F.Y.

515

March 2013

Part- III PHYSICS :vi:aximum: 60 Scores Time : 2 Hours Cool off time: 15 Minutes General Instructions to Candidates :

e

There :':::: a 'Cool off time' of 15 minutes in addition to the writ1ng time of 2 hours.



Yo;_:

"'-~·e

r:·'::~-:.'C-~'3

neither allowed to write your answers nor to discuss anything with d.ccring the 'cool off time':



L; se

the 'cool off time' to get familiar with questions and to plan your answers.

0

Read the questions carefully before answering.

• ·All questions are compulsory and only internal choice is allowed. •

When you select a question, all the sub-questions must be answered from the same question itself.



Calculations, figures and graphs should be shown in the answer sheet itself.



Malayalam version of the questions is also provided.



G~ ·.· 2

~

Electronic devices except noriprogrammable calculators are not allowed in the Examination Hall.

2:: ,:.2. ::ic:-:.s v;11ereyer necessary.

m1 coal '3CJZ>60B ci6: •

m1i0<31o.S1s cromcw(lf(TI)1m n.J,?,06)Ql 15 m1m1rJ 'cfh~cfD 630n..d' 6)6)So' ~6n'SocWlro1cOOJ,o. gQ'D cromcw®ID al.QJOBJ60Bcf6c£7€) [email protected] nti)t,p,?,®Oalmo, aJR~OJro,?,mocWl ffi"'©CJZ>CW o..llm1mcwo [email protected] n.JOS1~.

e

[email protected] ntDt,p6®,?,cm®1m m,?,mJ al.QJOBJ60Bcf6 ~BDOn.JJ,CO


O{j) ~,0 al.QJ :)(3J6Q'B cf6c002,0 ~(Q@(l)Q O{j) t,p 6(0) 6TD0. ~ al ~ 6\D am al_Qj :)CQ)u((\)u Ql:)l(Q) al Q) G'0 m 6OJ B1 cOOJ,cfhCW2,§§2,;



63:-::6 :ll:JGJmm.Jro [email protected])m~,?,®ocm 6)®ro6'JmSJ,@D.l6 r:fh~moam ~n.J


G..Q..jOGJ mm.Jro1am m1cmu ®@em 6)®ffi6)6Yl!YTI)SJ,alc006n'S®06il').

cfh GTD cOO~ cfh ~3 eJ J,cfh cJD, ..01L@ 60B cJD, LCJD o.OJ,cfh cJD, ntD cm1 OJ ~ ®[) ro al n.J c;tj oi am®[) 6'J em ~ 61Y58cWl ffil d%l6TD 0.

IJ

-ffi"'©OJCJZ>Jal6~ [email protected] ®i:l:lOJOcfhJ60Bcf6 6'JcfhOSJ,c&6l6TDo.

e

al.QJ 08J60B cfD Ql eJ CQ):)§[email protected] e.!Jp m amcfh1cWl§J,6T"@.



alln.J o l(f) o m2, ce:, cJD

6) .2.1 CR:J om o ce:, o ®[)

ctb o am c002, &eJ R o 6cfh cJD

63 t,p16) cfh cw 6~

63 ro 6

gQe.Jdb&lS06TD1db ~n.Jcfhffi6TDOJJ,o n.Jffi"ldhl:lOoD0§_1.am ~n.JI]CQJO(f)1cOOJ,OJOcfD n.JOS1~.

K-20

1

(P.T.O.)

515 Pick out the fundamental unit from the following :

1

Second, m/s, Newton, Joule

1.

®06l':l' o.JOffi.lJ,mJOJ
(1)

6)(1\)cOOc§', OJI RiD I 6l
(1)

Match the following.

2

r---.---------~----------------------+---~----~--------~-------------~

SL

A

B

:

~K_o.+-----------------------+-----------------·--------~ . Newton's first law

1

Change in momentum

ffiJJ§6lr(lj 63cm::Jo me.Jm m1CWOJo

. @'@c00(5Y0)16leJ OJJ®J::Jffilo

Conservation of linear momentum

2

Action B

. Newton's third law

3

Law of inertia

I g-Q~mi0n91JO mlcwOJo .

ffiJJ§6lr(lj OlJmJ::lo me.Jm m1WOJo

Impulse

4

reaction

Momentum before collision = .:\1omentum after collision 6lcB:>O§In91Jm OlJ,cibCTL.J~ ®'g}cOOo ~(fl)n910lJ,§§

3

3.

