

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Improving Performance and Lifetime of the SSD RAID-based Host Cache through a Log-Structured Approach Yongseok Oh

Jongmoo Choi

Donghee Lee

Sam H. Noh

University of Seoul

Dankook University

University of Seoul dhl

Hongik University http://next.hongik.ac.kr

ABSTRACT

1. INTRODUCTION

This paper proposes a cost-effective and reliable SSD host cache solution that we call SRC (SSD RAID Cache). Costeffectiveness is brought about by using multiple low-cost SSDs and reliability is enhanced through RAID-based data redundancy. RAID, however, is managed in a log-structured manner on multiple SSDs effectively eliminating the detrimental read-modify-write operations found in conventional RAID-5. Within the proposed framework, we also propose to eliminate parity blocks for stripes that are composed of clean blocks as the original data resides in primary storage. We also propose the use of destaging, instead of garbage collection, to make space in the cache when the SSD cache is full. We show that the proposed techniques have significant implications on the performance of the cache and lifetime of the SSDs that comprise the cache. Finally, we study various ways in which stripes can be formed based on data and parity block allocation policies. Our experimental results using different realistic I/O workloads show using the SRC scheme is on average 59% better than the conventional SSD cache scheme supporting RAID-5. In case of lifetime, our results show that SRC reduces the erase count of the SSD drives by an average of 47% compared to the RAID-5 scheme.

Solid State Drives (SSDs) are becoming popular in computer systems due to their many positive traits. Accordingly, they are now being considered as high-performance data caches to improve networked storages such as NAS and SAN based storage [1, 2]. Many storage vendors have been developing such solutions to improve I/O performance in cloud computing systems [3, 4, 5]. The main goal of SSD based cache solutions is serving SSD-like performance with HDD-like cost-effectiveness. For cost-effectiveness, manufacturers are using MLC (MultiLevel Cell) flash memory chips that store two bits per cell in their SSDs. Recently, TLC flash memory chips that store three bits per cell are being considered as SSD components due to their low cost [6]. However, performance and endurance of TLC flash memory chips is considerably limited [7]. For example, erasing a block and writing data in TLC chips are both much slower than SLC or MLC chips. The erase count of TLC blocks is expected to be only around 1,000 times, which is at least a magnitude smaller than that of MLC and SLC chips. Furthermore, bit error rates of MLC and TLC flash chips are higher than that of SLC chips [7, 8]. These negative aspects may result in disastrous data loss, especially if the SSD cache solution uses the write-back policy and new data is being stored in the SSD. Furthermore, current SSD cache architectures may not be robust against drive failures and data corruption. Therefore, additional data protection mechanisms may need to be deployed to safeguard data residing in the SSD cache. One such data protection mechanism may be to use conventional RAID techniques in managing multiple low price SSDs. Though this approach is a viable one, it still suffers from performance and reliability limitations of its own. First, in RAID-5, the overhead of parity updates through either read-modify-write or reconstruct-write is inevitable when we directly use the RAID-5 technique as an SSD cache solution. This parity overhead may lower the performance of an SSD cache solution. In addition to this problem, RAID-5 quickly shortens the lifetime of the SSDs as parity manipulation incurs more writes. With more writes, reliability of the SSD cache will suffer and wear-out will be aggravated as well [8, 9]. This paper proposes a cost-effective SSD cache solution that we call SRC (SSD RAID Cache), which provides costeffectiveness by using multiple low-cost SSDs and reliability by retaining data redundancy through RAID. Specifically, SRC dynamically stores the updated data with parity data in a log-structured manner on multiple SSDs. This has the

Categories and Subject Descriptors B.3.2 [Memory Structure]: Design Styles—Mass storage; D.4.2 [Operating Systems]: Storage Management—Secondary storage, Storage hierarchies

General Terms Design, Performance, Reliability

Keywords SSD RAID Cache, Log-Structured Approach, Destage, Replacement, Parity, Performance, Lifetime, Cost-effective

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFLOW’13, November 3, 2013, Pennsylvania, USA. Copyright 2013 ACM 978-1-4503-2462-5 ...$15.00.

effect of eliminating the read-modify-write operation, which drastically reduces the parity manipulation overhead. In addition, within the proposed framework, we propose to eliminate parity blocks for stripes that are composed of clean blocks. This is possible as the SSD comprised RAID is a cache of the primary storage. Hence, if the data blocks are clean, this means that the original copy resides in primary storage and hence, the cache version may be lost without compromising reliability. We also propose the use of destaging, instead of garbage collection, when the SSD cache is full. We show that the performance and lifetime implications of these techniques are significant. Finally, we study various data and parity block allocation policies in forming stripes within our proposed framework. We discuss the pros and cons of the various approaches for the various workloads that we consider. Our experimental results using different realistic I/O workloads show that using the SRC scheme is on average 59% better, with a maximum of 68% and minimum of 55%, than the conventional SSD cache scheme supporting RAID-5. In case of lifetime, our results show that SRC reduces the erase count of the SSD drives that comprise the cache by an average of 47%, with a maximum of 87% and minimum of 27%, compared to the RAID-5 scheme. The remainder of this paper is organized as follows. Section 2 summarizes related work. In Section 3, we describe the design of the SRC scheme, while in Section 4 we describe how we implemented SRC. Section 5 discusses the evaluation environment and gives a detailed discussion of the results of the evaluation. Finally, we conclude the paper with a summary and conclusion in Section 6.

2.

RELATED WORK

In this section, we review existing work related to this study. First, we discuss schemes related to SSD caches. These recent studies have focused on how to improve performance and to enhance the lifetime of SSDs. Then, we review studies that propose cost-effective storage solutions that employ multiple low price SSDs or HDDs.

