

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

International Journal of Research in Information Technology (IJRIT) (IJRIT) www.ijrit.com

ISSN 2001-5569

Importance of Software Re-Engineering Process and Program Based Analysis in Reverse Engineering Process D.EVANGELIN 1, J.JELSTEEN 2, J.ALICE PUSHPARANI 3, J.NELSON SAMUEL JEBASTIN 4 1

ASSISTANT PROFESSOR, SRI VIDHYA COLLEGE OF ENG. & TECH. VIRUDHUNAGAR 2

3

ASSISTANT PROFESSOR, NEHRU GROUP OF INSTITUTIONS, COIMBATORE

ASSISTANT PROFESSOR, CHRIST THE KING ENGINEERING COLLEGE, COIMBATORE 4

ASSISTANT PROFESSOR, ANNAMALAI UNIVERSITY, CHIDAMBARAM

Abstract The object oriented software developers now admit that thinking about object-oriented program understanding and comprehension to be relatively easier is not that easy. Programs are even more complex and difficult to comprehend, unless rigorously documented. What if the documentation is improper? To affect change management, even a simpler upgrade may become cumbersome then. This is the reason why eminent development houses now focusing on advanced documentation support. Re-engineering code environment thence largely affect the problem issues regarding program comprehension when the software size grows enormously. Reverse Engineering is a methodology that greatly reduces the time, effort and complexity involved in solving these issues providing efficient program understanding as an integral constituent of re-engineering paradigm. This paper discusses about reverse engineering of java code. It also infers about the efficiency of some java reverse engineering tools and sufficiency of static analysis over runtime dynamic analysis for revelation of code structure from byte code.

Keywords: Reverse engineering; Re-engineering; Program analysis; byte code analysis.

1. Introduction Object-oriented software development methodology primarily has three phases of Analysis, Design and Implementation [18]. With the view of traditional waterfall model, reverse engineering thus is looking back to design from implementation and to analysis from implementation. Important thing is that it actually is a reverse forward engineering i.e. from implementation; analysis is not reached before design. A simple schematic diagram to elaborate reverse engineering is shown in Fig. 1. It is the process of analysis. The software system or program under study is neither modified nor re-implemented because of not bringing it under Re-engineering.[1] Software Re-engineering is the area which deals with modifying software to efficiently adapt new changes that can be incorporated within as software aging is a wellknown issue. Reverse engineering provided cost effective solution for modifying software or programs to adapt change management through Re-engineering application. Reverse engineering is a systematic form of program understanding that takes a program and constructs a high-level representation useful for documentation,

11 J.JELSTEEN et al, IJRIT

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

maintenance, or reuse. To accomplish this, reverse engineering technique begin by analyzing a program’s structure. The structure is determined by lexical, syntactic, and semantic rules for legal program construction. Because we know how to proceed on these kinds of analysis, it is natural to try and apply them to understanding programs. Reverse Engineering – An intermediate step towards Re-engineering. Analysis

Design

Implementation SDLC Traditional flow Reverse engineering flow Fig. 1: A simple representation to reverse engineering of object-oriented development Initially reverse engineering term was evolved in the context of legacy software support but now has ventured into important issue of code security such that it doesn’t remain confined to legacy systems. We will come to the discussion into this affect after a while. Transformations are applied under the process of Re-engineering after analyzing the software to apply changes incorporating new features and provide support for latest environment. This paper is organized into three sections. First section provides information about what reverse engineering is. Second section focuses on our work on reverse engineering of java code. Third one presents results and conclusion based on the analysis of popular and freely available reverse engineering tools.