· There are three distinct modes of heat transfer.

= 8c3::8~- c·.5< :'lu

®'g)cOOo

o.D"lB LS::Jrill
a) The main mode of transmission

of heat by which the sun heats the surface of the earth is :

ffi@cfuJ,mJJ,:

i) Conduction

i) .0J::Je.Jmo

ii) Convection

ii)

ffiloOJo.Dmo

iii) Radiation

iii)

n.flcB:>1Cll61Do

iv)

g-Q6l®OmJ,l,Ol~

iv) None of these b) Explain briefly, the occurrence

b) ®Oo.J 6l6l
of a sea breeze based on heat


transfer. 4

(1)

(1)

. illJ,CllJ,c001 nJl(!()BQJOcOOJ,
A small water drop placed on a lotus leaf is· spherical in. shape.

4.

(1)

b) Why does the· small water drop acquire a spherical shape?

(1)

K-20

(1)

anoOJro
a) Define surface tension.

(1)

~WO§O
(1)

(1

2

515 5.

Fill in the blanks.

. (6x'!2=3)

a)

•••••••• ~••• ~-<";~ ••••••••••

F·S F·S

scalar quantity

b)

mass. m

momentum, p

KE= ........ '" .. ..

((l'f]l)cB{))o' P

w®1~cfuoro~o

......... collision

momentum ·conserved

energy conserved

......... 6)cfu0~n.5::i®

((l'f]l)cB{))o rruo
~ 'D ffi~o rruo
c)

d)

unit of power o..J OJ ol6l CVl

e)

f)

••••• ;

Body of mass, m

Power, P nJOJffi,

6.

746 watt

w 46!Tl1 8

OJCQ;J6o116lCVl 1110%)",

p

m

•••• 0. 0

•••

~.

PE= .................... .

~wcno,

m.illOm1<8cfuOfil~o

h

= ........... .

P= ........................ .

scalar product

P·= ........................ .

m)tgcfue.J& 6llnJOMce;'S

A student plucks at the center of a stretched string arid observes the wave pattern produced.

b) Plot the above wave pattern pictorially. Label the nodes and the antinodes on the pattern.

6.

m1ffi<0'®1W

63(()2,

cfum.JlCW66lS

®(()o(f)6013 cfO

Ql W<'l <0'®1 e.J2,6TrSOcB€)1 W

63(()6

a) O{J3®6 ®rn<0'®1e.J6~ ®rnoW6013cfO ((l'f]l)6Tfl

( 1)

( 1)


b) ®
o..J0<8RmO

.a.J1L®'l cfu
(2)

g)2'D

nJ0<8Rsm1 arn

((l'f]l) CVl1 <8mo M 6
rJ eJ 6lli a5Q 6) .aJ ~6&3:,.

7.

density ( p) and modulus of

ffi)Jlffi® ( P

)

( 2)

CW66lSCW60 <81110Cill6e.Jffi)" 630n..Ou

(E) CW2,6lSCW2,o <8Qle.JOsm" uo mJB<0'®16lCVl lnJ <8 OJ wo ( V) ((l'f]l)@co.fl!3Jl rn1 . cB€) 6cm®". cE cw 66ls il6lM6lQl®n,9:1smam <8n..OOffiQl2,e.J ML-l T- 2
elasticity (E). (The dimensional formula of E is 1'vfL~ 1 T-2 ). principle

OJe.J1~6

. oJ1B<'lOffiaruJ1 m1rn'ldhl:flcB€)6rr:o6.

Velocity of sound depends on

a) State the homogeneity.

746 OJo§

0 ••• •• 0

at a height, h

a) What type of wave is produced in the string?

7

= ........... .

of (1)

(1)

lo..Jm)®OoJlcB€)J,c£lj.

b) Using the above principle, arrive at an expression for the velocity of sound. (Take K = 1).

