5

Haraldsson B., Nystrom J., Deen W. M. Properties of the Glomerular Barrier and Mechanisms of Proteinuria Dept. Mol. Clin. Med./Nephrol., Inst. Med., Goteborg Univ., Sweden; Depart. Chem. Engineer., MIT, Cambridge, Massachusetts Physiol. Rev. 88: 451–487, 2008

6

I. Введение

1 2 3 4

7 8 9

Гломерулярный барьер обеспечивает фильтрацию воды, низко- и среднемолекулярных ве­ ществ и почти полностью ограничивают фильтрацию альбумина и других крупных белков. У человека образуется около 180 л/сут первичной мочи.

16

В обзоре рассмотрены функции гломерулярного барьера, механизмы протеинурии и нефроти­ ческих синдромов. Рассмотрены функции эндотелия, его гликокаликса и базальной мембра­ ны. Рассмотрены взаимодействия между барьером и белками плазмы (альбумин и др.), основные компоненты гломерулярного барьера, скорость клубочковой фильтрации, скорость кровотока и концентрации альбумина. Рассмотрены методы изучения проницаемости клубоч­ ков, физические принципы и теоретические модели, отражающие функционирование гломе­ рулярного барьера.

17

II. Компоненты гломерулярного барьера

18

A. Подоциты

10 11 12 13 14 15

19 20 21 22

Подоциты расположены снаружи от гломерулярных капилляров, на поверхности капсулы клубочка и обращены в сторону первичной мочи. Эти клетки имеют большое тело и длинные покрытые мембраной выросты цитоплазмы. Компоненты мембраны ограничивают проницае­ мость фильтра для макромолекул (молекулярная масса, заряд, конфигурация).

24

Щели мембраны подоцитов препятствуют фильтрации альбумина и миоглобина (116, 144, 254, 296, 319, 330, 342, 348).

25

B. Базальная мембрана

23

33

Базальная мембрана состоит из сети волокон коллагена IV типа (цепи α3, α4 и α5) (193, 271), ламинина (в основном ламинина 11; α5βγ1) (205), нидогена/энтактина, протеогликанов агри­ на и перлекана, а также гликопротеинами. Базальная мембрана гломерулярных капилляров намного толще (240—370 нм) (163) базальной мембраны других сосудов (40—80 нм) (288). Коллаген IV типа формирует основу базальной мембраны. Мутации цепей коллагена вызыва­ ют гломерулонефрит (14, 170, 195) или истончение гломерулярной мембраны (320). Базаль­ ная мембрана содержит протеогликанов, связанных с цепями гепарансульфата, что также обеспечивает селективность барьера (65, 73, 118, 145).

34

C. Эндотелий

26 27 28 29 30 31 32

35 36 37 38 39 40 41

Эндотелиоциты клубочка плоские, расположенные вокруг капиллярных петель (288, 315). В капиллярах клубочка клетки имеют фенестры, составляющие 20—50 % поверхности эндо­ телия (40, 73). Диаметр фенестр составляет 60 нм (316), а размер молекулы альбумина — 3,6 нм. Таким об­ разом, фенестры не ограничивают фильтрацию альбумина. Эндотелиоциты имеют заряд-се­ лективные свойства посредством отрицательно заряженных протеогликанов (260) или других селективных молекул (11, 52, 70, 134, 135, 212, 267, 268, 302). Стр. 1 из 22

42 43 44 45 46 47

D. Поверхностный эндотелиальный слой Эндотелиоциты поверхностного слоя участвует в свертывании крови (16, 174), ангиогенезе (39,96), реологии (62) и являются капиллярным барьером (129,134,135,301). Этот слой состо­ ит из двух компонентов: гликокаликса и большего эндотелиального слоя (44, 63, 178). По­ верхностный слой состоит из отрицательно заряженных гликопротеинов, гликозаминоглика­ нов, мембранных и секретируемых протеогликанов.

49

Отрицательно заряженные структуры эндотелия всего способствуют избирательной проница­ емости гломерулярной стенки (77, 112, 114, 115, 117, 121, 135, 278, 279, 289, 339).

50

1. Гликокаликс подоцитов

48

57

Подоциты покрыты гликокаликсом из сульфатированных гликозаминогликанов, сиализиро­ ванных гликоконьюгатов и гепарансульфата (232, 261). Основной сиалопротеин подоцитов подокаликсин сильно гликозилирован (151). У крыс, пуромицин снижал силовых кислот в подокаликсине и величину отрицательного заряда мембраны подоцитов (152). Гломеруляр­ ные клетки продуцируют протеогликаны глипикан-1 и синдикан-4 (25). Отрицательный заряд способствует сохранению расстояния между париетальными и висцеральными эпителиоци­ тами, что обеспечивает сохранение структуры и функцию гломерул (150).

58

E. Мезангий

51 52 53 54 55 56

70

Мезангий поддерживает структуру и функцию гломерулярного барьера. Мезангий состоит из мезангиальных клеток и внеклеточного матрикса. Мезангиальные клетки способны сокра­ щаться (162, 277). Сократимость может регулировать растяжимость гломерул в ответ на изме­ нение давления. Мезангиальные клетки продуцируют компоненты мезангиального матрикса, который состоит из коллагена (I, III, IV, V типов), ламинина, фибронектина и протеогликанов с цепями гепарансульфата и хондроитинсульфата (189, 215). Мезангиальные клетки выделя­ ют IL-1, фактор роста тромбоцитов (PDGF) и инсулиноподобный фактор роста (IGF) (1, 8. 352). PDGF стимулирует митоз клеток мезангия. Трансформирующий фактор роста (TGF)-β ингибирует клеточную пролиферацию, но стимулирует синтез протеогликанов в культуре мезангиальных клеток и подоцитов. Пролиферация мезангиальных клеток и матрикса наблю­ дается при IgA-нефрите (143, 165), диабетической нефропатии (102, 133, 276). Гиперпродук­ ция матрикса вследствие пролиферации клеток за вызывает гломерулосклероз.

71

F. Компоненты плазмы

59 60 61 62 63 64 65 66 67 68 69

72 73 74 75 76

Компоненты плазмы влияют на гломерулярный фильтр не новая (164), в том числе на прони­ цаемость белка (34, 98). Низкая концентрация альбумина в плазме повышает проницаемость­ гломерулярного фильтра для воды (63, 191) и макромолекул (92). Белок острой фазы воспале­ ния орсомукоид также повышает проницаемость капилляров почек для макромолекул (58, 114, 115, 117, 139). Однако механизм этого феномена неясен (168, 279, 299, 300).

81

Подоциты влияют на свойства эндотелия через секрецию сосудистого эндотелиального фак­ тора роста (VEGF) и ANG I. Гликокаликс состоит из мембранных протеогликанов синдикана и глипикана. Эндотелиальный поверхностный слой состоит из секретируемых протеоглика­ нов (версикан, перлекан), гиулорана и адсорбированных плазменных белков (орсомукоид, альбумин).

82

III. Методы изучения гломерулярного фильтра

77 78 79 80

83 84 85

Проницаемость гломерулярного фильтра изучается с помощью анализа мочи, микропункции отдельных нефронов, изолированной перфузии почек, иммуногистохимии, изоляции гломе­ рулы, гломерулярных клеток, базальной мембраны и создания искусственных мембран. Стр. 2 из 22

86 87 88

IV. Растворы, используемые для изучения гломерулярной проницаемости Проницаемость гломерулярного фильтра изучается с помощью теоретически идеальных растворов, белка, полимеров декстрана и фиколла.

90

V. Свойства растворенных веществ, влияющие на гломерулярный транспорт

91

A. Молекулярный размер

89

92 93 94 95 96 97 98 99

Эквивалентный радиус маленьких пор составляет 45—50 Å (26, 212, 213), радиус больших пор — 80—100 Å (176, 212, 213, 310). Для нейтральных растворенных веществ коэффициент проницаемости уменьшается по мере увеличения размеров молекулы, что описывается четырьмя транспортными теориями: теори­ ей двух пор, распределения нормальных пор, теорией (нейтральной) фибриллярной матрицы, теорией отрицательно заряженных волокон (136, 137). Теория отрицательно заряженных во­ локон, включает влияние заряда и размера вещества, что соотносится с биологическими дан­ ными.

100

B. Заряд молекулы

101

Независимо от теоретических моделей, заряд молекулы влияет на ее транспорт.

102

C. Конфигурация

106

Конфигурация существенно влияет на транспорт растворенных веществ через гломеруляр­ ный фильтр, если растворенные вещества имеют удлиненную или случайную форму (71, 73, 214, 247). Однако, небольшие отклонения от идеальной сферической формы существенно не влияют на транспорт (28).

107

D. Относительное значение селективности по отношению к заряду и размеру

103 104 105

111

Чтобы предсказать трансгломерулярный транспорт растворенных веществ, необходимо знать его молекулярный размер (константу диффузии, например, радиус Стокса-Эйнштейна), его заряд (плотность заряда) и конфигурацию (214). Для растворенных веществ, не имеющих случайной или удлиненной формы, она существенно не влияет на транспорт (28).

112

VI. Физические принципы и теоретические модели

108 109 110

113 114

A. Ограничение транспорта и селективность мембраны относительно размера

120

Определяющей чертой ультрафильтрационной мембраны является то, что она может выпол­ нять роль сита для макромолекул на основе их молекулярных размеров. Растворенные веще­ ства непрофильтровавшиеся имеют молекулярную массу ~1—1000 кДа. Однако, линейные размеры молекул имеют прямое отношение к их способности проходить через небольшие поры. Наиболее распространенной из таких мер молекулярного размера является радиус Стокса-Эйнштейна.

121

B. Проницаемость однородных мембран

115 116 117 118 119

122 123

Экспериментальной мерой мембранной селективности при ультрафильтрации является коэф­ фициент проницаемости. Стр. 3 из 22

124

C. Влияние молекулярной формы, размера и заряда на селективность мембран

125

1. Влияние заряда

129

Эффекты размера и заряда не совсем отделимы друг от друга. Ограниченность попыток пред­ сказать селективность относительно размера состоит в том, что фактическая структура мем­ браны может быть гораздо более сложная, чем имеющиеся модели (например, однородной цилиндрической поры или случайно ориентированные волокна) (52, 122, 134).

130

2. Влияние формы

126 127 128

135

В гелеподобной структуре эндотелиального гликокаликса и ГБМ, а также физиологического значения глобулярных белков, разделение жестких частиц в фибриллярной матрице является особенно актуальным. В таких системах, влияние молекулярной формы, похоже, имеет не­ большое значение, если растворенные вещества заметно удлиненные или они случайной формы.