2.1 SSD based Cache NAND flash based SSDs have been used as a data cache for several purposes. Kgil et al. propose a novel flash cache management scheme that identifies and allocates read and write requests separately into read and write regions so that the garbage collection cost and the performance of flash memory cache is optimized [10]. As MLC has strength in price while SLC in performance and endurance, Hong et al. utilize SLC programming mode of flexible MLC flash memory chips to harvest the advantages of both SLC and MLC [11]. In addition to these work, Seagate tries to develop and sell a real hybrid HDD product that integrates raw flash memory into an HDD [12]. There have been studies that use commodity SSDs as a block-device cache for hybrid storage systems. Chen et al. propose a hybrid storage solution, namely Hystor, that combines low-cost HDDs and high-speed SSDs [13]. Pritchett and Thottethodi propose a highly-selective caching mechanism to capture data that are to be likely re-accessed in SSD cache [14]. Oh et al. introduce an optimal partitioning scheme that dynamically splits the cache spaces into read, write and over-provisioned spaces according to workload patterns [15]. Saxena et al. suggest a unified logical

address space within the OS and SSD cache to reduce cache block management cost [16]. These studies attempt to minimize the high cost of data caching operations in flash memory storage as writes are much more expensive than reads. Also SSDs have been used for networked storage systems. Byan et al. introduce a host-side cache approach where a write-through SSD cache is deployed in the enterprise Hypervisor environment [1]. To overcome consistency limitations of the write-back caching scheme, Koller et al. provide consistent write-back policies [2]. These studies have only focused on improving the performance of lifetime of SSD cache where they deploy a single SSD device. However, our study is quite different in that data corruption and SSD drive failures are considered.

2.2 Cost-effective Storage RAID is a cost-effective and reliable storage system [17]. Unfortunately, it suffers from the small write problem when the parity protection mechanism is employed. That is, when a write request arrives in RAID, the modified data and its related parity must be updated together for data recoverability. In contrast to large sequential writes, the parity can be updated through either read-modify-write or reconstructwrite techniques. These operations incurs additional read and write operations, leading to significant performance degradation. To overcome the small write problem, many techniques have been introduced [18][19]. Wilkes et al. suggest a hybrid approach where frequently updated data are stored in RAID-1, while infrequently updated data are stored in RAID-5 [20] so that parity overhead of RAID-5 is minimized. Our study is similar to this work in that a log-structured approach is employed to reduce parity overhead. However, our scheme does not incur any GC operations that copies valid blocks to other free stripes in RAID. Also, our scheme is targeted for reliable cache systems, not for primary storage systems. SSD based RAID solutions have focused on improving reliability and performance with low price SSDs. Balakrishnan et al. develop a skewed parity distribution scheme to reduce data loss probability [8]. Kim et al. propose a globally coordinated garbage collection (GC) scheme that synchronously triggers all GC processes of SSDs depending on requests so that performance is optimized [21]. Moon et al. study reliability of SSD based RAID and provides a model to calculate the lifetime of RAID [9].

3. DESIGN OF SRC In this section, we describe the design of the SRC scheme, first concentrating on the key features of SRC. Then, we look into the detailed layout of the blocks in the SRC scheme and the various allocation policies in forming a stripe in SRC.

3.1 Key Features of SRC SRC is essentially a RAID management based caching scheme with the underlying cache composed of low-cost SSDs. The goal of SRC is to provide a cost effective, reliable hostside cache for mass storage systems. The overall architecture of the storage system employing SRC is shown in Figure 1. The storage system consists of two layers, namely, the SRC Layer and the Primary Storage Layer. The Primary Storage Layer has an HDD based system and provides large storage service to the upper layer.

&'(%)*+,*#-#%

3*+,*;

.15*%)*891:*/%

=188";5% =1;15*/%

.1/"-2% >/"-*/%

33!%

./"01/2% 3-4/15*% 612*/%

!"#

%$33!%

!"#

%$33!%

!"#

%$!-./0(#

3)7% 612*/% 33!%

!"#

%$!!"# $%&'(## *#

!!"# $%&'(## +#

!!"# $%&'(## ,#

!"#

!'#

!+#

-"#

!$#

!(#

!,#

-$#

!%#

!)#

!$"#

-%#

!&#

!*#

!$$#

-&#

"%-%#

1%./-2#

Figure 2: Data layout of SRC scheme

Figure 1: Architecture of SRC scheme

We note that this layer is not limited to specific storage systems. The SRC Layer consists of numerous SSD drives. We discuss the various software components of SRC later. Before discussing the novel features that are introduced with SRC, we first discuss the various policies involved with the cache aspect of SRC. First, the cache space is logically partitioned into the read space and the write space. The read caching space keeps the clean data copied from the lower level storage and the write caching space keeps the dirty data updated from the upper layer. Note that the read caching space may also incur writes at the SRC Layer as these data blocks are brought up from the Primary Storage Layer. Second, we assume that the write cache uses the writeback policy instead of the write-through policy. The writethrough policy does not take advantage of the features of SSDs such as high random performance because it it needs to wait for acknowledgements for write requests from both the Primary Storage Layer and the SRC Layer. With SSDs, which have non-volatility characteristics, the write-back policy is more efficient than the write-through policy without any loss in consistency. Finally, there is the replacement issue. In SRC, the cache is managed in stripe units. Hence, when space is in need, a stripe has to be “evicted”. The stripe to be evicted is determined using a clock-based policy. If the stripe selected to be evicted is a read stripe, that is, a stripe in the read caching space, this stripe is simply thrown away as the original copy of this cached data resides in the Primary Storage Layer. However, if the selected stripe is a stripe that is in the write caching space, this stripe must be destaged to storage. We will discuss this aspect in more detail later. Let us now discuss the novel features of SRC that we propose. SRC has three key features. The first is that SRC employs the log-structured scheme that stores data blocks sequentially in SSDs [22]. Employing the log-structured scheme removes all read-modify-write operations that are detrimental to RAID performance. We do not claim to be the first to make use of the log-structured scheme for RAID [20, 23, 24]. Nevertheless, we claim that the use of the log-structured based RAID scheme in the cache allows for other features as explained below. The second feature is that SRC does not maintain parity blocks for stripes in read caching space. Note that read requests that miss in SRC generate data writes to SSD cache

