

GND

RSV _DNC

BH

NC

NC

GND

GND

RSV _DNC

SDO_ 287

SDO_ 287

SDO_ 271

SDO_ 271

SDO_ 255

SDO_ 255

SDO_ 239

SDO_ 239

SDO_ 223

SDO_ 223

GND

SDO_ 211

SDO_ 211

SDO_ 195

SDO_ 195

SDO_ 179

SDO_ 179

SDO_ 159

SDO_ 159

SDO_ 147

SDO_ 147

GND

SDO_ 131

SDO_ 131

SDO_ 115

SDO_ 115

SDO_ 99

SDO_ 99

SDO_ 75

SDO_ 75

GND

SDO_ 55

SDO_ 55

SDO_ 47

SDO_ 47

SDO_ 51

SDO_ 51

SDO_ 7

BJ

NC

NC

NC

GND MON1 MON1

SDO_ 275

SDO_ 275

SDO_ 259

SDO_ 259

SDO_ 243

SDO_ 243

SDO_ 227

SDO_ 227

GND

SDO_ 207

SDO_ 207

SDO_ 191

SDO_ 191

SDO_ 175

SDO_ 175

SDO_ 163

SDO_ 163

SDO_ 143

SDO_ 143

GND

SDO_ 127

SDO_ 127

SDO_ 111

SDO_ 111

SDO_ 95

SDO_ 95

SDO_ 79

SDO_ 79

GND

SDO_ 59

SDO_ 59

SDO_ 39

SDO_ 39

SDO_ 23

SDO_ 23

SDO_ 43

SDO_ SDO_ 19 43

1

2

3

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

24 25

26

27

28

29

30

33

34

Output

BG

Digital Control Reserved

4

5

6

22 23

31 32

35 36

37 38 39

40

41 42

43

44

45

GND

Figure 1-1: GX3190 Ball Assignment Overview (Top View)

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

5 of 47 Proprietary & Confidential

1.2 Ball Descriptions Table 1-1 shows the descriptions for selected GX3190 balls. For a comprehensive list of balls from the GX3190 Crosspoint family, please refer to GX3290 (and family) Crosspoint Ball Guide. Table 1-1: Ball Descriptions Ball #

Ball Name

I/O

Description

AN16

SCLK

I

Serial Host Interface Clock. If unused, tie to ground.

AN17

SDIN

I

Serial Host Interface Data Input. If unused, tie to ground.

AN18

SDOUT

O

Serial Host Interface Data Output. Leave NC if not used.

AN19

S_CS

I

Serial Host Interface Chip Select. Active-LOW. Must be tied LOW when HOST_S/P is set LOW.

AL23

P_CS

I

Parallel host interface chip select. Active-LOW. Must be tied LOW when HOST_S/P is set HIGH.

AL24

P_R/W

I

Selects between read and write operations on the parallel host interface. HIGH = Read, LOW = Write. If unused, tie to ground.

AL25

P_ADS

I

Address and Data Strobe. Strobe signal for latching the address and data into the chip. See Section 4.12.1 for timing information. If unused, tie to ground.

AM27 - AM16

P_ADD[11:0]

I

Address bus for the parallel interface. If unused, tie to ground.

AN35 - AN20

P_DAT[15:0]

I/O

AN15

HOST_S/P

I

Host Interface Select pin. Selects between serial and parallel host interfaces. Serial host interface is enabled when HIGH, parallel host interface is enabled when LOW. Must assert RESET after changing this pin.

AM35 - AM28

UPDATE_EN [7:0]

I

Update Strobes used to update the switch matrix configuration (see Section 4.5). If unused, weak pull-down to ground.

AR33

POR_DFT

I

This pin disables the Power On Reset circuitry when HIGH. Weak internal pull-down. Leave NC if not used.

AR35

RESET

I

Active-LOW reset for entire chip (see Section 4.11 for timing details). Weak internal pull-up. Leave NC if not used.

AL17

TCK

I

JTAG test clock. Weak pull-up if not used.

AL18

TMS

I

JTAG test mode start. Weak pull-up if not used.

AL19

TDO

O

JTAG test data out. Leave NC if not used.

AL20

TDI

I

JTAG test data in. Weak pull-up if not used.

Serial Interface I/O

Parallel Interface I/O

Bi-directional data bus for the parallel interface. If P_CS is HIGH, these pins are configured as inputs. Leave NC if parallel interface is not used. If unused, tie to ground.

General I/O

Test Interface

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

6 of 47 Proprietary & Confidential

Table 1-1: Ball Descriptions (Continued) Ball #

Ball Name

I/O

Description

R17

LDO2



LDO filter capacitor for VCO_2. Connect through a 220nF capacitor to ground. See Figure 3-3 for configuration.

R33

LDO0



LDO filter capacitor for VCO_0. Connect through a 220nF capacitor to ground. See Figure 3-3 for configuration.

T17

LF2



PLL loop filter capacitor for VCO_2. See Figure 3-3 for configuration. Leave NC if not used.

T33

LF0



PLL loop filter capacitor for VCO_0. See Figure 3-3 for configuration. Leave NC if not used.

AH17

LF1



PLL loop filter capacitor for VCO_1. See Figure 3-3 for configuration. Leave NC if not used.

AH33

LF_DIGITAL



PLL loop filter capacitor for VCO_DIGITAL. Connect through a 47nF capacitor to ground. See Figure 3-3 for configuration.

AJ17

LDO1



LDO filter capacitor for VCO_1. Connect through a 220nF capacitor to ground. See Figure 3-3 for configuration.

AJ33

LDO_DIGITAL



LDO filter capacitor for VCO_DIGITAL. Connect through a 220nF capacitor to ground. See Figure 3-3 for configuration.

AE35

REF_CLK_IN



Connect a 27MHz crystal between this ball and REF_CLK_OUT. See Section 4.9 and Figure 3-5.

AF35

REF_CLK_OUT



Connect a 27MHz crystal between this ball and REF_CLK_IN. See Section 4.9 and Figure 3-5. Leave NC if not used.

R15

EXT_CLK2

I

External CML clock for Pattern Generator 1 (true). Leave NC if not used.

R35

EXT_CLK0

I

External CML clock for Pattern Checker 0 (true). Leave NC if not used.

T15

EXT_CLK2

I

External CML clock for Pattern Generator 1 (complement). Leave NC if not used.

T35

EXT_CLK0

I

External CML clock for Pattern Checker 0 (complement). Leave NC if not used.

AH15

EXT_CLK1

I

External CML clock for Pattern Checker 1 (complement). Leave NC if not used.

AH35

EXT_CLK _DIGITAL

I

External CML clock for Pattern Transmitter 0/Digital Core (complement). Leave NC if not used.

AJ15

EXT_CLK1

I

External CML clock for Pattern Checker 1 (true). Leave NC if not used.

AJ35

EXT_CLK _DIGITAL

I

External CML clock for Pattern Transmitter 0/Digital Core (true). Leave NC if not used.

BH45

DIGITAL_CL_SEL

I

Clock select between external clock source (EXT_CLK_DIGITAL) and internal VCO (VCO_DIGITAL). This pin has a weak internal pull-up, and should be pulled LOW to use an external clock.

Filtering

Crystal Oscillator

External Clocks

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

7 of 47 Proprietary & Confidential

Table 1-1: Ball Descriptions (Continued) Ball #

Ball Name

I/O

Description

E8

DTHERMA3



Thermometer 3 diode terminals. See Section 4.8. Leave NC if not used.

F9

DTHERMK3



Thermometer 3 diode terminals. See Section 4.8. Leave NC if not used.

H45

DTHERMA0



Thermometer 0 diode terminals. See Section 4.8. Leave NC if not used.

J44

DTHERMK0



Thermometer 0 diode terminals. See Section 4.8. Leave NC if not used.

BA6

DTHERMK2



Thermometer 2 diode terminals. See Section 4.8. Leave NC if not used.

BB5

DTHERMA2



Thermometer 2 diode terminals. See Section 4.8. Leave NC if not used.

BD41

DTHERMK1



Thermometer 1 diode terminals. See Section 4.8. Leave NC if not used.

BE42

DTHERMA1



Thermometer 1 diode terminals. See Section 4.8. Leave NC if not used.

A44

MON0

O

Serial monitoring output 0 (complement). Leave NC if not used.

A45

MON0

O

Serial monitoring output 0 (true). Leave NC if not used.

BJ5

MON1

O

Serial monitoring output 1 (true). Leave NC if not used.

BJ6

MON1

O

Serial monitoring output 1 (complement). Leave NC if not used.

Temperature Sensors

Monitors

External Pattern Generators E1

EXT_PG1

I

Serial pattern generator input 1 (complement). Leave NC if not used.

F1

EXT_PG1

I

Serial pattern generator input 1 (true). Leave NC if not used.

BD49

EXT_PG0

I

Serial pattern generator input 0 (true). Leave NC if not used.

BE49

EXT_PG0

I

Serial pattern generator input 0 (complement). Leave NC if not used.

Reserved - Do Not Connect B45, C44, D7, E2, F3, G46, AL32, AL33, AL34, AL35, AR34, BC4, BD47, BE48, BF43, BG6, BH5,

RSV_DNC



Reserved. Do not connect.

SDI/SDO Refer to the GX3290 (and family) Crosspoint Ball Guide for a detailed list of SDI and SDO balls.

Power Refer to the GX3290 (and family) Crosspoint Ball Guide for a detailed list of power supply balls.