136

D. Проницаемость в многослойных мембранах

131 132 133 134

137 138 139 140

Поскольку клубочковый фильтрационный барьер состоит из трех слоев (фенестрированный эндотелий с гликокаликсом, ГБМ и эпителиальные фильтрационные щели с щелевыми диафрагмами), то проницаемость в многослойной мембране отличается от таковой, в одно­ слойной.

144

Взаимозависимость коэффициентов проницаемости слоев проистекает из двух физических ограничений. Один заключается в том, что поток воды и растворенных веществ через каж­ дый слой должен быть одинаковым. Другой сдерживающий механизм заключается в том, что концентрация на нижнем слое связана с таковой на верхней стороне слоя.

145

VII. Механизмы развития протеинурии и нефротических синдромов

146

A. Протеинурия

141 142 143

149

Протеинурия — состояние, когда в моче содержится более 300 мг белка в сутки (или 200 мг/л). При нефротическом синдроме протеинурия составляет 3,5 г/сут. Микроальбумину­ рия — 30—300 мг/сут (20—200 мг/л) (31, 111, 119, 128, 183, 336).

150

B. Источник белка в моче

147 148

152

1) Фильтрация белка; 2) канальцевая секреция белков из крови; 3) синтез белка клетками по­ чек; секреция белка мочевыделительной системой и простатой (84).

153

C. Гипотеза восстановления альбумина

151

156

Протеинурия при диабетической нефропатии (226, 229) или других почечных заболеваниях (265), отражает дефекты канальцевой системы при ненарушенной клубочковой проницаемо­ сти (265, 266).

157

D. Заболевания человека

154 155

158 159 160 161 162 163

Протеинурия является отличительной чертой гломерулонефрита, диабетической нефропатии и многих других заболеваний. Среди условий, которые вызывают нефротический синдром (протеинурия, отеки, низкой концентрацией сывороточного альбумина и гиперлипидемия), минимальным изменением является нефроз. Пациенты с нефротическим синдромом финского типа имеют дефекты в гене нефрина, NPHS1 (153). Стероидоустойчивый нефротический синдром у детей обусловлен дефектом Стр. 4 из 22

164 165

гена NPHS2 (29). Ген LMX1B дефектен у больных с пателлярным синдромом, обусловлен­ ным нарушением дифференцировки подоцитов (192).

170

Протеинурия может также развиваться при ишемии-реперфузии (9, 294). Длительный период ишемии (60 мин) вызывает неселективное повреждение гломерулярного фильтра (252). При ишемия в течение 15—20 мин, последующая реперфузия главным образом влияет на гломе­ рулярную селективность относительно заряда (6, 252). Эти изменения происходили без по­ вреждения подоцитов, ГБМ и эндотелиальных клеток (6).

171

Литература

166 167 168 169

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

1. Abboud HE, Poptic E, DiCorleto P. Production of platelet-derived growth factorlike protein by rat mesangial cells in culture. J Clin Invest 80: 675–683, 1987. 2. Adamson RH, Clough G. Plasma proteins modify the endothelial cell glycocalyx of frog mes­ enteric microvessels. J Physiol 445:473–486, 1992. 3. Ala-Houhala I, Pasternack A. Fractional dextran and protein clearances in glomerulonephritis and in diabetic nephropathy. Clin. Sci 72: 289–296, 1987. 4. Amon H, Gayer J. Electron microscope studies on the influence ofhyaluronidase on the basal membrane of the glomerular capillaries with special reference to the problem of permeability. Klinische Wochenschrift 41: 163–172, 1963. 5. Anderson JL, Brannon JH. Concentration dependence of the distribution coefficient for macro­ molecules in porous media. JPolymer Sci 19: 405–421, 1981. 6. Andersson M, Nilsson UA, Hjalmarsson C, Haraldsson B, Nystrom Sorensson J. Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier. Am J PhysiolRenal Physiol 292: F1802–F1809, 2007. 7. Areekul S. Reflection coefficients of neutral and sulphate-substituted dextran molecules in the isolated perfused rabbit ear. ActaSoc Med Ups 74: 129–138, 1969. 8. Aron DC, Rosenzweig JL, Abboud HE. Synthesis and binding of insulin-like growth factor I by human glomerular mesangial cells. J Clin Endocrinol Metab 68: 585–591, 1989. 9. Artz MA, Dooper PM, Meuleman EJ, van der Vliet JA, Wetzels JF. Time course of proteinuria after living-donor kidney transplantation. Transplantation 76: 421–423, 2003. 10. Asgeirsson D, Rippe B, Venturoli D, Rippe C. Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats. Am J Physiol Renal Physiol 291: F1083–F1089, 2006. 11. Avasthi PS, Koshy V. The anionic matrix at the rat glomerular endothelial surface. Anat Rec 220: 258–266, 1988. 12. Bakoush O, Tencer J, Torffvit O, Tenstad O, Skogvall I, Rippe B. Increased glomerular albumin permeability in old spontaneously hypertensive rats. Nephrol Dial Transplant 19: 1724–1731, 2004. 13. Ballermann BJ. Regulation of bovine glomerular endothelial cell growth in vitro. Am J Physiol Cell Physiol 256: C182–C189, 1989. 14. Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, Gregory MC, Skolnick MH, Atkin CL, Tryggvason K. Identification of mutations in the COL4A5 collagen gene in Al­ port syndrome. Science 248: 1224–1227, 1990. 15. Batsford SR, Rohrbach R, Vogt A. Size restriction in the glomerular capillary wall: importance of lamina densa. Kidney Int 31: 710–717, 1987. 16. Benedict CR, Pakala R, Willerson JT. Endothelial-dependent procoagulant and anticoagulant mechanisms. Recent advances in understanding. Texas Heart Inst J 21: 86–90, 1994. 17. Bennett CM, Glassock RJ, Chang RL, Deen WM, Robertson CR, Brenner BM, Troy JL, ueki IR, Rasmussen B. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using dextran sulfate. J Clin Invest 57: 1287–1294, 1976. Стр. 5 из 22

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

18. Bertolatus JA, Abuyousef M, Hunsicker LG. Glomerular sieving of high molecular weight pro­ teins in proteinuric rats. Kidney Int 31: 1257–1266, 1987. 19. Bertolatus JA, Hunsicker LG. Glomerular sieving of anionic and neutral bovine albumins in ro­ teinuric rats. Kidney Int 28: 467–476, 1985. 20. Bertolatus JA, Klinzman D. Macromolecular sieving by glomerular basement membrane in vitro: еffect of polycation or biochemical modifications. Microvasc Res 41: 311–327, 1991. 21. Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int 69: 440–449, 2006. 22. Birn H, Willnow TE, Nielsen R, Norden AG, Bonsch C, Moestrup SK, Nexo E, Christensen EI. Megalin is essential for renal proximal tubule reabsorption and accumulation of transcobalam­ in-B(12). Am J Physiol Renal Physiol 282: F408–F416, 2002. 23. Bjo.rnson A, Moses J, Ingemansson A, Haraldsson B, So. Rensson J. Primary human glomer­ ular endothelial cells produce proteoglycans, puromycin affects their posttranslational modifica­ tion. Am J Physiol Renal Physiol 288: F748–F756, 2005. 24. Bjornson Granqvist A, Ebefors K, Saleem MA, Mathieson PW, Haraldsson B, So.rensson Nys­ tro.m J. Podocyte proteoglycan synthesis is involved in the development of nephrotic syn­ drome. Am J Physiol Renal Physiol 292: F722–F730, 2006. 25. Blau EB, Haas JE. Glomerular sialic acid and proteinuria in human renal disease. Lab Invest 28: 477–481, 1973. 26. Blouch K, Deen WM, Fauvel JP, Bialek J, Derby G, Myers BD. Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. Am J Physiol Renal Physiol 273: F430–F437, 1997. 27. Bolton GR, Deen WM. Limitations in the application of fibermatrix models to glomerular base­ ment membrane. In: Membrane Transport and Renal Physiology, edited by Layton HE, Wein­ stein AM. New York: Springer-Verlag, 2002, p. 141–156. 28. Bolton GR, Deen WM, Daniels BS. Assessment of the charge selectivity of glomerular base­ ment membrane using Ficoll sulfate. Am J Physiol Renal Physiol 274: F889–F896, 1998. 29. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Ni­ audet P, Antignac C. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nature Genet 24: 349–354, 2000. 30. Boyce NW, Holdsworth SR. Glomerular permselectivity in the isolated perfused rat kidney. Am J Physiol Renal Fluid Electrolyte Physiol 249: F780–F784, 1985. 31. Brantsma AH, Bakker SJ, Hillege HL, de Zeeuw D, de Jong PE, Gansevoort RT. Urinary albu­ min excretion and its relation with C-reactive protein and the metabolic syndrome in the predic­ tion of type 2 diabetes. Diabetes Care 28: 2525–2530, 2005. 32. Bray J, Robinson GB. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int 25: 527–533, 1984. 33. Breimer ME, Svalander CT, Haraldsson B, Bjo.rck S. Physiological and histological character­ isation of a pig kidney in vitro perfusion model for xenotransplantation studies. Scand J Urol Nephrol 30: 213–221, 1996. 34. Brenchley PEC. Vascular permeability factors in steroid-sensitive nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol Dial Transplant 18 Suppl 6: 21–25, 2003. 35. Brenner BM, Baylis C, Deen WM. Transport of molecules across renal glomerular capillaries. Physiol Rev 56: 502–534, 1976. 36. Brenner BM, Bohrer MP, Baylis C, Deen WM. Determinants of glomerular permselectivity: in­ sights derived from observations in vivo. Kidney Int 12: 229–237, 1977. 37. Bridges CR Jr, Rennke HG, Deen WM, Troy JL, Brenner BM. Reversible hexadimethrine-in­ duced alterations in glomerular structure and permeability. J Am Soc Nephrol 1: 1095–1108, 1991.