.K-20

b)

(g

Ql am'£! o 6fOYIJ)

U06nJB<0'®16lCVl

(2)

® ®J o

~ nJ (g w o wl?J"

lnJ<80JW<0'®1m"

ffi)QlOJOc&.,Jo cn~n.Jlcfu
3

63cn6 ( 2)

(P.T.O.)

515 8.

8.

Hooke's law states that stress rx

cru"61 LSc-ru'lm"

a:mfiHlmlffi,!,nJ ::.l®(OJO)"i ~::16m"

strain.

cru"6161LSCQhfQ

a) What is the necessary condition

LoJcru"®::.JOJlc&ii),!,('ffi,!,.

for the above law to be valid?

O{j)rm"

@'@JOJCftiJQl::.JCQJ m16DJmDm ~enD'?

a:mJocJil 63m,J, rucru"®,!,rulm,!,6nSO
stress and strain for a given

ml61LSW"m1m,!,o ml61LS'P61mio ~sCQJleJ~

solid material under increasing (2)

l(f) 0 n.Ol61 CVl

63 (l) 6

6l1J ffil) 0

cruoD::.JCQJI1(0{0)::.JSJ,
a) State and explain the work done

9.

a)

®061':l'cJ:jOWJ,rm

in the following situations :

61 !2J w" ®

i) A person carrying a heavy

oJl ru ml cOOJ,cfu.

load wEtlks on a level road.

( 1)

b) 61 s cfO 6161 Wd m'O cru"61 Ls cru" ru fll BD1 <;81 c002,

graph, the relation between

9.

m1wco

a) nD,J,cfu"cru" mlwmo CTDQW,!,OJ::.lcfu,!,rm®lm"

(1)

b) Explain with the help of a

tensile stress,

oD,!,cfu"cru"

i)

(1)

!2JJ,RJ,oJOSJ,cfu~lm'O

LoJ OJ,\ (010)\

LoJ cru"® ::.l rul ~"

!Somm6~ rucru"®J, !2J,!,alc&ii),J,rm 63ffiJ,

OJJcfu"®l m1mcJ:j::.JCQJ a:o::.JrJJI m'Ocfu~s1

ii) A man spending his energy

( 1)

mScOO,J,rm,J,.

by pushing on a concrete wall.

ii) 63ffiJ, 11cfuOG'ffilLc£b"lff !51(0{0)1CQ51m'O (1)

(1)

b) 200N 61cVJ 63(06 C"U.S':ffi6YlieJo 63ffiJ,

displaces a body through 6 m in

ru cru"® 6rul61 m

the direction of the force. Find

5m

6'l'L 21 (010)161

cffl

B1 Cftl cw1 m'O

B~roo m"lcOO.;rm,J,. OJml®,J,o.!l61cVJI1alm'O

61!2JCQJ"® LoJOJ,)(OIO)l cfu6nSJ,oJl~c&ii),!,cfu.

(1)

1 0.

10. Kinetic theory of gases is based on

(1)

LBOJJ(O{O)l61~ ®cfDI1lOL®0.2ilL®o ®Cl~ffilJJ0m

m0c001w::.J611) ru::.J®cfu60B~61s w®la:cfuoro~

the molecular picture of matter.

cru1BD::.Jcrmo LnJmJ®::.JoJl~ro1cOOJ,rm®.

a) Write any two postulates of· kinetic theory of gases.

®~1

63m::.J::JD ~'DfO~o ..2.lleJOJ::.lcOO,J,rm6.

b) A constant force of 200N

the work done on the body.

( 2)

a) OJO®cfu60B~J,6!S.

(1)

W®lcfu

cru1 BD ::.1 crm (010)/61 ~ 1 eJ J,o ro 6n5"

b) Write short notes on : a:oJ::.JmlRJ,a:eJffml' ntl)':l',J,®J,cfu.

i)

Equipartition of energY

ii) Mean free path

(1)

b) cfuJ,0161cJ:j':l'J,®J,cfu:

(1)

i)

~cfuj1oJofil§1m1® 630n.O" Cl8)mfO@il

ii) m"lcfll Lo.di oJo
K-20

(1)

4

( 1)

(1)

515 11. The motion equation

repres~nted

by the

y(t) = A9os(wt+¢)

11.

y(t)=ACos(wt+¢) 1s

ffi)QlOJOcEh,lo

LoJ
61.2JCJtjJ,lTO

called simple harmonic motion

.2Je.Jtn61CIT® ffi)1on.Jcm n.DOitJtgQlOEJJD1cfu'
(SHM).