!!"# $%&'(##)#

as data must be brought into the SSD cache from Primary Storage Layer. However, even though SRC is RAID based, data brought into the SSD cache by read requests need not have parity blocks as their original is in the lower layer. If one of the SSDs ever fault, the original data can always be found. Omitting parity for stripes in read caching space improves performance without compromising the robustness against SSD failures. The final feature involves replacement. Typically, when an SSD runs out of space garbage collection (GC) is performed to make space. GC collects valid data scattered over various blocks into an empty block and then, sets the now empty blocks as free blocks. GC operations are known to be costly and to hurt the performance and lifetime of SSDs. As SRC is composed of SSDs a similar situation can arise. With SRC, however, we take a different approach. Instead of GC, SRC actively applies destaging to make room in SSD cache. Rather than copying valid data in stripes to other stripes as would be done with GC, the destaging scheme simply removes clean data in the SSD cache or writes back dirty data to HDDs and reclaims their space. Judicious selection of data to be destaged is crucial for performance. To select data to be destaged, we use a per-stripe clock bitmap, which has one bit per stripe. Similarly to the well-known clock algorithm [25], if a read is requested to data in a stripe, its corresponding bit, which is initially 0, is set. For destaging, the bits in the bitmap are examined in clock-wise direction starting from the last examined bit. If it finds a 0 bit, it destages data in the corresponding stripe; otherwise it sets the bit to 0 and continues to examine the other bits. We use this per-stripe clock bitmap because it is simple and, more importantly, scalable, which is a crucial requirement for huge SSD caches.

3.2 Internal Organization of SRC We now explain the layout of SRC on the multiple SSDs. Figure 2 shows the internal stripe layout of SRC. The caching space provided by the numerous SSD drives is split into N stripes similar to RAIDs. These stripes are managed in a log-structured manner. Each stripe comprises of SSDs that forms a RAID system, and in each SSD several blocks1 can also be a part of the same stripe. In addition to storing 1

Note here that the term block refers to the logical block as seen by the upper layer, for example, at the file system. It is not referring to the flash memory block unit.

0053#

0054# 0056#

0057#

0.2%1'#3#

!"#$

%"&$

'"&$

($

!"#$

%"&$

'"&$

($

0.2%1'#4#

)"#$

*"&$

+"#$

($

)"#$

*"&$

($

+"#$

!"#$%&'(#)##*%&'(#

+"#$%&'(#)#,-.!.'(#

!"#$

)"#$

+"#$

,"#$

!"#$

)"#$

+"#$

,"#$

%"&$

'"&$

*"&$

($

%"&$

'"&$

($

*"&$

/"#0'1!2!.'(#)#*%&'(#

("#0'1!2!.'(#)#,-.!.'(#

Figure 3: The four allocation strategies for read and write caching: a) stripes where read and write blocks are mixed (Mixed) and the parity blocks are fixed to a single SSD (Fixed) b) Mixed and parity blocks are rotated among the SSDs (Rotated) c) stripes where read and write blocks are separated (Separated) and Fixed and d) Separated-Rotated cached data, the SRC scheme maintains parity data to recover data against drive failures or data corruption. In our example diagram, we have 4 blocks for each SSD in the same stripe for a total of 16 blocks, data blocks D0∼D11 and parity blocks P0∼P3, forming a single stripe. In the case a drive fails, SRC enters degraded mode and data caching is disabled until a new drive is added. Given the internal organization of the stripes in SRC, the allocation of various blocks can affect the performance of the cache. In particular, how the read and write blocks will be distributed among the stripes has to be determined, which we refer to as the allocation issue. For allocation, we consider the data and parity blocks separately. For the parity blocks, we consider two types of parity distributions, namely ‘Fixed’ and ‘Rotated’. The Fixed approach stores parity blocks in a dedicated SSD like RAID4, while the Rotated approach distributes parity blocks in a rotated manner like RAID-5. For data blocks, we again separate them into read and write blocks. Then, there are two ways to allocate them among stripes. One is to simply to ignore the distinction and allocate read and write blocks together in a stripe. We refer to this type of allocation ‘Mixed’ striping. The other method is to distinguish the read and write blocks so that each stripe will consist of only read or write blocks. We refer to this type of allocation as ‘Separated’ striping. In this case, as noted previously, read stripes do not hold parity blocks. Combining the two parity distribution methods and the two read-write block allocation methods, we have a total of 4 different allocation strategies, namely, Mixed-Fixed, MixedRotated, Separated-Fixed, and Separated-Rotated, which are depicted in Figure 3. We will compare and discuss the quantitative performance implications of these approaches in Section 5.

4.

IMPLEMENTATION

As depicted in Figure 1, the software components of SRC, as shown in the SRC Layer are the Sequential I/O Detector, Page Replacer, Mapping Manager, and Parity Writer. The Sequential Detector identifies consecutive I/O requests and makes them bypass the SRC Layer to avoid cache pollution.