Стр. 6 из 22

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

38. Brink HM, Moons WM, Slegers JF. Glomerular filtration in the isolated perfused kidney. I. Sieving of macromolecules. Pflu. Gers Arch 397: 42–47, 1983. 39. Brown MD, Egginton S, Hudlicka O, Zhou AL. Appearance of the capillary endothelial gly­ cocalyx in chronically stimulated rat skeletal muscles in relation to angiogenesis. Exp Physiol 81: 1043–1046, 1996. 40. Bulger RE, Eknoyan G, Purcell DJ 2nd, Dobyan DC. Endothelial characteristics of glomerular capillaries in normal, mercuric chloride-induced, gentamicin-induced acute renal failure in the rat. J Clin Invest 72: 128–141, 1983. 41. Burne MJ, Adal Y, Cohen N, Panagiotopoulos S, Jerums G, Comper WD. Anomalous decrease in dextran sulfate clearance in the diabetic rat kidney. Am J Physiol Renal Physiol 274: F700– F708, 1998. 42. Cattran D, Neogi T, Sharma R, McCarthy ET, Savin VJ. Serial estimates of serum permeability activity and clinical correlates in patients with native kidney focal segmental glomerulosclero­ sis. J Am Soc Nephrol 14: 448–453, 2003. 43. Caulfield JP, Farquhar MG. The permeability of glomerular capillaries to graded dextrans. Iden­ tification of the basement membrane as the primary filtration barrier. J Cell Biol 63: 883–903, 1974. 44. Chambers R, Zweifach BW. Intercellular cement and capillary permeability. Physiol Rev 27: 436–463, 1947. 45. Chang RLS, Deen WM, Robertson CR, Bennett CM, Glassock RJ, Brenner BM, Troy JL, Ueki IF, Rasmussen B. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using neutral dextran. J Clin Invest 57: 1272–1286, 1976. 46. Chang RLS, Deen WM, Robertson CR, Brenner BM. Permselectivity of the glomerular capil­ lary wall. III. Restricted transport of polyanions. Kidney Int 8: 212–218, 1975. 47. Chang RLS, Ueki IF, Troy JL, Deen WM, Robertson CR, Brenner BM. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dex­ tran. Biophys J 15: 887–906, 1975. 48. Chang RLS, Robertson CR, Deen WM, Brenner BM. Permselectivity of the glomerular capil­ lary wall to macromolecules. I. Theoretical considerations. Biophys J 15: 861–886, 1975. 49. Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 280: F562–F573, 2001. 50. Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Gug­ gino WB, Courtoy PJ. Loss of chloride channel ClC-5 impairs endocytosis by defective traf­ ficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100: 8472– 8477, 2003. 51. Ciarimboli G, Bokenkamp A, Schurek HJ, Fels LM, Kilian I, Maess B, Stolte H. The “fixed” charge of glomerular capillary wall as determinant of permselectivity. Renal Failure 23: 365– 376, 2001. 52. Ciarimboli G, Hjalmarsson C, Bokenkamp A, Schurek HJ, Haraldsson B. Dynamic alterations of glomerular charge density in fixed rat kidneys suggest involvement of endothelial cell coat. Am J Physiol Renal Physiol 285: F722–F730, 2003. 53. Ciarimboli G, Schurek HJ, Zeh M, Flohr H, Bokenkamp A, Fels LM, Kilian I, Stolte H. Role of albumin and glomerular capillary wall charge distribution on glomerular permselectivity: stud­ ies on the perfused-fixed rat kidney model. Pflu. gers Arch 438: 883–891, 1999. 54. Clavant SP, Sastra SA, Osicka TM, Comper WD. The analysis and characterisation of immunounreactive urinary albumin in healthy volunteers. Clin Biochem 39: 143–151, 2006. 55. Clough G. Relationship between microvascular permeability and ultrastructure. Prog Biophys Mol Biol 55: 47–69, 1991. 56. Comper WD, Osicka TM. Detection of urinary albumin. Adv Chronic Kidney Dis 12: 170–176, 2005. Стр. 7 из 22

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

57. Comper WD, Tay M, Wells X, Dawes J. Desulphation of dextran sulphate during kidney ultra­ filtration. Biochem J 297: 31–34, 1994. 58. Curry FE, Rutledge JC, Lenz JF. Modulation of microvessel wall charge by plasma glycopro­ tein orosomucoid. Am J Physiol Heart Circ Physiol 257: H1354–H1359, 1989. 59. Cutillas PR, Chalkley RJ, Hansen KC, Cramer R, Norden AG, Waterfield MD, Burlingame AL, Unwin RJ. The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol 287: F353–F364, 2004. 60. Cuypers Y, Vandenreyt I, Bipat R, Toelsie J, Van Damme B, Steels P. The functional state of the isolated rabbit kidney perfused with autologous blood. Pflu. gers Arch 440: 634–642, 2000. 61. Dahly-Vernon AJ, Sharma M, McCarthy ET, Savin VJ, Ledbetter SR, Roman RJ. Transforming growth factor-beta, 20-HETE interaction, glomerular injury in Dahl salt-sensitive rats. Hyper­ tension 45: 643–648, 2005. 62. Damiano ER. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc Res 55: 77–91, 1998. 63. Danielli JF. Capillary permeability and oedema in the perfused frog. J Physiol 98: 109–129, 1940. 64. Daniels BS. Increased albumin permeability in vitro following alterations of glomerular charge is mediated by the cells of the filtration barrier. J Lab Clin Med 124: 224–230, 1994. 65. Daniels BS, Hauser EB, Deen WM, Hostetter TH. Glomerular basement membrane: in vitro studies of water and protein permeability. Am J Physiol Renal Fluid Electrolyte Physiol 262: F919–F926, 1992. 66. Datta K, Li J, Karumanchi SA, Wang E, Rondeau E, Mukhopadhyay D. Regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF-A) expression in podocytes. Kidney Int 66: 1471–1478, 2004. 67. Dechadilok P, Deen WM. Hindrance factors for diffusion and convection in pores. Ind Engin Chem Res 45: 6953–6959, 2006. 68. Deen WM. Cellular contributions to glomerular size-selectivity. Kidney Int 69: 1295–1297, 2006. 69. Deen WM. Hindered transport of large molecules in liquid-filled pores. AIChE J 33: 1409– 1425, 1987. 70. Deen WM. What determines glomerular capillary permeability? J Clin Invest 114: 1412–1414, 2004. 71. Deen WM, Bohrer MP, Epstein NB. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J 27: 952–959, 1981. 72. Deen WM, Bridges CR, Brenner BM, Myers BD. Heteroporous model of glomerular size se­ lectivity: application to normal and nephrotic humans. Am J Physiol Renal Fluid Electrolyte Physiol 249: F374–F389, 1985. 73. Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281: F579–F596, 2001. 74. Deen WM, Robertson CR, Brenner BM. A model of glomerular ultrafiltration in the rat. Am J Physiol 223: 1178–1183, 1972. 75. Deen WM, Robertson CR, Brenner BM. Concentration polarization in an ultrafiltering capil­ lary. Biophys J 14: 412–431, 1974. 76. Deen WM, Satvat B, Jamieson JM. Theoretical model for glomerular filtration of charged solutes. Am J Physiol Renal Fluid Electrolyte Physiol 238: F126–F139, 1980. 77. Desjardins C, Duling BR. Microvessel hematocrit: measurement and implications for capillary oxygen transport. AmericanJ Physiol Heart Circ Physiol 252: H494–H503, 1987. 78. Du Bois R, Decoodt P, Gasse.e JP, Verniory A, Lambert PP. Determination of glomerular intra­ capillary and transcapillary pressure gradients from sieving data. Pflu. gers Arch 356: 299–316, 1974. Стр. 8 из 22

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

79. 79. Durvasula RV, Shankland SJ. Podocyte injury and targeting therapy: an update. Curr Opin Nephrol Hypertens 15: 1–7, 2006. 80. 80. Casassa EF. Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids. J Polym Sci Polym Lett 5: 773–778, 1967. 81. Edwards A, Daniels BS, Deen WM. Hindered transport of macromolecules in isolated glomer­ uli. II. Convection and pressure effects in basement membrane. Biophys J 72: 214–222, 1997. 82. Edwards A, Deen WM, Daniels BS. Hindered transport of macromolecules in isolated glomer­ uli. I. Diffusion across intact and cell-free capillaries. Biophys J 72: 204–213, 1997. 83. El-Aouni C, Herbach N, Blattner SM, Henger A, Rastaldi MP, Jarad G, Miner JH, Moeller MJ, St-Arnaud R, Dedhar S, Holzman LB, Wanke R, Kretzler M. Podocyte-specific deletion of in­ tegrin-linked kinase results in severe glomerular basement membrane alterations and progress­ ive glomerulosclerosis. J Am Soc Nephrol 17: 1334–1344, 2006. 84. Eppel GA, Osicka TM, Pratt LM, Jablonski P, Howden B, Glasgow EF, Comper WD. The re­ turn of glomerular filtered albumin to the rat renal vein—the albumin retrieval pathway. Renal Failure 23: 347–363, 2001. 85. Eremina V, Quaggin SE. The role of VEGF-A in glomerular development and function. Curr Opin Nephrol Hypertens 13: 9–15, 2004. 86. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE. Glomerular specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111: 707–716, 2003. 87. Farquhar MG. Editorial: the primary glomerular filtration barrier—basement membrane or epi­ thelial slits? Kidney Int 8: 197–211, 1975. 88. Fels LM, Sanz-Altamira PM, Decker B, Elger B, Stolte H. Filtration characteristics of the single isolated perfused glomerulus of Myxine glutinosa. Renal Physiol Biochem 16: 276–284, 1993. 89. Foidart JB, Dechenne CA, Mahieu P, Creutz CE, de Mey J. Tissue culture of normal rat glomer­ uli. Isolation and morphological characterization of two homogeneous cell lines. Invest Cell Pathol 2: 15–26, 1979. 90. Franceschini N, North KE, Kopp JB, McKenzie L, Winkler C. NPHS2 gene, nephrotic syn­ drome and focal segmental glomerulosclerosis: a HuGE review. Genet Med 8: 63–75, 2006. 91. Franke H, Malyusz M, Runge D. Improved sodium and PAH transport in the isolated fluorocar­ bon-perfused rat kidney. Nephron 22: 423–431, 1978. 92. Fujihara CK, Arcos-Fajardo M, Brandao De Almeida Prado E, Jose Brandao De Almeida Prado M, Sesso A, Zatz R. Enhanced glomerular permeability to macromolecules in the Nagase anal­ buminemic rat. Am J Physiol Renal Physiol 282: F45–F50, 2002. 93. Gekle D, von Bruchhausen F, Fuchs G. On the size of the pore equivalent in isolated basement membrane of the rat kidney. Pflu. gers Arch 289: 180–190, 1966. 94. Ghitescu L, Desjardins M, Bendayan M. Immunocytochemical study of glomerular permeabil­ ity to anionic, neutral and cationic albumins. Kidney Int 42: 25–32, 1992. 95. Giddings JC, Kucera E, Russel CP, Myers MN. Statistical theory for the equilibrium distribu­ tion of rigid molecules in inert porous networks. Exclusion chromatography. J Phys Chem 72: 4397–4408, 1968. 96. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267: 6093–6098, 1992. 97. Glandt ED. Distribution equilibrium between a bulk phase and small pores. AlChE J 27: 51–59, 1981. 98. Glassock RJ. Circulating permeability factors in the nephritic syndrome: a fresh look at an old problem. J Am Soc Nephrol 14: 541–543, 2003.