Ground Refer to the GX3290 (and family) Crosspoint Ball Guide for a detailed list of ground balls.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

8 of 47 Proprietary & Confidential

2. Electrical Characteristics 2.1 Absolute Maximum Ratings Table 2-1: Absolute Maximum Ratings Parameter

Value

Supply Voltage (VDD_18)

-0.3V to +2.1V

Supply Voltage (VCC_IN1, VCC_IN2, VCC_25_A, VDD_25, VDDIO_D, VCC_OUT1, VCC_OUT2, VCC_25_REF_CLK, VCC_25_VCO0, VCC_25_VCO1, VCC_25_VCO2)

-0.3V to +2.8V

-0.3 to (0.3 + min[VCC_IN1, VCC_25_A])V for even numbered SDI inputs and EXT_PG0 Input Voltage Range -0.3 to (0.3 + min[VCC_IN2, VCC_25_A])V for odd numbered SDI inputs and EXT_PG1 ESD Voltage (HBM; all balls)

1kV

ESD Voltage (CDM; all balls)

100V

Storage Temperature Range

-50ºC to +125ºC

Operating Temperature Range

0ºC to 85ºC

Solder Reflow Temperature

245ºC

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

9 of 47 Proprietary & Confidential

2.2 Recommended Operating Conditions Table 2-2: Recommended Operating Conditions Parameter

Symbol

Min

Typ

Max

Units

Notes

VCC_25_A, VCC_25_REF_CLK

2.375

2.5

2.625

V

1

1.14

1.2

1.26

V

2

1.71

1.8

1.89

V

3

2.375

2.5

2.625

V

1

1.14

1.2

1.26

V

2

1.71

1.8

1.89

V

3

2.375

2.5

2.625

V

1

1.71

1.8

1.89

V

3

1.71

1.8

1.89

V

3

2.375

2.5

2.625

V

1

VDD_25

2.375

2.5

2.625

V

1

Operating Temperature Range (case)

TOP

0

25

85

°C



Start-up Temperature Range

TSU

-40



85

°C



VCC_IN1, VCC_IN2

Operating Power Supply

VCC_OUT1, VCC_OUT2

VDD_18 VDDIO_D

Notes: 1. 2.5V supply. 2. 1.2V supply. 3. 1.8V supply.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

10 of 47 Proprietary & Confidential

2.3 DC Electrical Characteristics Table 2-3: DC Electrical Characteristics Parameter

Symbol

Conditions

Min

Typ

Max

Units

Note

All channels active, VCC_IN[1,2] = VCC_OUT[1,2] = 1.2V±5%, ΔVOD = 200mV, ΔVSDI = 800mVppd, de-emphasis=6, without Pattern Generator/Checker, AC-coupled



31.51

42

W

1

All channels active, VCC_IN[1,2] = VCC_OUT[1,2] = 1.2V±5%, ΔVOD = 400mV, ΔVSDI = 800mVppd, de-emphasis=6, without Pattern Generator/Checker, AC-coupled



35.94



W

1

All channels active, VCC_IN[1,2] = VCC_OUT[1,2] = 2.5V±5%, ΔVOD = 800mV, ΔVSDI = 800mVppd, de-emphasis=6, without Pattern Generator/Checker, AC-coupled



41.86

53

W

1

All channels active, VCC_IN[1,2] = VCC_OUT[1,2] = 2.5V±5%, ΔVOD = 1200mV, ΔVSDI = 800mVppd, de-emphasis=6, without Pattern Generator/Checker, AC-coupled



46.82

58.5

W

1

PRBS Generator/Checker



1.86



W



RESET = 0



0.5



W



With de-emphasis, without Pattern Generator/Checker



13.4

15.8

A



Without de-emphasis, without Pattern Generator/Checker



12.4



A



System

Power

Power in Reset Mode

Current - VCC_25_A

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

P

P

ICC_25_A

www.semtech.com

11 of 47 Proprietary & Confidential

Table 2-3: DC Electrical Characteristics (Continued) Parameter

Current - VCC_IN1

Current - VCC_IN2

Current - VCC_OUT1

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

Symbol

Conditions

Min

Typ

Max

Units

Note

All inputs active, ΔVSDI = 1.2Vppd, DC-coupled



0.85



A

2

All inputs active, ΔVSDI = 1.2Vppd, AC-coupled

-0.2



0

A

3

All inputs active, ΔVSDI = 1.2Vppd, DC-coupled



0.85



A

2

All inputs active, ΔVSDI = 1.2Vppd, AC-coupled

-0.2



0

A

3

VCC_OUT1 = 1.2V ±5%, all outputs active, ΔVOD = 200mV, with De-emphasis



0.31

0.38

A

4

VCC_OUT1 = 1.2V ±5%, all outputs active, ΔVOD = 400mV, with De-emphasis



0.59



A

4

VCC_OUT1 = 1.2V ±5%, all outputs active, ΔVOD = 800mV, with De-emphasis



1.11



A

4, 5

VCC_OUT1 = 2.5V ±5%, all outputs active, ΔVOD = 200mV, with De-emphasis



0.33



A

4

VCC_OUT1 = 2.5V ±5%, all outputs active, ΔVOD = 400mV, with De-emphasis



0.59



A

4

VCC_OUT1 = 2.5V ±5%, all outputs active, ΔVOD = 800mV, with De-emphasis



1.22

1.55

A

4

VCC_OUT1 = 2.5V ±5%, all outputs active, ΔVOD = 1200mV, with De-emphasis



1.63

2.13

A

4

ICC_IN1

ICC_IN2

ICC_OUT1

www.semtech.com

12 of 47 Proprietary & Confidential

Table 2-3: DC Electrical Characteristics (Continued) Parameter

Current - VCC_OUT2

Symbol

ICC_OUT2

Conditions

Min

Typ

Max

Units

Note

VCC_OUT2 = 1.2V ±5%, all outputs active, ΔVOD = 200mV, with De-emphasis



0.31

0.38

A

4

VCC_OUT2 = 1.2V ±5%, all outputs active, ΔVOD = 400mV, with De-emphasis



0.59



A

4

VCC_OUT2 = 1.2V ±5%, all outputs active, ΔVOD = 800mV, with De-emphasis



1.11



A

4,5

VCC_OUT2 = 2.5V ±5%, all outputs active, ΔVOD = 200mV, with De-emphasis



0.33



A

4

VCC_OUT2 = 2.5V ±5%, all outputs active, ΔVOD = 400mV, with De-emphasis



0.59



A

4

VCC_OUT2 = 2.5V ±5%, all outputs active, ΔVOD = 800mV, with De-emphasis



1.22

1.55

A

4

VCC_OUT2 = 2.5V ±5%, all outputs active, ΔVOD = 1200mV, with De-emphasis



1.63

2.13

A

4

Current - VCC_25_REF_CLK

ICC_25 _REF_CLK





20

40

mA



Current - VCC_VCO_DIGITAL

ICC_VCO _DIGITAL





6

10

mA



Current - VCC_25_VCO0

ICC_25 _VCO0





6

10

mA



Current - VCC_25_VCO1

ICC_25 _VCO1





6

10

mA



Current - VCC_25_VCO2

ICC_25 _VCO2





6

10

mA



Current - VDD_18

IDD_18

VDD_18 = 1.8V±5%



260

750

mA



Current - VDD_25

IDD_25

VDD_25 = 2.5V±5%



20

40

mA



VDDIO_D = 1.8V±5%, all inputs active (15pF load)



50

100

mA



VDDIO_D = 2.5V±5%, all inputs active (15pF load)



70

140

mA



Current - VDDIO_D

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

IDDIO_D

www.semtech.com

13 of 47 Proprietary & Confidential

Table 2-3: DC Electrical Characteristics (Continued) Parameter

Symbol

Conditions

Min

Typ

Max

Units

Note

Differential



100



Ω

Single-ended



50



Ω

Differential



100



Ω



VCC_IN [1,2] (ΔVSDI _max/4)



VCC_IN [1,2] (ΔVSDI _min/4)

V

7, 8, 9, 10

VCC_OUT [1,2] (ΔVOD_ max/4)



VCC_OUT [1,2] (ΔVOD_ min/4)

V



V

11

V

11

High-speed Inputs/Outputs Serial Input Termination Serial Output Termination

— —

Serial Input Common Mode Voltage

VICM

VCC_IN[1,2] = 1.2V±5%, VCC_IN[1,2] = 1.8V±5%, VCC_IN[1,2] = 2.5V±5%, terminated to VCC_IN[1,2]

Serial Output Common Mode Voltage

VOCM

VCC_OUT[1,2] = 1.2V±5%, VCC_OUT[1,2] = 1.8V±5%, VCC_OUT[1,2] = 2.5V±5%

6

Host Interface Logic HIGH voltage on digital input pins

VIH



Logic LOW voltage on digital input pins

VIL



Output Logic LOW

Output Logic HIGH

0.7 x VDDIO_D



VDDIO_D

+ 0.3 0.3 x

-0.3



IOL = 2mA, 2.5V operation





0.7

V

11

IOL = 2mA, 1.8V operation





0.45

V

11

IOH = -2mA, 2.5V operation

1.7





V

11

IOH = -2mA, 1.8 operation

1.35





V

11

VDDIO_D

VOL

VOH

Notes: 1. Total Maximum Power is lower than individual maximum currents multiplied by individual maximum supply voltages because the individual maximum currents can not occur simultaneously (they occur at different conditions). 2. The ICC_IN1 and ICC_IN2 current flows out of the GX3190 and into the input signal source, and is subject to variability in that source. Some variability in input signal source current draw should be assumed, and up to ±15% is possible. 3. When the common mode termination points for AC-coupled inputs are connected to VCC_IN1, VCC_IN2, the GX3190 equalizer input bias currents can lead to current flowing out of the VCC_IN1, VCC_IN2 supply pins. 4. Currents apply for output DC-coupled applications. When AC-coupled, the current draw may be increased by up to 2x. 5. For DC-coupled applications only. 6. Input termination is selectable between 100Ω differential and 50Ω single-ended. See Section 3. Input/Output Equivalent Circuits. 7. DC common mode current into/out of each EQ input differential pair should not exceed 14mA, and the current into/out of each half of the differential pair should not exceed 14mA. 8. No more than VCC_IN[1,2] - ΔVSDI_actual/4. 9. Where it is understood that VCC_IN[1,2] have a ±5% tolerance. 10.In no case should either side of the input differential pair be allowed to rise above VCC_25_A + 0.3V or fall below -0.3V. 11.Specifications relate to all host interface pins.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

14 of 47 Proprietary & Confidential

2.4 AC Electrical Characteristics Table 2-4: AC Electrical Characteristics Parameter

Symbol

Conditions

Min

Typ

Max

Units

Notes

System Serial Input Data Rate Propagation Delay Propagation Delay Difference

DRSDO







3.5

Gb/s



tP







6

ns

1

ΔtP

Between any two channels





5.5

ns

1





0.9



1.8

μs

2

ΔVSDI



100



1200

mVppd



VCC_OUT[1,2] = 1.2V±5%, Output = 200mVppd

150

225

300

mVppd



VCC_OUT[1,2] = 1.2V±5%, Output = 400mVppd

300

450

600

mVppd



VCC_OUT[1,2] = 1.2V±5%, Output = 800mVppd

600

900

1200

mVppd

3

VCC_OUT[1,2] = 1.8V±5%, Output = 200mVppd

150

225

300

mVppd



VCC_OUT[1,2] = 1.8V±5%, Output = 400mVppd

300

450

600

mVppd



VCC_OUT[1,2] = 1.8V±5%, Output = 800mVppd

600

900

1200

mVppd



VCC_OUT[1,2] = 2.5V±5%, Output = 200mVppd

150

225

300

mVppd



VCC_OUT[1,2] = 2.5V±5%, Output = 400mVppd

300

450

600

mVppd



VCC_OUT[1,2] = 2.5V±5%, Output = 800mVppd

600

900

1200

mVppd



VCC_OUT[1,2] = 2.5V±5%, Output = 1200mVppd

1000

1350

1700

mVppd



All output swings. 20% to 80%.