Table 1: Configuration of storage system Type Description Value Model Maxtor Atlas 10K HDD No. of Disks 5 No. of SSDs 4 No. of Packages 4 Cleaning Policy Greedy Reserve Space 10% GC Threshold 9% Blocks per Chips 1024 SSD Pages per Block 64 Write Time 350us Read Time 35us Erase Time 1.5ms Chip Xfer Time 25ns Copyback Time On

Table 2: Characteristics of I/O workload traces Workload Financial [26] Exchange [27] MSN [27] Web [26]

Avg. Req. Size (KB) Read Write 5.73 7.2 9.81 12.56 47.18 21.01 15.14 8.60

Request Amount (GB) Read Write 6.76 28.16 37.43 41.34 1.88 29.41 15.24 0.002

Read Ratio 0.19 0.48 0.06 0.99

The Page Replacer evicts the selected victim stripe. Specifically, the dirty blocks among the victim stripe are destaged to the Primary Storage Layer, while the clean blocks are simply considered removed from the SRC layer. The Mapping Manager maintains a logical to physical address mapping table to quickly lookup the location of the requested data in the storage system. In order to detect data corruption, the Mapping Manager also keeps checksum information of each data block along with the mapping information. In particular, the validity of the data is checked using the checksum value. If valid, that is, the requested data is not corrupted it is served to the upper layer. Otherwise, SRC attempts to recover the original data through the RAID reconstruction mechanism. The Parity Writer is the component that calculates and stores the parity block to the specific SSD drive. When a full stripe write occurs, the Parity Writer simply calculates the new parity and writes it to the appropriate location. However, if the modified data is less than the full stripe size, the Parity Writer does not immediately calculate the parity block but waits for a specific amount of time for more writes. This is done to minimize the parity overhead. In our evaluations, the time that we wait is set to 5 seconds.

5. PERFORMANCE EVALUATION To evaluate SRC, we implement the SRC scheme in a hybrid storage simulator based on the CMU DiskSim [28] with MSR SSD Extension [29]. We also set up typical cache solutions that use RAID-0 and RAID-5 approaches to represent real working environments. In all the schemes, four SSDs are used as the data cache and five HDDs are used as primary storage. Also, unless mentioned otherwise, the stripe size is fixed to 64KB for all the experimental results presented.

9:;

&"

59>"

%" $" #" !")*+,+-*,." /0-1,+23"

456"

,-.+/!"

,,*%"

,,*&"

'()*+!"

'()*+#"

,'-"

Figure 6: Erase counts of SSDs for the Exchange workload

,-.+/'"

**+%"

**+$"

**+#"

816729"56723"

**+!"

**+%"

**+$"

816729",314"

**+#"

**+!"

**+%"

**+$"

**+#"

**+!"

!"#$%&'()*$+,-.$

)!" (!" '!" &!" %!" $!" #!" !"

+121"56723"

,,*$"

&!!" %#!" %!!" $#!" $!!" #!" !"

738"

Figure 4: Response times of SRC and RAID-5 relative to RAID-0 +121",314"

!"#$%&#''($%)#'*+,-.'

,,*!" 9:;

'"

*,0"

!"#$%&#"'()*"'+!",-./"0'

!"#$%&#"'()*"'+!",-./"0'

("

&" %#$"

2(.178'(.17"928':" 2(.178;*?*=178'(.17"938':" 31>*?*=178;

%" !#$" !" '()*)+(*," -.+/*)01"

Figure 5: Effect of parity overhead for the Exchange workload The specific parameters of the HDDs and SSDs are given in Table 1. For the workload, we use realistic workload traces that have been used in various other studies [10, 15, 14, 30]. The first is the Financial trace that is a random write intensive I/O workload obtained from an OLTP application running at a financial institution [26]. The Exchange trace is a random I/O workload obtained from the Microsoft employee e-mail server [27]. This trace is composed of 9 volumes of which we select and use the trace of volume 2. The MSN trace is extracted from 4 RAID-10 volumes on an MSN storage back-end file store [27]. We choose and use the trace of volume 0. The Web trace is a random read intensive I/O workload obtained from a web search engine [26]. The Web trace is unique in that 99% of the requests are reads while only 1% are writes. The characteristics of the four traces are summarized in Table 2.

5.1 SRC vs Conventional RAID We first compare the performance of SRC with conventional RAID-0 and RAID-5 based schemes, which are meant to represent typical host storage settings in real environments. For the SRC scheme, we use the results of the Separated-Fixed policy. (We discuss the performance of the other policies in the following section.) Figure 4 shows the response times of SRC and RAID-5 relative to the performance of RAID-0. As expected, RAID0 shows the best performance compared to other schemes except for the Web workload. For the Web workload, SRC performs even better than RAID-0. The reason RAID-0 performs so well is that this scheme has no parity overhead as exemplified in Figure 5. This figure shows the amount of I/O performed by the various com-

Figure 7: schemes

234"

516"

Response times of the four allocation

ponents for each scheme for the Exchange workload. (Results for the other workloads are not presented for brevity.) As shown in the figure, RAID-0 only reads and writes data, and there is no activity for parity, whereas for RAID-5 considerable data is moved for parity management. In contrast, we see that for SRC, though there is activity for parity, it is consolidated into a single SSD and its effect on overall performance is minimal. Overall, Figure 4 shows that our SRC scheme outperforms RAID-5 considerably; by 55% for the Financial workload , 68% for the Exchange workload, 56% for the MSN workload, and 59% for the Web workload. Though RAID-0, in general, performs the best, it does not provide data protection against drive failures and data corruption. As a result, we argue that RAID-0 is an inappropriate solution for an SSD cache that uses the write-back policy. Finally, Figure 6 shows the erase count of SSDs that comprise the cache layer for the Exchange workload. From these, we can see that the expected lifetime of the SSDs using the SRC scheme is double that of RAID-5. Our conclusion is that the SRC scheme brings about considerable performance and lifetime benefits by reducing the parity update overhead.