2. An Insight on Reverse Engineering Classification of reverse engineering: Reverse Engineering Techniques can be classified in two waysProgrammer’s view: It is based on the input to be provided to the tools or environments to analyze the system under study. A programmer has prime concern for three aspects- creational, structural and behavioral. Usually that affects two types of reverse engineering paradigms(a) Code Reverse Engineering: In this case, there is no source code available for the software, and any efforts towards discovering one possible source code for the software are regarded as reverse engineering. This second usage of the term is the one most people are familiar with. Mainly the structural analysis methodology is undertaken for code reverse engineering. (b) Data Reverse Engineering: In this case, source code is already available for the software, but higher-level aspects of the program, perhaps poorly documented or documented but no longer valid, are to be discovered. The analysis technique involved in such type of reverse engineering is sometimes called Reverse Forward Engineering. Thread based analysis approaches are useful for data reverse engineering. Analyzer’s view: It is based on the type of analysis conducted on software or program to inspect the properties to look into structural or behavioral aspects of the system under study. Two major kinds of analysis can be done under reverse engineering- Structural Analysis and Behavioral Analysis. The former is called static analysis whereas the later one is known as Dynamic Analysis. Java is an object oriented language centered on Objects reflecting real time behavior. Structural analysis of java code can be used to identify code elements viz. Attributes, fields, methods and other code artifacts

12 J.JELSTEEN et al, IJRIT

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

whereas Behavioral analysis is concerned with the runtime behavior of objects created and then garbage collected during the program execution. These two kinds of analysis under analyzer’s view are described further. However we have put stress on static analysis only. Static Analysis: Static analysis deals with the program understanding at syntactic level hence static reverse engineering technique is used for obtaining static structural artifacts from intermediate code. Java bytecode has a specification popularly known as JSR document, specifying the programming language alphabet set and grammar rules to produce those symbols into a syntactically correct program through mnemonics. Thus static analysis of the source code may be carried out with the same initial methods that are used for compilation of bytecodes. Parsing the source code, enables to extract some of the basic code details such as the classes, the inheritance hierarchy, the API’ s, the variables declared etc. Since Java is object-oriented, thence it has a class structure, which holds some object(s) which have data or group of data, and also each class has methods that can be used to access and manipulate the data contained within. Dynamic Analysis: Runtime Dynamic analysis of java code is required for analyzing features related to multithreaded program support, analyzing behavioral aspects of memory leakage, CPU utilization and other aspects. Our study is focused on decision for sufficiency of static analysis to mine structural code from the bytecode since intermediate bytecode contains enough information about code elements. We have compared reverse engineering tools to reach on consensus about our proposed analysis strategy. Program Analysis: Analyzing an application program using static compile time and dynamic run time analysis techniques come under Program analysis. A code program can be analyzed by two kinds of approaches: Compile time Analysis: Static Analysis To discover properties of programs by looking at its source, static analysis is done about structural artifacts revelation in the code. Runtime Analysis: Dynamic Analysis Dynamic analysis is done primarily to solve the problems in program optimization (some of which listed below), data-flow analysis as a static analysis framework extension applying data-flow analysis to analyze code security issues context, flow, and path sensitivity determination issues staged encapsulation and dynamic analysis.

3. Reverse Engineering of Java Code: Our Proposed Analysis Approach Our approach is based on the fact that bytecode consists all the structural information of code intact serially in a binary file without any gaps or feeds with standard form as defined in the JSR (java specification request) specification documentation released by JPC (java process community). We have emphasized on static analysis of java code to be sufficient for reverse engineering bytecode by comparing class diagrams obtained from bytecode/class files with that from the decompiled source code of the same class files. A schematic diagram related with the approach is presented here in Fig. 2. It is

13 J.JELSTEEN et al, IJRIT

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

proposed in our study that the output from the above comparisons being approximately same, will advocate to our approach for sufficiency of static analysis over dynamic analysis. Also we have compared decompilers for their efficiency to decompile latest java feature support. None of the tool was able to support all features of current java version.

Analysis of java Reverse Engineering Tools Software that needs to be analyzed through reverse engineering has implementation as class files/bytecode. These bytecode files need to be decompiled or reverse engineered through UML tools to recover their design implementation. On this analysis method, java code reverse engineering tools are classified into two types: 1. Bytecode Reverse Engineering Tools (Decompilers) 2. UML Reverse Engineering Tools Bytecode Reverse Engineering Tools Though the inbuilt dissembler tool javap bundled with the jdk installation provides class and method names and other necessary information, complete program structure can’t be decided with this information. However the decompiled Source code is approximately able to be transformed by an efficient programmer such that it can be compiled and run again with modifications done as per the requirements pertaining to Re-engineering needs (if any).In order to efficiently mine the structural information in the code, two kinds of decompilers usually required which are classified as under: Bytecode Reverse Engineering process using Decompiler Tools Applying Reverse engineering to store the parsed information and matching them with standard op code repository in the tool, bytecode is analyzed statically and the equivalent source code can be obtained by applying transformation to convert bytecode and obtain source code elements.