Стр. 9 из 22

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

99. Green DF, Hwang KH, Ryan US, Bourgoignie JJ. Culture of endothelial cells from baboon and human glomeruli. Kidney Int 41: 1506–1516, 1992. 100.Greive KA, Osicka TM, Russo LM, Comper WD. Fragmentation of filtered proteins and im­ plications for glomerular protein sieving in Fanconi syndrome. Kidney Int 61: 1549–1550, 2002. 101.Groggel GC, Stevenson J, Hovingh P, Linker A, Border WA. Changes in heparan sulfate correl­ ate with increased glomerular permeability. Kidney Int 33: 517–523, 1988. 102.Groop PH, Forsblom C, Thomas MC. Mechanisms of disease: pathway-selective insulin resist­ ance and microvascular complications of diabetes. Nat Clin Pract Endocrinol Metab 1: 100– 110, 2005. 103.Guan F, Villegas G, Teichman J, Mundel P, Tufro A. Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP. Am J Physiol Renal Physiol 291: F422– F428, 2006. 104.Guan N, Ding J, Zhang J, Yang J. Expression of nephrin, podocin, alpha-actinin, WT1 in chil­ dren with nephrotic syndrome. Pediatr Nephrol 18: 1122–1127, 2003. 105.Guasch A, Deen WM, Myers BD. Charge selectivity of the glomerular filtration barrier in healthy and nephrotic humans. J Clin Invest 92: 2274–2282, 1993. 106.Guasch A, Hashimoto H, Sibley RK, Deen WM, Myers BD. Glomerular dysfunction in neph­ rotic humans with minimal changes or focal glomerulosclerosis. Am J Physiol Renal Fluid Electrolyte Physiol 260: F728–F737, 1991. 107.Guimaraes MA, Nikolovski J, Pratt LM, Greive K, Comper WD. Anomalous fractional clear­ ance of negatively charged Ficoll relative to uncharged Ficoll. Am J Physiol Renal Physiol 285: F1118–F1124, 2003. 108.Gyenge CC, Tenstad O, Wiig H. In vivo determination of steric and electrostatic exclusion of albumin in rat skin and skeletal muscle. J Physiol 552: 907–916, 2003. 109.Ha TS, Duraisamy S, Faulkner JL, Kasinath BS. Regulation of glomerular endothelial cell pro­ teoglycans by glucose. J KoreanMed Sci 19: 245–252, 2004. 110.Hagen SG, Michael AF, Butkowski RJ. Immunochemical and biochemical evidence for distinct basement membrane heparin sulfate proteoglycans. J Biol Chem 268: 7261–7269, 1993. 111.Halbesma N, Kuiken DS, Brantsma AH, Bakker SJ, Wetzels JF, De Zeeuw D, De Jong PE, Gansevoort RT. Macroalbuminuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening. J Am Soc Nephrol 17: 2582–2590, 2006. 112.Haldenby KA, Chappell DC, Winlove CP, Parker KH, Firth JA. Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J Vasc Res 31: 2–9, 1994. 113.Halfter W, Dong S, Schurer B, Cole GJ. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273: 25404–25412, 1998. 114.Haraldsson B, Rippe B. Orosomucoid as one of the serum components contributing to normal capillary permselectivity in rat skeletal muscle. Acta Physiol Scand 129: 127–135, 1987. 115.Haraldsson B, Rippe B. Serum factors other than albumin are needed for the maintenance of normal capillary permeability in rat hindlimb muscle. Acta Physiol Scand 123: 427–436, 1985. 116.Haraldsson B, So.rensson J. Why do we not all have proteinuria? An update of our current un­ derstanding of the glomerular barrier. News Physiol Sci 19: 7–10, 2004. 117.Haraldsson BS, Johnsson EK, Rippe B. Glomerular permselectivity is dependent on adequate serum concentrations of orosomucoid. Kidney Int 41: 310–316, 1992. 118.Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci USA 77: 4494– 4498, 1980. 119.Hillege HL, Janssen WM, Bak AA, Diercks GF, Grobbee DE, Crijns HJ, Van Gilst WH, De Zeeuw D, De Jong PE. Microalbuminuria is common, also in a nondiabetic, nonhypertensive Стр. 10 из 22

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

population, an independent indicator of cardiovascular risk factors and cardiovascular morbid­ ity. J Internal Med 249: 519–526, 2001. 120.Hilliard LM, Osicka TM, Clavant SP, Robinson PJ, Nikolic-Paterson DJ, Comper WD. Charac­ terization of the urinary albumin degradation pathway in the isolated perfused rat kidney. J Lab Clin Med 147: 36–44, 2006. 121.Hjalmarsson C, Johansson BR, Haraldsson B. Electron microscopic evaluation of the endotheli­ al surface layer of glomerular capillaries. Microvasc Res 67: 9–17, 2004. 122.Hjalmarsson C, Lidell ME, Haraldsson B. Beneficial effects of orosomucoid on the glomerular barrier in puromycin aminonucleoside-induced nephrosis. Nephrol Dial Transplant 21: 1223– 1230, 2006. 123.Hjalmarsson C, Ohlson M, Haraldsson B. Puromycin aminonucleoside damages the glomerular size barrier with minimal effects on charge density. Am J Physiol Renal Physiol 281: F503– F512, 2001. 124.Hryciw DH, Ekberg J, Pollock CA, Poronnik P. ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 38: 1036–1042, 2006. 125.Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14: 211–216, 2005. 126.Huber TB, Kwoh C, Wu H, Asanuma K, Godel M, Hartleben B, Blumer KJ, Miner JH, Mundel P, Shaw AS. Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, synaptopodin. J Clin Invest 116: 1337–1345, 2006. 127.Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, Pavensta.dt H. Ex­ pression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168: 6244–6252, 2002. 128.Hutchison AS, O’Reilly DS, MacCuish AC. Albumin excretion rate, albumin concentration, al­ bumin/creatinine ratio compared for screening diabetics for slight albuminuria. Clin Chem 34: 2019–2021, 1988. 129.Huxley VH, Williams DA. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol 278: H1177–H1185, 2000. 130.Igarashi S, Nagase M, Oda T, Honda N. Molecular sieving by glomerular basement membrane isolated from normal and nephritic rabbits. Clin Chim Acta 68: 255–258, 1976. 131.Iozzo RV, Cohen IR, Grassel S, Murdoch AD. The biology of perlecan: the multifaceted hep­ aran sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302: 625–639, 1994. 132.Jarad G, Cunningham J, Shaw AS, Miner JH. Proteinuria precedes podocyte abnormalities in­ Lamb2−/− mice, implicating the glomerular basement membrane as an albumin barrier. J Clin In­ vest 116: 2272–2279, 2006. 133.Jeansson M, Granqvist AB, Nystro.m JS, Haraldsson B. Functional and molecular alterations of the glomerular barrier in longterm diabetes in mice. Diabetologia 49: 2200–2209, 2006. 134.Jeansson M, Haraldsson B. Glomerular size and charge selectivity in the mouse after exposure to glucosaminoglycan-degrading enzymes. J Am Soc Nephrol 14: 1756–1765, 2003. 135.Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol 290: F111– F116, 2006. 136.Johnson EM, Deen WM. Electrostatic effects on the equilibrium partitioning of spherical col­ loids in random fibrous media.. J Colloid Interface Sci 178: 749–756, 1996. 137.Johnson EM, Deen WM. Errata: electrostatic effects on the equilibrium partitioning of spherical colloids in random fibrous media. J Colloid Interface Sci 195: 268–268, 1997. 138.Johnson EM, Deen WM. Hydraulic permeability of agarose gels. AIChE J 42: 1220–1224, 1996.

Стр. 11 из 22

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

139.Johnsson E, Haraldsson B. Addition of purified orosomucoid preserves the glomerular per­ meability for albumin in isolated perfused rat kidneys. Acta Physiol Scand 147: 1–8, 1993. 140.Johnsson E, Haraldsson B. An isolated perfused rat kidney preparation designed for assessment of glomerular permeability characteristics. Acta Physiol Scand 144: 65–73, 1992. 141.Johnston ST, Deen WM. Hindered convection of Ficoll and proteins in agarose gels. Ind Eng Chem Res 41: 340–346, 2002. 142.Johnstone DB, Holzman LB. Clinical impact of research on the podocyte slit diaphragm. Nature Clin Pract 2: 271–282, 2006. 143.Julian BA, Novak J. IgA nephropathy: an update. Curr Opin Nephrol Hypertens 13: 171–179, 2004. 144.Kalluri R. Proteinuria with and without renal glomerular podocyte effacement. J Am Soc Neph­ rol 17: 2383–2389, 2006. 145.Kanwar YS, Linker A, Farquhar MG. Increased permeability of the glomerular basement mem­ brane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol 86: 688–693, 1980. 146.Kanwar YS, Rosenzweig LJ. Clogging of the glomerular basement membrane. J Cell Biol 93: 489–494, 1982. 147.Karumanchi SA, Maynard SE, Stillman IE, Epstein FH, Sukhatme VP. Preeclampsia: a renal perspective. Kidney Int 67: 2101–2113, 2005. 148.Kasinath BS. Glomerular endothelial cell proteoglycans—regulation by TGF-beta 1. Arch Bio­ chem Biophys 305: 370–377, 1993. 149.Kelley VE, Cavallo T. Glomerular permeability: transfer of native ferritin in glomeruli with de­ creased anionic sites. Lab Invest 39: 547–553, 1978. 150.Kerjaschki D. Dysfunctions of cell biological mechanisms of visceral epithelial cell (podo­ cytes) in glomerular diseases. Kidney Int 45: 300–313, 1994. 151.Kerjaschki D, Sharkey DJ, Farquhar MG. Identification and characterization of podocalyxin— the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol 98: 1591–1596, 1984. 152.Kerjaschki D, Vernillo AT, Farquhar MG. Reduced sialylation of podocalyxin–the major sialo­ protein of the rat kidney glomerulus in aminonucleoside nephrosis. Am J Pathol 118: 343–349, 1985. 153.Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital neph­ rotic syndrome. Mol Cell 1: 575–582, 1998. 154.Kestila M, Mannikko M, Holmberg C, Gyapay G, Weissenbach J, Savolainen ER, Peltonen L, Tryggvason K. Congenital nephritic syndrome of the Finnish type maps to the long arm of chromosome 19. Am J Hum Genet 54: 757–764, 1994. 155.Limbach KW, Nitsche JM, Wei J. Partitioning of nonspherical molecules between bulk solution and porous solids. AIChE J 35: 42–52, 1989. 156.Kitahara T, Hiromura K, Ikeuchi H, Yamashita S, Kobayashi S, Kuroiwa T, Kaneko Y, Ueki K, Nojima Y. Mesangial cells stimulate differentiation of endothelial cells to form capillary-like networks in a three-dimensional culture system. Nephrol Dial Transplant 20: 42–49, 2005. 157.Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, Atrian S, Allen PL, Hammond TG. Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol 287: F393–F403, 2004. 158.Kosto KB, Deen WM. Diffusivities of macromolecules in composite hydrogels. AIChE J 50: 2648–2658, 2004. 159.Kosto KB, Deen WM. Hindered convection of macromolecules in hydrogels. Biophys J 88: 277–286, 2005.