150

ps



High-speed Inputs/Outputs Output Switch Time using Update Enable Strobes Input Voltage Swing

Output Voltage Swing

ΔVOD

Output Rise/Fall Time

tr/tf

Duty Cycle Distortion



All data rates, all output swings.

-50



+50

ps



Additive Jitter



All inputs active, peak-to-peak (PRBS 31)





60

psp-p



Input Trace Equalization





0



12

dB

4

Range

0



11.2

dB

Output De-Emphasis

— Maximum Setting

9





dB

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

4

www.semtech.com

15 of 47 Proprietary & Confidential

Table 2-4: AC Electrical Characteristics (Continued) Parameter

Symbol

Conditions

Min

Typ

Max

Units

Notes

Host Interface Parallel Rate of Operation





0.1



112.5

Mop/s

5, 6, 7

Serial Interface Operating Speed





0.1



25

MHz

5, 8

Notes: 1. See Section 4.4 for more details. 2. This parameter is the time it takes for the outputs to change to a new switch matrix configuration when the corresponding strobe signal assigned to that output is asserted. 3. DC-coupled. 4. Selectable, maximum gain occurs at 3Gb/s (or 1.5GHz). 5. Specifications relate to all host interface pins. 6. Millions of operations per second. 7. For detailed timing specifications, see Section 4.12.1. 8. For detailed timing specifications, see Section 4.12.2.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

16 of 47 Proprietary & Confidential

3. Input/Output Equivalent Circuits Note: Please refer to the following supplementary documents: Crosspoint Design Guide and EB-GX3290 Schematics, PCB Layout and Bill of Materials. VCC_25_A HIZ_ACCM VCC_25_A VCC_IN[1,2] SDI[0:287] 50Ω

50Ω SDI[0:287]

EQ_TERMINATION[287:0] HIZ_ACCM

Figure 3-1: Equalizer Input Equivalent Circuit (includes the EXT_PG0 & EXT_PG1 inputs) VCC_OUT[1,2]

50Ω

50Ω

VCC_OUT[1,2] SDO[0:287]

VCC_OUT[1,2] SDO[0:287]

Delayed

Main

Figure 3-2: Trace Driver Output Equivalent Circuit (includes the MON0 & MON1 outputs) Note: the MON0 and MON1 outputs are terminated to the VCC_25_A supply.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

17 of 47 Proprietary & Confidential

If the internal temperature ADCs, pattern generators, and checkers are used, these connections are required.

If the internal temperature ADCs, pattern generators, and checkers are not used, only these connections are required.

VCC_25_A

VCC_VCO_DIGITAL VCC_25_VCO0 VCC_25_VCO1 VCC_25_VCO2

267Ω

267Ω

1µF

10nF

10µF

LF_DIGITAL LF2 47nF

1µF

10µF

LF0 LF1 LF2

LF_DIGITAL 47nF

47nF



LDO_DIGITAL LDO0 LDO1 LDO2

VCC_25_VCO0 VCC_25_VCO1 VCC_25_VCO2

VCC_VCO_DIGITAL

10nF

LF0 LF1

VCC_25_A



LDO0 LDO1 LDO2

LDO_DIGITAL 220nF

220nF

220nF

Note 1: Each of the VCC_VCO_DIGITAL, VCC_VCO0, VCC_VCO1, and VCC_VCO2 pins require an independent RC network. Note 2: The LF_DIGITAL and LF2 pins each require an independent RC network. Note 3: The LF0 and LF1 pins each require an independent capacitor to ground. Note 4: Each of the LDO_DIGITAL, LDO0, LDO1, and LDO2 pins require an independent capacitor to ground. Note 5: VCC_VCO_DIGITAL, LF_DIGITAL and LDO_DIGITAL used for pattern generator TX0, digital communication (GSPI and APPI), and the internal temperature ADC for JNCTN_TEMP_1. VCC_VCO_DIGITAL, LF_DIGITAL and LDO_DIGITAL must always be connected. Note 6: VCC_25_VCO0, LF0, LDO0 used for pattern checker RX0 and the internal temperature ADC for JNCTN_TEMP_0. If VCC_25_VCO0, LF0, and LDO0 are not connected, pattern checker RX0 and the internal temperature ADC for JNCTN_TEMP_0 will not operate. Note 7: VCC_25_VCO1, LF1, LDO1 used for pattern checker RX1 and the internal temperature ADC for JNCTN_TEMP_2. If VCC_25_VCO1, LF1, and LDO1 are not connected, pattern checker RX1 and the internal temperature ADC for JNCTN_TEMP_2 will not operate. Note 8: VCC_25_VCO2, LF2, LDO2 used for pattern generator TX1 and the internal temperature ADC for JNCTN_TEMP_3. If VCC_25_VCO2, LF2, and LDO2 are not connected, pattern generator TX1 and the internal temperature ADC for JNCTN_TEMP_3 will not operate.

Figure 3-3: Required connections for VCC_VCO_DIGITAL, VCC_25_VCO0, VCC_25_VCO1, VCC_25_VCO2, LF_DIGITAL, LF0, LF1, LF2, LDO_DIGITAL, LDO0, LDO1 and LDO2

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

18 of 47 Proprietary & Confidential

DIGITAL_CL_SEL EXT_CLK_DIGITAL /2

0

EXT_CLK_DIGITAL REF_CLK_IN REF_CLK_OUT

XTAL OSC.

Pattern TX0 CMU

1

Note: The clock used to drive Pattern Generator TX0 is also used to derive the clock timing for the digital core. Therefore, GSPI/APPI interface timing and update timing will track the external clock frequency if one is selected from the EXT_CLK_DIGITAL/EXT_CLK_DIGITAL pins for Pattern Generator TX0.

BIST_RX_5 0x83C b4 EXT_CLK0 /2

0

EXT_CLK0 REF_CLK_IN REF_CLK_OUT

XTAL OSC.

Pattern RX0 CMU

1

BIST_RX_5 0x83C b6 EXT_CLK1

/2

0

CMU

1

EXT_CLK1 REF_CLK_IN REF_CLK_OUT

XTAL OSC.

Pattern RX1

BIST_TX_0 0x823 b0 EXT_CLK2

/2

0

CMU

1

EXT_CLK2 REF_CLK_IN REF_CLK_OUT

XTAL OSC.

Pattern TX1

Figure 3-4: PRBS Generator/Checker Clock Selection

Using a crystal

Using a single-ended 27MHz oscillator

REF_CLK_IN

REF_CLK_IN 1MΩ

27MHz

27MHz Oscillator

C1

REF_CLK_OUT

REF_CLK_OUT C2

Note: The value of the C1 and C2 load capacitors are dependent on the chosen crystal.

Figure 3-5: Crystal Oscillator

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

19 of 47 Proprietary & Confidential

4. Detailed Description 4.1 Serial Data Input Each of the GX3190 SDI inputs provide on-chip 100Ω differential terminations. Each is compatible with input differential amplitudes from 100mVppd to 1200mVppd, and input signal sources having CML outputs referred to DC supplies of 1.2V, 1.8V or 2.5V. Note that for AC-coupled inputs, the recommended supply voltage for VCC_IN1 and VCC_IN2 is 1.8V. Each of the 146 SDI input channels include frequency domain equalization, independently-programmable to one of four levels, to compensate from 0 to 47 inches (119 cm) of FR4 trace at 3Gb/s. The boost at the 1.5GHz Nyquist frequency, and recommended trace length range, are shown under EQ_BOOST[287:0], EXT_PG0_EQ_BOOST, EXT_PG1_EQ_BOOST in Table 4-1. See Figure 3-1. Each input can be powered-down independently using the corresponding EQ_POWERDOWN[287:0] or EXT_PG0_EQ_POWERDOWN or EXT_PG1_EQ_POWERDOWN bit. To accommodate input signal sources with 1.2V supplies and 1200mVppd signal amplitudes, the input common mode point should be terminated to the respective VCC_IN1 or VCC_IN2 supply. The common mode termination connection to the respective VCC_IN1 or VCC_IN2 supply of each input can be independently controlled using the EQ_TERMINATION[287:0] or EXT_PG0_EQ_TERMINATION or EXT_PG1_EQ_TERMINATION bit (see Figure 3-1 and Table 4-1). Note 1: When the HIZ_ACCM bit is set (register address 0x400h bit 0), inputs with their common mode termination not connected to VCC_IN1 or VCC_IN2 are connected to an internal common mode bias. When an input EQ is powered-down, its common mode termination is automatically disconnected from the corresponding VCC_IN1 or VCC_IN2. For each of the inputs, there are control parameters (register address 0x401h to 0x522h). See Table 4-1 below. Note 2: The EXT_PG01_SOURCE_PIN_PRBSB and EXT_PG1_SOURCE_PIN_PRBSB bits in the TEST_SETUP register must be set to connect the EXT_PG0 and EXT_PG1 pins to the matrix. Table 4-1: Serial Data Input EQ_BOOST[287:0], EXT_PG0_EQ_BOOST and EXT_PG1_EQ_BOOST bits 1:0 (binary)