(SHM)

a) Which one of the following. examples closely represents SH;;rf? Substantiate your ans\\".er. (1) i) The rotation of the earth about its axis. ii) Oscillations of a swing. b) A vibrating simple pendulum of period Tis placed in a lift which 1s accelerating downwards. What is
a) ciD061':l'
O@lT06 oJlglc006rm6.

. 0{)3®06mu

~BOn.DaJ6m60B~1affi

SHM

61m loJ®1m1womo

(1)

61.2Jg£j6lTOciD? m160B~61s ~CIT®roo ffi)Qlro®.D1c006£.

i)

ffi)jm>lo ®O.!;J6®Gns1eJ~ @~Ql1CW6615 cEhOcOOo.

ii) 63(()6 ~'D6'f1mj)OeJl61<"@ <1l'@§o. · b) ®O
nJl ro1 cw cw161 m

(1)

g)261®60B61ffi 6YlJOW1c006lTOJ,. c)


61c€h06n'56~

CYUDOffiOm>laJo

y = 2Cos(0.5nt + n/3)

y = 2Cos( 0.5n-t + n/3)

O@lTO

ffi)QlOJOcEh,\o · ®0ffi6ffi)aJ1.g,p6ID. ®0®161<"@: <1l'@ o n.J~1 s ,\~ cw 6o

Find the amplitude and period of the particle.

(1)

nJl ro1 cw cw 6o

(1)

c9oGnS6nJl s1 cOO6£.

12. Figure given below shows the motion of a school bus starting from the point 0 and travels along a straight line.

12. 0

ntj)

ffi) 6r.!li ro1 c00 6rm

63 ro 6

m)ce:,~Ub 6YlJCfid161<"@ .2Je.Jffi!il06ID' .n.Jll®CIT®1m'll ce:,o6l1'51.!1[l ro1 c006rm®. ·

OS

28

48

68

88

108

128 •148

0

A

8

c

D

E

F

Om

10m

20m

30m

40m

50m

a) Complete the following table.

60m

G

?Om

a) ®061':!'
(1)

oJJiOCIT®1 CWO cOO2,c€h.

Time taken

Displacement from 0

0@52, (QYO) ffi) Ql m.Jo

ffi)LDOmomnroo

0 CQJlm'llm1mi'

Velocity LnJ
28

10-0 =10m

...........

10 s

......................

5 m/s

I K-20

5

(P.T.O.)

515 b) Is the motion of the bus uniform or non uniform? Justify your answer.

(1)

(1)

c) Draw the position---time graph of the above motion.

6lo.J::xrulcUJ®-6!6!8o LCDOnl)u OJ(l)CQJucOOJ,cfu.

(1)

d)

d) A student in the school bus

611J
oJl 8 J 0 ill ®O'l

( 1)

611J lpdl6l CiJl

notices the speedometer of the cruuolla:NJomiRiO cBoo6ffi'lcOOz,rmml' n@®u

bus. Which type of speed 1s shown by the speedometer?

(1)

®ffio G:OJCD®CQJo6'f\)?

(1)

Answer either question 13A or 13B.

13A. According to l\ ewton' s law of motion,

13A.ffiJ,I§6)CVl __QjeJffi (Y)iCQJQ)o ®OffiJCIDCD~-±u 6X~o

the force depends on the rate of

@@) cOO

change of momentum.

ffi@®Wl.gJMcOOJ,®J,. a) 611J eJ o ®O ~cOOJ,®®kn crDru;o
a) Name the law that helps to measure force.

.cL 2J m

(l)

mCQJ IL (010): 6! cfil

b) Using the above law, deduce an

~ o.J a: cw ocnlg,f

611J eJ (010)'l mu

(2)

(2)

a:~ollcmffi'lcOOJ,cBo.

c) A man jumping out of a moving

c)

611J
.!:lJ eJ'l c00 6(If)

bus falls with his head forward.

o.JJOG:(OTO)O~{ !.lJOSJ,® lllffiJ,dl:lJ® ®eJ

What should he do in order to

_lllJ,®
land safely?