5.2 Comparison of Allocation Policies In this section, we discuss the performance of the four allocation policies, namely, Mixed-Fixed (read-write Mixed striping with Fixed parity SSD), Mixed-Rotated (read-write Mixed striping with Rotated parity SSDs), Separated-Fixed (read-write Separated striping with Fixed parity SSD), and Separated-Rotated (read-write Separated striping with Rotated parity SSDs) described in the previous section.

,,-!" ,,-'" ,,-#" ,,-." /012341"

()*"

()+"

!"#$%&#'($%)#'*+,-.'

!"#$%"&'"()*+("&,-(.&

,,-!" ,,-#" ,,-$" ,,-%" ./01230" '" &" %" $" #" !"

'!!" &!" %!" $!" #!" !" ()*"

()+"

,)*"

,)+"

(a)

!"#$%&%'()&*#(+,#-.(

**+!" **+$" **+%" **+," -./012/" %#!!" %!!!" $#!!" $!!!" #!!" !" &'("

&')"

(b) Figure 8: (a) Device response times and (b) cleaning overhead for the Financial workload (M-F and M-R denotes the Mixed-Fixed and Mixed-Rotated policy, respectively)

Overall Performance Figure 7 shows the response times of the various allocations policies. In the figure, the x-axis represents workloads and the y-axis denotes the mean response time of I/O requests normalized to that of the Mixed-Fixed policy. Figure 7 shows that, for workloads with a mix of read and write requests, fixing the parity to a single SSD is a clear winner as Mixed-Fixed and Separated-Fixed show better response time than both their rotated counterparts. Also, with the parity SSD fixed, the results in Figure 7 tell us that the Mixed policy is actually better than the Separated policy. However, for the read intense Web workload, we see that Separated-Fixed and Separated-Rotated perform considerably better than the other policies. This tells us that, for these types of read intense workloads, the data block allocation policy is more influential than the parity placement policy.

Effect of Fixed Parity Policy In the following, we discuss the reasoning behind the superior performance of fixing the parity to a single SSD. We use the results of only the Financial workload as the observations of the other traces are similar. Compare the device response times (given in milliseconds) of the Mixed-Fixed and Mixed-Rotated policies shown in Figure 8(a). We see that, for Mixed-Fixed, of the four SSDs the three SSDs retaining data blocks have similar device response times, while SSD3, the SSD that holds the parity blocks, has higher response times. This is natural as heavy parity updates only go to SSD3. In contrast, the same results for Mixed-Rotated show that the response times of all SSDs are almost similar as this policy evenly distributes all parity updates to all SSDs. Even though the performance of the parity SSD is con-

Figure 9: Erase count results of allocation schemes for SSDs under Financial workload (M-F, M-R, S-F, and S-R denotes the Mixed-Fixed, Mixed-Rotated, Separated-Fixed, and Separated-Rotated policy, respectively)

siderably worse than the other SSDs for the Mixed-Fixed case, this biasing of the workload has a positive effect on the overall performance. As a single SSD shoulders the full burden of parity management, the other data SSDs become more free to service other data requests, resulting in better service. This in contrast to the Mixed-Rotated policy where the burden is shared among the SSDs, resulting in all the SSDs slowing down. As a result, we see that response times of data SSDs for the Mixed-Fixed policy is 1.5 times better than those of the Mixed-Rotated policy. The reason behind such superior performance can be found in Figure 8(b), which shows the cleaning times for the SSDs for the two policies. The results show that writes for parities increases the cleaning time2 within the SSDs. This is aggravated for the Mixed-Rotated policy as writes due to parities are being scattered among all the SSDs, leading to more writes, while for the data only SSDs of the MixedFixed policy, being free of parity, cleaning occurs relatively less. Since requests for data are serviced with the data holding SSDs, it turns out that keeping these SSDs light, while burdening only the parity holding SSD results in better performance as a cache. This biasing has the same influence on erase counts as shown in Figure 9, which shows the erase counts of each of the SSDs for the various policies. Here, again, we see that though the parity SSD is heavily used, the other SSDs are enjoying the light load that the parity SSD is indirectly providing. This type of biased use may seem to be a negative trait, but there have been prior work that has argued in the other direction [8].

Effect of Separated Policy Let us now turn our attention to the Separated policy. In Figure 7, we showed that the Separated-Fixed and SeparatedRotated policies are approximately 20% better in response time than the other policies for the Web workload, which is 99% reads and 1% writes. To demonstrate the impact of the Separated policy, we measure the parity overhead and erase counts of each SSD for the Web workload and depict their results in Figure 10. Recall from Figure 3 of Section 3.2 that the Separated policy allows SRC to forgo the writing of 2 Note that cleaning time here is that consumed internal to the SSD, not the cleaning time for the log-structured approach. SRC does not incur cleaning for the log-structured approach as it uses destaging for dirty blocks.

6.45/7"345/1"

'" &" %" $"

*+,-,.+-/"

#"

012"

!"

))*!"))*#"))*$"))*%"))*!"))*#"))*$"))*%"

++,#"

++,-"

./01230"

'!" &" %"

!"#$%"$&'()$*+(,*#-(

!"#$%&#'($%)#'*+,-.'