Boost Applied (@ nominal 1.5GHz)

00

0dB boost

0” to 6” (15 cm) trace

01

3.5dB boost

6” (15 cm) to 16” (40 cm) trace

10

7.6dB boost

16” (40 cm) to 35” (89 cm) trace

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

20 of 47 Proprietary & Confidential

Table 4-1: Serial Data Input (Continued) EQ_BOOST[287:0], EXT_PG0_EQ_BOOST and EXT_PG1_EQ_BOOST bits 1:0 (binary)

Boost Applied (@ nominal 1.5GHz)

11

35” (89 cm) to 47” (119 cm) trace

12dB boost

EQ_TERMINATION[287:0], EXT_PG0_EQ_TERMINATION and EXT_PG1_EQ_TERMINATION bits 3:3

Input Termination Common Mode Point Switch to VCC_IN_1, VCC_IN_2

0

Open (see Figure 3-1)

1

Closed (see Figure 3-1)

EQ_POWERDOWN[287:0], EXT_PG0_EQ_POWERDOWN and EXT_PG1_EQ_POWERDOWN bits 4:4

Equalizer Power

0

On

1

Off

4.2 Serial Data Output Each of the GX3190 SDI outputs have two on-chip 50Ω single-ended terminations, and can be programmed to output differential amplitudes of 200mVppd, 400mVppd or 800mVppd when the corresponding VCC_OUT1 or VCC_OUT2 is connected to either 1.2V or 1.8V, or 200mVppd, 400mVppd, 800mVppd, or 1200mVppd when the corresponding VCC_OUT1 or VCC_OUT2 is connected to 2.5V. The selection of the output swing is made using the corresponding OUTPUT_SWING_SET[287:0], MON0_OUTPUT_SWING_SET or MON1_OUTPUT_SWING_SET bits, shown in Table 4-3. If the HIGH_OP_V bit is set when either the VCC_OUT1 or VCC_OUT2 supplies are 1.2V or 1.8V, the 800mVppd swing setting is no longer valid for that output bank. Swing settings for an output bank connected to a 2.5V supply are unaffected. Table 4-2: HIGH_OP_V Swing Selection HIGH_OP_V = 0

HIGH_OP_V = 1

VCC_OUTx Supply Voltage (V)

Valid Output Swing Selection (mVppd)

Valid Output Swing Selection (mVppd)

Note

1.2

200, 400, 800

200, 400

1

1.8

200, 400, 800

200, 400



GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

21 of 47 Proprietary & Confidential

Table 4-2: HIGH_OP_V Swing Selection (Continued) HIGH_OP_V = 0

HIGH_OP_V = 1

VCC_OUTx Supply Voltage (V)

Valid Output Swing Selection (mVppd)

Valid Output Swing Selection (mVppd)

Note

2.5

200, 400, 800

200, 400, 800, 1200

2

Notes: 1. For an 800mVppd output swing when the corresponding VCC_OUT1 or VCC_OUT2 is connected to 1.2V, the output must be DC-coupled to a receiving device terminated to 1.2V. 2. When VCC_OUT1 or VCC_OUT2 is set to 2.5V, the HIGH_OP_V bit must be set to enable 1200mVppd swing selection.

Each of the 290 SDI output channels provide independently programmable de-emphasis, to compensate from 0 to 47 inches (119 cm) of FR4 trace at 3Gb/s. The selection of the amount of output de-emphasis is made using the corresponding OUTPUT_DEEMPHASIS[287:0], MON0_OUTPUT_DEEMPHASIS or MON1_OUTPUT_DEEMPHASIS bits, shown in Table 4-3. Each output can be independently powered-down by the setting of the corresponding bit: ACTIVE_POWER_DOWN[287:0], DYNAMIC_POWER_DOWN[287:0] together with the assigned strobe, MON0_POWER_DOWN, or MON1_POWER_DOWN. The polarity of the signal at each output can be independently inverted by setting the corresponding bit: ACTIVE_SIGNAL_INVERT[287:0], DYNAMIC_SIGNAL_INVERT[287:0] together with the assigned strobe, MON0_SIGNAL_INVERT, or MON1_SIGNAL_INVERT. Table 4-3: Serial Data Output OUTPUT_SWING_SET[287:0], MON0_OUTPUT_SWING_SET and MON1_OUTPUT_SWING_SET bits 2:0 (binary)

Output Swing

000

200mVppd

001

400mVppd

011

800mVppd

110

1200mVppd

111

Reserved. Do not use.

OUTPUT_DEEMPHASIS[287:0], MON0_OUTPUT_DEEMPHASIS and MON1_OUTPUT_DEEMPHASIS bits 5:3 (binary)

Level of De-emphasis

000

Off

100

12” (30 cm) nominal

101

24” (60 cm) nominal

110

36” (90 cm) nominal

111

48” (120 cm) nominal

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

22 of 47 Proprietary & Confidential

Table 4-3: Serial Data Output (Continued) ACTIVE_SIGNAL_INVERT[287:0], DYNAMIC_SIGNAL_INVERT[287:0], MON0_SIGNAL_INVERT or MON1_SIGNAL_INVERT

Status

0

Not inverted

1

Inverted

ACTIVE_POWER_DOWN[287:0], DYNAMIC_POWER_DOWN[287:0], MON0_POWER_DOWN or MON1_POWER_DOWN

Status

0

On

1

Off

4.3 Crosspoint Switch Matrix Operation The crosspoint switch matrix routes the serial digital input signals (SDI[0:287]/SDI[0:287], EXT_PG0/EXT_PG0 or EXT_PG1/EXT_PG1) to one or more serial digital outputs (SDO[0:287]/SDO[0:287], MON0/MON0 or MON1/MON1). The matrix is configured on a per output basis. Each serial digital output can be configured to accept a signal from one serial digital input. Multiple serial digital outputs can accept input from the same serial digital input. Updates to the switch matrix take place as soon as they are written to the host interface when controlling the device through the ACTIVE Configuration and Status Registers. These registers are the ACTIVE[287:0], MON0, and MON1 registers found in Section 2 of the Crosspoint (GX3290 and family) Reference Manual (for CSRs) document. Before the ACTIVE[287:0], MON0, and MON1 registers at addresses 0x200h through 0x321h can be directly used to update the crosspoint switch matrix, an initialization procedure is required. One of the UPDATE_EN[7:0] pins needs be toggled from a low state to a high state, and back to a low state again. Alternatively, set the SOFTWARE_UPDATE_ENABLE bit in the CONTROL_SETUP register at address 0xA00h to a value of 1, and then toggle one of the SOFT_UPDATE_EN[7:0] bits in the SOFT_UPDATE_CONTROL register at address 0xA01h from a value of 0 to a value of 1, and then back to a value of 0. If the ACTIVE[287:0], MON0, and MON1 registers are not being directly written by the system controller, this procedure is not required. Reading from the ACTIVE[287:0], MON0, and MON1 registers will work regardless of whether or not the above procedure is executed. Updating the crosspoint switch matrix using the DYNAMIC[287:0] registers (discussed below) does not require the initialization procedure described above. The switch matrix can also be updated using double-buffering when controlling the device through the DYNAMIC Configuration and Status Registers. These registers are DYNAMIC[287:0] in Section 1 of the Crosspoint (GX3290 and family) Reference Manual (for CSRs) document.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

23 of 47 Proprietary & Confidential

When using dynamic configuration, updates to the switch matrix are first written to the DYNAMIC[287:0] registers where they are held until the corresponding update strobe signal, selected using the UPDATE_SELECT[287:0] bits in the DYNAMIC[287:0] registers, changes state from LOW-to-HIGH. The source for the update strobes can either be via external pins (UPDATE_EN[7:0]) or register bits (SOFT_UPDATE_EN[7:0]) as selected by the setting of the SOFTWARE_UPDATE_ENABLE bit in the CONTROL_SETUP register. Setting the SOFTWARE_UPDATE_ENABLE bit LOW causes the device to use the external UPDATE_EN[7:0] pins as update strobes for the switch matrix. Setting the SOFTWARE_UPDATE_ENABLE bit HIGH causes the device to use the SOFT_UPDATE_EN[7:0] bits as update strobes for the switch matrix. See Section 6 of the Crosspoint (GX3290 and family) Reference Manual (for CSRs) document. When the selected update strobe signal (or bit) transitions from LOW-to-HIGH, the state of all the outputs configured to respond to that update strobe signal (or bit) are updated at that time. Regardless of which register set is used to configure the switch matrix, the current configuration of the matrix is always available by reading back the ACTIVE[287:0] registers. Note: The MON0 and MON1 outputs can not be powered up/down, switched, or polarity inverted dynamically (Dynamic Configuration). They can only be configured in the Active Configuration mode described above using the settings in registers 0x320h and 0x321h, respectively. Also, the MON0 and MON1 outputs are terminated to the VCC_25_A supply.

4.4 Propagation Delay The propagation delay is dependent on the path that the signal takes through the device. Although the delay difference from the shortest path to the longest path could be up to 5.5ns, this difference is at a minimum for connections from inputs numerically close together and on the same side of the device to outputs that are numerically close together and on the same side of the device. Propagation delay differences of less than 750ps can be expected when the inputs are adjacent in the ballout and the outputs are also adjacent in the ballout. Note: The 750ps propagation delay difference (skew) between physically adjacent channels is guaranteed by simulation.