Стр. 12 из 22

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

160.Kosto KB, Panuganti S, Deen WM. Equilibrium partitioning of Ficoll in composite hydrogels. J Colloid Interface Sci 277: 404–409, 2004. 161.Kramer A, van den Hoven M, Rops A, Wijnhoven T, van den Heuvel L, Lensen J, van Kup­ pevelt T, van Goor H, van der Vlag J, Navis G, Berden JH. Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system. J Am Soc Nephrol 17: 2513–2520, 2006. 162.Kreisberg JI, Venkatachalam M, Troyer D. Contractile properties of cultured glomerular mes­ angial cells. Am J Physiol Renal Physiol 249: F457–F463, 1985. 163.Kriz W, Kaissling B. Structural organization of the mammalian kidney. In: The Kidney Physiology and Pathophysiology, edited by Seldin GW, Giebisch G. New York: Raven, 1992, p. 707–777. 164.Lagrue G, Xheneumont S, Branellec A, Hirbec G, Weil B. A vascular permeability factor elab­ orated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine 23: 37–40, 1975. 165.Lai AS, Lai KN. Molecular basis of IgA nephropathy. Curr MolMed 5: 475–487, 2005. 166.Lazzara MJ, Blankschtein D, Deen WM. Effects of multisolute steric interactions on membrane partition coefficients. J Colloid Interface Sci 226: 112–122, 2000. 167.Lazzara MJ, Deen WM. Effects of concentration on the partitioning of macromolecule mixtures in agarose gels. J Colloid InterfaceSci 272: 288–297, 2004. 168.Lazzara MJ, Deen WM. Effects of plasma proteins on sieving of tracer macromolecules in glomerular basement membrane. Am JPhysiol Renal Physiol 281: F860–F868, 2001. 169.Lazzara MJ, Deen WM. Model of albumin reabsorption in the proximal tubule. Am J Physiol Renal Physiol 292: F430–F439, 2007. 170.Lemmink HH, Mochizuki T, van den Heuvel LP, Schroder CH, Barrientos A, Monnens LA, van Oost BA, Brunner HG, Reeders ST, Smeets HJ. Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum Mol Genet 3: 1269–1273, 1994. 171.Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, Karumanchi SA. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355: 992–1005, 2006. 172.Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350: 672–683, 2004. 173.Lieberthal W, Rennke HG, Sandock KM, Valeri CR, Levinsky NG. Ischemia in the isolated erythrocyte-perfused rat kidney. Protective effect of hypothermia. Renal Physiol Biochem 11: 60–69, 1988. 174.Lijnen HR, Collen D. Endothelium in hemostasis and thrombosis. Prog Cardiovasc Dis 39: 343–350, 1997. 175.Lindstro.m KE, Blom A, Johnsson E, Haraldsson B, Fries E. High glomerular permeability of bikunin despite similarity in charge and hydrodynamic size to serum albumin. Kidney Int 51: 1053–1058, 1997. 176.Lindstro.m KE, Johnsson E, Haraldsson B. Glomerular charge selectivity for proteins larger than serum albumin as revealed by lactate dehydrogenase isoforms. Acta Physiol Scand 162: 481–488, 1998. 177.Lindstro.m KE, Ro.nnstedt L, Jaremko G, Haraldsson B. Physiological and morphological ef­ fects of perfusing isolated rat kidneys with hyperosmolal mannitol solutions. Acta Physiol Scand166: 231–238, 1999. 178.Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed­ eration Proc 25: 1773–1783, 1966.

Стр. 13 из 22

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

179.Lund U, Rippe A, Venturoli D, Tenstad O, Grubb A, Rippe B. Glomerular filtration rate de­ pendence of sieving of albumin and some neutral proteins in rat kidneys. Am J Physiol Renal Physiol 284: F1226–F1234, 2003. 180.Maack T. Physiological evaluation of the isolated perfused rat kidney. Am J Physiol Renal Flu­ id Electrolyte Physiol 238: F71–F78, 1980. 181.Maddox DA, Deen WM, Brenner BM. Glomerular filtration. In: Handbook of Physiology. Ren­ al Physiology.Bethesda, MD: Am. Physiol. Soc., 1992, sect. 8, vol. I, chapt. 13, p. 545–638. 182.Marrero MB, Banes-Berceli AK, Stern DM, Eaton DC. Role of the JAK/STAT signaling path­ way in diabetic nephropathy. Am JPhysiol Renal Physiol 290: F762–F768, 2006. 183.Mattix HJ, Hsu CY, Shaykevich S, Curhan G. Use of the albumin/creatinine ratio to detect mi­ croalbuminuria: implications of sex and race. J Am Soc Nephrol 13: 1034–1039, 2002. 184.Maunsbach AB. Absorption of 125I-labeled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradio­ graphy and histochemistry 1966. J Am Soc Nephrol 8: 323–351, 1997. 185.Maunsbach AB. Absorption of I-125-labeled homologous albumin by rat kidney proximal tu­ bule cells. A study of microperfused single proximal tubules by electron microscopic autoradio­ graphy and histochemistry. J Ultrastruct Res 15: 197–241, 1966. 186.Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, proteinuria in preeclampsia. J ClinInvest 111: 649–658, 2003. 187.Maynard SE, Venkatesha S, Thadhani R, Karumanchi SA. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr Res 57: 1R–7R, 2005. 188.McCarthy ET, Sharma R, Sharma M, Li JZ, Ge XL, Dileezpan KN, Savin VJ. TNF-alpha in­ creases albumin permeability of isolated rat glomeruli through the generation of superoxide. J Am Soc Nephrol 9: 433–438, 1998. 189.Mene P, Simonson MS, Dunn MJ. Physiology of the mesangial cell. Physiol Rev 69: 1347– 1424, 1989. 190.Meyrier A. Mechanisms of disease: focal segmental glomerulosclerosis. Nature Clin Pract 1: 44–54, 2005. 191.Michel CC, Phillips ME. The effect of Ficoll 70 and bovine serum albumin on the permeability properties of individually perfused frog mesenteric capillaries. J Physiol 291: 39P, 1979. 192.Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, Lee B. Transcriptional induc­ tion of slit diaphragm genes by Lmx1b 1072, 2002. 193.Miner JH, Sanes JR. Collagen IV alpha 3, alpha 4, alpha 5 chains in rodent basal laminae: se­ quence, distribution, association with laminins, developmental switches. J Cell Biol 127: 879– 891, 1994. 194.Mitchell BD, Deen WM. Theoretical effects of macromolecule concentration and charge on membrane rejection coefficients. JMembr Sci 19: 75–100, 1984. 195.Mochizuki T, Lemmink HH, Mariyama M, Antignac C, Gubler MC, Pirson Y, Verellen-Du­ moulin C, Chan B, Schroder CH, Smeets HJ. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nature Genet 8: 77–81, 1994. 196.Morigi M, Zoja C, Figliuzzi M, Remuzzi G, Remuzzi A. Supernatаnt of endothelial cells ex­ posed to laminar flow inhibits mesangial cell proliferation. Am J Physiol Cell Physiol 264: C1080–C1083, 1993. 197.Morita H, Yoshimura A, Inui K, Ideura T, Watanabe H, Wang L, Soininen R, Tryggvason K. Heparan sulfate of perlecan is involved in glomerular filtration. J Am Soc Nephrol 16: 1703– 1710, 2005.

Стр. 14 из 22

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

198.Mulivor AW, Lipowsky HH. Inflammation- and ischemia-induced shedding of venular glycoca­ lyx. Am J Physiol Heart Circ Physiol 286: H1672–H1680, 2004. 199.Mundel P, Kriz W. Cell culture of podocytes. Exp Nephrol 4: 263–266, 1996. 200.Mundel P, Reiser J, Kriz W. Induction of differentiation in cultured rat and human podocytes. J Am Soc Nephrol 8: 697–705, 1997. 201.Mundel P, Reiser J, Zuniga Mejia Borja A, Pavensta.dt H, Davidson GR, Kriz W, Zeller R. Re­ arrangements of the cytoskeleton and cell contacts induce process formation during differenti­ ation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236: 248–258, 1997. 202.Muragaki Y, Timmons S, Griffith CM, Oh SP, Fadel B, Quertermous T, Olsen BR. Mouse Col18a1 is expressed in a tissuespecific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci USA 92: 8763–8767, 1995. 203.Myers BD, Guasch A. Selectivity of the glomerular filtration barrier in healthy and nephrotic humans. Am J Nephrol 13: 311–317, 1993. 204.Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES. Loss of endothelial gly­ cocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation ac­ tivation in vivo. Diabetes 55: 480–486, 2006. 205.Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nature Genet 10: 400–406, 1995. 206.Norden AG, Lapsley M, Igarashi T, Kelleher CL, Lee PJ, Matsuyama T, Scheinman SJ, Shiraga H, Sundin DP, Thakker RV, Unwin RJ, Verroust P, Moestrup SK. Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J Am Soc Nephrol 13: 125–133, 2002. 207.Norden AG, Lapsley M, Lee PJ, Pusey CD, Scheinman SJ, Tam FW, Thakker RV, Unwin RJ, Wrong O. Fragmentation of filtered proteins and implications for glomerular protein sieving in Fanconi syndrome. Kidney Int 62: 349, 2002. 208.Norden AG, Lapsley M, Lee PJ, Pusey CD, Scheinman SJ, Tam FW, Thakker RV, Unwin RJ, Wrong O. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. KidneyInt 60: 1885–1892, 2001. 209.Norden AG, Sharratt P, Cutillas PR, Cramer R, Gardner SC, Unwin RJ. Quantitative amino acid and proteomic analysis: very low excretion of polypeptides ~750 Da in normal urine. Kidney Int 66: 1994–2003, 2004. 210.Ogamo A, Nagai A, Nagasawa K. Binding of heparin fractions and other polysulfated olysac­ charides to plasma fibronectin: effects of molecular size and degree of sulfation of polysacchar­ ides. BiochimBiophys Acta 841: 30–41, 1985. 211.Ogston AG. The spaces in a uniform random suspension of fibres. Trans Faraday Soc 54: 1754– 1757, 1958. 212.Ohlson M, So.rensson J, Haraldsson B. A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol 280: F396–F405, 2001. 213.Ohlson M, So.rensson J, Haraldsson B. Glomerular size and charge selectivity in the rat as re­ vealed by FITC-ficoll and albumin. Am J Physiol Renal Physiol 279: F84–F91, 2000. 214.Ohlson M, So.rensson J, Lindstro.m K, Blom AM, Fries E, Haraldsson B. Effects of filtration rate on the glomerular barrier and clearance of four differently shaped molecules. Am J Physiol Renal Physiol 281: F103–F113, 2001. 215.Ohyama K, Seyer JM, Raghow R, Kang AH. Extracellular matrix phenotype of rat mesangial cells in culture. Biosynthesis of collagen types I, III, IV, V and a low molecular weight colla­ genous component and their regulation by dexamethasone. J Lab Clin Med116: 219–227, 1990.