++,'"

%$"

*+,-,.+-/" 012"

$!" #"

(&" #$)" $'(" '#$" #!$&" -./0("%-01"%*23,%

$&"

&"

!#'"

%" $"

*+,-,.+-/"

#"

012"

'%"

&(" $%)" %#&" #$%" $!%(" .%#$/)'.$0)*1,-'

(b) Parity overhead (" !#&" !#%" +,-.-/,.0" 123"

!#$" !"

!" %$"

(&" #$)" $'(" '#$" #!$&" ./0$1+(.$2+(,34-(

(c) Positioning time of HDD

#"

$#"

'"

#("

$"

%!"

(a) Response time

),-"

(a) Parity overhead ++,!"

%#"

!" #("

+,-"

!"#$%&'(#$%)'*+,-'

6.45/7"01.2"

!"#$%&'($

*./."345/1"

!"#$%&"'()$'"%*+',%

!"#$%&'()*$+,-.$

*./."01.2"

(" '" &" %" $" #" !"

(&"

)$"

&%" ($'" $*&" *($" (!$%")#*"+,$)"-,$./01$

(d) Hit ratio

Figure 11: Impact of stripe size

!" ()*"

+)*"

(b) Erase count Figure 10: Impact of the Separated policy for the read intensive Web workload (M-F and S-F denotes the Mixed-Fixed and Separated-Rotated policy, respectively)

parity blocks for read stripes and, in the place of the parity blocks, data blocks are written. In Figure 10(a), we observe that the Separated-Fixed policy has no parity overhead, while Mixed-Fixed has roughly 3GB of additional parity writes. Furthermore, as shown in Figure 10(b), the average erase count of Separated-Fixed is reduced to half that of Mixed-Fixed. We conclude that for read dominant workloads, eliminating parity information for read stripes can have a positive effect on performance and lifetime.

Effect of Stripe Size Similar to RAID, in SRC, finding the appropriate stripe size is an important issue that can influence performance. To investigate this issue, we measure the average response times as we vary the stripe size from 16KB to 1MB. Again, in the following, we present the results for only the Financial and Web workloads using Figure 11. Let us first discuss the Financial workload shown in Figure 11(a). We see that the response time degrades slightly as the stripe size increases until it reaches 128KB. This can be explained by Figure 11(b), which shows that parity overhead increases as the stripe size increases. This is because parity updates occur more frequently as more and more small write requests cannot be fully filled in a single stripe. We see, however, that the average response time suddenly drops as the stripe size increases beyond 128KB. This can be explained by the improvement seen in the HDD head positioning time depicted in Figure 11(c). The reason behind this is that with large stripes it is more likely to destage in larger sizes resulting in reduced seek time and rotational delay in HDDs. For the Web workload, we only see a slight rise in the average response time as the stripe size is increased. We see that there is no significant parity overhead involved and that positioning time of HDD is not affected as writes to HDDs are minimal. However, we do see that with larger stripes we

see a slight decrease in the hit ratio as cache management occurs in larger grains. This has a negative impact on the performance for the Web workload.

6. CONCLUSION NAND flash memory based SSDs are now being employed as data caches for various storage systems. Since SSDs are still considerably more expensive than HDDs, cost-effectiveness and reliability are important issues when designing SSD cache solutions. To this end, we investigated the management of an SSD cache that employs the RAID technique over the SSDs to enhance reliability. The scheme that we proposed, which we call SRC (SSD RAID Cache), is based on the log-structured write approach that results in eliminating read-modify-write operations that hinder the performance of conventional RAID-5 systems. Within this framework, we proposed various techniques to enhance the performance of the SSD RAID cache and the lifetime of SSDs that comprise the SSD RAID. We also presented and analyzed various allocation policies possible for the SRC scheme. Through experiments, we showed that our proposed scheme outperforms the typical RAID-5 approach and performs comparatively to the RAID-0 approach. We also showed that the lifetime of SSDs may be prolonged considerably as the erase count of SSDs that comprise the SSD cache is reduced. Specifically, our experimental results using various realistic I/O workloads showed that using the SRC scheme is on average 59% better, with a maximum of 68% and minimum of 55%, than the conventional SSD cache scheme supporting RAID-5. In case of lifetime, our results showed that SRC reduces the erase count of the SSD drives by an average of 47%, with a maximum of 87% and minimum of 27%, compared to the RAID-5 scheme.

Acknowledgments This research was supported in part by Seoul Creative Human Development Program funded by Seoul Metropolitan Government(No. HM120006), by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2012R1A2A2A01045733), and by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0025282).

7.