4.5 Using Multiple Strobes The GX3190 has eight fully-independent update strobes. Outputs 287 to 0 can be assigned to one of the eight strobes through the setting of the UPDATE_SELECT bits in the corresponding DYNAMIC[287:0] register. The input signal selection, output power switching and signal inversion will take effect on the LOW-to-HIGH edge of its assigned strobe signal or bit. This allows different portions of the crosspoint to be switched at different points in time. This is particularly useful in systems supporting multiple data or video formats, where the switch point/time varies from format to format.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

24 of 47 Proprietary & Confidential

4.6 Pattern Generator and Pattern Checker 4.6.1 Pattern Generator Note 1: There are two pattern generator “Tx” blocks in the GX3190. In the following, wherever only TX0 is mentioned, the corresponding is also true for TX1. Note 2: When the PRBS Generator is disabled, the generated signal does not completely terminate. The PRBS polynomial bits must be re-written in order to terminate the signal. The two pattern generator “Tx” blocks in the GX3190 can each independently generate PRBS 27-1, PRBS 215-1, and PRBS 223-1 data patterns, or alternating 1's and 0's. The built-in clock multiplier PLLs independently synthesize rates of 270Mb/s and 2.97Gb/s from the required, external 27MHz reference clock (see Section 4.9). Other rates up to 3Gb/s can be generated by providing an external clock signal at 2x, 4x, or 22x the desired bit rate to TX1, with a maximum external clock frequency of 6GHz. Table 4-4: Tx External Clocks TX0

TX1

EXT_CLK_DIGITAL (AJ35)

EXT_CLK2 (R15)

EXT_CLK_DIGITAL (AH35)

EXT_CLK2 (T15)

While this facility exists for both TX0 and TX1, the user is cautioned that the digital core clock is derived from the TX0 data clock, and therefore interface and update timing will track the external clock frequency if one is provided to TX0. The pattern generators are enabled by the TX0_PRBS_GEN_ENABLE and TX1_PRBS_GEN_ENABLE bits (register address 0x802h, bits [1:0] respectively). The PRBS generating polynomials used are: 1. PRBS7: x7 + x6 + 1 2. PRBS15: x15 + x14 + 1 3. PRBS23: x23 + x18 + 1 The pattern generated is selected via the TX0_PRBS_POLYNOMIAL and TX1_PRBS_POLYNOMIAL bits (register address 0x800h and 0x801h respectively). Table 4-5: Generated Patterns TX0_PRBS_POLYNOMIAL[1:0] (binary)

Pattern Generated

00

PRBS7

01

PRBS15

10

PRBS23

11

Square Wave

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

25 of 47 Proprietary & Confidential

4.6.2 Pattern Checker The pattern checkers de-serialize incoming serial data before checking for errors in the parallel domain. Three comparison modes are supported: 1. Neutral Phase Comparison Mode. The incoming data is re-timed in a CDR, and sampled at the neutral (eye center) phase recovered by the CDR before de-serialization. Errors with respect to the supported PRBS sequences can be counted. 2. Offset Phase Comparison Mode. The phase at which the incoming data is sampled with respect to the recovered clock is adjustable over a full UI. Errors with respect to the supported PRBS sequences can be counted. By sweeping the sampling phase and counting errors at each phase, an error rate “bathtub curve” can be recorded, and the horizontal eye opening evaluated. 3. Arbitrary Data Comparison Mode. This mode can operate on arbitrary data patterns. The incoming serial data is sampled at both the neutral phase and the adjustable phase, and each of the two sampled data streams is de-serialized and the two streams are compared in the parallel domain. The pattern checker allows a true measurement of bit error rate for the supported PRBS sequences in the first two modes above. The third, arbitrary data comparison mode, gives an indication of the degree of eye closure at a given sampling phase offset, but cannot detect bit errors in the incident data. See Figure 4-1 and Figure 4-2 below.

EXT_PG0/EXT_PG0

Input 144

Output 288

Crosspoint Core (146 x 290)

MON0/MON0

Serializer/ Pattern Generator CDR

/2

Neutral Phase Deserializer

/11 Variable Phase Deserializer

/2

Pattern Generator 0

CMU

/2

Pattern Checker 0

27MHz

Pattern Checker

EXT_CLK0

EXT_CLK0

REF_CLK_OUT

REF_CLK_IN

EXT_CLK_DIGITAL

EXT_CLK_DIGITAL

xtal osc.

Figure 4-1: Simplified Pattern Generator/Checker Zero Block Diagram

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

26 of 47 Proprietary & Confidential

EXT_PG1/EXT_PG1

Input 145

Output 289

Crosspoint Core (146 x 290)

MON1/MON1

Serializer/ Pattern Generator CDR

/2

Neutral Phase Deserializer

/11 Variable Phase Deserializer

/2

Pattern Generator 1

CMU

/2

Pattern Checker 1

27MHz

Pattern Checker

EXT_CLK1

EXT_CLK1

REF_CLK_OUT

REF_CLK_IN

EXT_CLK2

EXT_CLK2

xtal osc.

Figure 4-2: Simplified Pattern Generator/Checker One Block Diagram Note: There are two pattern checker “Rx” blocks in the GX3190. In the following, wherever only RX0 is mentioned, the corresponding is also true for RX1. The CDR integrated in each Rx block can independently lock to data at rates of 270Mb/s, 1.485Gb/s and 2.97Gb/s. Other rates up to 3Gb/s can be analyzed by providing an external clock signal of 2x, 4x, or 22x the desired bit rate, with a maximum external clock frequency of 6GHz. Note that retiming is not possible when using an external clock signal for the Rx block. The external clock must be synchronous with any data to be checked and the RX0_PRBS_CHK_MODE bits must be set to a value of '01'. The two pattern checker “Rx” blocks in the GX3190 can each independently check PRBS 27-1, PRBS 215-1, and PRBS 223-1 data patterns. Table 4-6: Rx External Clocks RX0

RX1

EXT_CLK0 (R35)

EXT_CLK1 (AJ15)

EXT_CLK0 (T35)

EXT_CLK1 (AH15)

The error checking modes are selected by the RX0_PRBS_CHK_MODE bits and the RX1_PRBS_CHK_MODE bits (addresses 0x804h and 0x810h respectively). Table 4-7: Checking Modes RX0_PRBS_CHK_MODE[1:0] (binary)

Input Mode

00

Check data sampled at neutral phase

01

Check data sampled at adjustable phase

10 or 11

Compare nominally sampled data with phase offset data (allows eye monitoring of arbitrary patterns)

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

27 of 47 Proprietary & Confidential

The pattern checker will check for the PRBS pattern specified by the RX0_PRBS_POLYNOMIAL and RX1_PRBS_POLYNOMIAL bits (addresses 0x803h and 0x811h respectively). The PRBS checkers are enabled by the RX0_PRBS_ENABLE and RX1_PRBS_ENABLE bits (register address 0x81Dh[1:0]). Table 4-8: Checked Patterns RX0_PRBS_POLYNOMIAL[1:0] (binary)

Pattern Checked

00

PRBS7

01

PRBS15

10

PRBS23

The incident data can be inverted before checking by setting the corresponding RX0_INVERT_PRBS_IN or RX1_INVERT_PRBS_IN bit (address 0x803h[2:2] and 0x811h[2:2]) to '1'. The number of words to be compared is selectable via the corresponding RX0_PRBS_BER_TIME and RX1_PRBS_BER_TIME bits (registers 0x80Ah and 0x817h). Table 4-9: Compared Words RX0_PRBS_BER_TIME[3:0] (binary)

Number of words* compared (decimal)

0000

Infinite

0001

13

0010

26

0011

3277

0100

6554

0101

838861

0110

1677722

*Note: Each word is comprised of 10 bits, therefore the actual number of samples compared is 10 times the number of words compared.

The status of the two pattern checking blocks is available in the RX0_PRBS_LOCK and RX1_PRBS_LOCK, RX0_PRBS_PASS and RX1_PRBS_PASS, RX0_PRBS_FAIL and RX1_PRBS_FAIL, and RX0_PRBS_ERROR_COUNT and RX1_PRBS_ERROR_COUNT read-only bits (see register addresses 0x81Eh to 0x821h). •

RX0_PRBS_LOCK [0] - When HIGH, indicates that the pattern checker has acquired the pattern



RX0_PRBS_PASS [1] - When HIGH, indicates that the pattern was locked, and the specified number of words have been compared with fewer detected errors than specified by the RX0_PRBS_BER_THRESH parameter

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

28 of 47 Proprietary & Confidential



RX0_PRBS_FAIL [2] - Indicates that the test terminated in a failure condition. There are three possible failure conditions: 1. The pattern generator failed to lock in the number of attempts specified by RX0_PRBS_LOCK_ATTEMPTS (in which case RX0_PRBS_LOCK would still be '0'). 2. The pattern generator locked, but over the period of time indicated by the RX0_PRBS_LOL_TIME bits, a greater number of errors were detected than allowed by the RX0_PRBS_LOL_THRESH setting. In this error condition, the device determines that it has “lost lock“, and terminates the test. This error condition is detectable if both RX0_PRBS_LOCK and RX0_PRBS_FAIL bits are HIGH, and the value of RX0_PRBS_ERROR_COUNT is less than RX0_PRBS_BER_THRESH (the same applies for RX1_PRBS_LOCK, RX1_PRBS_FAIL and RX1_PRBS_ERROR_COUNT). 3. The pattern generator locked, but the number of errors observed exceeded the value indicated by the RX0_PRBS_BER_THRESH bits. This error is detectable if RX0_PRBS_LOCK and RX0_PRBS_FAIL are both HIGH, and the value of RX0_PRBS_ERROR_COUNT is equal or greater than the value in RX0_PRBS_BER_THRESH.

Note that the values of RX0_PRBS_LOCK and RX1_PRBS_LOCK, RX0_PRBS_PASS and RX1_PRBS_PASS, RX0_PRBS_FAIL and RX1_PRBS_FAIL, RX0_PRBS_ERROR_COUNT and RX1_PRBS_ERROR_COUNT are reset whenever any of the corresponding test parameters for the RX0 and RX1 pattern checkers are updated as well as whenever the corresponding RX0_PRBS_ENABLE or RX1_PRBS_ENABLE bits are set to '1' when previously set to '0'. To start a new PRBS test when the previous one has already been run, either re-write RX0_PRBS_BER_TIME/RX1_PRBS_BER_TIME or toggle RX0_PRBS_ENABLE/RX1_PRBS_ENABLE. Note: The pattern checkers will count zero errors if the incident data is simply a static zero.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

29 of 47 Proprietary & Confidential

4.7 Horizontal Eye Measurement As explained above, the GX3190 enables the measurement of bit error “bathtub” curves at the video rates of 1485Mb/s and 2970Mb/s to assist in evaluating how much margin there is in the system. See Using the Monitoring Features of the GX3290 Application Note for more information.