Стр. 15 из 22

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

216.Oken DE, Flamenbaum W. Micropuncture studies of proximal tubule albumin concentrations in normal and nephrotic rats. J ClinInvest 50: 1498–1505, 1971. 217.Oliver JD 3rd, Anderson S, Troy JL, Brenner BM, Deen WM. Determination of glomerular size-selectivity in the normal rat with Ficoll. J Am Soc Nephrol 3: 214–228, 1992. 218.Oliver JD 3rd, Deen WM. Random-coil model for glomerular sieving of dextran. Bull Math Biol 56: 369–389, 1994. 219.Oliver JD 3rd, Simons JL, Troy JL, Provoost AP, Brenner BM, Deen WM. Proteinuria and im­ paired glomerular permselectivity in uninephrectomized fawn-hooded rats. Am J Physiol Renal Fluid Electrolyte Physiol 267: F917–F925, 1994. 220.Olson JL, Rennke HG, Venkatachalam MA. Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab Invest 44: 271–279, 1981. 221.Osicka TM, Comper WD. Characterization of immunochemically nonreactive urinary albumin. Clin Chem 50: 2286–2291, 2004. 222.Osicka TM, Comper WD. Glomerular charge selectivity for anionic and neutral horseradish peroxidase. Kidney Int 47: 1630–1637, 1995. 223.Osicka TM, Comper WD. Protein degradation during renal passage in normal kidneys is inhib­ ited in experimental albuminuria. Clin Sci 93: 65–72, 1997. 224.Osicka TM, Comper WD. Tubular inhibition destroys charge selectivity for anionic and neutral horseradish peroxidase. Biochim Biophys Acta 1381: 170–178, 1998. 225.Osicka TM, Hankin AR, Comper WD. Puromycin aminonucleoside nephrosis results in a marked increase in fractional clearance of albumin. Am J Physiol Renal Physiol 277: F139– F145, 1999. 226.Osicka TM, Houlihan CA, Chan JG, Jerums G, Comper WD. Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosome-mediated degradation of albumin during renal passage. Diabetes 49: 1579–1584, 2000. 227.Osicka TM, Panagiotopoulos S, Jerums G, Comper WD. Fractional clearance of albumin is in­ fluenced by its degradation during renal passage. Clin Sci 93: 557–564, 1997. 228.Osicka TM, Pratt LM, Comper WD. Glomerular capillary wall permeability to albumin and horseradish peroxidase. Nephrology 199–212, 1996. 229.Osicka TM, Yu Y, Panagiotopoulos S, Clavant SP, Kiriazis Z, Pike RN, Pratt LM, Russo LM, Kemp BE, Comper WD, Jerums G. Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes 49: 87–93, 2000. 230.Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Acontribution to the pore theory of capillary permeability. Am J Physiol 167: 13–46, 1951. 231.Park CH, Maack T. Albumin absorption and catabolism by isolated perfused proximal convo­ luted tubules of the rabbit. J ClinInvest 73: 767–777, 1984. 232.Pavenstadt H. The charge for going by foot: modifying the surface of podocytes. Exp Nephrol 6: 98–103, 1998. 233.Pavensta.dt H, Henger A, Briner V, Greger R, Schollmeyer P. Extracellular ATP regulates glom­ erular endothelial cell function. JAuton Pharmacol 16: 389–391, 1996. 234.Pavensta.dt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 83: 253–307, 2003. 235.Phillips RJ. A hydrodynamic model for hindered diffusion of proteins and micelles in hydro­ gels. Biophys J 79: 3350–3353, 2000. 236.Platts SH, Linden J, Duling BR. Rapid modification of the glycocalyx caused by ischemiareperfusion is inhibited by adenosine A2A receptor activation. Am J Physiol Heart Circ Physiol 284: H2360–H2367, 2003.

Стр. 16 из 22

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

237.Pollak MR. The genetic basis of FSGS and steroid-resistant nephrosis. Semin Nephrol 23: 141– 146, 2003. 238.Pyke C, Kristensen P, Ostergaard PB, Oturai PS, Romer J. Proteoglycan expression in the nor­ mal rat kidney. Nephron 77: 461–470, 1997. 239.Raats CJ, van den Born J, Bakker MA, Oppers-Walgreen B, Pisa BJ, Dijkman HB, Assmann KJ, Berden JH. Expression of agrin, dystroglycan, utrophin in normal renal tissue and in experi­ mental glomerulopathies. Am J Pathol 156: 1749–1765, 2000. 240.Rabkin R, Kitabchi AE. Factors influencing the handling of insulin by the isolated rat kidney. J Clin Invest 62: 169–175, 1978. 241.Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113: 1390–1397, 2004. 242.Remuzzi A, Perico N, Sangalli F, Vendramin G, Moriggi M, Ruggenenti P, Remuzzi G. ACE in­ hibition and ANG II receptor blockade improve glomerular size-selectivity in IgA nephropathy. Am J Physiol Renal Physiol 276: F457–F466, 1999. 243.Remuzzi A, Puntorieri S, Battaglia C, Bertani T, Remuzzi G. Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomer­ ular injury in the rat. J Clin Invest 85: 541–549, 1990. 244.Remuzzi A, Viberti G, Ruggenenti P, Battaglia C, Pagni R, Remuzzi G. Glomerular response to hyperglycemia in human diabetic nephropathy. Am J Physiol Renal Fluid Electrolyte Physiol 259: F545–F552, 1990. 245.Renkin EM, Robinson RR. Glomerular filtration. N Engl J Med 290: 785–792, 1974. 246.Rennke HG, Patel Y, Venkatachalam MA. Glomerular filtration of proteins: clearance of anion­ ic, neutral, cationic horseradish peroxidase in the rat. Kidney Int 13: 278–288, 1978. 247.247. Rennke HG, Venkatachalam MA. Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat. J Clin Invest 63: 713–717, 1979. 248.Rijkmans BG, Buurman WA, Kootstra G. Six-day canine kidney preservation. Hypothermic perfusion combined with isolated blood perfusion. Transplantation 37: 130–134, 1984. 249.Rinta-Valkama J, Palmen T, Lassila M, Holthofer H. Podocyteassociated proteins FAT, alphaactinin-4 and filtrin are expressed in Langerhans islets of the pancreas. Mol Cell Biochem 294: 117–125, 2007. 250.Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74: 163–219, 1994. 251.Rippe C, Asgeirsson D, Venturoli D, Rippe A, Rippe B. Effects of glomerular filtration rate on Ficoll sieving coefficients (theta) in rats. Kidney Int 69: 1326–1332, 2006. 252.Rippe C, Rippe A, Larsson A, Asgeirsson D, Rippe B. Nature of glomerular capillary permeab­ ility changes following acute renal ischemia/reperfusion (I/R) injury in rats. Am J Physiol Renal Physiol 292: F1362–F1368, 2006. 253.Robinson GB, Walton HA. Glomerular basement membrane as a compressible ultrafilter. Mi­ crovasc Res 38: 36–48, 1989. 254.Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 60: 423–433, 1974. 255.Rops AL, van der Vlag J, Lensen JF, Wijnhoven TJ, van den Heuvel LP, van Kuppevelt TH, Berden JH. Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int 65: 768– 785, 2004. 256.Rosenzweig LJ, Kanwar YS. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement mem­ brane to 125I-bovine serum albumin. Lab Invest 47: 177–184, 1982. Стр. 17 из 22

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

257.Ross BD. The isolated perfused rat kidney. Clin Sci Mol Med Suppl 55: 513–521, 1978. 258.Rossi M, Morita H, Sormunen R, Airenne S, Kreivi M, Wang L, Fukai N, Olsen BR, Tryggv­ ason K, Soininen R. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J 22: 236–245, 2003. 259.Rostgaard J, Qvortrup K. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res 53: 1–13, 1997. 260.Rostgaard J, Qvortrup K. Sieve plugs in fenestrae of glomerular capillaries–site of the filtration barrier? Cells Tissues Organs 170: 132–138, 2002. 261.Roth J, Brown D, Orci L. Regional distribution of N-acetyl-Dgalactosamine residues in the gly­ cocalyx of glomerular podocytes. J Cell Biol 96: 1189–1196, 1983. 262.Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of gly­ cocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 290: H2247– H2256, 2006. 263.Ruggenenti P, Mosconi L, Sangalli F, Casiraghi F, Gambara V, Remuzzi G, Remuzzi A. Glom­ erular size-selective dysfunction in NIDDM is not ameliorated by ACE inhibition or by calcium channel blockade. Kidney Int 55: 984–994, 1999. 264.Russo LM, Bakris GL, Comper WD. Renal handling of albumin: a critical review of basic con­ cepts and perspective. Am J Kidney Dis 39: 899–919, 2002. 265.Russo LM, Comper WD, Osicka TM. Mechanism of albuminuria associated with cardiovascu­ lar disease and kidney disease. Kidney Int Suppl S67–S68, 2004. 266.Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Com­ per WD. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71: 504–513, 2007. 267.Ryan GB, Hein SJ, Karnovsky MJ. Glomerular permeability to proteins. Effects of hemody­ namic factors on the distribution of endogenous immunoglobulin G and exogenous catalase in the rat glomerulus. Lab Invest 34: 415–427, 1976. 268.Ryan GB, Karnovsky MJ. Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int 9: 36–45, 1976. 269.Salant DJ. The structural biologу of glomerular epithelial cells in proteinuric diseases. Curr Opin Nephrol Hypertens 3: 569–574, 1994. 270.Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, Xing CY, Ni L, Math­ ieson PW, Mundel P. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13: 630–638, 2002. 271.Sanes JR, Engvall E, Butkowski R, Hunter DD. Molecular heterogeneity of basal laminae: iso­ forms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol 111: 1685–1699, 1990. 272.Satchell SC, Tasman CH, Singh A, Ni L, Geelen J, von Ruhland CJ, O’Hare MJ, Saleem MA, van den Heuvel LP, Mathieson PW. Conditionally immortalized human glomerular endothelial cells expressing fenestrations in response to VEGF. Kidney Int 69: 1633–1640, 2006. 273.Savage CO. The biology of the glomerulus: endothelial cells. KidneyInt 45: 314–319, 1994. 274.Savin VJ, Sharma R, Lovell HB, Welling DJ. Measurement of albumin reflection coefficient with isolated rat glomeruli. J Am Soc Nephrol 3: 1260–1269, 1992. 275.Scheinman JI, Fish AJ, Brown DM, Michael AJ. Human glomerular smooth muscle (mesangi­ al) cells in culture. Lab Invest 34: 150–158, 1976. 276.Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16 Suppl 1: S30–S33, 2005. 277.Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J 1: 272–281, 1987. 278.Schnitzer JE, Carley WW, Palade GE. Specific albumin binding to microvascular endothelium in culture. Am J Physiol Heart Circ Physiol 254: H425–H437, 1988. Стр. 18 из 22