14 J.JELSTEEN et al, IJRIT

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

Fig.3 Block Diagram for bytecode decompilation process Decompiler types There are two variants of Java decompilers available as below. (a)Standard javac-compiler specific – The decompilers that assume the input (.class fi le) was created by a standard javac compiler. These produce code much comprehensive in nature .most of available decompilers are javac specific. (b)Tool-independent decompilers – The decompilers that can decompile arbitrary class files created by any other independent tool other than javac fall in this category. Dava application in soot framework is such a kind of tool. We have compared eight different decompiler tools available freely and checked Test programs on them separately supporting new capabilities of java 5 and 6 like autoboxing, generics support, and console class implementation among various others. The decompiler tools used in our study are listed here. Table: Tools tested for decompilation process Jode v 1.1.2-pre1 Jad V 1.5.8 g Coj(cup of java) uuDeJava v 1.02 jdec v2.0

Java Optimization and Decompilation Environment. Tool developed as an engine handling decompiling tasks. Very fast, tiny and efficient application. It is not an open source. It is a freely available small tool that produces average output but often fails to decompile methods body. This tool also using jad as back end not enough improved output is their available using it as compared to jad. Java is built in C++ ; uses jad Project started at 2007.06.01 This tool is also an open source available freely and has good capability of handling decompilation tasks on java 6 compiled files.

Jad retro v1.6

Works along with jad to produce output but alone it often fails to decompile properly. It first transforms class files

Dava v 2.4.0

An open source software available as a part of soot framework .it uses AST framework for mapping relations of class files to produce source files.

Java Decompiler V 0.3.2

It is the latest available tool that has become popular so fast.

15 J.JELSTEEN et al, IJRIT

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

4. UML Reverse Engineering Tools UML reverse engineering tools are capable of converting source or class files into class design from which original source can be coded. 4.1 Reverse engineering through UML Tools UML reverse engineering tools provide design phase information of development cycle from the code for an object oriented software. These tools are also of two kinds primarily based upon UML Reverse Engineering Process – Unidirectional Reverse Engineering tools: Those which take class files or achieve files (.jar) as input to produce class diagrams (UML models). Round Trip Engineering Tools: Some tools facilitate round trip engineering either starting from source code or Binary bytecode with UML model as an intermediary. Apart from above, some tools only take source file as input and produce UML class diagrams and vice versa. These are not actually Reverse Engineering tool but referring to the first chapter , going back in development cycle make them eligible to be called as Reverse Engineering tool. Also these can produce equivalent sequence diagrams for runtime analysis, or collaboration diagrams.

4.2 UML Reverse Engineering Process The UML reverse engineering tool U-Model generates class diagrams from class files as well as source files, whereas Enterprise Architect takes archive input. The procedure for reverse engineering through program analysis is by using these tools and manual comparison of class diagrams from original vs. Decompiled source code. The extent to which the output from these tests are approximately same, defines the sufficiency of structural code recovery using static analysis.

4.3 Tools for UML Reverse Engineering of Class Files Several tools are there to accomplish reverse engineering tasks using static or dynamic or combined code analysis techniques. Here in this dissertation, two tools named Altova U-Model 2010 missionkit from Altova Software and Enterprise Architect 7.5 from Sparx System are used. These tools process java bytecode to produce UML class diagrams besides generating class diagrams from input as source files. This way they are chosen to analyze source file – class structure from bytecode input with the class diagrams from original source file as proposed analysis method described in the introduction section. The IBM’s RSA- Rational Software Architect is also capable of static analysis of java code but it doesn’t supports java 6. For dynamic code analysis, profiler applications or tools are used. Your kit – java profiler is one such tool among others. These reveal a number of code parameters on runtime by analyzing class attributes or methods etc. viz. Dynamic information about CPU utilization, memory usage, buffer and thread related parameters.