4.7.1 Configuration for Horizontal Eye Measurement •

Route the input signal of interest to the MON0 or MON1 of the matrix



Route the monitor output of matrix to pattern checker Rx, (RX0 in the notes below) by changing the RX0_CHECK_KEY_D2A word from its default value of 512 (decimal) to 288 (decimal)



For a PRBS pattern, select a pattern length with a value of the RX0_PRBS_POLYNOMIAL bits set to match the source pattern, and set the RX0_PRBS_CHK_MODE bits to 1 to select the phase interpolator path



For an arbitrary pattern, set the RX0_PRBS_CHK_MODE bits to 2 to select the direct data comparison mode



Set initial sampling phase with the RX0_PHASE_INTERPOLATOR_PHASE_SEL_D2A bits (in the BIST_RX_4 register)



Initiate error counting as described in Section 4.6.2 above



Increment the sampling phase



Count errors



Repeat last two steps to cover one UI

4.8 Temperature Sensors The GX3190 has twelve on-chip temperature sensors comprised of four junction diode temperature sensors and four ADCs, each with two selectable temperature sensors. Analog output voltages can be used to determine the temperature of the chip at the junction diode temperature sensors in four different locations. An external test current is applied to each sensor, and the voltage across the sensor is measured. Note that the “A” and “K” of the pin names indicate the preferred direction of the test current, but other junctions are present internally. Test currents should be limited to 10mA or less. DTHERMA[3:0]

DTHERMK[3:0]

Figure 4-3: Temperature Sensors

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

30 of 47 Proprietary & Confidential

In addition to the diode temperature sensors, four ADCs, each with two selectable temperature sensors, are also provided. Digitized temperatures can be read through the device’s host interface.

thermo ADC 3

Even Outputs 0 to 288

thermo ADC 2

Even Inputs 0 to 288

Odd Inputs 1 to 289

thermo ADC 1

Crosspoint Core

Odd Outputs 1 to 289

Legend: ADC and “local” temperature sensors “remote” temperature sensors

thermo ADC 0

Package Top-view of Die

Figure 4-4: Map of Thermometer ADC Positions on Die Table 4-10: Junction Temperature Registers Thermometer ADC

Sensor Location Select Register

Result Register

0

ADC_IN_0

JNCTN_TEMP_0

1

ADC_IN_1

JNCTN_TEMP_1

2

ADC_IN_2

JNCTN_TEMP_2

3

ADC_IN_3

JNCTN_TEMP_3

Digitized 10-bit temperature values can be read through the host interface from registers JNCTN_TEMP_0 (register 0xA08h[9:0]) through JNCTN_TEMP_3 (register 0xA0Bh[9:0]). The temperature word in each register will be updated every 213 clock cycles, provided the value of the respective COUNT_PD_[3:0] bit remains LOW. When a COUNT_PD_[3:0] bit goes HIGH, the ADC is reset and the corresponding JNCTN_TEMP_[3:0] register retains its last updated value. The clock rate can be selected between 211kHz or 844kHz through the corresponding ADC_CTRL_CLK_SEL_[3:0] bits (registers 0xA04h, 0xA05h, 0xA06h and 0xA07h). The junction temperature at each temperature sensor in terms of the ADC output code is given by:

T j = 0.5489 × JNCTN_TEMP_[3:0] – 263 + δ 3 Where δ3 is the temperature uncertainty. The accuracy of the temperature sensors can be improved by calibrating the GX3190 at a known junction temperature. Without calibration, the temperature uncertainty, due to process variations and component mismatch, can be as high as ±27°C. After calibration, the uncertainty can be reduced to about ±2°C. GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

31 of 47 Proprietary & Confidential

See Using the Monitoring Features of the GX3290 Application Note for more information. Table 4-11: Nominal Temperature-to-Code Conversion Tj (°C)

JNCTN_TEMP_ [3:0]

Tj (°C)

JNCTN_TEMP_ [3:0]

Tj (°C)

JNCTN_TEMP_ [3:0]

Tj (°C)

JNCTN_TEMP_ [3:0]

-40

406

2

483

44

559

86

636

-38

410

4

486

46

563

88

639

-36

414

6

490

48

567

90

643

-34

417

8

494

50

570

92

647

-32

421

10

497

52

574

94

650

-30

424

12

501

54

578

96

654

-28

428

14

505

56

581

98

658

-26

432

16

508

58

585

100

661

-24

435

18

512

60

588

102

665

-22

439

20

516

62

592

104

669

-20

443

22

519

64

596

106

672

-18

446

24

523

66

599

108

676

-16

450

26

527

68

603

110

680

-14

454

28

530

70

607

112

683

-12

457

30

534

72

610

114

687

-10

461

32

538

74

614

116

690

-8

465

34

541

76

618

118

694

-6

468

36

545

78

621

120

698

-4

472

38

548

80

625

122

701

-2

475

40

552

82

629

124

705

0

479

42

556

84

632

126

709

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

32 of 47 Proprietary & Confidential

4.9 27MHz Reference Clock The GX3190 requires an external 27MHz reference clock for correct operation. This clock is multiplied to generate the digital core and interface clocks, and is also used to synthesize video rate clocks in the pattern generation blocks, and to acquire video rate signals in the pattern checker blocks. The reference clock has no impact on the jitter measurement performance when the pattern checker blocks are locked to external data sources, but has a direct impact on jitter performance within the loop bandwidth of the CMU PLL in the pattern generation blocks. The 27MHz reference clock can be generated by connecting a crystal between the REF_CLK_IN and REF_CLK_OUT balls, along with appropriate loading capacitors and a feedback resistor (see Figure 3-5). Alternatively, an LVCMOS 27MHz external clock source can be connected to the REF_CLK_IN ball with the REF_CLK_OUT ball left floating. The frequency variation of the crystal (including aging, supply and temperature variation) should be less than +/-100ppm if the PRBS checking and generation features are to be used in video applications.

4.10 Device Power-Up Note 1: No power supply sequencing is required (see Section 4.11). There is a 50μs delay (tidle) between the power supplies reaching their nominal value and the device becoming operational. During this time, there should be no host interface activity, and the UPDATE_EN[7:0] pins must be held LOW. The RC filter, shown in Figure 3-3, on each of the four VCO supplies—VCC_25_VCO0, VCC_25_VCO1, VCC_25_VCO2 and VCC_VCO_DIGITAL—is required to minimize the phase noise of the PLLs in pattern generation/detection modes, but the rise time of the filter on VCC_VCO_DIGITAL in particular can impact the start-up time of the device internal clock. Note 2: In applications where power supplies reach their final voltage in under 1ms (the time for the internal clock to start), approximately two time constants of the RC filter on VCC_VCO_DIGITAL, can dominate the time for the GX3190 to emerge from reset upon power-up. In such cases, the time for VCC_VCO_DIGITAL can be traded-off against supply filtering and hence low-frequency jitter of patterns generated by Pattern Generator Zero. Note 3: RESET must be held LOW until all power supplies have stabilized.

Supply voltage

{

Nominal voltage 95% Nominal voltage

tidle

Figure 4-5: Power-Up Timing Diagram

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

33 of 47 Proprietary & Confidential

4.11 Device Reset The RESET pin is an active-LOW asynchronous reset for the device. Assertion of the RESET pin sets the device in its minimum power state. The minimum pulse width of the RESET signal is 10ms (treset). There is a 50μs delay (tidle) between the RESET signal going HIGH (inactive) and the device becoming operational. During this time (all of treset + tidle), there should be no host interface activity and the UPDATE_EN[7:0] pins must be held LOW. Note 1: RESET must be held LOW until all power supplies have stabilized. Note 2: Upon emerging from reset, all SDI inputs and SDO outputs are powered-down, pattern generation and checking is inactive, and all registers assume their reset values as noted in the Semtech Crosspoint (GX3290 and family) Reference Manual (for CSRs). RESET

treset

tidle

Reset Timing Diagram

4.12 Host Interface 4.12.1 Parallel Host Interface Specifications The Asynchronous Parallel Peripheral Interface (APPI) on the GX3190 device allows an external host to access internal registers using parallel read and write operations. The GX3190 APPI is selected by setting the HOST_S/P pin LOW. Note: The S_CS pin must be pulled LOW when HOST_S/P is set LOW for parallel port communication. The host interface communicates with the Control and Status Registers (CSR) over an APPI bridge. It is possible to write one register every 10ns (100MHz write update rate). It is also possible to read one register every 20ns (50MHz read update rate). The parallel interface is asynchronous. During writes, an active-LOW P_CS (Chip Select) enables the interface and ADS (Address/Data Strobe) latches 12-bit write address and 16-bit write data into the device. During reads, the same P_CS signal is used, and the ADS signal latches the 12-bit read address and then clocks out the 16-bit read data. The P_R/W signal is used to differentiate between the two access types. An auto-increment mode exists for both reads and writes. This mode is configured by way of the APPI_AUTO_INCREMENT bit in the HOST_SETUP register. See Section 6 in the Semtech Crosspoint (GX3290 and family) Reference Manual (for CSRs).

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

34 of 47 Proprietary & Confidential

Table 4-12: APPI Inputs/Outputs Signal Name

I/O

Description

P_CS

I

Chip Select from the host.

P_ADS

I

Address/Data Strobe from the host; used to “clock” address and write data into the chip, and to “clock” read data out of the chip.

P_R/W

I

Read/Write indication from the host; HIGH for read, LOW for write.

P_ADD[11:0]

I

Address from the host.

P_DAT[15:0]

I/O

Write data from the host, or read data to the host.