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

279.Schnitzer JE, Pinney E. Quantitation of specific binding of orosomucoid to cultured microvas­ cular endothelium: role in capillary permeability. Am J Physiol Heart Circ Physiol 263: H48– H55, 1992. 280.Sengoelge G, Luo W, Fine D, Perschl AM, Fierlbeck W, Haririan A, Sorensson J, Rehman TU, Hauser P, Trevick JS, Kulak SC, Wegner B, Ballermann BJ. A SAGE-based comparison between glomerular and aortic endothelial cells. Am J Physiol Renal Physiol 288: F1290– F1300, 2005. 281.Sharma M, Sharma R, Ge XL, Fish BL, McCarthy ET, Savin VJ, Cohen EP, Moulder JE. Early detection of radiation-induced glomerular injury by albumin permeability assay. Radiat Res 155: 474–480, 2001. 282.Sharma M, Sharma R, McCarthy ET, Savin VJ. The focal segmental glomerulosclerosis per­ meability factor: biochemical characteristics and biological effects. Exp Biol Med 229: 85–98, 2004. 283.Sharma M, Sharma R, McCarthy ET, Savin VJ. “The FSGS factor”: enrichment and in vivo ef­ fect of activity from focal segmental glomerulosclerosis plasma. J Am Soc Nephrol 10: 552– 561, 1999. 284.Sharma M, Sharma R, Reddy SR, McCarthy ET, Savin VJ. Proteinuria after injection of human focal segmental glomerulosclerosis factor. Transplantation 73: 366–372, 2002. 285.Sharma R, Khanna A, Sharma M, Savin VJ. Transforming growth factor-beta1 increases albu­ min permeability of isolated rat glomeruli via hydroxyl radicals. Kidney Int 58: 131–136, 2000. 286.Sharma R, Suzuki K, Nagase H, Savin VJ. Matrix metalloproteinase (stromelysin-1) increases the albumin permeability of isolated rat glomeruli. J Lab Clin Med 128: 297–303, 1996. 287.Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS. Congen­ ital nephrotic syndrome in mice lacking CD2-associated protein. Science 286: 312–315, 1999. 288.Simionescu M, Simionescu N. Ultrastructure of the microvascular wall: functional correlations. In: Handbook of Physiology. The Cardiovascular System. Microcirculation.Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, pt. 2, chapt. 3, p. 41–101. 289.Sims DE, Westfall JA, Kiorpes AL, Horne MM. Preservation of tracheal mucus by nonaqueous fixative. Biotech Histochem 66: 173–180, 1991. 290.Sjo.berg EM, Blom A, Larsson BS, Alston-Smith J, Sjo. quist M, Fries E. Plasma clearance of rat bikunin: evidence for receptormediated uptake. Biochemical J 308: 881–887, 1995. 291.Smith FG III, Deen WM. Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores. J Colloid Interface Sci 91: 571–590, 1983. 292.Smithies O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc Natl Acad Sci USA 100: 4108–4113, 2003. 293.Spiegler KS, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for effi­ cient membranes. Desalination 1: 311–326, 1966. 294.Stefanidis I, Heintz B, Stocker G, Mrowka C, Sieberth HG, Haubeck HD. Association between heparan sulfate proteoglycan excretion and proteinuria after renal transplantation. J Am Soc Nephrol 7: 2670–2676, 1996. 295.Strong KJ, Osicka TM, Comper WD. Urinary-peptide excretion by patients with and volunteers without diabetes. J Lab Clin Med 145: 239–246, 2005. 296.Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, Kalluri R. Neutraliz­ ation of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278: 12605–12608, 2003. 297.Sumpio BE, Chaudry IH, Baue AE. Reduction of the drug-induced nephrotoxicity by ATPMgCl2. 1. Effects on the cis-diamminedichloroplatinum-treated isolated perfused kidneys. J Surg Res 38: 429–437, 1985.

Стр. 19 из 22

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949

298.Sorensson J, Bjo.rnson A, Ohlson M, Ballermann BJ, Haraldsson B. Synthesis of sulfated pro­ teoglycans by bovine glomerular endothelial cells in culture. Am J Physiol Renal Physiol 284: F373–F380, 2003. 299.Sorensson J, Matejka GL, Ohlson M, Haraldsson B. Human endothelial cells produce oro­ somucoid, an important component of the capillary barrier. Am J Physiol Heart Circ Physiol 276: H530–H534, 1999. 300.Sorensson J, Ohlson M, Bjo.rnson A, Haraldsson B. Orosomucoid has a cAMP-dependent ef­ fect on human endothelial cells and inhibits the action of histamine. Am J Physiol Heart Circ Physiol 278: H1725–H1731, 2000. 301.Sorensson J, Ohlson M, Haraldsson B. A quantitative analysis of the glomerular charge barrier in the rat. Am J Physiol Renal Physiol 280: F646–F656, 2001. 302.Sorensson J, Ohlson M, Lindstro.m K, Haraldsson B. Glomerular charge selectivity for horseradish peroxidase and albumin at low and normal ionic strengths. Acta Physiol Scand 163: 83–91, 1998. 303.Takami H, Naramoto A, Shigematsu H, Ohno S. Ultrastructure of glomerular basement mem­ brane by quick-freeze and deep-etch methods. Kidney Int 39: 659–664, 1991. 304.Takeda T. Podocyte cytoskeleton is connected to the integral membrane protein podocalyxin through Na+/H+-exchanger regulatory factor 2 and ezrin. Clin Exp Nephrol 7: 260–269, 2003. 305.Takemoto M, Asker N, Gerhardt H, Lundkvist A, Johansson BR, Saito Y, Betsholtz C. A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161: 799–805, 2002. 306.Tay M, Comper WD, Singh AK. Charge selectivity in kidney ultrafiltration is associated with glomerular uptake of transport probes. Am J Physiol Renal Fluid Electrolyte Physiol 260: F549–F554, 1991. 307.Taylor AE, Granger DN. Exchange of macromolecules across the microcirculation. In: Hand­ book of Physiology. The Cardiovascular System. Microcirculation.Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, pt. 2, chapt. 11, p. 467–520. 308.Taylor GM, Neuhaus TJ, Shah V, Dillon S, Barratt TM. Charge and size selectivity of protein­ uria in children with idiopathic nephritic syndrome. Pediatr Nephrol 11: 404–410, 1997. 309.Ten Dam MA, ten Kate RW, Werter CJ, van Kamp GJ, Meuwissen SG, Donker AJ. Measure­ ment of the glomerular sieving coefficient of endogenous proteins in man. Contr Nephrol 83: 47–52, 1990. 310.Tencer J, Frick IM,O. quist BW, Alm P, Rippe B. Size-selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int 53: 709– 715, 1998. 311.Tencer J, Torffvit O, Thysell H, Rippe B, Grubb A. Urine IgG2/IgG4-ratio indicates the signi­ ficance of the charge selective properties of the glomerular capillary wall for the macromolecu­ lar transport in glomerular diseases. Nephrol Dial Transplant 14: 1425–1429, 1999. 312.Tenstad O, Roald AB, Grubb A, Aukland K. Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56: 409–414, 1996. 313.Tenstad O, Williamson HE, Clausen G, Oien AH, Aukland K. Glomerular filtration and tubular absorption of the basic polypeptide aprotinin. Acta Physiol Scand 152: 33–50, 1994. 314.Thelle K, Christensen EI, Vorum H, Orskov H, Birn H. Characterization of proteinuria and tu­ bular protein uptake in a new model of oral L-lysine administration in rats. Kidney Int 69: 1333–1340, 2006. 315.Tisher CC, Brenner BM. Structure and Function of the Glomerulus. Philadelphia, PA: Lippin­ cott, 1994. 316.Tisher CC, Madsen KM. Anatomy of the Kidney. In: The Kidney, edited by Brenner B, Rector F. Philadelphia, PA: Saunders, 1991, p. 3–75.