(1)

® 0

CQJ16! eJ 010) 0 ®

OR

6

®0 CQ) 0 ciD

otD \I'OlJ, (1)

6! !.lJ q)J6ffio ?

OR

K-20

(1)

CE o.J 6! C?l cro)?

b) a: mam <;8 o 6'fUIO) mi CQ) mo

expression for force.

mnl a: cOO'16! m

OJ J ® J 0 cru (610)l@ CVl

515

OR

OR

~mill~ lOJ(OJOlOcBo~rm1cWleJ~

13B. 200 ill"1Rill

13B.1'he outer side of a circular track of radius 200m is raised to make an

63(()2, o_iO®CQJ2,6JS o..J60o ISOWo

angle of 15° with the horizontal.

illocWl 15° a)

a) Wh1ch

force

pro"\-ides

the

a car taking the circular track?

(1)

6W eJ o

little

above

63ro6

cBooo1m"

mro'OcBo6(f()

6W eJ o

(1)

0()3®?

.

m1 ill (UIO) 2, (f()

·

.

~CQJill(I)'(Q)1


the

innerside.

a:o_~ocmocm

b) @(() 6 OJ ~ 6'flliO) o_i 0® Cill 66! S ~ cfO IS 0 (f)

outer side of a curved track is a

OJ~(I)'(Q)OcBo~Ml cWl e.i6~ o..JO@cWl@JcB{))~S1

@])OJ cro,)ill 0 cWl ro1 cB{))6(f() 6) ffi) em lS16) oJ R@0

b) Name the process by which the raised

~CQJill(I)'(Q)1cWlro1cB{))6(f()6·

cBoS(f()6

necessan- cen:ripetal force. for

®1ro~mru6

lo_1 lcBo1CQJ w"cB{))"

a: o_1 ro" ( 1)

. mro'OcBoc?,cBo.

(1)

c) gJyo a: cBo cru1 ro'O ® (f()1ro1cB{)) 6(f() a: cw R o

c) Using the data provided in this case, determine the maximum

63 '91 OJ ocB{))6(f()®1 m" ®Om 6OJ B ml cw Ql oCQJ

permissible speed to avoid

0()3 R OJ 6o

skidding. (Given J1 s = 0.25).

cro"o.ll cw"

m1ill~cWlcB{)),J,cBo. ( f..L s = 0.25)

(2) 14.

14. Figure given below depicts the sche~1:2. tic ::._~epresenta tion

cBo ~ s1 w

®06!'9

@(f()1ro1cB{))c?,(f() .2.llL®o 63(!J2,

Lo_i®1m1womo

of an

(2)

cg)cW~6Jm

6Jill~2,(f()J,.

engine.

Hot , Reservoir T1

a)

\Yllic~

type of engine is this, a

heat e::-:gine or a refrigerator?

a) (1)

nDIR

b) Write the -± steps of operation in the CarlJ.Ot cycle.

b) (2)

oB3®6 ®ffi~1e.J~ omcmm1mo~? ntl)
®OLOOJO ocoD1ma:oRill? . (1)

cBooillQlmo~r

6) 6) ffi)

cB{))1~161 ~

lo..JOJ ill(UIO)m(I)'(Q)16Je.J ffiOe.J,J, i2J2,0JSJ,cfucf0

c) A Carnot engine is working

(2)

08)'9J,®,J,cBo.

between temperatures of 27°C,

c) 63(1)6 cmoiOa:mo§"

and 327°C. Find its efficiency ( TJ ).

gQ®

~'Do9JQlooJ1mJ,o

(1)

omcr~m1cm

327°C

27°C

~'Dn91"illooJ1mJ,o

gQscWlmo lo_j OJ ill (I)'(Q)1 cB{))6(f() 6.

®0®16)~

08)nD1n'l1JciOcru1 ( TJ ) cBo6rrSJ,oJ1 s1 cB{))J,cm.

K-20

7

(1)

(P.T.O.)

515 ((ffi)6)~9:b1am

Answer either question 15A or 15B.