4.12.1.1 APPI External Timing for Normal Write t CSH_w t SCS_w

P_CS

t HCS_w

P_R/W t SRW_w

P_ADD [11:0]

t HRW_w A[11:0] t SA_w

P_DAT [15:0]

t HA_w

D[15:0] t SD_w

t HD_w

P_ADS t PW_w

Figure 4-6: External Timing for Normal Write Cycle Table 4-13: APPI External Timing Specifications for Normal Write Symbol

Equiv. Cycles

Min

Typ

Max

Units

P_CS LOW before P_ADS positive edge

tSCS_w



10.0





ns

P_CS hold time after P_ADS positive edge

tHCS_w

2

14.8





ns

P_R/W low before P_CS negative edge

tSRW_w



1.5





ns

P_R/W hold time after P_ADS positive edge

tHRW_w

2

14.8





ns

P_ADD[11:0] setup before P_ADS positive edge

tSA_w



10.0





ns

P_ADD[11:0] hold after P_ADS positive edge

tHA_w



5.0





ns

P_DAT[15:0] setup before P_ADS positive edge

tSD_w



5.0





ns

P_DAT[15:0] hold after P_ADS positive edge

tHD_w



5.0





ns

P_ADS LOW pulse width

tPW_w

0.6

4.4





ns

P_CS HIGH before next read/write cycle

tCSH_w

5

37.0





ns









16.17

MHz

Parameter

Frequency for back-to-back single writes

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

35 of 47 Proprietary & Confidential

4.12.1.2 APPI External Timing for Auto-Increment Write

t CSH_w

P_CS t SCS_w

P_R/W

t HCS_w

t SRW_w

P_ADD [11:0]

t HRW_w An [11:0] t SA_w

P_DAT [15:0]

t HA_w

Dn [15:0] t SD_w

Dn+1 [15:0] t HD_w

t SD_w

t HD_w

P_ADS t PW_w

t ADSH_w

t PW_w

Figure 4-7: External Timing for Auto-Increment Write Cycle

Table 4-14: APPI External Timing Specifications for Auto-Increment Write Symbol

Equiv. Cycles

Min

Typ

Max

Units

P_CS LOW before P_ADS positive edge

tSCS_w



10.0





ns

P_CS hold time after last P_ADS positive edge

tHCS_w

2

14.8





ns

P_R/W LOW before P_CS negative edge

tSRW_w



1.5





ns

P_R/W hold time after P_ADS positive edge

tHRW_w

2

14.8





ns

P_ADD[11:0] setup before P_ADS positive edge

tSA_w



10.0





ns

P_ADD[11:0] hold after P_ADS positive edge

tHA_w



5.0





ns

P_DAT[15:0] setup before P_ADS positive edge

tSD_w



4.0





ns

P_DAT[15:0] hold after P_ADS positive edge

tHD_w



4.0





ns

P_ADS LOW pulse width

tPW_w

0.6

4.4





ns

tADSH_w

0.6

4.4





ns

P_CS HIGH before next read/write cycle

tCSH_w

5

37.0





ns

Frequency during auto-increment write









112.5

MHz

Parameter

P_ADS HIGH before next pulse

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

36 of 47 Proprietary & Confidential

4.12.1.3 APPI External Timing for Normal Read t CSH_r

P_CS

t HCS_r

t SCS_r

t CDZ

P_R/W t HRW_r

t SRW_r

t RDZ

P_ADD [11:0]

A[11:0] t SA_r

P_DAT [15:0]

t HA_r

t DNZ D[15:0] t DO

P_ADS t PW_r

Figure 4-8: External Timing for Normal Read Cycle

Table 4-15: APPI External Timing Specifications for Normal Read Symbol

Equiv. Cycles

Min

Typ

Max

Units



1









P_CS LOW before P_ADS negative edge

tSCS_r



5.0





ns

P_CS hold time after P_ADS positive edge

tHCS_r



5.0





ns

P_R/W HIGH before P_CS negative edge

tSRW_r



1.5





ns

P_R/W hold time after P_ADS positive edge

tHRW_r



5.0





ns

P_ADD[11:0] setup before P_ADS negative edge

tSA_r



0.0





ns

P_ADD[11:0] hold after P_ADS positive edge

tHA_r



0.0





ns

P_DAT[15:0] out of tristate after P_ADS negative edge

tDNZ

2

14.8





ns

P_DAT[15:0] becomes valid after P_ADS negative edge

tDO







65.0

ns

P_DAT[15:0] goes tristate after P_CS positive edge

tDZ







45.0

ns

P_DAT[15:0] goes tristate after P_ADS positive edge

tDZ







45.0

ns

P_ADS LOW pulse width

tPW



65.0





ns

P_CS HIGH before next read/write cycle

tCSH_r

3

22.2





ns

Frequency for back-to-back single reads









10.29

MHz

Parameter Internal read pipeline delay (0 if one-cycle read)

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

37 of 47 Proprietary & Confidential

4.12.1.4 APPI External Timing for Auto-Increment Read t CSH_r t SCS_r

P_CS

t HCS_r t CDZ

P_R/W

t HRW_r

t SRW_r

t RDZ

P_ADD [11:0]

An[11:0] t SA_r

P_DAT [15:0]

t HA_r t DNZ Dn [15:0] t DO1

Dn+1 [15:0] t DX t DO2

Dn+2 [15:0]

t DX

t DX t DO2

P_ADS t PW1_r

t ADSH_r

t PW2_r

t PW2_r

t ADSH_r

Figure 4-9: External Timing for Auto-Increment Read Cycle Table 4-16: APPI External Timing Specifications for Auto-Increment Read Symbol

Equiv. Cycles

Min

Typ

Max

Units



1









P_CS LOW before first P_ADS positive edge

tSCS_r



5.0





ns

P_CS hold time after last P_ADS positive edge

tHCS_r



5.0





ns

P_R/W HIGH before P_CS negative edge

tSRW_r



1.5





ns

P_R/W hold time after last P_ADS positive edge

tHRW_r



5.0





ns

P_ADD[11:0] setup before P_ADS negative edge

tSA_r



0.0





ns

P_ADD[11:0] hold after P_ADS positive edge

tHA_r



0.0





ns

P_DAT[15:0] out of tristate after P_ADS negative edge

tDNZ

2

14.8





ns

P_DAT[15:0] becomes valid after first P_ADS negative edge

tDO1







70.0

ns

P_DAT[15:0] becomes valid after P_ADS positive edge

tDO2







13.0

ns

P_DAT[15:0] becomes invalid after P_ADS positive edge

tDX



3.0





ns

P_DAT[15:0] goes tristate after P_CS positive edge

tDZ



12.0



45.0

ns

P_DAT[15:0] goes tristate after P_ADS positive edge

tDZ



12.0



45.0

ns

P_ADS first LOW pulse width

tPW1_r



70.0





ns

P_ADS subsequent LOW pulse widths

tPW2_r

1.2

8.9





ns

P_ADS HIGH between pulses

tADSH_r

1.2

8.9





ns

P_CS HIGH before next read/write cycle

tCSH_r

5

37.0





ns

Frequency during auto-increment read









56.25

MHz

Frequency for back-to-back single reads in auto-increment mode









8.54

MHz

Parameter Internal read pipeline delay (0 if one-cycle read)

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

38 of 47 Proprietary & Confidential

4.12.2 Serial Host Interface Specifications The Gennum Serial Peripheral Interface (GSPI) handles the communication with an external host over the SPI port. It allows configuration of the Control and Status Registers (CSR) using serial read and write operations. The GX3190 GSPI is selected by setting the HOST_S/P pin HIGH. Note 1: The P_CS pin must be pulled LOW when HOST_S/P is set HIGH for serial port communication. The GX3190 uses a four-wire protocol, with serial communication via the input SDIN pin, the output SDOUT pin, clock input signal (SCLK), and the chip select signal (S_CS). The signalling rate can be up to 25Mb/s. The interface uses 16-bit data and a 16-bit address/control. The 16-bit address and control consists of a 12-bit address, one read/write bit (‘1’ for read, ‘0’ for write), one bit for auto-increment and two unused bits. The four-wire protocol is implemented as shown in Figure 4-10 and Figure 4-11. When the Auto-Increment bit is set LOW, each Command Word must be followed by only one Data Word to ensure proper operation. If the Auto-Increment bit is set HIGH, the following Data Word is written into the address specified in the Command Word, and subsequent Data Words are written into incremental addresses from the first Data Word. This facilitates multiple address reads or writes without sending a Command Word for each Data Word. Table 4-17: GSPI Inputs/Outputs Signal Name

I/O

Reference Clock

SCLK

I



SDIN

I

SCLK

GSPI serial data input

SDOUT

O

SCLK

GSPI serial data output (on the negative edge of SCLK)

S_CS

I



t0

t1

Description GSPI clock

GSPI Chip Select

t2

t4

t7

SCLK t3

t8

S_CS SDIN SDOUT

R

R/W

RSV

RSV

RSV

RSV

Auto_Inc

Auto_Inc

A11

A11

A10

A10

A9

A9

A8

A8

A7

A7

A6

A6

A5

A5

A4

A4

A3

A3

A2

A2

A1

A1

A0

A0

D15

D15

D14

D14

D13

D12

D13

D12

D11

D11

D10

D10

D9

D9

D8

D8

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

D0

D0

SDIN signal is looped out on SDOUT

Figure 4-10: Serial Host Interface Timing Diagram - Write Mode

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

39 of 47 Proprietary & Confidential

t5 t9 SCLK t6 S_CS SDIN SDOUT

R/W

R/W

RSV

RSV

RSV

RSV

Auto_Inc

A11

Auto_Inc

A11

A10

A10

A9

A9

A8

A8

A7

A6

A7

A6

A5

A5

A4

A4

A3

A3

A2

A2

A1

A1

A0

A0

D15

D14

D13

SDIN signal is looped out on SDOUT

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Read Data is output on SDOUT

Figure 4-11: Serial Host Interface Timing Diagram - Read Mode

Table 4-18: Serial Host Interface Timing Parameter

Symbol

Conditions

Equiv. Cycles

Min

Typ

Max

Units

S_CS LOW before SCLK positive edge

t0



7.0





ns

SCLK frequency





0.1



25.0

MHz

SCLK period

t1



40.0



10,000

ns

SCLK duty cycle

t2



40.0

50.0

60.0

%

Input data setup time

t3



7.0





ns

Time between end of Command Word (or previous data word in Auto-Increment mode) and the first SCLK of the following Data Word write cycle

t4



40.0





ns

Time between end of Command Word (or previous data word in Auto-Increment mode) and the first SCLK of the following Data Word read cycle

t5



70.0





ns

SDO hold time after SCLK negative edge

t6



5.0



16.0

ns

S_CS HIGH after last SCLK negative edge

t7

1.2

9.0





ns

Input data hold time

t8



5.0





ns

S_CS HIGH time

t9

2.5

18.5





ns

50% levels; 3.3V or 1.8V operation

70ns (t5) = 5 clock cycles at 135MHz plus SCLK and SDO signal propagation. 18.5ns (t9) = 2.5 clock cycles at 135MHz. Max t6 (16ns) represents the latest time by which the SDO will be stable after the SCLK negative edge. As SDO must be sampled on the SCLK positive edge, this determines the minimum SCLK period, and therefore the maximum SCLK frequency. SDO maximum transition time with 15pF load: 2ns. SDO maximum transition time with 50pF load: 5ns.