5. Analysis of Reverse Engineering tools As per our approach as in Fig. 1, we have done comparisons of original source code and decompiled source code with the class files of original source code. We have compared more than hundred programs generated in our analysis on eight decompiler tools jd-gui, java decompiler has performed best for our Test programs featuring java 5 and 6 support. The results are obtained as per the criteria we have proposed in table 2.

16 J.JELSTEEN et al, IJRIT

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

Table 2 criterion for analyzing decompilers

Analysis of UML reverse engineering tools also has been carried out as per the schematic diagram for our approach presented here in Fig. 1 by comparing UML design models from original source files and decompiled source files on Altova U-Model 2010 missionkit and Enterprise Architect 7.5 tools. These tools had generated same class structure with revelation of code elements.

6. Conclusion Testing decompiler tools with the current java features revealed the areas where these tools failed to produce correct results as it is shown in chapters 4 and 5. It is evident that among these various tools, so far java decompiler – jd-gui has performed well with jad and jdec-2.0 left behind. UML reverse engineering outcome from the UML tools we have used in our study, ALTOVA U-Model and Enterprise Architect from Sparx Systems reveal same structural information about java code as the compiled bytecode with input once taken as source decompiled form the decompiler tools and original Test programs next, which further ascertains the sufficiency of static bytecode analysis for the original code structure recovery by`using reverse engineering tools.

7. Future Work Several decompiler tools are available but none has the capability of handling all the features of current java version for Bytecode decompilation. There is a scope for development of new solutions thus obviously. One possible solution may be that to develop a decompiler tool which can be updated just by including latest JVM instruction set as JVMX – (JVM extended feature) where advancements that comply to the new features specified in JSR (Java Specification Request) document released by JPC (Java Process Community) can be imported to add the functionality to the tool such that it becomes capable of handling latest java version automatically. Also such type of decompiler can be added with the functionality for request of update on network whenever it finds difficult to understand symbols in bytecode input during the parsing and then it should download the necessary update automatically to be able to decompile the input successfully. An Integrated tool suite can be developed which decompile the input besides using inferences from UML reverse engineering too. This can add great detail to enhance the performance and scalability of the tool.

17 J.JELSTEEN et al, IJRIT

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 1, January 2013, Pg. 11-18

Presently available static analysis UML tool like IBM’s Rational Software Architect have support for java 5 only. To gain adequate power with future tools, Intensive research fronts are still open to support new java versions 6 and 7 by developing high end solutions as an integrated tool for a leap in the area of reverse engineering.

References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

18. 19. 20. 21. 22. 23.

Chikofsky E.J., Cross II J.H. (1990), Reverse Engineering and Design Recovery: a Taxonomy, p-p13-17, IEEE Software, volume 7,January 1990. Tonella Paulo, (2002), Reverse engineering of object oriented code\, ICSE, 2002. Lehman et.al, (1996), Software evolution – change management 1996. Muller Hausi A.et al., (2000), Reverse Engineering: Okun Vadim, Romain Gaucher, Black Paul E.(2008) Static analysis tools exposition, an NIST project SATE-2008. Lienhard Adrian (2008), Dynamic Object Flow Analysis, University of Bern, December 2008. Arevalo Gabriela Beatriz, Argentinian von. (2004), High-Level Views in Object-Oriented Systems using Formal Concept Analysis, University of Bern, 2004. Ebert Jurgen, Kontogiannis Kostas, Mylopoulus John. (2001), Interoperability of reverse engineering tools, 2001. Miecznikowski Jerome, Hendren Laurie, (2001) Decompiling java using staged encapsulation, Sable research group, 2001. Zhao Jian-jun, (2001), Static analysis of java Bytecode, Wuhan University Journal of Natural Science, 2001. Knight Claire, (2000) Smell the Coffee! Uncovering Java Analysis Issues, 2000. Raza Aoun, Vogel Gunther, and Plodereder Erhard, (2005) Bauhaus-A Tool Suite for Program Analysis and Reverse Engineering, 2005. Goldberg Allen and Havelund Klaus, Instrumentation of Bytecode for Runtime analysis, NASA, AMES Research Center, 2003. Naeem Nomair A., Hendren Laurie,(2006), Programmer-friendly Decompiled Java , Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06). Jalote Pankaj et.al. (2006) Program Partitioning – A Framework for Combining Static and Dynamic Analysis, 2006. Shi Nija, Olsson Ronald A., (2005) Reverse engineering of design patterns for high performance computing, 2005. Vinita, Jain Amita, Tayal Devendra K., (2008), On reverse engineering an object oriented code into UML class diagram incorporating extensible mechanisms, ACM SIGSOFT Software Engineering notes, 2008. Rumbaugh James et.al. , Object oriented modeling and design. www.sourceforge.net www.codehaus.com www.ieeeexplore.com www.download.com www.google.com