15A

15A Three vessels of different shapes

15A. OJJ®,)CTUu®

height 'h' and their bottom parts are to

o:lJim,J,

'h' am

6)0J~o

. m10~
manometers

measuring the pressure. The water lev~ls

(ll'@em~®1 CQJl eJ,J,~

nJ:::>L®6llB~1am 63
:tre filled with water to the same connected

15B nfD'l',J,®J,em.

m:::>a:m:::>o:JIRO,J,ems o.eJS1~D.z!1
in all the vessels remain the

ntj)~:::>

same.

nJ:::>L®6llB~1
g:JeJffi1
63Ql(l)QlnJ:)6)eJ ((ffi)OJ
A

a) Identify the above phenomenon.

(1) (1)

b) Predict the pressure level shown by the manometers.

b) moa:momiROi,emcill

(1)

em:::>6lTJ1cOO,!,tm

mro13(0'(0)16)
(1)

c) Blood pressure in humans is greater at the feet than at the brain. Explain why.

®eJcill

(1)

em:::>amnJ : :> B6lll3~1 eJ :::>GID. ntj)OID,J,6)em:::> 61"@~

d) Pick the odd one out.

(1)

oJ10J
Dentist chair, hydraulic brake, hydraulic press, venturi meter.

emJS,J,®am

d) emJ3(0'(0)1 am 6)nJ s:::>(Q'(O)@ nfDS,J,6)(Q'(O)'l'6®,J,em. (1)

B rrml ~u

OR

6)D.J (Q) (0'

6) 6)o.D~i emu


(1)

OR

K-20

8

OR 15B.The flow of an ideal fluid in a pipe of varying cross sect~on is shown.

15 B. OJ,\®J
OR ~ lce:, ocrou

ce:, 6 cpeJ1eJJ6lSCl2!6~

6l cru ce:,un9:l m 6ce:, 63
cm

63 Ill 6

6lnQCUl1Cl2!am

o..Ou~Cl2JlCUl16lc(q 63':P?,ttJ£) cfu06ID1.~,dl
B.