REFERENCES

[1] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel, S. Kleiman, C. Small, and M. Storer, “Mercury: Host-Side Flash Caching for the Data Center,” in Proc. of MSST, 2012. [2] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala, and M. Zhao, “Write Policies for Host-side Flash Caches,” in Proc. of FAST, 2013. [3] NetApp, Flash Cache, http://www.netapp.com/us/products/storagesystems/flash-cache. [4] Fusion-io, ioCache, http://www.fusionio.com/products/iocache. [5] Marvell, DragonFly, http://www.marvell.com/storage/dragonfly. [6] Samsung Releases TLC NAND BASED 840 SSD, http://www.anandtech.com/show/6329/samsungreleases-tlc-nand-based-840-ssd. [7] L. M. Grupp, J. D. Davis, and S. Swanson, “The Bleak Future of NAND Flash Memory,” in Proc. of FAST, 2012. [8] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differential RAID: Rethinking RAID for SSD Reliability,” in Proc. of EuroSys, pp. 15–26, 2010. [9] S. Moon and A. L. N. Reddy, “Don’t Let RAID raid the Lifetime of Your SSD Array,” in Proc. of HotStroage, 2013. [10] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash Based Disk Caches,” in Proc. of ISCA, pp. 327–338, 2008. [11] S. Hong and D. Shin, “NAND Flash-Based Disk Cache Using SLC/MLC Combined Flash Memory,” in Proc. of SNAPI, pp. 21–30, 2010. R [12] Seagate Mometus XT, http://www.seagate.com/www/enus/products/laptops/laptop-hdd. [13] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best Use of Solid State Drives in High Performance Storage Systems,” in Proc. of ICS, pp. 22–32, 2011. [14] T. Pritchett and M. Thottethodi, “SieveStore: A Highly-Selective, Ensemble-level Disk Cache for Cost-Performance,” in Proc. of ISCA, pp. 163–174, 2010. [15] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching Less for Better Performance: Balancing Cache Size and Update Cost of Flash Memory Cache in Hybrid Storage Systems,” in Proc. of FAST, 2012. [16] M. Saxena, M. M. Swift, and Y. Zhang, “FlashTier: A Lightweight, Consistent and Durable Storage Cache,” in Proc. of EuroSys, pp. 267–280, 2012. [17] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID),” in Proc. of SIGMOD, pp. 109–116, 1988. [18] S. K. Mishra and P. Mohapatra, “Performance Study of RAID-5 Disk Arrays with Data and Parity Cache,” in Proc. of ICPP, pp. 222–229, 1996. [19] D. Stodolsky, G. Gibson, and M. Holland, “Parity Logging Overcoming the Small Write Problem in

[20]

[21]

[22]

[23]

[24] [25]

[26] [27]

[28]

[29]

[30]

Redundant Disk Arrays,” in Proc. of ISCA, pp. 64–75, 1993. J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID Hierarchical Storage System,” ACM Trans. on Computer Systems, vol. 14, pp. 108–136, Feb 1996. Y. Kim, S. Oral, G. M. Shipman, J. Lee, D. A. Dillow, and F. Wang, “Harmonia: A Globally Coordinated Garbage Collector for Arrays of Solid-State Drives,” in Proc. of MSST, 2011. M. Rosenblum and J. K. Ousterhout, “The Design and Implementation of a Log-Structured File System,” ACM Trans. on Computer Systems, vol. 10, no. 1, pp. 26–52, 1992. K. Mogi and M. Kitsuregawa, “Dynamic Parity Stripe Reorganizations for RAID5 Disk Arrays,” in Proc. of PDIS, pp. 16–27, 1994. J. Menon, “A Performance Comparison of RAID-5 and Log-Structured Arrays,” in Proc. of HPDC, 1995. F. J. Corbato, “A Paging Experiment with the Multics System,” in Honor of Philip M. Morse, M.I.T. Press, pp. 217–228, 1968. UMASS Trace Repository, http://traces.cs.umass.edu. S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Characterization of Storage Workload Traces from Production Windows Servers,” in Proc. of IISWC, pp. 119–128, 2008. J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “DiskSim 4.0,” http://www.pdl.cmu.edu/DiskSim/. V. Prabhakaran and T. Wobber, “SSD Extension for DiskSim Simulation Environment,” http://research.microsoft.com/enus/downloads/b41019e2-1d2b-44d8-b512ba35ab814cd4. D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron, “Migrating Server Storage to SSDs: Analysis of Tradeoffs,” in Proc. of EuroSys, pp. 145–158, 2009.

[image: Improving Host Security with System Call Policies]
Improving Host Security with System Call Policies

[image: Improving Performance of Communication Through ...]
Improving Performance of Communication Through ...

[image: Improving the Performance of the Sparse Matrix Vector ...]
Improving the Performance of the Sparse Matrix Vector ...

[image: Improving Energy Performance in Canada]
Improving Energy Performance in Canada

[image: Improving Energy Performance in Canada]
Improving Energy Performance in Canada

[image: Improving Security and Performance of an Ad Hoc ...]
Improving Security and Performance of an Ad Hoc ...

[image: Improving the Performance of Trickle-Based Data Dissemination in ...]
Improving the Performance of Trickle-Based Data Dissemination in ...

[image: Improving the Finite Sample Performance of ...]
Improving the Finite Sample Performance of ...

[image: Techniques for Improving the Performance of Naive ...]
Techniques for Improving the Performance of Naive ...

[image: Improving UX through performance - GitHub]
Improving UX through performance - GitHub

[image: An Adaptive Strategy for Improving the Performance of ...]
An Adaptive Strategy for Improving the Performance of ...

[image: An Adaptive Strategy for Improving the Performance of ...]
An Adaptive Strategy for Improving the Performance of ...

[image: Techniques for Improving the Performance of Naive Bayes ... - CiteSeerX]
Techniques for Improving the Performance of Naive Bayes ... - CiteSeerX

[image: Improving the Performance of Web Services by ...]
Improving the Performance of Web Services by ...

[image: Improving Host Security with System Call Policies - Center for ...]
Improving Host Security with System Call Policies - Center for ...

[image: Improving Host Security with System Call Policies - CiteSeerX]
Improving Host Security with System Call Policies - CiteSeerX

[image: Improving Host Security with System Call Policies - Center for ...]
Improving Host Security with System Call Policies - Center for ...

[image: Improving Simplified Fuzzy ARTMAP Performance ...]
Improving Simplified Fuzzy ARTMAP Performance ...