Note 2: The GSPI and APPI are mutually exclusive (they can not both be used at the same time).

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

40 of 47 Proprietary & Confidential

5. Application Information Note: Please refer to the following supplementary documents: •

Crosspoint Design Guide



EB-GX3290 Schematics, PCB Layout and Bill of Materials

5.1 Power Supply Filtering and Recommendations One of the most important steps that PCB designers can take to ensure power supply integrity for the GX3190 device is to design the PCB layer stack-up to minimize power plane pair inductance. Locating supply planes adjacent to ground planes, and separated by minimum thickness dielectrics in the stack-up, will minimize plane-pair inductance, and incidentally maximize the plane pair capacitance. Holes and cuts in the planes should be avoided as much as possible. While such closely spaced plane pairs allow the lowest inductance connections to supply pins of the GX3190 when they are closest to the device mounting surface of the PCB, the need to balance PCB stack-ups will lead to closely spaced layers on the far side of the PCB. The supply currents drawn from the VDD_18 and VDDIO_D supplies are noisy and activity dependent, and the corresponding supply/ground plane pairs should be treated as for FPGA or CPU devices. Supply currents drawn from the VCC_25_A, VCC_IN1, VCC_IN2, VCC_OUT1 and VCC_OUT2 supplies are continuous except under changes of the high speed signal path configuration. The VCC_OUT1 and VCC_OUT2 supplies in particular are subject to rapid steps in current under some configuration changes: the maximum combined current draw of the VCC_OUT1 and VCC_OUT2 supplies, 8.52A, can be switched in as little as 10ns. This current step may be reduced by appropriate programming of the device. Locating point of use voltage regulators close to the GX3190 device on the PCB will maximize the regulation roll-off frequency. At the highest frequencies, the GX3190 package and mounting parasitics will limit the effectiveness of any measures on the PCB to suppress voltage ripple on the device supplies. In between the voltage regulator roll off frequencies and the frequencies where parasitics on each supply domain within the GX3190 isolate the die from the PCB, decoupling capacitors on the PCB are effective. PCB layout effort should be spent on details of the decoupling capacitor mounting layout. Some simple layout measures can help to reduce the inductance of capacitor mounting. See the Crosspoint Design Guide for more detailed recommendations.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

41 of 47 Proprietary & Confidential

5.2 Estimated Worst-Case Load Current Steps Under normal operation, the power supply networks need to minimize voltage transients due to configuration change related load current steps. When the device reset is asserted while the device is drawing significant current, the load on power supplies could be shed fast enough to raise concerns about the board level voltage regulator dynamics, and the impact of any power supply network inductance.

5.2.1 VCC_25_A Supply The tail currents of CML blocks (the high-speed signal paths) in the matrix switch relatively slowly, with worst case switching times of 30ns and typical times ~50ns. The matrix supply current of ~9.3A could in principle switch in 30ns, but in practice the propagation delay of UPDATE_EN[7:0] signals across the matrix will increase the switching time somewhat. The VCC_25_A supply current drawn by individual EQs takes more than 10ns to rise upon application of control signals. The VCC_25_A supply current drops in as little as 5ns upon assertion of reset, though, and the reset signal arrival times at EQs in a bank are roughly uniformly distributed over an interval of 0.8ns. This means that the VCC_25_A current drawn by all EQs together, ~1.8A, could be shed in 5.8ns. The trace drivers draw significant current from the VCC_25_A supply, up to ~4.7A total for all trace drivers together, and this current can rise in as little as 20ns upon the de-assertion of power-down signals, or fall in as little as 1ns upon the assertion of power-down or reset signals. The arrival times of power-down or reset signals within the bottom trace driver bank are nearly uniformly distributed over an interval of 0.8ns, while the arrival time of power-down or reset signals within the top trace driver bank are nearly uniformly distributed over an interval of 4.4ns. The worst case total load current slew rate on the VCC_25_A supply is estimated from the above to be ~1.9GA/s.

5.2.2 VCC_OUT1, VCC_OUT2 Supplies In simulation, the tail currents of trace driver output stages turn on in as little as 10ns. Should all outputs be configured for maximum swing and enabled simultaneously, the load current step on each of VCC_OUT1, VCC_OUT2 would be as high as 4.26A (for AC-coupled applications) in ~14ns, 11ns respectively (including the propagation delay spread noted above). That large dI/dt can be reduced by appropriate programming of updates. The VCC_OUT1 and VCC_OUT2 supply current drawn by each trace driver drops in as little as 1ns upon the assertion of device reset. The greater spread of signal arrival times in the top bank leads to a significantly smaller magnitude of dI/dt on the VCC_OUT1 supply than on the VCC_OUT2 supply.

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

42 of 47 Proprietary & Confidential

5.2.3 VCC_IN1, VCC_IN2 Supplies The controls for the equalizers are serialized, and hence power switching of the equalizers in mission mode is staggered in time. Assertion of reset will however lead to more nearly synchronous shedding of load. The typical current drawn from the VCC_IN1 and VCC_IN2 supplies is 0.85A each, and this can be shed in 1ns, including the reset signal propagation delay. Table 5-1: Summary

Supply

Maximum Current (A)

Maximum Positive dI/dt

Maximum Negative dI/dt (reset/simultaneous power-down)

VCC_25_A

15.8

0.62GA/s

-1.9GA/s

VCC_OUT1

4.26

0.42GA/s

-1.4GA/s

VCC_OUT2

4.26

0.54GA/s

-3.6GA/s

VCC_IN1

0.85(typ)

<0.1GA/s

-0.9GA/s

VCC_IN2

0.85(typ)

<0.1GA/s

-0.9GA/s

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

43 of 47 Proprietary & Confidential

6. Package and Ordering Information 6.1 Package Dimensions 50mm x 50mm FCBGA (1mm pitch) Top View

Bottom View 0.20 (4X) A

50.00

A1 Ball Pad Corner

38.00 A1 Ball Pad Corner

A

48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 A C

1.00 Φ1.35±0.25

38.00 50.00

(4.00)

4X (6.00)

A

B

D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ AK AL AM AN AP AR AT AU AV AW AY BA BB BC BD BE BF BG BH BJ

B

4X (6.00)

(4.00)

1.00

Side View 36.00

3.69±0.12 0.50±0.05

C

0.20 C

+0.06 Φ0.60 –0.14 Φ0.25 M C A B Φ0.10 M C Section A–A

Figure 6-1: Package Dimensions

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

44 of 47 Proprietary & Confidential

6.2 Package Thermal Data and Information Table 6-1: Package Thermal Data and Information Parameter

Value

Package Type

50mm x 50mm HFC BGA

Moisture Sensitivity Level

3

Junction to Case Thermal Resistance, θj-c

0.31°C/W

Junction to Air Thermal Resistance, θj-a (at zero airflow)

N/A. This device requires a heat sink. See Semtech’s Crosspoint Design Guide.

Junction to Board Thermal Resistance, θj-b

2.1°C/W

Pb-free and RoHS Compliant

Yes

6.3 Marking Diagram Pin 1 Indicator

GX3190 ZZZZZZE3 XXXXXX-YYWW

Instructions: GX3190 ZZZZZZ E3 XXXXXX YYWW

Package Mark Marking batch work order information Pb-free & Green indicator Assembly batch work order information Date Code

Figure 6-2: Marking Diagram

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

45 of 47 Proprietary & Confidential

6.4 Solder Reflow Profile The GX3190 is available in a Pb-free package. It is recommended that the Pb-free package be soldered with Pb-free paste using the reflow profile shown in Figure 6-3. Device Surface Temperature (°C)

Peak 245°C

250

230°C

1.0 - 2.0°C/s

200 180°C

150

Pre Heating Zone Soldering Zone

150°C 60 - 120s

100 10 - 15s

1.5 - 2.0°C/s

50 1.0 - 2.0°C/s

Heating Time

Figure 6-3: Maximum Pb-free Solder Reflow Profile

6.5 Ordering Information Table 6-2: Ordering Information Part Number

Package

Temperature Range

GX3190-CBE3

50x50mm HFC-BGA

0°C to 85°C

Appendix - Relevant Documentation Table 6-3: Relevant Documentation Document Description

Document Identification

EB-GX3290 Schematics, PCB Layout and Bill of Materials

GENDOC-056057

GX3290 Host Control Software User Manual

GENDOC-055970

Using the Monitoring Features of the GX3290 Application Note

GENDOC-058329

GX3290 (and family) Crosspoint Ball Guide

GENDOC-056697

Crosspoint Design Guide

GENDOC-056004

Crosspoint (GX3290 and family) Reference Manual (for CSRs)

GENDOC-056832

GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

46 of 47 Proprietary & Confidential

DOCUMENT IDENTIFICATION

CAUTION

FINAL DATA SHEET

ELECTROSTATIC SENSITIVE DEVICES

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice.

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION

© Semtech 2012 All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range. SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise. Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contact Information Semtech Corporation Gennum Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com GX3190 146 x 290 3.5Gb/s Crosspoint Final Data Sheet Rev. 2 GENDOC-056076 March 2013

www.semtech.com

47 of 47 47 Proprietary & Confidential

GX3190-c4-tlonrp.pdf

dynamically scalable power management. Unused. portions of the core are automatically turned off without. affecting the operation of the remaining channels.

1MB Sizes 1 Downloads 219 Views

Recommend Documents

No documents