~

a) Differentiate between streamline flow and turbulent flow. b) State and prove Bernoulli's principle.

~~~As P ..

a) (1)

o..Ou~§.OCl2!J,O Cl sill 6YlJ!,eJ

frDulSlo 6l6leJcill o..Ou~§O.Cl2!J,O

®11ID1eJ6~

c(ll

OJj®,\OfrDo

(1)

nQ':PJ,®J,c&.

b) 6)6YlJ (/) ~ 6ITJ 0 gll ffi)u

(3)

J

(Q) (Q) 0

loJ cruu(Q) 0 OJ1 d1£) 6

. cfuCl2!J,o 6l®§.1Cl2!ld1£lJ,cfuCl2!J,o 6l.2Jgt)J,cEb.

16. ln an experiment with a bicycle rim, keeping the rim in the vertical position with both the strings in one hand, put the wheel in fast rotation (see figure). When string B is released, the rim keeps rotating in a vertical plane and the plane of rotation turns around the string A.

a) :Mention the law that explains the above result.

K-20

16.

.2J
6l6l cru d1£l1 cJO

ol o

6l ce:, o6J1S 6 ~ oJ Ill! cMJ 6ID (016)1 am , 6)6) cru d1£l1 cm ~lcfuo ((l"(c)®lClOJ(f)o cGoOd1£lJ,mi2,. ( .2J1C®o c£b06ID6cfu) .2J
B

cruJ®lmDtllOd1£lJ,~mJociO,

olo ·eJo6YlJ ®eJ((f(Q)lam c£b061JB2,mi~®06lSO~o ffi1ll C0>16l cffs ce:,o 61JB 6mJ CO> eJ o -'lJ Ills

A

6l CQJ

-'2J6R1 ~d1£l6mi6.

a) (1)

~ Q) am~ o

611fr1j)

ol cru cJO ~=f OJ1 OJ Ill1d1£l 6mJ

m1Cl2!tllo cruJ-'2.il<;tj'ld1£l6cfu.

9

(1)

(P.T.O.)

515 b) Explain the practical example (shown in the figure) based on the law mentioned in a).

b)

m1
Q:Q)nfll

@861'-5'

lo_j J Q: CQ) J CJ)l cfu

(1)

(1)

c) How \Vill you distinguish a hard boiled egg and a raw egg by spi:cming each on a table top?

C)

6YDd

(1)

d) A cylinder of mass 20 kg rotates about its axis with an angular speed of 100 rad s- 1 • The ~·adius of the cylinder is 0.25 m. What th'e magnit11de of angular momentum of the . cylinder about its axis?

d) 20kg OJJcr.J ·eo' (nJ 62C.. 100 Tad

63(()1

0

m.J1e.Jlms&

GJJrD.

((l@(OO

u.c-'""'"''""'·'.1< ;t;;i!)oCDd,e.Jffi

(2)

17. An athlete jurnps at an angle of 30° with a maximum speed of 9.4 mls.

17,

a) What is the shape of the path followed by the athlete in the jump?

(1) mmmre.Jp,~. (())06!rs'1w

b) Obtain an expressiOn to calculate. the horizontal range covered by the athlete.

BJ0o

Ci1lQlOJJcfujo

(2)

c)

c) Find the range covered by him in the above jump. Suggest the angle by which the athlete can · attain the maximum range.

K-20

®1((Jv:
cg !11 rtf6 ,. u () 6 (T[b) CQ)

:J m
G () 6l:'!2r

)

(~~~u

arreJ ff

cBob'fYs~c·,_!l 51 c%)6cfu.

(2)

10

515 Ans\ver either question 18A or 18B.

18A ®06l~ffi:>1Cll'O

18A. The escape speed for an object from

18A.
%)m5'
the earth is 11.2 km/s. a) What is meant by escape speed?

63C06

OJ(l1)"®6ru'l6lCVJ

m)nJ'lcu) 11.2 km/s @@cfut,rm6.

%) m.r(g cBo <~J

a)

(1)

18B %)Y'6®6cBo.

01)"CLJJ cur

.

6)

cfu 06YYS" (~)

®Oill®.OQl0c:006(ffi6l®mDV? b) Arrive at an expression for the escape speed from the earth. c)

b)
d! r1e

earth

contains

c) (1)

%") 01)~(g cfu 'J:Jv

ffi)un.Jl Cli)v OJ 01)u((5) 6OJ16J CVl

QlOC(;l616lCVJ alQlafO @@@>CQJ1c:OOt,rmt,
an d)

atmosphere while the moon does not. Give the reason.

(2)

%) (0)0)1
speed depends on the mass of not.

ntDmr
m)nJ'lcw1mu
Explain whether the escape

oT

m1rm6~


.Qj6R1 63cot, ®Omnco'1cBiliQlt,6YYS",

ntj)CffiOCll'O DJlffi6lm .QJt,R1

(2)

. (1)

ollruco1c:006cfu.

~-

ce,oco6lno (2)

meJce,6ce,·

OR OR 18B.
18B.'I'he acceleration due to gravity (g)

~CLJC01®eJ(O)Q)16leJ

Cf)J,COJ,®JOcBoilln.'l16m ®JC06mo (g) 9.8m/s 2 ~cBot,cmt,.

a) Cf)J,COJ,®JOcBoillnS:I6m

a) Define the acceleration due to gravity (g).

(g)

®JC06mo

m1 ill OJ.2Jl cOOt,cfu;

(1)

(1)

b) @@Y'o 'd' 6lcfu061"'@ 'g' mllCll'O OJCOOOJt,cm b) Derive an expression for the Yc:,~·iation

the surface of earth. c1

_-\:

or

6

(3)

c) 'g'

the earth?

.cfl6)
(3) 'g'

CQJ,56lS CLJcfu,5®1 alJelj~ OJCOOOJ,5
'h'

be half of that on the

sun ace

~~.§

01)QlOJOcfujo COJnJ'lcBoco1c:006cfu.

,_,-:-cat height 'h' will the value 0

K-20.

OJj®jOffi)o cfu6mc:OOOc:OOJ,
of g at a depth 'd'

O{j) ()'U)?

(2)

(2)

11

2,26,500

HSE-I-Physics-March-2013.pdf

Page 1 of 11. F.Y. 515. March 2013. Part- III. PHYSICS. :vi:aximum: 60 Scores. Time : 2 Hours. Cool off time: 15 Minutes. General Instructions to Candidates :.

591KB Sizes 6 Downloads 184 Views

Recommend Documents

No documents