

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

In Defense of Erlang Through the Magic of Offense

Who am I? • • • • •

Well known security researcher DARPA grant winner Wrote the GSMA IoT Security Standard Black Hat, HITB, etc speaker Only public Erlang exploit developer

Thank You Fred Hebert @ Heroku Geoff Cant @ Heroku Daed Latrope @ Heroku Kenneth Lundin @ Ericsson The entire Ericsson VM team

Why Does This Matter? •

Erlang runs GPRS, 3G, LTE

•

Switching infrastructure

•

Banking infrastructure

•

Web infrastructure

•

And soon? IoT infrastructure

Erlang Security Model

Sort of a Secret Garden •

If the adversary can execute code, they can take over the node

•

Compromising one node means compromising all nodes

•

Node protection mechanisms must be rigidly managed

Traditional Risks Nearly Impossible •

All variables are write once -- sort of

•

No pointers or direct memory access

•

VM is register and heap based; no true stack

•

All user written code is call-back based, reducing code complexity

•

Pattern matching helps process data faster and isolates valid use cases from anomalies

•

"Let it crash" mantra reduces overhead required to prevent crashes

BEAM = Root •

Loading code into an Erlang node is equivalent to having root

•

Remember, Erlang is essentially an operating system of its own

•

But there are no privileges beyond node access

•

Many ways to execute custom code

•

No way to verify code on update (md5 sums are versioning only)

All Nodes are One •

In the docs, "cookies" are indeed defined as security tokens

•

If a node is accessible via the network, the only thing standing between you is the cookie (by default)

•

Monotonic timers are used to auto-generate cookies; this is guessable based on host uptime (nmap); less entropy than previously thought

•

Any Erlang thread can push code to any node in the mesh

High-level Issues

Launching External Apps •

Direct ability to load BEAM files

•

os:cmd()

•

open_port BIF

•

erl_eval / syntax_tools

Crypto Defaults •

SSLv3 enabled

•

Older TLS

•

DES algorithms

•

CBC variants

Comparison Subtleties •

All comparisons are value based, not object based

•

== versus =:= matters

•

Pattern matching is more useful than expressions; e.g. 1 = 1.0 will always fail

•

Unexpected type morphing Integer = Integer * Integer Float = Integer / Integer

SQL Injection •

Still possible in Erlang

•

Depends if concatenation is used on binary parameters

•

Formatting can result in injections

•

Some libraries handle this correctly e.g. Pgsql

•

Object type conversion can bypass value inspection (see UUID example)

Bad Business Logic •

Most variables are write once

•

Not State tracked across callbacks

•

Shared state can cause logic errors

•

Not normalizing data before altering shared state can lead to unexpected results

•

Using binary_to_term and friends without checking side effects

Low-level Issues

Data Complexity Attacks •

ETF from untrusted sources is not safe

•

This is true even when "safe" atom is used as an argument

•

zlib compression attacks can result in OOM on the entire VM instance

•

Custom PCRE module complexity attacks

Privacy Subtleties •

Crashing on purpose has side effects

•

Erlang crash dumps contain memory contents

•

May include private keys, other secrets/tokens

•

File written to disk may be accessible via web interface or simply via file system permissions

NIFs and Drivers •

Direct access to OS memory

•

Lots of opportunities for risk

•

Corrupting the VM is very easy

•

Simply taking too long in a NIF can disrupt the VM's internal state

Lazarus (lz4) The Big Vulnerability that Did

Why lz4 was One Shot RCE •

Design of Erlang Binary structures

•

NIF allocation can overflow

•

Corrupting adjacent objects easily results in control of said objects

•

Polymorphism in C achieved using flags

•

Payload data then interpreted as custom deconstructors

Chicken Pad The Little Vulnerability that Could

Chicken Pad Vulnerability •

Integer overflow in allocator

•

Initially found via rand()

•

Results in truncated objects

•

Copies constrained via magic

•

Men corruption is still possible

•

RCE capable via drivers/NIFs

•

Almost pure Erlang RCE capable

Chicken Pad Vectors •

driver allocators

•

NIF allocators

•

ETF allocators (nrml)

•

reallocate functions

•

binary_to_term

Chicken Pad Details •

Uint bsize = ERTS_Sizeof_Binary(size) + CHICKEN_PAD

•

Requires 'size' to be huge or actual payload to be huge (4GB)

•

Results in valid object of small (or zero) size

•

Zlib compression in object serialization can decompress a 4MB payload into valid 4GB of data

Chicken Pad Takeaways •

Software flaws deep in internal code can be accessed through many vectors

•

These vectors can persist for decades without detection

•

Architecture changes may make impossible or improbable attack vectors practical

•

Massive memory requirements for remote exploitation are no longer challenging

•

Mitigations can be incidental or purposeful: you pick!