18 J.JELSTEEN et al, IJRIT

[image: Importance of Software Re-Engineering Process and ...]
Importance of Software Re-Engineering Process and ...

[image: The Relative Importance of Aspects of Intellectual Capital for Software ...]
The Relative Importance of Aspects of Intellectual Capital for Software ...

[image: The Relative Importance of Aspects of Intellectual Capital for Software ...]
The Relative Importance of Aspects of Intellectual Capital for Software ...

[image: Support to Business Process Reengineering for Tax ...]
Support to Business Process Reengineering for Tax ...

[image: Importance of Maintaining Continuous Errors and Omissions ...]
Importance of Maintaining Continuous Errors and Omissions ...

[image: Importance of Prayer.pdf]
Importance of Prayer.pdf

[image: Importance of Prayer.pdf]
Importance of Prayer.pdf

[image: Importance Weighting Without Importance Weights: An Efficient ...]
Importance Weighting Without Importance Weights: An Efficient ...

[image: Importance Weighting Without Importance Weights: An Efficient ...]
Importance Weighting Without Importance Weights: An Efficient ...

Importance of Software Re-Engineering Process and ...

www.ijrit.com. ISSN 2001-5569. Importance of Software Re-Engineering Process and Program. Based Analysis in Reverse Engineering Process. D.EVANGELIN ...

 Download PDF

 133KB Sizes
 2 Downloads
 183 Views

 Report

Recommend Documents

[image: alt]

Importance of Software Re-Engineering Process and ...

Based Analysis in Reverse Engineering Process ... Programs are even more complex and difficult to comprehend, unless rigorously documented. What if the ...

[image: alt]

The Relative Importance of Aspects of Intellectual Capital for Software ...

used in the development of software today. It covers the ... IC is an increasingly important resource for companies ... ious models and indicators of IC [20, 19, 10].

[image: alt]

The Relative Importance of Aspects of Intellectual Capital for Software ...

The Relative Importance of Aspects of Intellectual Capital for Software ... 2School of Information Systems, Technology and Management Human Resources. 1.

[image: alt]

Support to Business Process Reengineering for Tax ...

G4G Technical Deliverable - Support to Business Pro ... ax Payment Simplification Reform RSBRD 20150225.pdf. G4G Technical Deliverable - Support to ...

[image: alt]

Importance of Maintaining Continuous Errors and Omissions ...

Importance of Maintaining Continuous Errors and Omissions Coverage Bulletin.pdf. Importance of Maintaining Continuous Errors and Omissions Coverage ...

[image: alt]

Importance of Prayer.pdf

Page 2 of 2. Importance of Prayer.pdf. Importance of Prayer.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Importance of Prayer.pdf. Page 1 of 2.

[image: alt]

Importance of Prayer.pdf

Manejo da Atopia em CÃ£es. Figura 3. CÃ£o atÃ³pico portador de dermatite. paquidermÃ¡tica de Malassezia. Figura 4. Vista otoscÃ³pica de mudanÃ§as hiperplÃ¡sticas. iniciais dentro do canal auditivo externo. Whoops! There was a problem loading this pag

[image: alt]

Importance Weighting Without Importance Weights: An Efficient ...

best known regret bounds for FPL in online combinatorial optimization with full feedback, closing ... Importance weighting is a crucially important tool used in many areas of Regret bounds and minimax policies under partial monitoring.

[image: alt]

Importance Weighting Without Importance Weights: An Efficient ...

best known regret bounds for FPL in online combinatorial optimization with full feedback, closing the perceived performance gap between FPL and exponential weights in this setting. ... Importance weighting is a crucially important tool used in many a

×
Report Importance of Software Re-Engineering Process and ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