[image: Improving Student Performance Through Teacher Evaluation - Gallup]
Improving Student Performance Through Teacher Evaluation - Gallup

[image: Improving Student Performance Through Teacher Evaluation - Gallup]
Improving Student Performance Through Teacher Evaluation - Gallup

[image: Improving Student Performance Through Teacher Evaluation - Gallup]
Improving Student Performance Through Teacher Evaluation - Gallup

Improving Performance and Lifetime of the SSD RAID-based Host ...

This paper proposes a cost-effective and reliable SSD host D10. D11. SSD. Cache. 2. P0. P1. P2. P3. SSD. Cache. 3. Stripe. Data. Parity. Figure 2: Web. Response Time (Rela*ve). RAID-0. RAID-5. SRC. Figure 4: Response times of SRC and RAID-5 rela- ... 0 shows the best performance compared to other schemes.

 Download PDF

 499KB Sizes
 3 Downloads
 256 Views

 Report

Recommend Documents

[image: alt]

Improving Host Security with System Call Policies

Center for Information Technology Integration where op is either equality or inequality and data a user ... code and that it operates only with benign data. Oth-.

[image: alt]

Improving Performance of Communication Through ...

d IBM Canada CAS Research, Markham, Ontario, Canada e Department of Computer forms the UPC source code to an intermediate representation (W-Code); (ii). 6 guages - C, Tech. rep., http://www.open-std.org/JTC1/SC22/WG14/.

[image: alt]

Improving the Performance of the Sparse Matrix Vector ...

Currently, Graphics Processing Units (GPUs) offer massive ... 2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010).

[image: alt]

Improving Energy Performance in Canada

Sustainable Development Technology Canada â€“. NextGen through education and outreach, as well as through energy science and technology by conducting 171 026. Oct. 11. 175 552. Nov. 11. 167 188. Dec. 11. 166 106. Jan. 12.

[image: alt]

Improving Energy Performance in Canada

and Canadian businesses money by decreasing their energy bills ... oee.nrcan.gc.ca/publications/statistics/trends11/pdf/trends.pdf. economy in 2015â€“2016.

[image: alt]

Improving Security and Performance of an Ad Hoc ...

munications systems, the Research Community focused its effort on security and. â‹† The work of ... privacy to wireless Mobile Ad Hoc networks (MANETs). For a text file, it is simply not possible, we could loose information which prevents the

[image: alt]

Improving the Performance of Trickle-Based Data Dissemination in ...

and Johan J. Lukkien. Dept. of Mathematics and Computer Science, Eindhoven University of Technology,. P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

[image: alt]

Improving the Finite Sample Performance of ...

ternational risk$sharing becomes larger when the technology shock becomes Assumption FL can be replaced by the bounded deterministic sequence of.

[image: alt]

Techniques for Improving the Performance of Naive ...

... negatively. In such cases,. 1 http://people.csail.mit.edu/people/jrennie/20Newsgroups/. 2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/ ...

[image: alt]

Improving UX through performance - GitHub

Page 10 ... I'm rebuilding the Android app for new markets ... A debug bridge for Android applications https://github.com/facebook/stetho ...

[image: alt]

An Adaptive Strategy for Improving the Performance of ...

Performance of Genetic Programming-based. Approaches to Evolutionary ... Evolutionary Testing, Search-Based Software Engineering,. Genetic Programming ...

[image: alt]

An Adaptive Strategy for Improving the Performance of ...

Software testing is an ... software testing. Evolutionary Testing. Evolutionary. Algorithms. +. Software ... Let the constraint selection ranking of constraint c in.

[image: alt]

Techniques for Improving the Performance of Naive Bayes ... - CiteSeerX

and student of the WebKB corpus and remove all HTML markup. All non-alphanumeric C.M., Frey, B.J., eds.: AI & Statistics 2003: Proceedings of the Ninth.

[image: alt]

Improving the Performance of Web Services by ...

I. INTRODUCTION. As far as communication for distributed applications in ... dynamic strategy based on client profiling and on a predic- tive model. With a ...

[image: alt]

Improving Host Security with System Call Policies - Center for ...

that can be subverted that way and enforcing security ... 3 Motivation and Threat Model Figure 3: Overview of system call interception and policy decision.

[image: alt]

Improving Host Security with System Call Policies - CiteSeerX

services or user applications on a system call level and are enforced ... cess, for example to a web server only [12]. However, ... web server and gains its privileges may possibly use them in security guarantees or may make it difficult to keep

[image: alt]

Improving Host Security with System Call Policies - Center for ...

monitoring and restricting system calls, an application may be prevented from ... which allows us to create policies quickly even in very complex environments.

[image: alt]

Improving Simplified Fuzzy ARTMAP Performance ...

Research TechnoPlaza, Singapore . 3Faculty of Information Technology, Multimedia University,. Cyberjaya, Malaysia .

[image: alt]

Improving Student Performance Through Teacher Evaluation - Gallup

Aug 15, 2011 - 85 Harvard Graduate School of Education Project on the. Next Generation of Teachers. (2008). A user's guide to peer assistance and review.

[image: alt]

Improving Student Performance Through Teacher Evaluation - Gallup

Aug 15, 2011 - the high school level and in subject areas beyond reading and math in elementary and middle schools. The Common. Core State Standards initiative continues to move ahead in developing common assessments.65 Consequently, the likelihood i

[image: alt]

Improving Student Performance Through Teacher Evaluation - Gallup

15 Aug 2011 - In Cincinnati, the Teacher Evaluation. System gathers data from four observations â€” three by trained evaluators and one by the principal â€” and a portfolio of work products (such as teacher lesson plans and professional development a

×
Report Improving Performance and Lifetime of the SSD RAID-based Host ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