VM Internal Highlights

The VM Design •

There really isn't a "stack", it's actually heap

•

Same memory segment for both (same OS chunk, really)

•

Corruption in either one could affect the other

•

1024 X registers; Y registers are synthesized into "stack"

•

Instruction addresses are pointers to opcodes

VM Memory •

Erlang processes are perceived, not physical (eg GoLang)

•

One OS thread per CPU core

•

Each acts as a scheduler for Erlang processes to run on

•

VM State (regs/heap) are OS chunks of memory allocated to a particular scheduler thread

Mapping Instructions •

Can seem like "spooky math"

•

BEAM opcodes go through multiple stages of interpretation during load

•

One phase is translation, which maps opcodes to internal, granular opcodes

•

This is done for speed and efficiency, reducing VM overhead

Generic Instructions •

Can have a translation table

•

Translations define how the loader should see instruction variants and how the instructions should be interpreted

•

Specifics define what internal opcodes are relevant when mapping a generic opcode to a more useful opcode

•

Interpreting both of these fields tells us what instruction shall actually be executed

Example: mapping "call" •

Look up "call" in the generic opcode table "gen_opc"

•

Identify whether the field contains a Transform (5th element)

•

Search the Transform table "/^

•

Check for TOP_new_instr to find the new opcode number (eg 255 for i_call/1)

•

Find index 255 in gen_opc

•

Get i_call's 'specific' value from here (160,1)

•

Look up entry 160 in the internal opcode table "opc"

•

Search for this opcode name in beam_emu.c

*.*call"

Summary •

Erlang is a beautiful language

•

Fast to develop, fast to deploy

•

High security potential

•

Yet, many areas of risk not previously known nor addressed

•

Still requires auditing and security lifecycle integration

Questions? Answers guaranteed. (Guarantee void in Tennessee) www.securitymouse.com

[image: In Defense of l0 - Semantic Scholar]
In Defense of l0 - Semantic Scholar

[image: In defense of globalization.pdf]
In defense of globalization.pdf

[image: In Defense of l0]
In Defense of l0

[image: In Defense of Adventure-Based Education and Active ...]
In Defense of Adventure-Based Education and Active ...

[image: IN DEFENSE OF ARISTOTLE'S BIOCOSMOLOGY AS ...]
IN DEFENSE OF ARISTOTLE'S BIOCOSMOLOGY AS ...

[image: The Skeptical Fantasist: In Defense of an Oxymoron - Heliotrope]
The Skeptical Fantasist: In Defense of an Oxymoron - Heliotrope

[image: Download In Defense of a Liberal Education - Fareed ...]
Download In Defense of a Liberal Education - Fareed ...

[image: Review Excerpts for In Defense of Globalization - Columbia University]
Review Excerpts for In Defense of Globalization - Columbia University

In Defense of Erlang.pdf

Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. In Defense of Erlang.pdf. In Defense of Erlang.pdf. Open. Extract.

 Download PDF

 9MB Sizes
 6 Downloads
 227 Views

 Report

Recommend Documents

[image: alt]

In Defense of l0 - Semantic Scholar

University of Pennsylvania, Philadelphia, PA 19104 USA. Keywords: variable selection, best subset selection, l1 regularization, Lasso, stepwise regression.

[image: alt]

In defense of globalization.pdf

Bhagwati has performed a useful service for ... enables the investment to occur with imported capital equipment embodying advanced and General Info. Type.

[image: alt]

In Defense of l0

often in various machine learning tasks, such as pre- ... (7). It diverges when Î³0 â†’ âˆž, in other words, when the system is extremely sparse, l1 solution will do a ...

[image: alt]

In Defense of Adventure-Based Education and Active ...

In Defense of Adventure-Based Education and Active Learning Opportunities by Jim Cain, Ph.D. Teamwork & Teamplay www.teamworkandteamplay.com. â€œI love having my students engage in adventure-based learning opportunities. The day we spend at the chall

[image: alt]

IN DEFENSE OF ARISTOTLE'S BIOCOSMOLOGY AS ...

and the view that it deals solely with physical entities and so can aim no higher contrary, any cell (structure, body â€“ analogy of the 'social agent') of a sleeping ...

[image: alt]

The Skeptical Fantasist: In Defense of an Oxymoron - Heliotrope

Vedic India or Homeric Greece. So what is the draw of ... make things upâ€“if anything the limits on what claims could or could not be made were far more exacting ...

[image: alt]

Download In Defense of a Liberal Education - Fareed ...

CNN host and best-selling author Fareed Zakaria argues for a renewed commitment to the world's most valuable educational tradition. The liberal arts are under ...

[image: alt]

Review Excerpts for In Defense of Globalization - Columbia University

... the hard-nosed perspective of a liberal on trade and investment with the soft- ... as well as some 'state of the art' econometric analysis, he sets out to prove.

×
Report In Defense of Erlang.pdf

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