Стр. 20 из 22

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

317.Tojo A, Endou H. Intrarenal handling of proteins in rats using fractional micropuncture tech­ nique. Am J Physiol Renal Fluid Electrolyte Physiol 263: F601–F606, 1992. 318.Trachtman H, Greenbaum LA, McCarthy ET, Sharma M, Gauthier BG, Frank R, Warady B, Savin VJ. G with idiopathic nephrotic syndrome. Am J Kidney Dis 44: 604–610, 2004. 319.Tryggvason K. Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key com­ ponent of the slit diaphragm. J Am Soc Nephrol 10: 2440–2445, 1999. 320.Tryggvason K, Patrakka J. Thin basement membrane nephropathy. J Am Soc Nephrol 17: 813– 822, 2006. 321.Tryggvason K, Patrakka J, Wartiovaara J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354: 1387–1401, 2006. 322.Tryggvason K, Pikkarainen T, Patrakka J. Nck links nephrin to actin in kidney podocytes. Cell 125: 221–224, 2006. 323.Tryggvason K, Wartiovaara J. How does the kidney filter plasma? Physiology 20: 96–101, 2005. 324.Uchida K, Uchida S, Nitta K, Yumura W, Marumo F, Nihei H. Glomerular endothelial cells in culture express and secrete vascular endothelial growth factor. Am J Physiol Renal Fluid Elec­ trolyte Physiol 266: F81–F88, 1994. 325.Waga I, Yamamoto J, Sasai H, Munger WE, Hogan SL, Preston GA, Sun HW, Jennette JC, Falk RJ, Alcorta DA. Altered mRNA expression in renal biopsy tissue from patients with IgA neph­ ropathy. Kidney Int 64: 1253–1264, 2003. 326.Walz G. Slit or pore? A mutation of the ion channel TRPC6 causes FSGS. Nephrol Dial Trans­ plant 20: 1777–1779, 2005. 327.Van Damme M, Prevost M. Transport of charged macromolecules across a biological charged membrane. Comput Prog Biomed 19: 107–117, 1985. 328.Van den Berg B, Vink H. Glycocalyx perturbation: cause or consequence of damage to the vas­ culature? Am J Physiol Heart Circ Physiol 290: H2174–H2175, 2006. 329.Van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res 92: 592–594, 2003. 330.Van den Berg JG, van den Bergh Weerman MA, Assmann KJ, Weening JJ, Florquin S. Podo­ cyte foot process effacement is not correlated with the level of proteinuria in human glomerulo­ pathies. Kidney Int 66: 1901–1906, 2004. 331.Van Setten PA, van Hinsbergh VW, van der Velden TJ, van de Kar NC, Vermeer M, Mahan JD, Assmann KJ, van den Heuvel LP, Monnens LA. Effects of TNF alpha on verocytotoxin cyto­ toxicity in purified human glomerular microvascular endothelial cells. Kidney Int 51: 1245– 1256, 1997. 332.VanTeeffelen JW, Dekker S, Fokkema DS, Siebes M, Vink H, Spaan JA. Hyaluronidase treat­ ment of coronary glycocalyx increases reactive hyperemia but not adenosine hyperemia in dog hearts. Am J Physiol Heart Circ Physiol 289: H2508–H2513, 2005. 333.Vassiliou P, Tay M, Comper WD. Partial ischemia and proteinuria during isolated kidney perfu­ sion is accompanied by the release of vascular [35S]heparan sulfate. Biochem Int 19: 1241– 1251, 1989. 334.Vehaskari VM, Chang CT, Stevens JK, Robson AM. The effects of polycations on vascular per­ meability in the rat. A proposed role for charge sites. J Clin Invest 73: 1053–1061, 1984. 335.Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, deformability. Am J Physiol Renal Physiol 288: F605–F613, 2005. 336.Verhave JC, Hillege HL, Burgerhof JG, Navis G, de Zeeuw D, de Jong PE. Cardiovascular risk factors are differently associatedlomerular permeability activity: prevalence and prognostic value in pediatric patients with urinary albumin excretion in men and women. J Am Soc Neph­ rol 14: 1330–1335, 2003. Стр. 21 из 22

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

337.Verroust PJ. Pathophysiology of cubilin: of rats, dogs and men. Nephrol Dial Transplant 17 Suppl 9: 55–56, 2002. 338.Vink H, Duling BR. Capillary endothelial surface layer selectively reduces plasma solute distri­ bution volume. Am J Physiol Heart Circ Physiol 278: H285–H289, 2000. 339.Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythro­ cytes, leukocytes within mammalian capillaries. Circ Res 79: 581–589, 1996. 340.Vyas SV, Comper WD. Dextran sulfate binding to isolated rat glomeruli and glomerular base­ ment membrane. Biochim Biophys Acta 1201: 367–372, 1994. 341.Vyas SV, Parker JA, Comper WD. Uptake of dextran sulphate by glomerular intracellular ves­ icles during kidney ultrafiltration. Kidney Int 47: 945–950, 1995. 342.Wartiovaara J, Ofverstedt LG, Khoshnoodi J, Zhang J, Makela E, Sandin S, Ruotsalainen V, Cheng RH, Jalanko H, Skoglund U, Tryggvason K. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114: 1475–1483, 2004. 343.Weiss C, Passow H, Rothstein A. Autoregulation of flow in isolated rat kidney in absence of red cells. Am J Physiol 196: 1115–1118, 1959. 344.White JA, Deen WM. Equilibrium partitioning of flexible macromolecules in fibrous mem­ branes and gels. Macromolecules 33: 8504–8511, 2000. 345.Wolf G, Stahl RA. CD2-associated protein and glomerular disease. Lancet 362: 1746–1748, 2003. 346.Wolgast M, Ka.llskog O., Wahlstrom H. Characteristics of the glomerular capillary membrane of the rat kidney as a hydrated gel. I. Hypothetical structure. Acta Physiol Scand 158: 213–224, 1996. 347.Wolgast M, Ka.llskog O., Wahlstrom H. Characteristics of the glomerular capillary membrane of the rat kidney as a hydrated gel. II. On the validity of the model. Acta Physiol Scand 158: 225–232, 1996. 348.Wolgast M, O. jteg G. Electrophysiology of renal capillary membranes: gel concept applied and Starling model challenged. Am J Physiol Renal Fluid Electrolyte Physiol 254: F364–F373, 1988. 349.Zeman LJ, Zydney AL. Microfiltration and Ultrafiltration. New York: Dekker, 1996, p. 350– 352. 350.Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wuhl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dotsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13: 2625–2632, 2004. 351.Zhang X, Curry FR, Weinbaum S. Mechanism of osmotic flow in a periodic fiber array. Am J Physiol Heart Circ Physiol 290: H844–H852, 2006. 352.Zoja C, Wang JM, Bettoni S, Sironi M, Renzi D, Chiaffarino F, Abboud HE, Van Damme J, Mantovani A, Remuzzi G. Interleukin-1 beta and tumor necrosis factor-alpha induce gene ex­ pression and production of leukocyte chemotactic factors, colony-stimulating factors, and inter­ leukin-6 in human mesangial cells. Am J Pathol 138: 991–1003, 1991.

Стр. 22 из 22

Haraldsson, B. Properties of the glomerular barrier and mechanisms of ...

Fujihara CK, Arcos-Fajardo M, Brandao De Almeida Prado E, Jose Brandao De Almeida Prado. M, Sesso A, Zatz R. Enhanced glomerular permeability to macromolecules in the Nagase anal buminemic rat. Am J Physiol Renal Physiol 282: F45–F50, 2002. 93. Gekle D, von Bruchhausen F, Fuchs G. On the size of the pore ...

832KB Sizes 2 Downloads 224 Views

Recommend Documents

Haraldsson, B. Properties of the glomerular barrier and mechanisms of ...
Hjalmarsson C, Johansson BR, Haraldsson B. Electron microscopic evaluation of the ... Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulate ...

Dynamical and Correlation Properties of the Internet
Dec 17, 2001 - 2International School for Advanced Studies SISSA/ISAS, via Beirut 4, 34014 Trieste, Italy. 3The Abdus ... analysis performed so far has revealed that the Internet ex- ... the NLANR project has been collecting data since Novem-.

STUDY OF MECHANICAL AND ELECTRICAL PROPERTIES OF ...
STUDY OF MECHANICAL AND ELECTRICAL PROPERTIES OF VINYLESTER NANOCOMPOSITES.pdf. STUDY OF MECHANICAL AND ELECTRICAL ...

Mechanisms of
the community, will acquire language with great speed and facility; an ability that .... have relied on demanding methods to obtain the highly informative data base ..... are more adequate than vowels to subserve the storage of a large number of.

Synthesis and properties of heteroaromatic carbenes of the ... - Arkivoc
Jul 26, 2017 - Austin, Texas 78712-0165, USA c. The Atlantic Centre for Green Chemistry, Department of Chemistry, Saint Mary's University,. Halifax, Nova Scotia B3H 3C3, Сanada d The L.M. Litvinenko Institute of Physical Organic and Coal Chemistry,

The enhancement of electrical and optical properties of ...
May 10, 2014 - All samples were ... 1566-1199/Ó 2014 Elsevier B.V. All rights reserved. .... dominantly covered all over the surface of PEDOT:PSS, in the.

Synthesis and properties of heteroaromatic carbenes of the ... - Arkivoc
26 Jul 2017 - Austin, Texas 78712-0165, USA c. The Atlantic Centre for Green Chemistry, Department of Chemistry, Saint Mary's University,. Halifax, Nova Scotia B3H 3C3, Сanada d The L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, U

Neurocognitive mechanisms of action control: resisting the call of the ...
K. Richard Ridderinkhof,1∗ Birte U. Forstmann,2 Scott A. Wylie,3. Borıs Burle4 and ..... would cause us to be way too slow to even return the ball, let alone to ...

Understanding the Mechanisms of Economic ...
if they are hard to explain in other ways, we attach additional credence to the mechanism ... who, in the second paper, took the predictions to international data. .... drive the life-cycle correlation, and in both cases, households of all ages appea

Mechanisms of Acid and Base Secretion by the Airway Epithelium.pdf
Mechanisms of Acid and Base Secretion by the Airway Epithelium.pdf. Mechanisms of Acid and Base Secretion by the Airway Epithelium.pdf. Open. Extract.

Vulnerability of the developing brain Neuronal mechanisms
About 300,000 low birth weight neonates are born in the United States each year [1], and 60,000 of them are classified as very low birth weight (< 1500 g). An overwhelming majority of these children are born preterm, at a time when the brain's archit

Understanding the Mechanisms of Economic ...
who, in the second paper, took the predictions to international data. .... in Egypt (which was a big cotton producer) that eventually led to the collapse of ... a straight line through the origin with slope greater than one up to some critical priceâ

The interdependence of mechanisms underlying climate-driven ...
mortality, carbon storage and climate [2,6–9]. The potential ... results from the law of conservation of mass and energy at the individual level (mols carbon ... associated with mortality in several cases; however, existing data do not exclude othe

Glucoreceptor mechanisms and the control of insulin ...
presented that the sugar transport system fulfils this ..... islets by the glucose transport system [45] but is not ... mit definition of the identity or cellular location of.

Glucoreceptor mechanisms and the control of insulin ...
not thus far proved practicable to study pure prepa- rations of B-cells. The methods ..... mit definition of the identity or cellular location of the reduced pyridine ...

The synthesis and energetic properties of pyridinium and ... - Arkivoc
b School of Chemistry and Chemical Engineering, Guangdong ... thermally stable explosives are required for use as ammunition and in technical areas such as.

Patterns and mechanisms of masting in the large ...
Cone production data from seven populations were obtained during a 9-year period and seed gathering .... For most of the analyses, number of cones per tree.

Properties of Water
electron presence. Electron density model of H2O. 1. How many hydrogen atoms are in a molecule of water? 2. How many oxygen atoms are in a molecule of ...

Synthesis and physicochemical properties of merocyanine ... - Arkivoc
Mar 30, 2017 - dyes find wide use in many areas of human activity: optoelectronics, photovoltaics, biology, and medicine. 2,15,16. Thermophotoresistors ...

Structural, magnetic, and electric properties of La0.7Sr0.3MnO3 ...
Sep 23, 2008 - ricate high quality films and heterostructures of these mate- rials. Since the ... Curie temperature of about 360 K above room temperature and since it is known to ... tion data the substrate contribution was subtracted. Table I.

Synthesis and antimitotic properties of orthosubstituted ... - Arkivoc
Jun 20, 2017 - 60 human cancer cell lines with mean GI50, TGI and LC50 values of 3.39, ... products 7–9 was reduced by formation of byproducts 5 and 6.